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1. Introduction
Minh and Farnum (2003) used inverse stereographic projection, or equiva-
lently bilinear (Möbius) transformation, of distributions defined on the real
line to induce distributions on the circle. Their construction based on this
approach proceeds as follows. Let f(x) denote the probability density func-
tion (pdf) of the t-distribution on the real line with m (a positive integer)
degrees of freedom, i.e.

(1) f(x) =
Γ((m + 1)/2)

√
πm Γ(m/2)(1 + x2/m)(m+1)/2

, −∞ < x < ∞.

Then, applying inverse stereographic projection, defined by the (generally)
one-to-one mapping,

(2) x = u + v
sin θ

1 + cos θ
= u + v tan

(
θ

2

)
, −π ≤ θ < π,

with u = 0 and v =
√

m, and writing m = 2n + 1, for n = 0, 1, . . . , leads to
the pdf on the circle of radius v,

(3) f(θ) =
Γ(n + 1)

2n+1
√

πΓ(n + 1/2)
(1 + cos θ)n.

Given its construction, the distribution with this density might be referred
to as a type of t-distribution on the circle, or the circular t-distribution in-
duced by inverse stereographic projection if one were being more precise.
However, the distribution with density (3) already has a name in the liter-
ature, namely Cartwright’s power-of-cosine distribution. When n = 0 (i.e.
m = 1), the circular uniform distribution is obtained, clearly induced by
inverse stereographic projection of the Cauchy distribution on the real line.

The three-parameter family of symmetric circular distributions proposed
by Jones and Pewsey (2005) has density

(4) f(θ) =
(cosh(κψ))1/ψ(1 + tanh(κψ) cos(θ − µ))1/ψ

2πP1/ψ(cosh(κψ))
,



where −π ≤ µ < π is a location parameter (equal, in general, to the
mean/modal/median direction), κ ≥ 0 is a concentration parameter, ψ ∈ R
is a shape index, and P1/ψ is the associated Legendre function of the first
kind of degree 1/ψ and order 0.

As special cases, Jones–Pewsey’s distribution includes von Mises (ψ →
0), cardioid (ψ = 1), wrapped Cauchy (ψ = −1) as well as Minh and Far-
num’s (2003) (or, equivalently, Cartwright’s power-of-cosine) (ψ > 0, κ →
∞), and is can be seen to be closely related to the pdf of the t-distribution
on the circle proposed by Shimizu and Iida (2002).

The distribution with density (3) has no continuity, in the sense that (1)
tends to the standard normal pdf as m → ∞ but a degenerate distribution
concentrated at the point θ = 0 is obtained when n → ∞ in (3).

In order to resolve this problem
we employ the transformation (2)
with u = 0 and v > 0 independent
of n.

x = v tan
(

θ

2

)
, θ ∈ [−π, π).

O R

(v sin θ, v cos θ)

θ

x v

v

−v

−v

Now inverse stereographic projection of the t-distribution on the real line
yields a different circular t-distribution from that given in (3), with density

(5) f(θ) =
v

2
√

mB(m/2, 1/2)
× (1 + tan2(θ/2))

(1 + v2 tan2(θ/2)/m)(m+1)/2
,

where m = 2n+1 and B(p, q) denotes the beta function, defined by B(p, q) =∫ 1
0 tp−1(1 − t)q−1dt. In this paper, we shall refer to the distribution with

density (5) as the modified Minh–Farnum distribution. As m → ∞, the pdf
in (5) tends to

(6) f(θ) =
v

2
√

2π

(
1 + tan2

(
θ

2

))
exp

(
−v2

2
tan2

(
θ

2

))
.

This is the density of the distribution obtained when the modified inverse
stereographic projection described above is applied to the standard normal
distribution on the real line. Thus, the transformation (2) with v > 0
independent of n has continuity from the t to the normal distributions on
the circle.

