

www.csiro.au

Detecting anomalies in sensor network data

Richard Jarrett

CSIRO Mathematical & Information Sciences, Melbourne, Australia Cherry Bud Workshop, 26 March 2008

Summary

- Background on "sensor networks"
- Project of "anomaly detection" in water distribution systems
- Methods used for identifying anomalous events for a single sensor
- Issues about multiple sensors
- Estimation of "travel time" between sensors

Sensors and sensor networks

CSIRO is a Government funded research organisation in Australia, with 6500 employees, focussing on major national issues. 40% of our budget comes from work with business and industry.

'Sensors and sensor networks' is a major focus area for CSIRO, whose aim is:

To create technologies to radically reduce the cost and improve the quality of data gathering to

- enhance the understanding of our natural environments and
- provide the ability to manage & exploit Australia's resources.

Sensors and sensor networks

CSIRO work is focussed on

- Development of new sensors
- Data transmission protocols
- Distributed processing/autonomous decisions

For our Division of CSIRO, the interest lies in

- How reliable is the data we are collecting?
- What do we do with the data that is collected?
- How many sensors, how frequently we measure?
- Optimal placement of the sensors

Sensors and sensor networks

• WRON (Water Resources Observation Network):

- Water accounting using flow sensors and other information to find out how much water there is and where it's going
- Water forecasting predictive models based on matching sensor outputs to runoff and flow models, checking calibration

• CMIS/CLW projects (AwwaRF, Sydney Water, Water Corp):

- Gauges measuring depth and flow in sewer systems
- Calibration issues for both gauges and models
- Now looking at measurements in water distribution systems
- Aim to detect anomalous events and take action
- Also used for detecting calibration problems
- Now targetting "travel time" between sensor locations
- Will ultimately be able to follow "events" through the system

"Anomalous events" in sensor networks

- Study funded by CSIRO and the American Water Works Research Foundation (AwwaRF)
 - Literature review of current methodologies for analysis and evaluation of on-line water quality data
 - Application of the most promising methods to data sets obtained from a number of Australian and US water utilities
- The methods considered will eventually lead to
 - Better understanding of water distribution systems
 - Techniques which enable identification of anomalous events
 - In particular, events which might be linked to security issues

Data available

Australia

- City West Water (Melbourne, Australia)
- Hunter Water (Newcastle, Australia)
- South East Water (Melbourne, Australia)

(All used the same instrumentation with pH, ORP (oxidation-reduction potential), TEMP every 10 min.)

United States

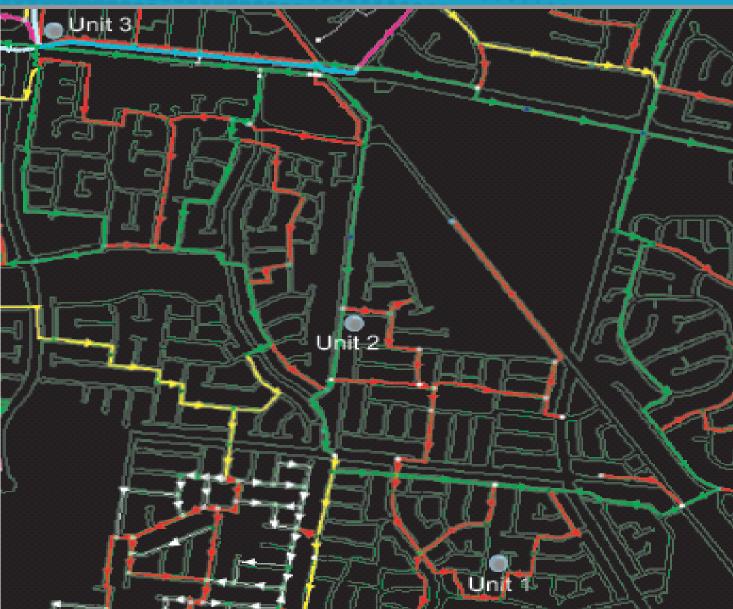
- Philadelphia (every 1 min)
- Oklahoma City (every 15 min) (Mainly pH, Electrical Conductivity (EC), Turbidity, Residual Chlorine; Flow and Pressure are sometimes available but these refer to the manifold where the sensor is, not the pipe)

