NONPARAMETRIC VARIABLE SELECTION BASED ON IMPORTANCE SCORES: THE EARTH AND RANDOM FOREST VARIABLE SELECTION ALGORITHMS

KJELL DOKSUM JOINT WITH SHIJIE TANG AND KAM TSUI

Department of Statistics University of Wisconsin-Madison

MARCH, 2008

KJELL DOKSUM Dept. of Stat. at UW-Madison EARTH NONPARAMETRIC VARIABLE SELECTION 1/42

< 同 > < 三 > < 三 >

- EARTH IMPORTANCE SCORES.
 VARIABLE SELECTION.
- RANDOM FOREST IMPORTANCE SCORES.
 RANDOM FOREST VARIABLE SELECTION (RFVS)
- OMPARISON OF EARTH AND RFVS.
- MORE COMPARISONS.
 C_p, AIC, SBC, LASSO, GUIDE and MARS.
- EARTH AND RFVS PRE-SCREENING TO IMPROVE MARS, GUIDE, AND RANDOM FOREST PREDICTIONS.
- EARTH THRESHOLD SELECTION.
- ASYMPTOTIC CONSISTENCY OF EARTH.

< 同 > < 三 > < 三 >

EARTH IMPORTANCE SCORES. VARIABLE SELECTION

KJELL DOKSUM Dept. of Stat. at UW-Madison EARTH NONPARAMETRIC VARIABLE SELECTION 3/42

A D A D A D A

DESIGNING AN EXPERIMENT IS LIKE GAMBLING WITH THE DEVIL: ONLY A RANDOM STRATEGY CAN DEFEAT ALL HIS BETTING SYSTEMS. (R.A. Fisher)

NONPARAMETRIC VARIABLE SELECTION: RANDOMIZATION WORKS WELL.

KJELL DOKSUM Dept. of Stat. at UW-Madison EARTH NONPARAMETRIC VARIABLE SELECTION 4/42

< 同 > < 三 > < 三 >

Y= RESPONSE; X_1, \dots, X_d = COVARIATES. d IS LARGE. VARIABLE SELECTION: KEEP THE IMPORTANT X_j 's. WRITE $\mathbf{X} = (X_1, \dots, X_d)$, $\mathbf{X}_{-j} = (X_1, \dots, X_{j-1}, X_{j+1}, \dots, X_d) \equiv \mathbf{X} - X_j$.

EARTH STRATEGY: IF GIVEN \mathbf{X}_{-j} , X_j IS INDEPENDENT OF Y, THEN X_j IS NOT IMPORTANT AND SHOULD BE DROPPED.

SELECT X_j IF IT HAS A LARGE NONPARAMETRIC IMPORTANCE SCORE.

IMPORTANCE SCORE: CONDITIONALLY GIVEN X_{-j} , COMPUTE THE NONPARAMETRIC REGRESSION OF Y ON X_i .

HOW TO DO THIS? OBSERVE i.i.d. $(\mathbf{X}^{(i)}, Y^{(i)})$, $i = 1, \dots, n$. SET $\mathbf{X}_{-j}^{(i)} = \mathbf{X}^{(i)} - X_j^{(i)}$. 1) SELECT $\mathbf{X}^{(k)}$ AT RANDOM FROM $\{\mathbf{X}^{(1)}, \dots, \mathbf{X}^{(n)}\}$ 2) CONSTRUCT A TUBE IN R^{d-1} CENTERED AT $\mathbf{X}_{-j}^{(k)} = \mathbf{X}^{(k)} - X_j^{(k)}$ $T_k = (Tube)_k = \{\mathbf{x}_{-j} \in R^{d-1} : |\mathbf{x}_{-j} - \mathbf{X}_{-j}^{(k)}| \le \delta\}$

KJELL DOKSUM Dept. of Stat. at UW-Madison EARTH NONPARAMETRIC VARIABLE SELECTION 6/42

EARTH IMPORTANCE SCORES. VARIABLE SELECTION

Figure: Random Tubes (WITH HELP FROM Wei-Yin Loh)

