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Arctic Cloud Detection, Terra, MISR, MODIS

Our Approach: Three Features, ELCMC, QDA

Comparing ELCMC with Expert Labels
over 37 blocks of Data:   87% average accuracy

Fusing ELCMC with MODIS Labels: 
94% average accuracy

Conclusions and Future work

Today
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I.Cloud Detection over Arctic Regions

Uncertainties about cloud 
radiation feedback on the 
global climate are among the 
greatest obstacles in 
understanding and 
predicting earth's future 
climate.

Clouds above snow- and ice-
covered surfaces are 
especially difficult to detect 
because their temperature 
and reflectivity are similar to 
those of the surface.

Human expert labels are 
used as “ground truth”, but 
expensive and not available 
on line.
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EOS and its First Satellite: TERRA

Earth Observing System (EOS) is designed by NASA to study earth 
from space with a multiple-instrument, multiple-satellite approach. 
Its goal is to improve the scientific understanding of global climate 
changes and provide the scientific basis for environmental policies.

TERRA, the first EOS satellite, was launched on December 18, 1999.
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0O( AN),  
± 26.1O ( AF, AA), 
± 45.6O ( BF, BA), 
± 60O ( CF, CA),
± 70.5O ( DF, DA)

4 wavelengths in each angle. (443nm, 
555nm, 670nm, and 865nm Near Infrared Red)

• Multi-angle Imaging Spectre Radiometer 
(MISR) was launched by NASA on 
December 18, 1999.

• Built and maintained for NASA by the 
Jet Propulsion Laboratory (JPL) in 
Pasadena, California.

AlgorithmsCloud Detection Based on MISR Images

MISR has 9 angles
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Challenges

Organization, transmission, and visualization 
of these massive data (MISR: 3.3 megabits/s
on average and 9.0 megabits/s peak time)

Streaming data or online processing

Data fusion among EOS data sources
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Orbit: a path from north pole to south pole (233 total)

Block: each orbit is divided into 180 blocks, 1 degree for each.

Block size: about 330 km in width, and 128 km in height.
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Clouds are registered at 
different ground locations
in different angles.
The MISR operat ional
SDCM retrieves the cloud 
h e i g h t  a n d  c l o u d 
movement by matching the 
same c louds in  th ree 
a n g l e s .

The algorithm works well over dark surfaces, such as deep ocean and 
vegetation covered land surface, but does not work well over  snow and ice 
covered surfaces because good matching is very difficult.

MSIR Operational AlgorithmMSIR Operational AlgorithmMSIR Operational AlgorithmMSIR Operational AlgorithmMISR Operational Cloud Detection Algorithm
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Data collected over Greenland and Baffin Bay on TERRA path 26 during 
2002 summer season.
Dr. Eugene Clothiaux hand-labeled 11 orbits using MISR and MODIS 
radiances for validation of different algorithms.

Our study area
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MISR red AN image collected over Greenland on June 21, 2001.

DF   CF   BF   AF   AA   BA   CA   DA

• Correlations between angles are strong 
over snow- and ice-covered surfaces, and 
weak in areas covered by high cloud.

• Clouds are brighter than snow and ice   
covered surfaces in forward angles.
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Correlation of AN red radiance with red radiances at other angles.

AlgorithmsLinear Correlation Matching Clustering (LCMC):
Looking for Ice/Snow, not Clouds 
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MISR red images collected over Greenland on June 21, 2001. Left: AN. Right: DF.

DF   CF   BF   AF   AA   BA   CA   DA
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Correlation fails where

• the surface is smooth (e.g. frozen rivers) 

• there are thin clouds

Remedies: SD to measure smoothness
Forward scattering via DF to deal with thin clouds

AlgorithmsProblems of LCMC
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ELCMC thresholds 3 features based on 275m, terrain projected red 
radiances. It is a CLUSTERING ALGORITHM AND EXPERT 
LABELS ARE NOT USED.