• Typically, about a year of data in each case, for a number of sites

Cherry Bud Workshop

"Anomalous events" in sensor networks

- This shows a typical network
- Arrows show
 'usual' direction
 of flow
- Water comes in at Unit 3 and flows down and to the right



Cherry Bud Workshop

Metadata

• "Metadata" is vital for an understanding of the system and identification of possible reasons for anomalies

System data

- Details of variables/equipment/units
- Codes/values used when data is missing or equipment is off-line
- Method and timing of data retrieval from equipment to computer
- Time standards, eg daylight saving

• Event data

- Time and duration of maintenance/calibration events
- Time and duration of major system problems, eg pump failures, mains breakages, treatment failures
- School holidays, public holidays
- Major weather events

"Anomalous events" in sensor networks

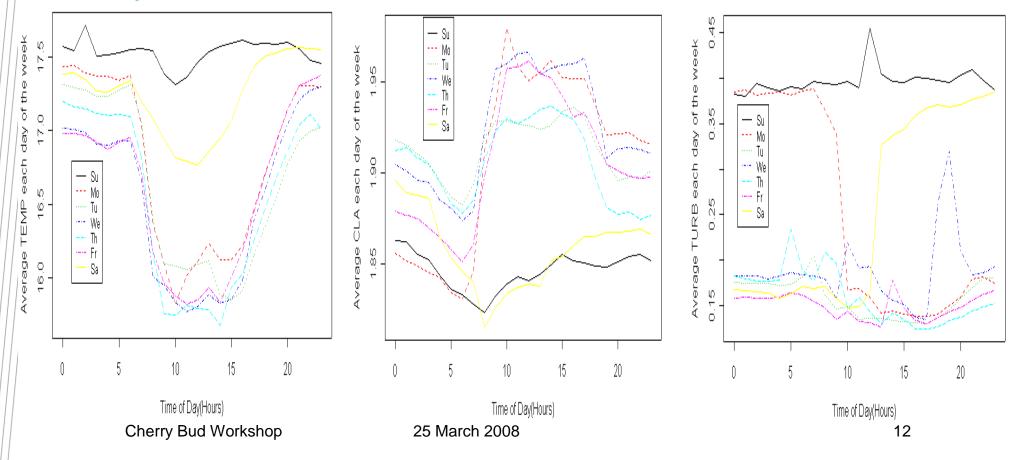
Techniques available	Comments
Statistical models Data mining	Flow rates vary on a daily and weekly basis. This creates daily and weekly patterns in measured variables due to "time spent in pipes" (eg cement-lined pipes change the pH of water)
	These methods do not cope with "slowly varying changes"
Time series models Control charting techniques	Data too erratic with daily, weekly, seasonal changes Hence not suitable for original data but work well on "differenced" data
Adaptive models, eg Kalman filter	Adapt well to slow changes but still allow detection of rapid changes
Multivariate versions for multiple variables per sensor and/or multiple sites	Lack of correlation so multivariate results similar to univariate
	Multiple sites requires knowledge of "travel time"

"Anomalous events" in sensor networks

- Particular problems with on-line sensors
 - Data is generally not as reliable as laboratory-based analyses
 - Tendency for instrumental drift, so there is a need for maintenance and re-calibration at (typically monthly) intervals
 - Local disturbances can occur
 - Volume of data, often once a minute from >20 sites, is large

