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1. Circular Data 

1.1 Asymmetric     

0

90

180

270

o

o

o

o

0 1 2 3 4 5 6

0

0.1

0.2

0.3

0.4

0.5

0.6

Heading (radians)

D
en

si
ty

 

 

 

 3



1.2 “Symmetric”  
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2. Two Forms of Symmetry 
2.1 Reflective Symmetry ( ) ( )θφθ −= 2ff  
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2.2 l-fold Symmetry ( ) ( )lff πθθ 2+=  
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Structure of l-fold densities is, in general, highly restrictive 

(although 2-fold symmetry is appropriate for axial data).  

Prefer to model multimodality using finite mixture distributions 

which are far more flexible.  

l-fold symmetry can be tested for using any test of uniformity (or 

isotropy) once the data have been converted into “uniform scores”. 

Jupp & Spurr (1983)    
 



3. Circular Statistics  

nθθ ,...,1  - random sample of n 

angular observations  “concentration”   

Sample mean resultant length 
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If ,0=R  sample mean direction, 

θ , is undefined. 

If ,0>R  
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The sample trigonometric 

moments about θ  are: 
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 4. Population Measures 

The statistics R , θ , pa  and pb  Mean direction 

( )
( )

 <+ − 0 if tan
=

111
10 ααβπ

µ
 ≥− 0 if tan 111

1 ααβ
.  are the sample analogues, and 

moment estimates, of the 

population measures: Trigonometric moments about  0µ

( ){ }[ ]0 cos µα −Θ= pEp  and       

( ){ }[ ]0 sin µβ −Θ= pEp . 

Mean resultant length 

[ ]22 1,011 ∈+= βαρ , where 

( ){ }Θ= pEp cosα , pβ

Θ

 

and  is a random angle.     

( ){ }Θ= pE sin
0=pβ , for all p, if distribution is 

reflectively symmetric. 
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0>ρ , , 00 =µ 02 =β . 
 
 
 
 

     

     

 

 
 

0>ρ ,  defined, 0µ 02 ≠β . 
 

 12



But the distribution of Θ3  is 

unimodal and asymmetric with:  

0=ρ ,  and 0µ 2β  undefined. 

0>ρ ,  defined, 0µ 02 =β . 

0>ρ , ,  00 ≠µ 02 ≠β . 
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5. Omnibus Test for Reflective Symmetry  

Results for the large-sample distribution of (θ , R , 2b , 2a )T are 

available in Pewsey (2004).   

For ( )1,0∈ρ , the marginal distribution of 2b  is normal with, to order 
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with the percentiles of the standard normal distribution. Large values 

of the test statistic lead to the rejection of H0. 

Substituting R , pa  and pb  for ρ , , , a large-sample omnibus 

test of 
pα pβ

can be based on (Pewsey (2002)) a comparison of the test statistic 

H1: Underlying distribution is not reflectively symmetric 

H0: Underlying distribution is reflectively symmetric  
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6. Symmetric Models 

6.1 von Mises   

( )
( )

( ){ },cosexp
2
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,; 0

0
0 µθκ

κπ
κµθ −=

I
f  

 
where 0>κ  and ( )κ0I  is the modified Bessel function of the first kind 

and order p.  

Maximum entropy distribution on the circle with given mean 

direction  and mean resultant length 0 κκκρ IIA == 01 .  µ ( ) ( ) ( )

Popular due to its mathematical tractability. Maximum likelihood 

(ML) estimates are θµ =0̂   and ( )RAˆ =κ . 1−
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6.2 Wrapped normal   
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Construction, properties and moment estimation 

( ) ( )If X∼ 2,σµN , ( ) 2exp 22σµφ ttitX −=  and ( )π2modX=Θ  ∼ ( )2
0,σµWN  

has c.f. ( ) ( ) ( )ppX αφ + pp ii µρβ exp=pφ = ppip σµ 2exp 22 =−= . Hence, 

( )[ ] ( ) ( )µσα pppEp cos2expcos 22−=Θ= ,    ( )2exp 22σρ pp −= , 

( )[ ] ( ) ( )µσβ pppEp sin2expsin 22−=Θ= ,     ( ) ( )µαβµ pppp tantan == . 

So, ( ) ( )ρσσρρ log22exp 22
1 −=⇒−==  and ( )Rlog2~2 −=σ . Also, 

 and ( )2mod πµµµ 10 == θπµµ ==0 2mod~~ . ( )
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6.3 Wrapped distributions in general   

1. If X is a linear r.v. then its (circular) wrapped equivalent is 

( )π2modX=Θ . 