1. correlation between angles ( CORR = (rAF-AN+rBF-AN)/2 )

2. surface smoothness ( SDAN )

3. the angular signature of the radiances from different 
angles: Normalized Difference Angular Index (NDAI) 
see Nolin, Fetterer, and Scambos (2002)

ELCMC: Enhanced Linear Correlation Matching Clustering
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1. Data unit = three blocks (to reduce all clear or all cloudy situation)

2. Thresholds fixed for SD (2.0) and CORR (0.75)

3. NDAI EM initialization is based on expert labels (only once)

Run EM on current data unit on middle 95% data and use
the “dip” between two modes as candidate threshold hold.

If candidate threshold falls within (0.08, 0.4), use it; otherwise
use the threshold from previous visit.

Processing time for one data unit is 1 or 2 seconds on a laptop.

ELCMC: on-line implementation details
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ELCMC (continued)

Correlation SD

N
D

A
I

“no cloud” , “low cloud” and “high cloud”

N
D

A
I

CORR SDAN

no cloud

low cloud

high cloud

Declare “clear (snow and ice)” when

1.    SDAN < thresholdsd or
2.   CORR > thresholdcorr and NDAI < thresholdndai

Otherwise “cloudy”. And thresholds are either fixed or adaptively chosen.
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An Example of ELCMC Result

An Example of ELCMC Result

DF red image ELCMC MISR result
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On this data set, ELCMC algorithm provides 93.95% accuracy on expert labels, 
comparing with a 46.75% accuracy rate of the MISR operational algorithm.

DF red image ELCMC cloud maskExpert labels

AlgorithmsAccuracy against Expert Labels
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Over all 60 blocks we tested, ELCMC algorithm provides a 92% of 
accuracy, but  it has very low accuracy (~70%) over a few blocks.

AlgorithmsOverall Accuracy against Expert Labels
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DF   CF   BF   AF   AA   BA   CA   DA
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AlgorithmsMore Data and Expert Labels

Orbit 13490 Block 20Orbit 13490 Block 20--2222Orbit 13257 Block 20Orbit 13257 Block 20--2222 Orbit 13723 Block 20Orbit 13723 Block 20--2222

Data collected over same location but in different days (9Data collected over same location but in different days (9--day gap) day gap) 
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DF   CF   BF   AF   AA   BA   CA   DA
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Algorithms

Orbit 13490 Block 20Orbit 13490 Block 20--2222Orbit 13257 Block 20Orbit 13257 Block 20--2222 Orbit 13723 Block 20Orbit 13723 Block 20--2222

Comparing ELCMC maps with expert maps
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AlgorithmsThree Dimensional Plots in Three Features

The distributions of The distributions of ““clearclear”” and and ““cloudycloudy”” are are ““stablestable”” across different orbitsacross different orbits



page 21March 15, 2007

DF   CF   BF   AF   AA   BA   CA   DA

AlgorithmsMISR Radiances in Different Angles

(1). (1). ““CloudyCloudy”” and and ““ClearClear”” not separated very well not separated very well 

(2). (2). The distributions of The distributions of ““clearclear”” pixels and pixels and ““cloudycloudy”” ones change across different ones change across different 
orbits, so classifier learned from one dataset does not classifyorbits, so classifier learned from one dataset does not classify another well. another well. 
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AlgorithmsA 70% case…

    
 

 

AN 
image

ELCMC
Result
(70%)

Differ-
ence

Expert 
Label
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AlgorithmsProblems of ELCMC  Identified in Case Studies

 

ELCMC
result

Differ-
ence

Two types of mistakes:

(1). ELCMC algorithm classifies clear surface as “cloudy” when the data 
registration is not good enough (Correlation between angles is reduced.)

(2). It classifies very smooth cloud as “clear” because the SD is too small. 
This case has not shown much in this example.
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In a two class classification problem, QDA models each 
class density as a multivariate Gaussian distribution:

Let πk be the prior probability of class k (k=1, 2).  The  
posterior distribution for x belonging to class k is then 
given by

QDA classifies x in the class that has the largest 
posterior probability at x.  Using training data, 
parameters π, μk, and Σk are estimated by the empirical 
values.