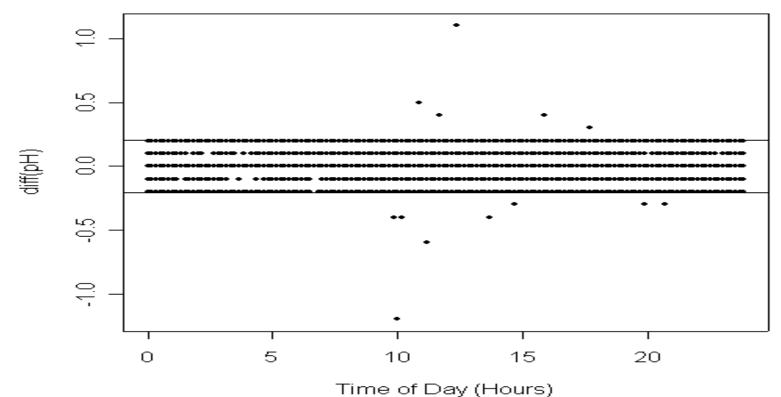
Example 1: Day-of-week patterns

- Most water utilities show patterns based on time of week
- Here, CLA (Chlorine) remains low Sat-Sun but has a clear cycle Mon-Fri



Example 2: Control charts using first differences

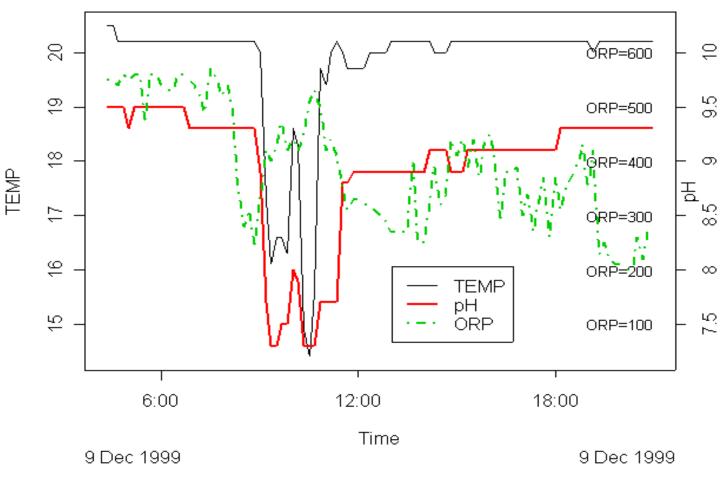
- First differences remove the slow changes/cycles
 - Generally stationary, but can still have minor time-of-day effects, so we plot by Time of Day (for the whole year)
 - Usual Control Limits too narrow generally we take about 5σ
 - Here, 13 points (out of 55,000) are outside the limits:



Example 3: A major event

 11/13 of these outliers occur on one day

 Either a maintenance event or a change in flow direction at the sensor



How should we move forward?

Control charts of differences

- Works well because first differences are close to independent (e.g. look at variograms)
- If data points every 10-15 minutes, ideal for picking up sharp changes over this sort of time period
- Models based on "white noise + Brownian motion" do quite well here
- For these models, EWMA charts would work well; effectively, Kalman filters
- Kalman filters with different levels of filtering enable us to "tune" our detection methods to pick up "events" of different shapes and sizes