The density (6) is unimodal if v ≥
√

2, and is bimodal if v <
√

2. An
alternative representation of it is

(7) f(θ) =
v0

B(n + 1/2, 1/2)(1 + v0
2)n+1

× (1 + cos θ)n

(1 − z cos θ)n+1
,
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where v0 = v/
√

2n + 1 and z = (v0
2−1)/(v0

2 +1). Finally, we note that the
Jones–Pewsey density tends to that of a Minh–Farnum distribution when
κ → ∞.
2. A new extended family of unimodal symmetric circular distri-
butions
In this section we introduce the new family of unimodal symmetric distri-
butions on the circle which extends both the Jones–Pewsey family of distri-
butions as well as the unimodal distributions contained within the modified
Minh–Farnum family. Its density results on combining the defining structure
of the pdf in (7), derived by inverse stereographic projection, with the trans-
formation technique based on the hyperbolic tangent function employed in
the construction of Jones and Pewsey (2005). The resulting density is given
by

(8) f(θ) = Cψ(κ1, κ2)
(1 + tanh(κ1ψ) cos(θ − µ))1/ψ

(1 − tanh(κ2ψ) cos(θ − µ))1/ψ+1
,

where −π ≤ µ < π is a location parameter (which, in general, corresponds
to the distribution’s mean/modal/median direction), κ1, κ2 ≥ 0

are concentration parameters and ψ > 0 is an index which also effects the
peakedness and tails of the distribution. The overall shape of the distribu-
tion is determined by the last three of these parameters. The normalizing
constant Cψ(κ1, κ2) is the reciprocal of the integral

∫ π

−π

(1 + tanh(κ1ψ) cos θ)1/ψ

(1 − tanh(κ2ψ) cos θ)1/ψ+1
dθ

=
2(1 + tanh(κ1ψ))1/ψ

(1 − tanh(κ2ψ))1/ψ+1

∫ 1

0

(1 − z1t)1/ψ

(1 + z2t)1/ψ+1
t−

1
2 (1 − t)−

1
2 dt,(9)

where z1 = 2 tanh(κ1ψ)/(1 + tanh(κ1ψ)) and z2 = −2 tanh(κ2ψ)/(1 −
tanh(κ2ψ)). Here, the transformation cos θ = 1 − 2t has been used to ob-
tain the right-hand side of (9). The last integral is expressible in terms of
Appell’s function, F1, and the Gauss hypergeometric function, 2F1, as∫ 1

0

(1 − z1t)1/ψ

(1 + z2t)1/ψ+1
t−

1
2 (1 − t)−

1
2 dt = πF1

(
1
2
;− 1

ψ
, 1 +

1
ψ

; 1; z1,−z2

)
= π(1 + z2)−1/2

2F1

(
1
2
,− 1

ψ
; 1;

z1 + z2

1 + z2

)
,

due to the relation (Appell and Kampé de Fériet, 1926, Eq. (28), p. 24)
F1(a; b1, b2; b1 + b2; z1, z2) = (1 − z2)−a

2F1(a, b1; b1 + b2; (z1 − z2)/(1 − z2)),
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where

F1(a; b1, b2; c; z1, z2) =
1

B(a, c − a)

∫ 1

0

ta−1(1 − t)c−a−1

(1 − z1t)b1(1 − z2t)b2
dt.

Note how, as ψ and κ2 increase, κ1 has increasingly less effect on the shape
of the density.
3. Basic properties

3.1 Unimodality
Given that the two concentration parameters are constrained so that κ1,
κ2 ≥ 0, it follows that distributions with density (8) are always unimodal
with f(µ) > f(µ ± π), apart from the special case of the circular uniform
distribution which, formally, has no mode. The circular uniform distribution
is obtained when κ1 = κ2 = 0 or ψ → ∞ and κ1 and κ2 are finite.

