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Collaborative Research Centre SFB 475
- Reduction of Complexity in Multivariate Data Structures -

Complex scientific problems in economics, engineering & life sciences

• Analysis of capital and labor markets

• Quality control in complex production processes

• Online monitoring in intensive care

• Causality of chronic diseases (cancer)
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i1q Complex Data Structures i1q

High dynamics

Complex dependence structures

High dimensions
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i1q Intensive Care i1q
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i1q Data Acquisition i1q
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i1q Motivation: Multivariate Time Series i1q

Cherry Bud Workshop, Yokohama, March 25-28, 2008 7



i1q Motivation: Multivariate Time Series i1q

Objective: Online extraction of clinically relevant information from

multivariate time series of the haemodynamic system
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i1q Motivation: Univariate Signal Extraction i1q

0 50 100 150 200 250 300

60

70

80

90

100

110

Mean Arterial Blood Pressure

time

• Sudden changes and

trends, no steady state

• Many artefacts

⇒ False alarms

Cherry Bud Workshop, Yokohama, March 25-28, 2008 8



i1q Motivation: Univariate Signal Extraction i1q

0 50 100 150 200 250 300

60

70

80

90

100

110

Mean Arterial Blood Pressure

time

• Sudden changes and

trends, no steady state

• Many artefacts

⇒ False alarms

• New alarm system

based on ’correct’

signal extraction

• Location based filters:

– Running mean

not robust

– Running median

not smooth

Cherry Bud Workshop, Yokohama, March 25-28, 2008 8



i1q Motivation: Univariate Signal Extraction i1q

0 50 100 150 200 250 300

60

70

80

90

100

110

Mean Arterial Blood Pressure

time

running mean

• Sudden changes and

trends, no steady state

• Many artefacts

⇒ False alarms

• New alarm system

based on ’correct’

signal extraction

• Location based filters:

– Running mean

not robust

– Running median

not smooth

Cherry Bud Workshop, Yokohama, March 25-28, 2008 8



i1q Motivation: Univariate Signal Extraction i1q

0 50 100 150 200 250 300

60

70

80

90

100

110

Mean Arterial Blood Pressure

time

running mean
running median

• Sudden changes and

trends, no steady state

• Many artefacts

⇒ False alarms

• New alarm system

based on ’correct’

signal extraction

• Location based filters:

– Running mean

not robust

– Running median

not smooth

Cherry Bud Workshop, Yokohama, March 25-28, 2008 8



i1q Challenges i1q

• Trends and level shifts in the signal

• Robustness against outliers

• Unknown dependence structures

• Short time delay

• Short computation time
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i1q Overview i1q

I. Univariate signal extraction

• Methods

• Comparisons

• Applications
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i1q I i1q

I. Univariate Signal Extraction
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i1q Signal Extraction from Univariate Time Series i1q

hi (Davies, Fried, Gather, 2004)

Model

xt = µt + εt + νt , t ∈ N
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Idea

Take moving windows {xt−m, . . . , xt, . . . , xt+m} to approximate µt
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i1q Model: Signal Extraction from Univariate Time Series i1q

Local linear model within a time window of length n = 2m+ 1:

xt+i = µt + βt i+ εt,i, i = −m, . . . ,m

• Estimation of the current level
either by µ̂t in centre or by µ̂online

t+m = µ̂t + β̂tm
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i1q Model: Signal Extraction from Univariate Time Series i1q

Local linear model within a time window of length n = 2m+ 1:

xt+i = µt + βt i+ εt,i, i = −m, . . . ,m

• Estimation of the current level
either by µ̂t in centre or by µ̂online

t+m = µ̂t + β̂tm

• Choice of m affects:

? Bias and variability ⇒ Smoothness

? Robustness against outliers ⇒ Stability

? Computation time ⇒ Speed

Estimation of level µt and slope βt by robust linear regression

Cherry Bud Workshop, Yokohama, March 25-28, 2008 13



i1q Robust Regression Methods i1q

Repeated Median (RM) (Siegel, 1982)