2. If the c.f. of X is known then the trigonometric moments of Θ are 

easily identified. 

3. Moment equations may be solvable with unique admissible 

solutions, solvable with unique but inadmissible solutions, 

solvable with more than one solution, or  insolvable. 

4. ML generally messy as density has to be represented as an 

(approximation to) an infinite sum. However, unless the tails of 

the distribution of X are very heavy, not many terms are required 

for a reasonable approximation.  
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6.4 Wrapped Cauchy   

If X ∼ Cauchy with   
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where  and ( )πµµ 2mod0 = ( )a−= expρ . 
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6.5 Wrapped symmetric stable   

The wrapped normal and wrapped Cauchy distributions are special 

cases of the wrapped symmetric stable family (Mardia, 1972; Gatto 

& Jammalamadaka, 2003).  

6.6 Jones-Pewsey   

The von Mises and wrapped Cauchy distributions (amongst others) 

are special cases of the Jones-Pewsey family (Jones & Pewsey, 

2005) with density 

( ) ( ) ( ){ } ,costanh1,,;
1

00

ψ
µθκψψκµθ −+∝f  

where ,[ )πµ 0,20 ∈  0≥κ  and ℜ∈ψ . Scaling factor involves an 

associated Legendre function.  
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6.7 Wrapped t 

If X ∼ , where νt 0>ν  (not necessarily integer), with density  
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and XY λµ += , then ( )π2modY=Θ  is wrapped t (Pewsey, Lewis & 
Jones, 2007) with density 
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6.8 Modelling multimodality using mixtures with 
symmetric components 
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1. Flexible. 

2. Easy to interpret. Due to symmetry, the mean = mode = median 

is an easily interpreted measure of central location for each of 

the components. The interpretation of the weighting probabilities 

in any mixture is also simple. 

3. Rather parameter heavy for modelling asymmetry (particularly 

heavy-tailed skew data). Need at least 5 parameters (generally) 

to model skew unimodal data whereas can often get away with 

using a 4 (or even 3) parameter asymmetric unimodal model. 

 



7. Skew Models  

7.1 Wrapped skew-normal   

If X ∼ skew-normal with   
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where ℜ∈λξ, , 0>η , then ( )π2modX=Θ  is wrapped skew-normal 

(Pewsey, 2000) with  
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where . ( )πξξ 2mod0 =

Wrapped normal ( )0=λ  and wrapped half-normal ( )±∞=λ  are 

limiting special cases. 
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wrapped normal ( )0=λ ,  wrapped skew-normal ( )5=λ , wrapped 
half-normal ( ). ∞=λ
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7.2 Wrapped exponential and Laplace   

Wrapped Laplace distributions are appropriately scaled mixtures of 

two wrapped exponential distributions (Jammalamadaka & 

Kozubowski, 2004).  

The behaviour around the mode of the densities of both distributions 

would appear to rule them out as useful models for real circular 

data. 
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7.3 Wrapped stable   
 
X ∼ S(α, β, γ, δ) if its c.f. is given by 
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( ]2,0∈α  (index of stability),    [ ]1,1−∈β  (skewness), 

0>γ  (scale),    ℜ∈δ  (location). 

Includes normal (α=2, β=0) and Cauchy (α =1, β=0) distributions.  

Distributions with β=0 are symmetric. 
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Density of the wrapped stable random variable ( )π2modX=Θ  

(Mardia, 1972; Pewsey, 2006) can be represented as 
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is the pth mean direction, and ( )πδδ 2mod0 = . 
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α = 1   β = 0 (0.2) 1         α = ½ 
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Distribution No. of Parameters l 
von Mises mixture 5 -2131.10 

wrapped stable 4  -2127.73
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7.4 Testing for reflective symmetry (revisited) 

For a parametric family of distributions containing asymmetric as 

well as symmetric cases, testing  

H0: Underlying distribution is reflectively symmetric  
v 

H1: Underlying distribution is not reflectively symmetric 

can be conducted using the usual likelihood ratio test based on the 

values of the log-likelihood for the best fitting member of the family 

and the best fitting symmetric member of the family. 
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7.5 Modelling multimodality using mixtures with skew 
components 

1. Even more flexible (than using mixtures with just symmetric 

components). 

2. Interpretation generally not so simple. Due to the lack of  

symmetry, the median and the percentiles of the components will 

generally be of greater interest than the mean or mode. 

3. If there is asymmetry present, can generally get away with using 

fewer parameters than those for mixture models made up of 

symmetric components alone.  
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