To show that, for all other cases, distributions from the proposed family
are unimodal with mode at µ, we set, without loss of generality, µ equal to
0 and consider the derivative of (8) with respect to θ, i.e.

d

dθ

(
(1 + tanh(κ1ψ) cos θ)1/ψ

(1 − tanh(κ2ψ) cos θ)1/ψ+1

)
= −2 sin θ(1 + tanh(κ1ψ) cos θ)1/ψ−1

(1 − tanh(κ2ψ) cos θ)1/ψ+2

× tanh(κ1ψ) tanh(κ2ψ)
(

cos θ +
(1 + ψ) tanh(κ2ψ) + tanh(κ1ψ)

ψ tanh(κ1ψ) tanh(κ2ψ)

)
.

It follows from the constraints on the parameters that the density is uni-
modal if |[(1 + ψ) tanh(κ2ψ) + tanh(κ1ψ)]/[ψ tanh(κ1ψ) tanh(κ2ψ)]| > 1.
Distributions with density (8) are either circular uniform or, more generally,
unimodal with mode at µ. The fact that they are also symmetric about µ
follows directly from (8).

3.2 Special cases
Case 1: κ2 = 0, the Jones–Pewsey distribution with positive power 1/ψ.
Case 2: κ1 = 0, the Jones–Pewsey distribution with negative power −(1 +
1/ψ).
Case 3: κ1 → ∞, the unimodal distributions contained in the modified
Minh–Farnum family with density (5).
Case 4: κ2 → +∞, a new distribution with a pole at 0.

3.3 Trigonometric moments
The trigonometric moments of the distribution are given by {ϕm : m =
1, 2, 3, ...}, where ϕm = αm + iβm, with αm = E(cos mΘ) and βm =
E(sinmΘ) being the mth order cosine and sine moments of the random
angle Θ, respectively. Because the distribution is symmetric about µ = 0, it
follows that the sine moments are all zero. Thus, ϕm = αm. To obtain the
cosine moments, we will make use of the relationships that exist between
them and the (standard) moments of cosΘ. The latter can be expressed as
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integral expressions involving Appell’s function, F1, or the Gauss hypergeo-
metric function, 2F1. Specifically, in terms of Appell’s function,

E(cosm Θ) = 2Cψ(κ1, κ2)
∫ π

0

(cos θ)m(1 + tanh(κ1ψ) cos θ)1/ψ

(1 − tanh(κ2ψ) cos θ)1/ψ+1
dθ

=
1

πF1 (1/2,−1/ψ, 1/ψ + 1; 1, z1,−z2)

m∑
k=0

mCk(−2)k

×F1

(
k +

1
2
,− 1

ψ
, 1 +

1
ψ

; k + 1, z1,−z2

)
B

(
k +

1
2
,
1
2

)
,

for all m = 0, 1, 2, ..., and, in terms of the Gauss hypergeometric function,

E(cosm Θ)

=
2Cψ(κ1, κ2)(1 + tanh(κ1ψ))1/ψ

(1 − tanh(κ2ψ))1/ψ+1

∞∑
n=0

m∑
k=0

(−1/ψ)n
(−2)kzn

1

n! mCk

×2F1

(
1 +

1
ψ

, n + k +
1
2
; n + k + 1;−z2

)
B

(
n + k +

1
2
,
1
2

)
.

Using these expressions, the cosine moments of Θ can be obtained.

3.4 Simulation
Lacking any obvious direct construction which leads to the distribution
with density (8), here we can present two approaches to simulating pseudo-
random variates from it based on the more generally applicable inversion
and acceptance-rejection methods.
4. Parameter estimation (Maximum likelihood)
Using the results presented in Section 2, the log-likelihood function can be
expressed as

l(µ, κ1, κ2, ψ)
= −n log(2π) − n log(1 + tanh(κ1ψ))/ψ + n log(1 + tanh(κ2ψ))/2

−n log
(

2F1

(
1/2,−1/ψ; 1;

2(tanh(κ1ψ) + tanh(κ2ψ))
(1 + tanh(κ1ψ))(1 + tanh(κ2ψ))

))
+n(1/ψ + 1/2) log(1 − tanh(κ2ψ))

+(1/ψ)
n∑

i=1

log(1 + tanh(κ1ψ) cos(θi − µ))

−(1 + 1/ψ)
n∑

i=1

log(1 − tanh(κ2ψ) cos(θi − µ)).