β̂RM
t =

m
med
i=−m

{
med
j 6=i

yi−yj
i−j

}

µ̂RM
t =

m
med
i=−m

{
xt+i − β̂RM

t i
}
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Repeated Median (RM) (Siegel, 1982)

β̂RM
t =

m
med
i=−m

{
med
j 6=i

yi−yj
i−j

}

µ̂RM
t =

m
med
i=−m

{
xt+i − β̂RM

t i
}

Least Median of Squares (LMS) (Hampel, 1975; Rousseeuw, 1984)

(µ̂LMS
t , β̂LMS

t )′ = argmin
µ̂t,β̂t

 m
med
i=−m

{r2
t+i}
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i1q Robust Regression Methods i1q

L1−Regression (Edgeworth, 1887)

(µ̂L1
t , β̂

L1
t )′ = argmin

µ̂t,β̂t

m∑
i=−m

|rt+i|
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i1q Robust Regression Methods i1q

L1−Regression (Edgeworth, 1887)

(µ̂L1
t , β̂

L1
t )′ = argmin

µ̂t,β̂t

m∑
i=−m

|rt+i|

Least Trimmed Squares (Rousseeuw, 1983)

(µ̂LTS
t , β̂LTS

t )′ = argmin
µ̂t,β̂t

bn/2c+1∑
k=1

(r2
t )k:n

Deepest Regression (Rousseeuw and Hubert, 1999)

(µ̂DR
t , β̂DR

t ) = arg max
µ̂t,β̂t

{
rdepth

(
(µ̂t, β̂t),xt

)}
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i1q Comparisons: Robustness i1q

Smallest number k? of contaminated observations

which can cause a spike of any size in the extracted signal

k? = min {k : sup{‖ T (z)− T (x) ‖, z ∈ Uk(x)} =∞}

with Uk(x) = {z = (z1, . . . , zn) : ]{i : zi 6= xt+i} = k}
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i1q Comparisons: Robustness i1q

Smallest number k? of contaminated observations

which can cause a spike of any size in the extracted signal

k? = min {k : sup{‖ T (z)− T (x) ‖, z ∈ Uk(x)} =∞}

k? L2 L1 LMS LTS RM DR

n = 21 1 7 10 10 10 ≥ 6

n = 31 1 10 15 15 15 ≥ 10
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i1q Comparisons: Efficiency i1q

hi (Gather, Schettlinger, Fried, 2006)

Finite sample efficiencies for the online estimates µ̂online
t

relative to Least Squares:

LMS LTS RM DR

standard normal n = 21 .23 .22 .71 .62

errors n = 31 .21 .20 .70 .61

rescaled t3 n = 21 .58 .56 1.44 1.37

errors n = 31 .58 .57 1.50 1.42

shifted lognormal n = 21 .44 .43 1.00 .93

errors n = 31 .35 .33 .85 .78

→ Similar results for LMS & LTS and RM & DR

→ RM best
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i1q Comparisons: Computation Times i1q

Simulated mean computation time of an update in milliseconds

LMS LTS RM DR

n = 21 0.161 0.161 0.035 0.747

n = 31 0.323 0.324 0.049 0.956

Asymptotic computation time for an update

LMS LTS RM DR

Time O(n2) O(n2) O(n) O(n log2 n)
Memory space O(n2) O(n2) O(n2) O(n)
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i1q Comparisons: Application to Real Data i1q
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i1q Summary i1q

Robust regression works well for online signal extraction

• LMS/LTS preserve shifts but are unstable and perform poorly for

trend changes

• RM/DR are stable and good at trend changes but smear shifts

• RM fastest, DR slowest method
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i1q Summary i1q

Robust regression works well for online signal extraction

• LMS/LTS preserve shifts but are unstable and perform poorly for

trend changes

• RM/DR are stable and good at trend changes but smear shifts

• RM fastest, DR slowest method

Overall best performance: RM regression
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i1q Improvements and Modifications i1q

• Online outlier replacement and shift detection (Fried, 2004)

• Double window filters: (Bernholt, Fried, Gather, Wegener, 2006)

Trimming based on robust estimate from (smaller) inner window;

