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EARTH IMPORTANCE SCORES. VARIABLE
SELECTION

KJELL DOKSUM Dept. of Stat. at UW-Madison EARTH NONPARAMETRIC VARIABLE SELECTION 3/42



EARTH IMPORTANCE SCORES. VARIABLE SELECTION

DESIGNING AN EXPERIMENT IS LIKE
GAMBLING WITH THE DEVIL: ONLY A
RANDOM STRATEGY CAN DEFEAT ALL HIS
BETTING SYSTEMS. (R.A. Fisher)

NONPARAMETRIC VARIABLE SELECTION:
RANDOMIZATION WORKS WELL.
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EARTH IMPORTANCE SCORES. VARIABLE SELECTION

Y= RESPONSE; X1, · · · , Xd= COVARIATES. d IS LARGE.
VARIABLE SELECTION: KEEP THE IMPORTANT Xj ’s.
WRITE X = (X1, · · · , Xd),
X−j = (X1, · · · , Xj−1, Xj+1, · · · , Xd) ≡ X − Xj .

EARTH STRATEGY:
IF GIVEN X−j , Xj IS INDEPENDENT OF Y, THEN Xj IS
NOT IMPORTANT AND SHOULD BE DROPPED.

SELECT Xj IF IT HAS A LARGE NONPARAMETRIC
IMPORTANCE SCORE.
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EARTH IMPORTANCE SCORES. VARIABLE SELECTION

IMPORTANCE SCORE: CONDITIONALLY GIVEN X−j ,
COMPUTE THE NONPARAMETRIC REGRESSION OF Y
ON Xj .

HOW TO DO THIS? OBSERVE i.i.d. (X(i), Y (i)),

i = 1, · · · , n. SET X(i)
−j = X(i) − X

(i)
j .

1) SELECT X(k) AT RANDOM FROM {X(1), · · · ,X(n)}
2) CONSTRUCT A TUBE IN Rd−1 CENTERED AT

X(k)
−j = X(k) − X

(k)
j

Tk = (Tube)k = {x−j ∈ Rd−1 : |x−j − X(k)
−j | ≤ δ}
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EARTH IMPORTANCE SCORES. VARIABLE SELECTION

Figure: Random Tubes (WITH HELP FROM Wei-Yin Loh)
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EARTH IMPORTANCE SCORES. VARIABLE SELECTION

Figure: TUBE SELECTION FOR X1 IMPORTANCE SCORE
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EARTH IMPORTANCE SCORES. VARIABLE SELECTION

3) COMPUTE A LOCALLY LINEAR t-STATISTIC

t
(k)
j (h) over the section [X

(k)
j − h, X

(k)
j + h] in R.

4) Find t
(k)
j ≡ maxh |t(k)

j (h)| = IMPORTANCE
SCORE FOR VARIABLE Xj FOR TUBE Tk .
5) COMPUTE THE INITIAL IMPORTANCE

SCORE FOR VARIABLE Xj AS tj = M−1
∑M

k=1 t
(k)
j .

6) USING 5), BOOST WEAK VARIABLES BY
ADJUSTING THE METRIC | · | ADAPTIVELY.
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EARTH IMPORTANCE SCORES. VARIABLE SELECTION

NOTE: THE BANDWIDTH h IS SELECTED TO
MAXIMIZE AN ESTIMATE OF THE EFFICACY
OF THE LOCAL t-STATISTIC. EFFICACY IS A
PROXY FOR POWER. WE WANT TO MAXIMIZE
THE PROBABILITY OF SELECTING A
RELEVANT VARIABLE.