KJELL DOKSUM Dept. of Stat. at UW-Madison EARTH NONPARAMETRIC VARIABLE SELECTION 7/42

< 回 > < 三 > < 三 >

EARTH IMPORTANCE SCORES. VARIABLE SELECTION

Figure: TUBE SELECTION FOR X_1 IMPORTANCE SCORE

KJELL DOKSUM Dept. of Stat. at UW-Madison EARTH NONPARAMETRIC VARIABLE SELECTION 8/42

A D A D A D A

3) COMPUTE A LOCALLY LINEAR t-STATISTIC $t_j^{(k)}(h)$ over the section $[X_j^{(k)} - h, X_j^{(k)} + h]$ in R. 4) Find $t_i^{(k)} \equiv \max_h |t_i^{(k)}(h)| = \text{IMPORTANCE}$ SCORE FOR VARIABLE X_i FOR TUBE T_k . 5) COMPUTE THE INITIAL IMPORTANCE SCORE FOR VARIABLE X_j AS $t_j = M^{-1} \sum_{k=1}^{M} t_j^{(k)}$. 6) USING 5), BOOST WEAK VARIABLES BY ADJUSTING THE METRIC | · | ADAPTIVELY.

• • = • • = •

NOTE: THE BANDWIDTH h IS SELECTED TO MAXIMIZE AN ESTIMATE OF THE EFFICACY OF THE LOCAL t-STATISTIC. EFFICACY IS A PROXY FOR POWER. WE WANT TO MAXIMIZE THE PROBABILITY OF SELECTING A RELEVANT VARIABLE.

EFFICACY IS VERY DIFFERENT FROM MEAN SQUARED ERROR. SMALL BIAS IS NEEDED ONLY WHEN X_i IS IRRELEVANT.

KJELL DOKSUM Dept. of Stat. at UW-Madison EARTH NONPARAMETRIC VARIABLE SELECTION 10/42

< 同 > < 三 > < 三 >

EARTH IMPORTANCE SCORES. VARIABLE SELECTION

Figure: BUMP MODEL, $x_0 = 0.4$, n=1000, $\sigma^2 = 0.05$.

KJELL DOKSUM Dept. of Stat. at UW-Madison EARTH NONPARAMETRIC VARIABLE SELECTION 11/42

.⊒ →

EARTH THRESHOLD: PERMUTE THE Y's INSIDE THE TUBES AT RANDOM, THEN COMPUTE

 $t_j^* \equiv$ AVERAGE OF THE IMPORTANCE SCORES FOR THE "PERMUTED TUBES".

SELECT X_j IF $t_j \ge ct_j^*$. HERE THE THRESHOLD CONSTANTS IS SELECTED USING TRAINING AND TEST SETS, OR USING ASYMPTOTICS. WE WANT (AS SAMPLE SIZE $n \to \infty$) PROB(WRONGLY SELECT $\{X_j\}$) \to 0 and PROB(WRONGLY DELETE $\{X_k\}$) \to 0.

(a)

RANDOM FOREST IMPORTANCE SCORES

KJELL DOKSUM Dept. of Stat. at UW-Madison EARTH NONPARAMETRIC VARIABLE SELECTION 13/42

→ □ → → モ → → モ →

э

RFVS: RANDOM FOREST VARIABLE SELECTION.

CART: CLASSIFICATION AND REGRESSION TREES.

CART CONSTRUCTS A NONPARAMETRIC REGRESSION MODEL FIT $\hat{\mu}(\mathbf{X})$.

SET $\mu(\mathbf{X}) = E(Y|\mathbf{X}),$ $\mu(\mathbf{X}_{-j}) \equiv E(Y|\mathbf{X}_{-j}) = \mu(\mathbf{X}_{j}^{*}),$ WHERE \mathbf{X}_{j}^{*} IS \mathbf{X} WITH X_{j} REPLACED BY X_{j}^{*} INDEPENDENT OF $(\mathbf{X}_{-j}, Y).$

< 回 > < 三 > < 三 >

RFVS CRITERIA:

$$\Delta_j = E[Y - \mu(\mathbf{X}_{-j})]^2 - E[Y - \mu(\mathbf{X})]^2$$
$$= E[\mu(\mathbf{X}) - \mu(\mathbf{X}_{-j})]^2$$

IF X_j IS INDEPENDENT OF Y GIVEN \mathbf{X}_{-j} , THEN $\Delta_j = 0$.