Maximum likelihood (ML) point estimation then reduces to the constrained
maximization over the points in the parameter space.
5. An example
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As our illustrative example, we present an analysis of the same grouped
data set of n = 714 observations as was considered in Jones and Pewsey
(2005). The data consist of the ‘vanishing angles’ of non-migratory British
mallard ducks taken from Table 1.1 of Mardia and Jupp (1999). As reported
in Jones and Pewsey (2005), the test of Pewsey (2002) provides no evidence
against circular reflective symmetry for these data (p-value=0.124).

The results obtained from fitting the new family of distributions and
the Jones–Pewsey and modified Minh–Farnum submodels are presented in
the table below. A histogram of the data together with the densities for
the three fits are presented in Figure below. From the latter it can be seen
that the density of the fit for the full family is bounded above and below
by the densities of the fits for the two limiting submodels. Moreover, there
is evidence, particularly around the mode, that the fit for the full family is
more similar to the fit for the modified Minh–Farnum distribution than that
for the Jones–Pewsey. This visual impression is confirmed by the results for
the maximum values of the log-likelihood presented in the table below. The
maximum likelihood solution for the full family is an interior point of the
parameter space, and so applying standard asymptotic distribution theory
for the likelihood ratio test, there is some evidence that it offers a significant
improvement in fit over the Jones–Pewsey family (p-value = 0.070), but not
over the modified Minh–Farnum family (p-value = 0.123).

Histogram of the vanishing angles of
714 British mallard ducks together
with the maximum likelihood fits for
the proposed model (solid) and the
modified Minh–Farnum (dashed) and
Jones–Pewsey (dotted) distributions.
The data and densities are plotted on
approximately (µ̂ − π, µ̂ + π).
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Distribution κ̂1 κ̂2 µ̂ ψ̂ MLL AIC BIC
Jones–Pewsey 0 1.19 −0.82 0.54 −869.36 1744.72 1747.28
Proposed Model 0.74 0.42 −0.82 2.35 −867.72 1743.44 1746.85
Modified Minh–Farnum ∞ 0.35 −0.80 3.05 −868.91 1743.82 1746.38

Focusing on the results for the two model selection criteria included in
the Table, the AIC identifies the full family as providing a slightly better fit
than the modified Minh–Farnum submodel. The BIC penalizes parameter-
heavy models more and the results based on it reverse the order of preference
of these two models. Under both criteria, the fit for the Jones–Pewsey
submodel is clearly identified as the worst of the three fits.

Chi-squared goodness-of-fit tests at the 5% significance level marginally
rejected the fit of the Jones–Pewsey submodel (p-value = 0.047), but did
not reject the fit of the modified Minh–Farnum submodel (p-value = 0.120)
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nor that of the full family (p-value = 0.082). Again, these p-values provide
more evidence of the superior fit of the modified Minh–Farnum submodel
for these data.

Finally, approximate 95% confidence intervals for µ, κ1, κ2 and ψ, ob-
tained from their respective profile log-likelihood functions, are (−0.87,−0.77),
(0,∞), (−1.35,−0.28) and (2.35, 2.40). Of course, the interpretation of these
confidence intervals is hampered by the fact that they only provide informa-
tion about each individual parameter, not their relations with the others.
Nevertheless, the intervals for µ, κ2 and ψ give fairly tight information re-
garding the probable values for these three parameters. The interval for κ1

simply indicates that models across the whole range from the Jones–Pewsey
to the modified Minh–Farnum are potential generators of the data. Obvi-
ously, confidence regions for different combinations of the parameters would
provide insight as to the probable joint values of the parameters.
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