EFFICACY IS VERY DIFFERENT FROM MEAN
SQUARED ERROR. SMALL BIAS IS NEEDED
ONLY WHEN Xj IS IRRELEVANT.
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EARTH IMPORTANCE SCORES. VARIABLE SELECTION

Figure: BUMP MODEL, x0 = 0.4, n=1000, σ2 = 0.05.
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EARTH: EFFICACY ADAPTIVE REGRESSION TUBE HUNTING

EARTH THRESHOLD: PERMUTE THE Y’s
INSIDE THE TUBES AT RANDOM, THEN
COMPUTE
t∗j ≡ AVERAGE OF THE IMPORTANCE SCORES
FOR THE ”PERMUTED TUBES”.
SELECT Xj IF tj ≥ ct∗j . HERE THE THRESHOLD
CONSTANTS IS SELECTED USING TRAINING
AND TEST SETS, OR USING ASYMPTOTICS.
WE WANT (AS SAMPLE SIZE n → ∞)
PROB(WRONGLY SELECT {Xj}) → 0 and
PROB(WRONGLY DELETE {Xk}) → 0.
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RANDOM FOREST IMPORTANCE SCORES
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RANDOM FOREST IMPORTANCE SCORES

RFVS: RANDOM FOREST VARIABLE
SELECTION.
CART: CLASSIFICATION AND REGRESSION
TREES.
CART CONSTRUCTS A NONPARAMETRIC
REGRESSION MODEL FIT µ̂(X).
SET µ(X) = E (Y |X),
µ(X−j) ≡ E (Y |X−j) = µ(X∗

j ),
WHERE X∗

j IS X WITH Xj REPLACED BY X ∗
j

INDEPENDENT OF (X−j , Y ).
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RANDOM FOREST IMPORTANCE SCORES

RFVS CRITERIA:

∆j = E [Y − µ(X−j)]
2 − E [Y − µ(X)]2

= E [µ(X) − µ(X−j)]
2

IF Xj IS INDEPENDENT OF Y GIVEN X−j , THEN
∆j = 0.
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RANDOM FOREST IMPORTANCE SCORES

THE ESTIMATE OF ∆j IS

∆̂j = n−1{
∑

[Y (i)−µ̂(X
(i)
−j)]

2−
∑

[Y (i)−µ̂(X(i))]2}
HERE µ̂(X

(i)
−j) AND µ̂(X(i)) ARE ESTIMATES OF

E (Y |X−j ∈ C−j) AND E (Y |X−j ∈ C−j , Xj ∈ Cj).
IF Xj AND X−j ARE DEPENDENT, THEN
∆̂j CAN BE LARGE EVEN IF, GIVEN X−j , Xj IS
INDEPENDENT OF Y.
NEXT GENERATE TREES AT RANDOM ( A

BREIMAN BOOTSTRAP), GET ∆̂
(1)
j , · · · , ∆̂

(k)
j .

THE RF IMPORTANCE SCORE IS
tRF
j = ∆̂

(·)
j /SE (∆̂

(·)
j )
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RANDOM FOREST IMPORTANCE SCORES

RANDOM FOREST VARIABLE SELECTION:
KEEP THE VARIABLES WITH
LARGE IMPORTANCE SCORES tRF

j .

COMPARE WITH SHIBATA(1981) WHO KEEPS
THE MODEL(VARIABLES) WITH SMALLEST
VALUES OF

[n + 2N(m)]n−1
n∑

i=1

[Y (i) − β̂T
(m)(X

(i))]2

WHERE N(m) = NUMBER OF NON-ZERO β’S IN
MODEL m.
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RANDOM FOREST IMPORTANCE SCORES

THRESHOLD FOR RFVS:
EXPAND THE DESIGN MATRIX
X∗ = (X, X ∗

d+1, · · · , X ∗
d+r) WHERE THESE X ∗

j ARE
NOISE VARIABLES INDEPENDENT OF (X, Y ).

SELECT THE VARIABLE Xj IF tj > ct ′.
WHERE t’ IS THE AVERAGE OF THE
IMPORTANCE SCORES FOR X ∗

d+1, · · · , X ∗
d+r .

SUGGESTED:
r = 30, c = 2, X ∗

d+1, · · · , X ∗
d+r ∼ UNIFORM(0, 1).

KJELL DOKSUM Dept. of Stat. at UW-Madison EARTH NONPARAMETRIC VARIABLE SELECTION 18/42



COMPARISON OF EARTH AND RFVS.
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COMPARISON OF EARTH AND RFVS.

EARTH DIVIDES BY THE STANDARD ERROR IN EACH
RANDOM TUBE. RFVS DIVIDES BY THE STANDARD
ERROR ACROSS RANDOM TREES.