伺 と く ヨ と く ヨ と

THE ESTIMATE OF Δ_j IS $\hat{\Delta}_j = n^{-1} \{ \sum [Y^{(i)} - \hat{\mu}(\mathbf{X}^{(i)}_{-j})]^2 - \sum [Y^{(i)} - \hat{\mu}(\mathbf{X}^{(i)})]^2 \}$

HERE $\hat{\mu}(\mathbf{X}_{-j}^{(i)})$ AND $\hat{\mu}(\mathbf{X}^{(i)})$ ARE ESTIMATES OF $E(Y|\mathbf{X}_{-j} \in C_{-j})$ AND $E(Y|\mathbf{X}_{-j} \in C_{-j}, X_j \in C_j)$. IF X_j AND \mathbf{X}_{-j} ARE DEPENDENT, THEN $\hat{\Delta}_j$ CAN BE LARGE EVEN IF, GIVEN \mathbf{X}_{-j} , X_j IS INDEPENDENT OF Y.

NEXT GENERATE TREES AT RANDOM (A BREIMAN BOOTSTRAP), GET $\hat{\Delta}_{j}^{(1)}, \dots, \hat{\Delta}_{j}^{(k)}$. THE RF IMPORTANCE SCORE IS $t_{j}^{RF} = \hat{\Delta}_{j}^{(\cdot)}/SE(\hat{\Delta}_{j}^{(\cdot)})$ RANDOM FOREST VARIABLE SELECTION: KEEP THE VARIABLES WITH LARGE IMPORTANCE SCORES t_i^{RF} .

COMPARE WITH SHIBATA(1981) WHO KEEPS THE MODEL(VARIABLES) WITH SMALLEST VALUES OF

$$[n+2N(m)]n^{-1}\sum_{i=1}^{n}[Y^{(i)}-\hat{\beta}^{T}_{(m)}(\mathbf{X}^{(i)})]^{2}$$

WHERE N(m) = NUMBER OF NON-ZERO β 'S IN MODEL m.

KJELL DOKSUM Dept. of Stat. at UW-Madison

EARTH NONPARAMETRIC VARIABLE SELECTION 17/42

THRESHOLD FOR RFVS: EXPAND THE DESIGN MATRIX $\mathbf{X}^* = (\mathbf{X}, X_{d+1}^*, \cdots, X_{d+r}^*)$ WHERE THESE X_j^* ARE NOISE VARIABLES INDEPENDENT OF (\mathbf{X}, Y) .

SELECT THE VARIABLE X_j IF $t_j > ct'$. WHERE t' IS THE AVERAGE OF THE IMPORTANCE SCORES FOR $X_{d+1}^*, \dots, X_{d+r}^*$.

SUGGESTED: $r = 30, c = 2, X_{d+1}^*, \dots, X_{d+r}^* \sim UNIFORM(0, 1).$

・ 同 ト ・ ヨ ト ・ ヨ ト

COMPARISON OF EARTH AND RFVS.

KJELL DOKSUM Dept. of Stat. at UW-Madison EARTH NONPARAMETRIC VARIABLE SELECTION 19/42

э

EARTH DIVIDES BY THE STANDARD ERROR IN EACH RANDOM TUBE. RFVS DIVIDES BY THE STANDARD ERROR ACROSS RANDOM TREES.

EARTH DEALS WITH CONFOUNDING BY CONDITIONING ON \mathbf{X}_{-j} , THEN USES SIMPLE (ONE X) NP REGRESSION. RFVS DEALS WITH CONFOUNDING BY CONDITIONING ON \mathbf{X} AND \mathbf{X}_{j}^{*} . RFVS IS BASED ON DOING MULTIPLE REGRESSION (d X's) TWICE.