Better results with QDA?
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DF red image Expert Labels

Quadratic Discriminate Analysis

ELCMC Results QDA Results with ELCMC Labels as Training

2% improvement in this case by QDA
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AlgorithmsELCMC-QDA gives soft labels

AN 
image

ELCMC
results

ELCMC
-QDA

Green area: probability between 0.3 and 0.7 (those pixels usually fall into 
the No Expert label areas)  

Expert 
Label
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AlgorithmsQDA Label Probability Estimates 

Clear pixels in Clear pixels in 
Expert labelsExpert labels

Cloudy pixels in Cloudy pixels in 
Expert labelsExpert labels

Unlabelled pixels Unlabelled pixels 
in Expert labelsin Expert labels
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Summaries of our methods so far
ELCMC, ELCMC-QDA  online MISR algorithms use 
three robust features, and are computationally speedy.  

ELCMC-QDA provides soft probability labels.

Over 60 test blocks, both ELCMC and ELCMC-QDA
give an average accuracy 92% against expert labels.

Over 37 “partly cloudy” blocks, the average accuracy
is lowered to around 87%.

ELCMC-SVM gives similar accuracies over some
test images, but its computation is too slow.
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ELCMC, ELCMC-QDA summaries

IF we use expert labels to train QDA, the accuracy rates
are UP quite a few percent (e.g. 5%) from using ELCMC
labels.

But expert labels are very expensive and
impossible to obtain for every block of data
even off line, and they could be noisy too.

Next, we use information from MODIS to get
more accurate labels than ELCMC alone.

The need for better labels than ELCMC
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MODIS has 36 spectral bands ranging in wavelength from 0.4 µm
to 14.4 µm (including visible, near infrared, and infrared). 
Spatial Resolution: 250 x 250 m2 in two bands, 500 x 500 m2 in 
five bands, and 1.0 x 1.0 km2 in other 29 bands.
Combining data from two sensors may provide better results.

III. Moderate Resolution Imaging Spectroradiometer
(MODIS)
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Registering MODIS Data on MISR Grid

MISR DF red image

MODIS band 26
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Data Fusion: ELCMC-MODIS Consensus Pixels

Expert Labels MISR ELCMC cloud mask

MISR and MODIS consensus pixels

97.75%
( 72%
consensus
rate )

MODIS operational cloud mask

91.8%

91.97%
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Using Consensus pixels and over 37 blocks 

QDA (Expert Labels) QDA ( Consensus Pixels)

features
(3 MISR+ 5 MODIS)

97%
(From 37 blocks of data)

94% 
(From 37 blocks of data)

QDA using Expert Labels on all features QDA using consensus Pixels on all features

Using all features, QDA  trained on the consensus pixels (NO 
EXPERT LABELS USED) provides the best results tested 
against expert labels. Reference: Shi et al (2004b, 2004c) 
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MISR-MODIS Data Fusion Summary

Fusing data from MISR ELCMC and MODIS improves the 
average accuracy of polar cloud detection to 94% from
87% by ELCMC alone (over 37 blocks).

That is, we basically could reproduce expert 
performance because experts could differ by a few 
percents.

Comparing with MISR operational SDCM and ASCM

ELCMC       SDCM      ASCM (new)
accuracy        94%           80%          83%
Coverage     100%           27%          70%
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Current Directions

• Use ELCMC labels to exclude ground pixels
and fractional Gaussian spatial model to
estimate cloud heights on remaining pixels

• Cloud height validation data from Leica
Photogrammetry Suite (stereo visualization
from images of two angles)

• Produce average cloud coverage over months
or years for the polar region, needed input
to climate models 
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Gaussian Kernel Support Vector Machines

With labels yi ∈ {-1, 1}, SVMs find f ∈ RKHSK to minimize

The solution is in the form of

with most of α’s being 0, the non-zero α‘s are called support 
vectors. The most common used kernel in machine learning 
literature is the Gaussian kernel.

The computation of training SVM is O(n2) empirically.
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Gaussian Kernel SVMs

The solution is in the form of

Many α’s being 0

The non-zero α‘s are called 
support vectors. 