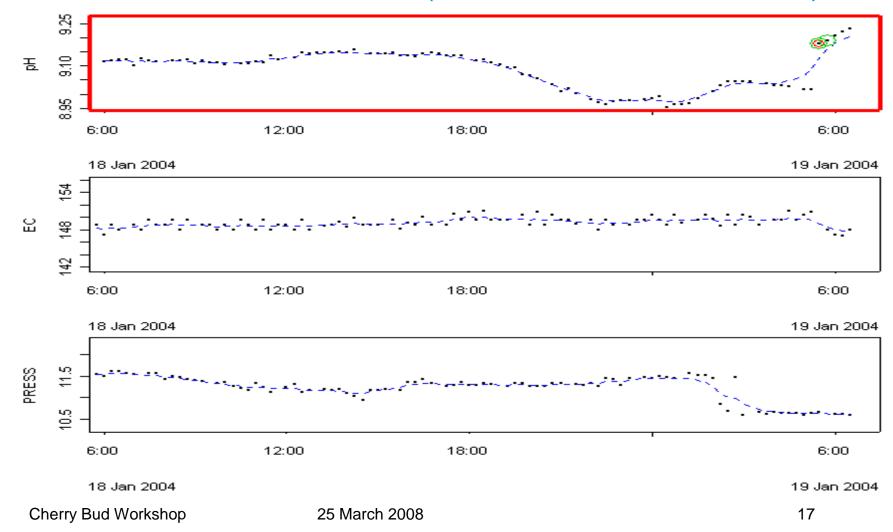
Adaptive schemes: Kalman filters

• We identify 4 alarm codes:

- Difference between data point and 1-min Kalman filter
- Departure of slope of 1-min Kalman filter from average over last 31 days
- Departure of slope of 10-min Kalman filter from average over last 31 days
- Departure of slope of 60-min Kalman filter from average over last 31 days
- In each case, an alarm is triggered if the quantity is greater than (default) $5 \times$ average abs diff over last 31 days.
- These alarms are colour coded with (x), (+), a small (o), and a larger (O).

Example 4: US Utility 2, 15 min data

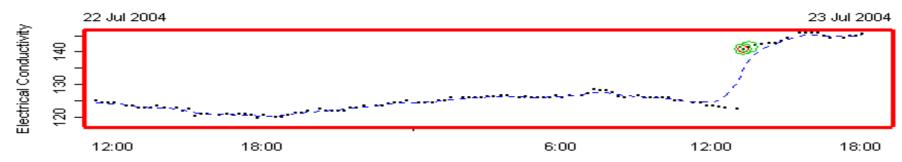
• Here is the first alarm we see (••• = data,--- = 60-min filter)

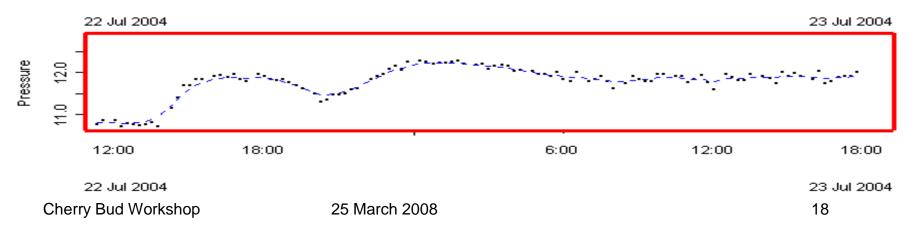


Example 4: US Utility 2, 15 min data

• Another example:



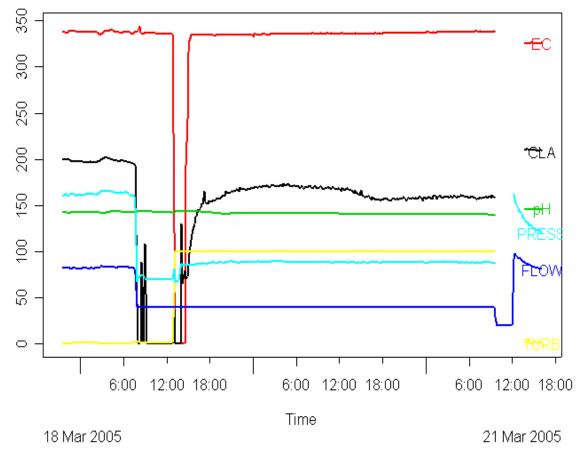




Example 5: US Utility 1, 1 min intervals

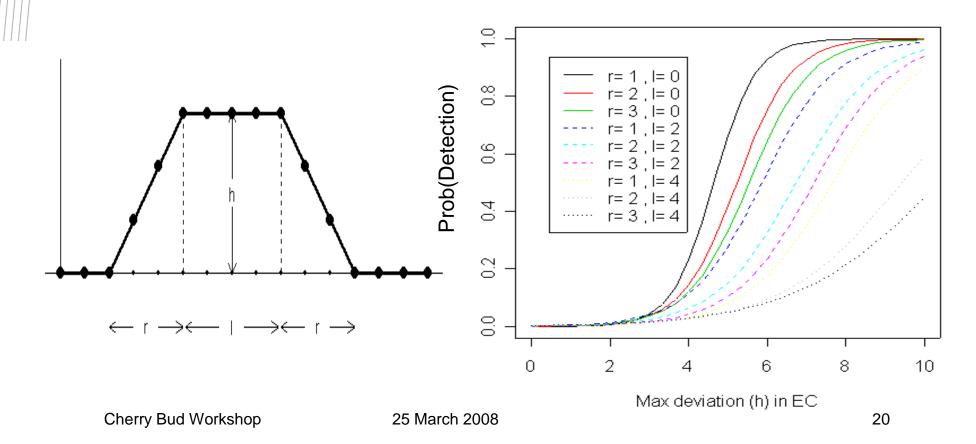
Looking at multiple variables is useful

- Here, two major events:
 - First is a 4h disruption, possibly due to fouling ^Ω (blockage) of the sensor
 - Second is 1h, likely to be maintenance event
- Note gradual return to stable levels, often different from previous stable levels



How well does the Kalman filter work?

- Can look at false positive/negative rates by adding artificial 'events' and looking at the detection rates
- Events chosen have different size (h), slope (r) and duration (ℓ)
- Example shows ROC (power curves) for 10-min EC data from US



Learnings from the data

Control charting techniques

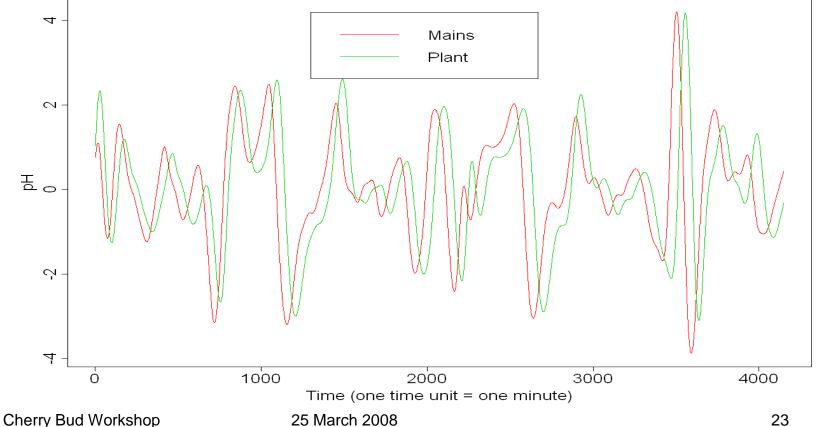
- Simplistic, but do not work well with data which shows significant drift over time. Some success when applied to "differences".
- Time series analysis
 - Insufficient regular structure for this to be effective.
- Kalman filter techniques ("State space models")
 - Well suited to slowly varying processes the strongest contender
 - Uses past data to assess how well new data conforms to past patterns
 - Can identify anomalies across a range of scales
- Need to extend this to multiple sensors, but this can only be done if we know 'travel time' between sensors

Estimation of "Travel time"

- For many systems (water distribution, sewers, river networks), "travel time" is important
- In the past, "tracer" studies or complex hydraulic models were used, but they are expensive and only give a "snapshot"
- We use the natural perturbations in the sensor data to estimate travel time in real-time
- It would then be possible to
 - confirm anomalous events and track them through the system,
 - have a better idea of their origin, and
 - measure water age and use this to determine the rate of change of contamination indicators such as free chlorine.
- Viterbi algorithms were tried but perform poorly they don't use the fact that travel time changes smoothly
- Hidden Markov models for travel time work better