LOOKING AHEAD: RFVS DOES VERY WELL FOR INDEPENDENT X_1, \dots, X_d . FOR STRONGLY DEPENDENT X's, NOT SO MUCH.

MORE COMPARISONS

KJELL DOKSUM Dept. of Stat. at UW-Madison EARTH NONPARAMETRIC VARIABLE SELECTION 21/42

<回> < E> < E>

э

EARTH AND RFVS AGAINST MARS, GUIDE ($\approx CART$), C_p , AIC, SBC, LASSO.

1ST MONTE CARLO MODEL: LINEAR REGRESSION. HOW MUCH DO NP METHODS EARTH, RFVS, MARS, GUIDE LOSE COMPARED TO PARAMETRIC METHODS C_p , AIC, SBC, LASSO?

< 同 > < 三 > < 三 >

PARAMETRIC MODEL.

MODEL (1): X_1, X_2, \dots, X_{20} i.i.d. UNIFORM [0,1], $\epsilon \sim N(0, 1)$.

 $Y = 1.25X_1 + X_2 + 0.75X_3 + 0.5X_4 + 0.25X_5 + \epsilon.$

 X_6, X_7, \cdots, X_{20} ARE INDEPENDENT OF Y.

KJELL DOKSUM Dept. of Stat. at UW-Madison EARTH NONPARAMETRIC VARIABLE SELECTION 23/42

MORE COMPARISONS

	-								
(1	X_1	X_2	X_3	X_4	X_5	$X_i, i \geq 6$	$All X_i$	
	C_p	100	100	99.4	49.0	0.6	0	92.5	
PARY	AIC	100	100	100	100	81.4	1.58	91.5	
METHODS	SBC	100	100	100	96.0	39.4	0.08	96.4	BEST
	Lasso	100	100	100	100	88.2	5.29	73.0	OVERALL
· (GUIDE	100	100	100	99.4	64.2	0.67	94.8	
NPY	MARS	99.2	99.2	99.2	98.4	93.8	5.31	72.9	
METHODS	RFVS	100	100	100	67.8	25.2	0.85	90.4	
	EARTH	100	99.4	96.6	49.0	14.2	0.79	89.0	

Table: Columns $1, \dots, 5$ gives the percentage of simulation trials where variables X_1, \dots, X_5 were selected for Model (1). Column 6 gives the average number of irrelevant variables per simulation falsely identified as relevant variable. Column 7 gives the percentage of correct identifications for 20 variables.

NONLINEAR (in X_2, X_3, X_4, X_5) MODEL.

MODEL (2): X_1, X_2, \cdots, X_{20} i.i.d UNIFORM(0,1), $\epsilon \sim N(0, 1)$. $Y = X_1 + 5sin(2\pi X_2 + 2\pi X_3) + 8(X_4 - 0.5)^2 + e^{X_5} + \epsilon$.

 X_6, \cdots, X_{20} ARE IRRELEVANT.

MORE COMPARISONS

<	X_1	X_2	X_3	X_4	X_5	$X_i, i \geq 6$	$All X_i$
C_p	74.0	1.2	2.2	1.4	99.0	0.22	82.8
AIC	83.6	16.4	16.2	14.6	99.0	1.43	79.3
SBC	43.4	0.6	0.4	2.2	81.6	0.02	81.3
Lasso	86.4	18.2	20.6	19.6	99.8	3.10	71.7
GUIDE	80.2	57	55.6	57.4	98.2	4.69	69.0
MARS	77.0	83.2	73.4	80.4	80.6	9.77	45.9
RFVS	28.4	100	100	90.4	87.2	0.91	90.8
EARTH	39.8	99.6	99.4	82.4	81.4	1.06	89.8

Table: Columns $1, \dots, 5$ gives the percentage of simulation trials where variables X_1, \dots, X_5 were correctly selected for Model (2). Column 6 gives the average number of irrelevant variables per simulation falsely identified as relevant variable. Column 7 gives the percentage of correct identifications for 20 variables.