EARTH DEALS WITH CONFOUNDING BY CONDITIONING
ON X−j , THEN USES SIMPLE (ONE X) NP REGRESSION.
RFVS DEALS WITH CONFOUNDING BY CONDITIONING
ON X AND X∗

j . RFVS IS BASED ON DOING MULTIPLE
REGRESSION (d X’s) TWICE.

LOOKING AHEAD: RFVS DOES VERY WELL FOR
INDEPENDENT X1, · · · , Xd . FOR STRONGLY
DEPENDENT X’s, NOT SO MUCH.
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MORE COMPARISONS
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MORE COMPARISONS

EARTH AND RFVS AGAINST MARS, GUIDE
(≈ CART ), Cp, AIC, SBC, LASSO.

1ST MONTE CARLO MODEL:
LINEAR REGRESSION. HOW MUCH DO NP
METHODS EARTH, RFVS, MARS, GUIDE LOSE
COMPARED TO PARAMETRIC METHODS Cp,
AIC, SBC, LASSO?

KJELL DOKSUM Dept. of Stat. at UW-Madison EARTH NONPARAMETRIC VARIABLE SELECTION 22/42



MORE COMPARISONS

PARAMETRIC MODEL.

MODEL (1):
X1, X2, · · · , X20 i.i.d. UNIFORM [0,1], ε ∼ N(0, 1).

Y = 1.25X1 + X2 + 0.75X3 + 0.5X4 + 0.25X5 + ε.

X6, X7, · · · , X20 ARE INDEPENDENT OF Y.
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MORE COMPARISONS

Table: Columns 1, · · · , 5 gives the percentage of simulation trials where
variables X1, · · · , X5 were selected for Model (1). Column 6 gives the
average number of irrelevant variables per simulation falsely identified as
relevant variable. Column 7 gives the percentage of correct identifications
for 20 variables.
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MORE COMPARISONS

NONLINEAR (in X2, X3, X4, X5) MODEL.

MODEL (2):
X1, X2, · · · , X20 i.i.d UNIFORM(0,1), ε ∼ N(0, 1).

Y = X1+5sin(2πX2+2πX3)+8(X4−0.5)2+eX5 +ε.

X6, · · · , X20 ARE IRRELEVANT.
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MORE COMPARISONS

Table: Columns 1, · · · , 5 gives the percentage of simulation trials where
variables X1, · · · , X5 were correctly selected for Model (2). Column 6
gives the average number of irrelevant variables per simulation falsely
identified as relevant variable. Column 7 gives the percentage of correct
identifications for 20 variables.

KJELL DOKSUM Dept. of Stat. at UW-Madison EARTH NONPARAMETRIC VARIABLE SELECTION 26/42



MORE COMPARISONS

MODEL (3):
Y = X1+5 sin(2πX2+2πX3)+8(X4−0.5)2+eX5 +ε.

GIVEN X4, X6 AND Y ARE INDEPENDENT.
WITHOUT X4, X6, AND Y ARE DEPENDENT
BECAUSE CORR(X4, X6) ∼= 0.9.

THE SUM OF THE X4 AND X6 PERCENTAGES
SHOULD BE 100.

X8, · · · , X20 ARE IRRELEVANT FOR Y.
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EARTH IMPORTANCE SCORES. VARIABLE SELECTION

Table: Columns 1, · · · , 7 gives the percentage of simulation trials where
variables X1, · · · , X7 were selected for Model (3). Column 8 gives the
average number of irrelevant variables per simulation falsely identified as
relevant variable. The superscript indicates what variables(s) the variable
is associated with. Column 9 = (#X4 included + #X6 included) /
#trials.
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EARTH AND RFVS PRE-SCREENING TO
IMPROVE MARS, GUIDE, AND RANDOM
FOREST PREDICTIONS.

MODELS AND CRITERIA FROM FRIEDMAN
(1991) MARS PAPER.

CRITERIA = ISE ∼= PREDICTION ERROR
STANDARDIZED TO BE COMPARABLE ACROSS
MODELS.