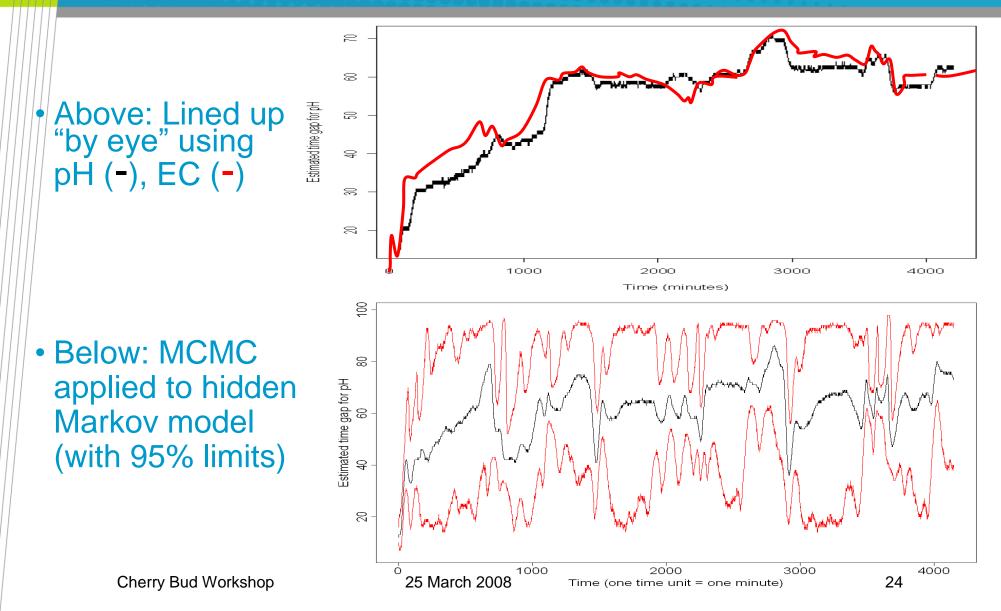
Example 6: Two sensors 150m apart

Both sets of data here are filtered to remove high frequency



Filtered pH data

Example 6: Two sensors 150m apart



Hidden Markov models for "Travel time"

- Two monitoring sensors at X and Y, water travels from X to Y, readings every z minutes.
- Observe x_i and y_i at time i at locations X and Y, respectively. Suppose that::

$$y_i = \alpha + \beta X_{i-t_i-a} + e_i$$

where e_i is Normally, zero mean, variance σ^2 , and $t_i = t_{i-1} + s_i$, with $s_0 = 0$ and

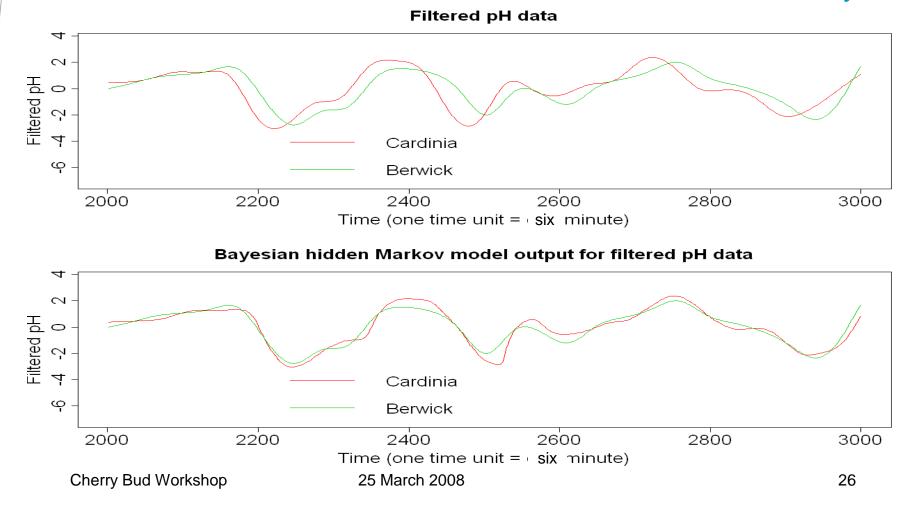
 $s_{i} = \begin{cases} -dz \text{ with probability } p_{1} \\ -(d-1)z \text{ with probability } p_{2} \\ \cdots \\ 0 \text{ with probability } p_{d+1} \\ \cdots \\ +dz \text{ with probability } p_{2d+1} \end{cases}$