KJELL DOKSUM Dept. of Stat. at UW-Madison EARTH NONPARAMETRIC VARIABLE SELECTION 26/42

MODEL (3): $Y = X_1 + 5\sin(2\pi X_2 + 2\pi X_3) + 8(X_4 - 0.5)^2 + e^{X_5} + \epsilon.$

GIVEN X_4 , X_6 AND Y ARE INDEPENDENT. WITHOUT X_4 , X_6 , AND Y ARE DEPENDENT BECAUSE $CORR(X_4, X_6) \cong 0.9$.

THE SUM OF THE X_4 AND X_6 PERCENTAGES SHOULD BE 100.

 X_8, \cdots, X_{20} ARE IRRELEVANT FOR Y.

	$X_{1}^{(5)}$	X_2	X_3	$X_4^{(6,7)}$	$X_{5}^{(1)}$	$X_{6}^{(4)}$	$X_{7}^{(4)}$	$X_i, i \geq 8$	$X_{4} + X_{6}$	
C_p	24.6	3.4	4.8	2.2	85.2	6.0	5.4	0.68	1 8.2	D
AIC	79.8	17.4	16.4	22.8	97.6	19.2	14.8	2.24	42.0	PAR .
SBC	34.4	1.8	1.4	1.4	87.2	1.8	0.6	0.11	3.2	METHODS
Lasso	88.4	20.8	21.2	15.2	100	12.2	21.0	2.45	27.4)
GUIDE	78.6	51.8	50.0	59.4	97.2	41.8	30.2	4.14	(101.2)	Š.
MARS	75	77.4	79.4	74.0	75.4	74.6	71.8	8.15	148.6	LNP
RFVS	78.2	100	100	91.0	96.8	66.6	8.2	0.75	157.6	METHODS
EARTH	76.2	97.8	97.8	76.6	91.8	49.2	8.2	1.41	125.8	
										12

Table: Columns $1, \dots, 7$ gives the percentage of simulation trials where variables X_1, \dots, X_7 were selected for Model (3). Column 8 gives the average number of irrelevant variables per simulation falsely identified as relevant variable. The superscript indicates what variables(s) the variable is associated with. Column $9 = (\#X_4 \text{ included} + \#X_6 \text{ included}) / \#$ trials.

EARTH AND RFVS PRE-SCREENING TO IMPROVE MARS, GUIDE, AND RANDOM FOREST PREDICTIONS.

MODELS AND CRITERIA FROM FRIEDMAN (1991) MARS PAPER.

 $\label{eq:criteria} \mbox{CRITERIA} = \mbox{ISE} \cong \mbox{PREDICTION ERROR} \\ \mbox{STANDARDIZED TO BE COMPARABLE ACROSS} \\ \mbox{MODELS}. \\ \mbox{MODELS}. \\ \mbox{CRITERIA} = \mbox{ISE} \cong \mbox{PREDICTION ERROR} \\ \mbox{CRITERIA} = \mbox{ISE} \cong \mbox{PREDICTION ERROR} \\ \mbox{STANDARDIZED TO BE COMPARABLE ACROSS} \\ \mbox{MODELS}. \\ \mbox{CRITERIA} = \mbox{ISE} \cong \mbox{PREDICTION ERROR} \\ \mbox{STANDARDIZED TO BE COMPARABLE ACROSS} \\ \mbox{MODELS}. \\ \mbox{STANDARDIZED TO BE COMPARABLE ACROSS} \\ \mbox{STANDARDIZED TO BE COMPARABLE ACROSS} \\ \mbox{MODELS}. \\ \mbox{STANDARDIZED TO BE COMPARABLE ACROSS} \\ \mbox{STANDARDIZED TO BE COMPARABLE ACROSS \\ \mbox{STANDARDIZED TO BE COMPARABLE ACROSS} \\ \mbox{STANDARDIZED TO BE COMPARABLE ACROSS \\ \mbox{STANDARDIZED TO$

 $ISE(\bar{Y}) = 1$ ALWAYS.