Final estimate from outer window

• Hybrid filters: (Fried, Bernholt, Gather, 2006)

Combinations of subfilters applied to window halves

• Weighted repeated median filters (Fried, Einbeck, Gather, 2007)

• Adaptive window widths (Schettlinger, Fried, Gather, 2008)

R package robfilter (Fried, Schettlinger, 2008)
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i1q Influence of the Window Width i1q
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i1q Adaptive Choice of Window Width i1q

hi (Schettlinger, Fried, Gather, 2008)

Idea
Use the ’balance’ of the residual signs

( ∑n
i=1 sign(ri) = 0

)
RM approximation in current time window
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i1q Selection of Residuals: Different Sets of Indices I i1q

Example: n = 30 with nI = bn/2c = 15 selected time points
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i1q Simulation Study i1q

Aims

• Which index set I yields the ’best’ results?

• How many values should I contain? nI = n/2, n/3, n/4?

• Should nI be independent of n? nI = 10, 15, 30?

Cherry Bud Workshop, Yokohama, March 25-28, 2008 25



i1q Simulation Study i1q

Aims

• Which index set I yields the ’best’ results?

• How many values should I contain? nI = n/2, n/3, n/4?

• Should nI be independent of n? nI = 10, 15, 30?

Results
Time delay in tracing a shift / trend change

• for I recent: small nI → small delay
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i1q Simulation Study i1q

Aims

• Which index set I yields the ’best’ results?

• How many values should I contain? nI = n/2, n/3, n/4?

• Should nI be independent of n? nI = 10, 15, 30?

Results
Time delay in tracing a shift / trend change

• for I recent: small nI → small delay

• for I centre / first and last: large nI → small delay

Best performance: I containing most recent time points
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i1q Application - Simulated Time Series i1q
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i1q Application - Simulated Time Series i1q
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i1q II i1q

II. Multivariate Signal Extraction
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i1q Model: Signal Extraction for Multivariate Time Series i1q

hi (Lanius, Gather, 2007)

Signal + noise model

x(t) = µ(t) + ε(t) + ν(t) , t ∈ N

µ(t) = (µ1(t), . . . , µk(t))T k−variate signal

ε(t) ∈ Rk errors

ν(t) ∈ Rk outlier generating process
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i1q Model: Signal Extraction for Multivariate Time Series i1q

hi (Lanius, Gather, 2007)

Signal + noise model

x(t) = µ(t) + ε(t) + ν(t) , t ∈ N

µ(t) = (µ1(t), . . . , µk(t))T k−variate signal

ε(t) ∈ Rk errors

ν(t) ∈ Rk outlier generating process

Assumption: Each component µj(t), j = 1, . . . , k, is locally linear

Idea

Approximate signal vector µ(t)
within each time window {x(t−m), . . . ,x(t), . . . ,x(t+m)}
by k lines
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i1q Model: Signal Extraction for Multivariate Time Series i1q

Local linear model within a time window of length n = 2m+ 1:

x(t+ i) = µ(t) + β(t) i+ ε(t, i) + η(t, i) , i = −m, . . . ,m

• Estimation of the current level by µ̂(t) in centre

• Use multivariate regression method which is

– fast to compute

– affine equivariant (ideally)

– highly robust
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i1q Model: Signal Extraction for Multivariate Time Series i1q

Local linear model within a time window of length n = 2m+ 1:

x(t+ i) = µ(t) + β(t) i+ ε(t, i) + η(t, i) , i = −m, . . . ,m

• Estimation of the current level by µ̂(t) in centre

• Use multivariate regression method which is

– fast to compute

– affine equivariant (ideally)

– highly robust (breakdown point of approx. 50%).