ISE (Ȳ ) = 1 ALWAYS.
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EARTH AND RFVS PRE-SCREENING
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EARTH AND RFVS PRE-SCREENING
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EARTH AND RFVS PRE-SCREENING
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EARTH AND RFVS PRE-SCREENING
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EARTH AND RFVS PRE-SCREENING
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EARTH AND RFVS PRE-SCREENING

Figure: ISE’s of MARS, GUIDE and Random Forest, and ISE’s of these
procedures preceded by EARTH and preceded by RFVS.
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EARTH THRESHOLD SELECTION BASED ON
TRAINING AND TEST SETS.

1) COMPUTE p-VALUES BASED ON
IMPORTANCE SCORES AND NULL
IMPORTANCE SCORES FOR A TRAINING SET.

2) USE DIFFERENT p-VALUE THRESHOLDS
STARTING AT 0.01 TO GET SELECTED SETS
OF X’s. FOR EACH SET, CHECK PREDICTION
ACCURACY USING A TEST SET. CHOOSE THE
p-VALUE THRESHOLD WITH THE BEST
PREDICTION ACCURACY.

KJELL DOKSUM Dept. of Stat. at UW-Madison EARTH NONPARAMETRIC VARIABLE SELECTION 36/42



EARTH THRESHOLD SELECTION

Table: EARTH p-values for the 26 variables Xl , l = {5, 6, · · · , 33} using
5000 observations in a training set. ”pole” data:
www.liacc.up.pt/ ltorgo/Regression/DataSets.html
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EARTH THRESHOLD SELECTION

Table: Mean square prediction errors using variables selected by EARTH
using p-value threshold p0 for a test set with 10000 observation.
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ASYMPTOTIC CONSISTENCY OF EARTH
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ASYMPTOTIC CONSISTENCY OF EARTH

RETT: REGRESSION TUBE t-STATISTIC SELECTION.
FIX BANDWIDTH h. NO ADAPTION. M=1. ONLY ONE
TUBE FOR EACH Xj .
AS n → ∞, d → ∞, m = # OBSERVATIONS IN THE
SECTION FOR VARIABLES Xj .

ASSUME m/n → λ, 0 < λ ≤ 1. SET tj =
√

mβ̂j/(s0j/sxj
).

THEN tj/
√

m →P βj/(σ0j/σxj
) ≡ τj as n → ∞.

DIMENSION REDUCTION RULE:
KEEP Xj IF |tj | > c,
DROP Xj IFF |tj | ≤ c. WLOG:

τj �= 0, j = 1, · · · , d1;

= 0, j = d1 + 1, · · · , d ; d0 = d − d1;
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ASYMPTOTIC CONSISTENCY OF EARTH

DEF: CONSISTENCY ⇔ P(CORRECT DECISION MADE
FOR ALL Xj) → 1 as n → ∞.
CONSISTENCY ⇔
P(minj≤d1 |tj | ≥ c and maxj>d1 |tj | < c) → 1.

THEOREM: RETT IS CONSISTENT PROVIDED
min|τj | = m−rbm, WHERE 0 < r < 1/3, bm → ∞, AND
log(d0) = o(mr), log(d1) = o(m1/2−rbm) AND c = O(mr/2).

NOTE: THE ”ALTERNATIVE” |τj | CAN TEND TO ZERO,
BUT SLOWLY. d0 AND d1 CAN TEND TO INFINITY. THE
THRESHOLD c TENDS TO INFINITY SLOWLY.
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ASYMPTOTIC CONSISTENCY OF EARTH

PROOF: SHOW
P(maxj>d1

|tj | > c) → 0 AND
P(minj≤d1

|tj | ≤ c) → 0.

P(maxj>d1
|tj | > c) ≤ ∑d

d1+1 P(|tj | > c).
Peter Hall 92: UNDER MOMENT CONDITIONS,
P(|tj | > c) ≤ 2√

2π
e−c2/2(1+A(1+c)3m−1/2a3) ≡ H,

WHEN c ≤ m1/6/a, UNDER OUR ASSUMPTION,
P(maxj>d1

|tj | > c) ≤ d0H → 0.

ALSO,
P(minj≤d1

|tj | ≤ c) → 0.
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