Simulation experiment (Model and Criteria from MARS paper)

- ► $Y^{(i)} = \mu(\mathbf{X}^{(i)}) + \epsilon_i, \quad i = 1, \cdots, n,$ $\mathbf{X}^{(i)} \in (0, 1)^d, \quad \epsilon_i \sim N(0, 1).$
- ▶ $\mathbb{D} = \mathsf{DATA} = \{(\mathbf{X}^{(i)}, Y^{(i)}), i = 1, \cdots, n\}$, simulated from the model.
- µ(x) is the estimator of µ(x) and predictor of Y
 based on D.
- Evaluate the algorithm: use ISE = scaled Integrated Squared Error for this model based on Monte Carlo.

In MARS paper, d = 10 and n = 50, or 100, or 200.

Mean Function 1 (MARS)

$$\mu(\mathbf{x}) = 0.1e^{4x_1} + \frac{4}{1 + e^{-20(x_2 - 1/2)}} + 3x_3 + 2x_4 + x_5$$

n = 1000, $\widehat{\text{ISE}}$ vs. number of irrelevant variables are shown in next two slides.

KJELL DOKSUM Dept. of Stat. at UW-Madison EARTH NONPARAMETRIC VARIABLE SELECTION 31/42

・ 通 と く き と く き と

EARTH AND RFVS PRE-SCREENING

KJELL DOKSUM Dept. of Stat. at UW-Madison EARTH NONPARAMETRIC VARIABLE SELECTION 32/42

(ロ) (四) (三) (三)

Ð,

EARTH AND RFVS PRE-SCREENING

KJELL DOKSUM Dept. of Stat. at UW-Madison EARTH NONPARAMETRIC VARIABLE SELECTION 33/42

E.

Mean Function 2 (MARS)

 $\mu(\mathbf{x}) = 10\sin(\pi x_1 x_2) + 20(x_3 - 1/2)^2 + 10x_4 + 5x_5.$

n = 1000, $\widehat{\text{ISE}}$ vs. number of irrelevant variables are shown in next two slides (breakdowns: ($\widehat{\text{ISE}} > 1$) for MARS omitted from the graph).

Table 2: Number of breakdowns among 100 trials.

d	30	40	50	60	70	80	90	100
MARS	1	1	0	2	2	5	6	7
EARTH+MARS	0	0	0	0	0	0	0	0

EARTH AND RFVS PRE-SCREENING

Figure: ISE's of MARS, GUIDE and Random Forest, and ISE's of these procedures preceded by EARTH and preceded by RFVS.

KJELL DOKSUM Dept. of Stat. at UW-Madison EARTH NONPARAMETRIC VARIABLE SELECTION 35/42

<ロ> (四) (四) (三) (三)

EARTH THRESHOLD SELECTION BASED ON TRAINING AND TEST SETS.

1) COMPUTE p-VALUES BASED ON IMPORTANCE SCORES AND NULL IMPORTANCE SCORES FOR A TRAINING SET.

2) USE DIFFERENT p-VALUE THRESHOLDS STARTING AT 0.01 TO GET SELECTED SETS OF X's. FOR EACH SET, CHECK PREDICTION ACCURACY USING A TEST SET. CHOOSE THE p-VALUE THRESHOLD WITH THE BEST PREDICTION ACCURACY.

1	5	6	7	8	9	13	14	15	16	17	18	19	20
<i>p</i> -values	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.35	0.1	0.03	0.00	0.40
1	21	22	23	24	25	26	27	28	29	30	31	32	33
p-values	0.27	0.20	0.14	0.15	0.24	0.16	0.17	0.15	0.16	0.16	0.02	0.09	0.06

Table: EARTH p-values for the 26 variables X_I , $I = \{5, 6, \dots, 33\}$ using 5000 observations in a training set. "pole" data: www.liacc.up.pt/ ltorgo/Regression/DataSets.html