SV’s are the misclassified 
points and the points within 
the “margin”.
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IV. Binning for Gaussian Kernel SVMs

• Bin each predictor by its inverse marginal CDF
• Find the data points in each bin
• For non-empty bins, average the predictors and take a

majority vote of labels
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Binning for Gaussian Kernel SVMs (cont)

• Reduces the variance of labels (see illustration below)
• Maintains the marginal distribution of predictors
• Reduces the training sample size and the number of SV’s
• Keeps the optimal minimax rate over Sobolev spaces in 

regression case 
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One example: Expert label-QDA gives 77% 
accuracy on a separate test label set
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SVMs for Polar Cloud Detection: Expert 
labels as training data

We train Gaussian Kernel SVMs on three features in 4 setups:

1. SVMs on random sample ~ 966 data points from 54K points

2. Bagged SVMs (repeat training SVM on ~ 966 random sample 
21 times; then average the prediction of 21 runs)

3. SVMs on bin centers (split each predictor to 10 bins and use the
resulted 996 bin centers and majority vote of labels)

4. SVMs on half of the sample (27K training points)

All parameters of SVM are tuned by cross-validation.
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Comparisons

λ and w are chosen by CV over a 9 × 9 grid.

1. SVM on bin centers give the closest rate to the “full” SVM

2. Binning step itself (3.87sec) is fast compared to training SVMs

3. SVM on bin centers have the fewest SV’s, which leads to fast
computation in the prediction step.
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Summary on Binning

• Binning on Gaussian Kernel Regularization keeps
the accuracy and reduce the computation
significantly.

• Binning on Gaussian kernel SVMs speeds up
both the training and testing speeds.

• The computation of binning is faster than
other training sample size reduction methods,
such as clustering and bagged SVMs.
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Conclusions and Future Work

• Computationally fast cloud mask generation 
algorithms: ELCMC, ELCMC-QDA, ELCMC-
MODIS-QDA

• Excellent accuracy when compared with expert
labels 

• Binned SVMs compuationally feasible
for off-line cloud mask generation with much
improved accuracy in hard cases.
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Conclusions and Future Work

• Use ELCMC labels to help estimate
cloud heights

• Produce average cloud coverage over months
or years for the polar region as input
to climate models (possible collaboration with
LBL)
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Statistics is in an exciting era faced with 
massive amounts of data due to information 

technology advancements.

When taking into account subject matter, 
computation, storage and transmission,  we 

are extracting new knowledge from these 
data to push science forward and at the 
same time forge new statistics frontiers.
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MSIR Operational AlgorithmMSIR Operational AlgorithmMSIR Operational AlgorithmMSIR Operational AlgorithmMISR Capturing Asian Tsunami
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On this image block, 

ELCMC: 93.95%
MISR Operational: 46.76%

Using the ELCMC outputs as training data:

QDA: 95.91%
SVM: 96.16%

QDA is much faster than OSU-SVM so more suitable 
for MISR on-line processing until we can speed up SVM 
sufficiently.

AlgorithmsSummary Accuracies Against Expert Label Test Set
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Binning for PGKR in Regression

Let x1, L, xn be equally space in (0, 1] and assume n = mp.
Binning the data as:

Use PGKR on the binned data, we get: 

with

and
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Asymptotic Properties of Binned PGKR

Theorem: (Shi and Yu,  2005) The binned PGKR achieves the 
same minimax rate as the unbinned PGKR does in any finite 
order Sobolev space Hk(Q), when bin size and regularization
parameter λB are properly chosen.

NOTE: the binned estimator only requires inverting matrix

The computation complexity is O(m3). For estimator k-th order 
Sobolev space Hk(Q), we need m = O(kn1/(2k+1)) to achieve the 
optimal rate. 

For example: O(n) for k = 1, O(n3/5) for k= 2, and …
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Regularization Methods

Regularization methods find a function f that minimizes

--- L is an empirical loss. 
--- J(f) is a penalty functional, which is usually a norm 
or semi-norm of a Reproducing Kernel Hilbert Space 
(RKHS). 
For example: cubic spline corresponds to 
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