This affords the data to be in general position.
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i1q Data Situation i1q

Haemodynamic variables

measured on discrete scale

⇒ Observations

not in general position:

On average the estimated MCD covariance matrix

implodes in 30-40% of all time windows
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i1q Comparisons: Multivariate Regression Techniques i1q

Local linear model for each t, t = m+ 1, . . . , T −m:

x(t+ i) = µ(t) + β(t) i+ ε(t, i) + η(t, i) , i = −m, . . . ,m

Affine Optimal
Regression Method

Equivariance Breakdown Point
Computation

Least Squares + 0 X

Generalisation of L1 - X
robust univariate LMS - X
approaches RM - X

MLTS Regression + approximative

MCD Regression + approximative
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x(t+ i) = µ(t) + β(t) i+ ε(t, i) + η(t, i) , i = −m, . . . ,m

Affine Optimal
Regression Method

Equivariance Breakdown Point
Computation

Least Squares + 0 X

Generalisation of L1 - ∼ 1/3 X
robust univariate LMS - bn/2c/n X
approaches RM - bn/2c/n X

MLTS Regression + approximative

MCD Regression + approximative

Cherry Bud Workshop, Yokohama, March 25-28, 2008 31



i1q Comparisons: Multivariate Regression Techniques i1q

Local linear model for each t, t = m+ 1, . . . , T −m:

x(t+ i) = µ(t) + β(t) i+ ε(t, i) + η(t, i) , i = −m, . . . ,m

Affine Optimal
Regression Method

Equivariance Breakdown Point
Computation

Least Squares + 0 X

Generalisation of L1 - ∼ 1/3 X
robust univariate LMS - bn/2c/n X
approaches RM - bn/2c/n X

MLTS Regression + b(n− k)/2c/n approximative

MCD Regression + b(n− k)/2c/n approximative
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i1q Procedure for Multivariate Signal Extraction i1q

hi (Lanius, Gather, 2007)

Within each time window {x(t+ i), i = −m, . . . ,m}:

1. Use univariate RM to find µ̂j(t) and β̂j(t) for each j
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i1q Procedure for Multivariate Signal Extraction i1q

hi (Lanius, Gather, 2007)

Within each time window {x(t+ i), i = −m, . . . ,m}:

1. Use univariate RM to find µ̂j(t) and β̂j(t) for each j

2. Find residuals r(t+ i) = x(t+ i)− µ̂(t)− iβ̂(t)

3. Use modified orthogonalized Gnanadesikan-Kettenring estimator

the local covariance matrix Σ(t) of r(t+ i)

4. Find It ={i=−w, . . . , w : r(t+ i)TΣ̂(t)−1r(t+ i) ≤ dN}

5. Calculate β̂
new

(t) and µ̂new(t) by

Least Squares regression based on {(t+ i,x(t+ i)), i ∈ It}
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i1q Procedure for Multivariate Signal Extraction i1q

hi (Lanius, Gather, 2007)

Within each time window {x(t+ i), i = −m, . . . ,m}:

1. Use univariate RM to find µ̂j(t) and β̂j(t) for each j

2. Find residuals r(t+ i) = x(t+ i)− µ̂(t)− iβ̂(t)

3. Use modified OGKQn-estimator as robust estimate of

the local covariance matrix Σ(t) of r(t+ i)

4. Find St ={s=−w, . . . , w : r(t+ i)TΣ̂(t)−1r(t+ i) ≤ dn}

5. Calculate β̂
new

(t) and µ̂new(t) by

Least Squares regression based on {(t+ i,x(t+ i)), s ∈ St}
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2. Find residuals r(t+ i) = x(t+ i)− µ̂(t)− iβ̂(t)

3. Use modified OGKQn-estimator as robust estimate of

the local covariance matrix Σ(t) of r(t+ i)

4. Find It ={i=−m, . . . ,m : r(t+ i)TΣ̂(t)−1r(t+ i) ≤ dn}

5. Calculate β̂
new

(t) and µ̂new(t) by

Least Squares Regression based on {(t+ i,x(t+ i)), i ∈ It}
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i1q Properties i1q

• Very robust procedure (optimal breakdown point of 50%)

• Procedure is not affine equivariant, but:

with correlated errors more efficient than univariate methods

and affine equivariant methods with similar breakdown point

• Fast computation

• Applicable to discrete data

Also: Online version with adaptive window width!