- Here, a is the known travelling time gap between locations X and Y at time 0 and the *unobserved* s_i are the hidden states.
- Parameter estimation can be undertaken using the EM algorithm, or using Bayesian methods such as MCMC. The MCMC approach was used here.

Cherry Bud Workshop

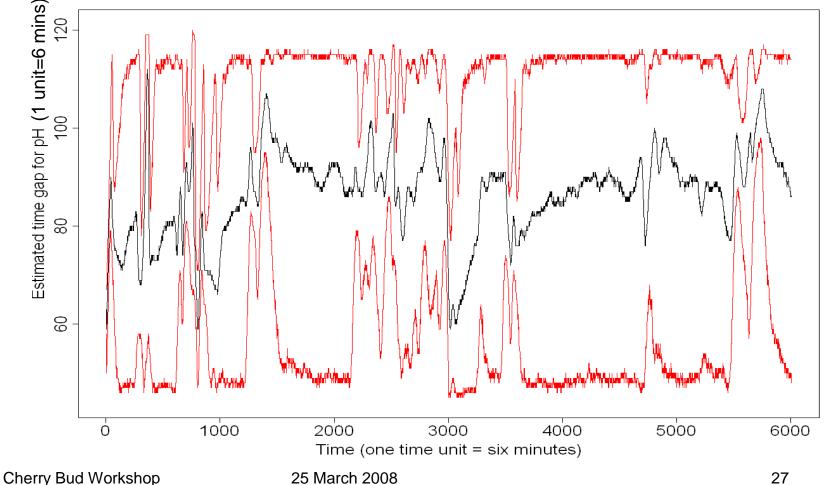
Example 7: Two sensors 20km apart

- Cardinia (reservoir), only 3% reaches Berwick, 20km away
- Data is filtered, Berwick shifted 6.5h left. Plot covers 4 days.



Example 7: Two sensors 20km apart

- Time delay estimated accurately at some times, poorly at others.
- Plot covers 25 days



Further work on "Travel time"

- Understanding how water moves through the system is vital for planning purposes (eg chlorine addition)
- Combination of water sources can cause problems with water quality
 - Where we have 'mixed supplies', we hope to identify travel time and the percentage of each water type at each location, in real time
- Research questions:
 - MCMC approach takes ~2h, can we do this in real time?
 - Can we improve accuracy using more variables?
 - How far apart do sensors need to be?
 - How frequently do we need to measure and how much 'natural variation' is needed for this to work?
 - Can we process locally between pairs or triples of sensors, to enable local decision-making?
 - Can we use this to 'track' anomalous events?

In summary

- Sensor networks offer us huge opportunities/challenges
- These are important problems for water utilities
- We need to:
 - Deal with issues of calibration/maintenance of sensors
 - Build and calibrate models of the system
 - Know how much water we have and where it is and how long it takes to get from A to B
- Potentially massive data sets
- Potential for distributed processing/autonomous decision making

Richard Jarrett Computational and Mathematical Modelling Program CSIRO Mathematical and Information Sciences

Phone: +61 3 9545 8039 +61 419 239 452 Email: <u>Richard.Jarrett@csiro.au</u>

Thank you