EARTH THRESHOLD SELECTION

$threshold(p_0)$	selected variables	MARS	GUIDE	RF
0.01	5,6,7,8,9,13,14,19	361.92	97.73	54.26
0.02	5,6,7,8,9,13,14,15,19	361.92	89.81	39.55
0.03	5,6,7,8,9,13,14,15,19,31	361.92	86.37	41.02
0.06	5,6,7,8,9,13,14,15,18,19,31	341.10	85.05	41.64
0.09	5,6,7,8,9,13,14,15,18,19,31,33	322.66	85.14	36.02
0.1	5,6,7,8,9,13,14,15,18,19,31,32,33	311.42	92.78	36.88
0.14	5,6,7,8,9,13,14,15,17,18,19,31,32,33	304.33	90.06	38.65
	••••			
(0.4, 1]	all	263.26	99.00	36.40

Table: Mean square prediction errors using variables selected by EARTH using p-value threshold p_0 for a test set with 10000 observation.

ASYMPTOTIC CONSISTENCY OF EARTH

KJELL DOKSUM Dept. of Stat. at UW-Madison EARTH NONPARAMETRIC VARIABLE SELECTION 39/42

<回> < E> < E>

э

RETT: REGRESSION TUBE t-STATISTIC SELECTION. FIX BANDWIDTH h. NO ADAPTION. M=1. ONLY ONE TUBE FOR EACH X_i .

AS $n \to \infty$, $d \to \infty$, m = # OBSERVATIONS IN THE SECTION FOR VARIABLES X_j .

ASSUME
$$m/n \to \lambda, 0 < \lambda \leq 1$$
. SET $t_j = \sqrt{m}\hat{\beta}_j/(s_{0j}/s_{x_j})$.
THEN $t_j/\sqrt{m} \to_P \beta_j/(\sigma_{0j}/\sigma_{x_j}) \equiv \tau_j$ as $n \to \infty$.

DIMENSION REDUCTION RULE: KEEP X_j IF $|t_j| > c$, DROP X_j IFF $|t_j| \le c$. WLOG:

$$au_j \neq 0, j = 1, \cdots, d_1;$$

= 0, j = d₁ + 1, \dots, d; d₀ = d - d₁;

< 同 > < 三 > < 三 > -

DEF: CONSISTENCY \Leftrightarrow P(CORRECT DECISION MADE FOR ALL X_j) \rightarrow 1 as $n \rightarrow \infty$. CONSISTENCY \Leftrightarrow P(min_{j \leq d_1} |t_j| \geq c and max_{j > d_1} |t_j| < c) \rightarrow 1.

THEOREM: RETT IS CONSISTENT PROVIDED $min|\tau_j| = m^{-r}b_m$, WHERE 0 < r < 1/3, $b_m \to \infty$, AND $\log(d_0) = o(m^r)$, $\log(d_1) = o(m^{1/2-r}b_m)$ AND $c = O(m^{r/2})$.

NOTE: THE "ALTERNATIVE" $|\tau_j|$ CAN TEND TO ZERO, BUT SLOWLY. d_0 AND d_1 CAN TEND TO INFINITY. THE THRESHOLD c TENDS TO INFINITY SLOWLY.

PROOF: SHOW $P(\max_{j>d_1} |t_j| > c) \rightarrow 0$ AND $P(\min_{j\leq d_1} |t_j| \leq c) \rightarrow 0.$

 $P(\max_{j>d_1} |t_j| > c) \le \sum_{d_1+1}^d P(|t_j| > c).$ Peter Hall 92: UNDER MOMENT CONDITIONS, $P(|t_j| > c) \le \frac{2}{\sqrt{2\pi}} e^{-c^2/2} (1 + A(1+c)^3 m^{-1/2} a^3) \equiv \mathcal{H},$ WHEN $c \le m^{1/6}/a$, UNDER OUR ASSUMPTION, $P(\max_{j>d_1} |t_j| > c) \le d_0 \mathcal{H} \to 0.$

ALSO, $P(\min_{j \le d_1} |t_j| \le c) \to 0.$