Cherry Bud Workshop, Yokohama, March 25-28, 2008 33



i1q Adaptive Multivariate Online Signal Extraction i1q

hi (Borowski, Schettlinger, Gather, 2008)

Within each time window {x(t+ i), i = −n(t− 1), . . . , 0}:

1. Use adaptive univariate RM to find µ̂j(t) and β̂j(t) for each j

and determine new window width n(t)

2. Find residuals r(t+ i) = x(t+ i)− µ̂(t)− iβ̂(t)

3. Use modified OGKQn-estimator as robust estimate of

the local covariance matrix Σ(t) of r(t+ i)

4. Find It ={i=−n(t)+1, . . . , 0 : r(t+ i)TΣ̂(t)−1r(t+ i) ≤ dn(t)}

5. Calculate β̂
new

(t) and µ̂new(t) by

Least Squares Regression based on {(t+ i,x(t+ i)), i ∈ It}
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i1q Comparison: Application to Multivariate Time Series i1q

Multivariate Physiological Time Series

Time
13:00 13:10 13:20 13:30 13:40 13:50 14:00
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HR
PLS
SpO2
ART_S
ART_M
ART_D

• Smooth

• Large delay at sudden changes and shifts
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i1q Comparison: Application to Multivariate Time Series i1q

Multivariate TRM−LS Estimation
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i1q Comparison: Application to Multivariate Time Series i1q

Univariate Adaptive RM Estimation

Time
13:00 13:10 13:20 13:30 13:40 13:50 14:00

0
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HR
PLS
SpO2
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ART_D

• Small delay at sudden changes and shifts

• Does not take covariance structure into account g
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i1q Comparison: Application to Multivariate Time Series i1q

Multivariate Adaptive TRM−LS Estimation
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i1q Summary i1q

• Fast computation

• Robust (50% breakdown point)

• Adapts to sudden changes quickly

• Takes covariance structure into account

• Application to discrete data with missing values possible

• Additional rules against over- / underestimation of the signal
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i1q IV. Alarm Classification i1q

III. Alarm Classification
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i1q Intensive Care Data i1q

Physiological variables

• Respiratory rate, oxygen saturation

• Arrhythmia indicator

• Heart rate, pulse

• Arterial systolic, diastolic and mean blood pressure

• Temperature

Thresholds

Alarm information from the monitor (alarm grade)

Cherry Bud Workshop, Yokohama, March 25-28, 2008 41



i1q The Most Frequent Alarms i1q

alarm without manipulation
variable

frequency non alarm relevant alarm relevant

ART S 1678 602 232

SpO2 1595 491 363

HR 453 311 59

ARR 263 210 15

ART M 268 123 43

RESP 218 168 2

In total: 4747 alarms in 780 hours recording
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i1q Consequences of Misclassification i1q

Situation is alarm relevant but classified as non alarm relevant

→ Possibly serious danger to health or life

→ Control the probability of misclassifying alarm relevant situations
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i1q Consequences of Misclassification i1q

Situation is alarm relevant but classified as non alarm relevant

→ Possibly serious danger to health or life

→ Control the probability of misclassifying alarm relevant situations

Situation is non alarm relevant but classified as alarm relevant

→ Annoyance

→ Minimise the probability of misclassifying non alarm relevant

situations
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i1q Solution: Random Forest i1q

Construction of a forest (ensemble of decision trees)

• Divide the sample into three sets:

learning, estimation and test set

• Build a forest of 1000 trees on the learning set

• Estimate the distribution of the test statistic

on the estimation set

• Find the critical value for the test

• Apply the forest to the test set

Repeat this 1050 times.
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i1q Results – Significance Level 5% i1q

Mean sensitivity: 94.7%

Mean false alarm reduction: 45.6%
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i1q Conclusions and Future Plan i1q

• Combine forests with Repeated Median filtering

• Combine then with alarm delay:

if decided not to alarm wait 15 seconds and think again

(Charbonnier, Badji, Gentil, 2005)

• Implement into alarm system
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i1q Conclusions and Future Plan i1q

• Combine forests with Repeated Median filtering

• Combine then with alarm delay:

if decided not to alarm wait 15 seconds and think again

(Charbonnier, Badji, Gentil, 2005)

• Implement into alarm system

Intelligent patient monitoring system
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