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1. Circular Data

1.1 Asymmetric
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1.2 "Symmetric”




2. Two Forms of Symmetry
2.1 Reflective Symmetry £(9)=f(2¢ - 6)

P ——y,






Structure of /-fold densities is, in general, highly restrictive

(although 2-fold symmetry is appropriate for axial data).

Prefer to model multimodality using finite mixture distributions

which are far more flexible.

[-fold symmetry can be tested for using any test of uniformity (or
isotropy) once the data have been converted into “uniform scores”.
Jupp & Spurr (1983)



3. Circular Statistics

0,,...,0, - random sample of n

angular observations

[“concentration”]

Sample mean resultant length

R = .a? + b? €[0,1], where

a, :%, COS (pH, ) and
1

b =

p

0= IDVs

sin (p@, ) (both e [-1,1])

I
=

n:;
are the pth order (p = 1,2,...)
trigonometric moments about

the zero direction.



llocation

If R =0, sample mean direction,

@, is undefined.

If R >0,

_ [ tani(b,/a,) ifa, =0
z+tan'(b,/a,) ifa, <0’

where tan'(x)e[-7/2, 7/2].



The sample trigonometric

moments about 4 are:

a, =%Zn:cos p(6, -0) and
b, :%Zn:sin{p( 0, -0)
(all e[-1,1])
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[skewness

[kurtosis




4. Population Measures

The statistics R, 6, a, and b,

are the sample analogues, and
moment estimates, of the

population measures:

Mean resultant length

o= Jalz + pt (0,1], where
a, = E{cos(p®)}, B, = E{sin(p®)]

and O is a random angle.

11

Mean direction

tan*( 8, /e, )

3 if ¢, 20
Moz vtan (B ay)

if o, <O

Trigonometric moments about g,
a, = E|cos {p(@ — g )}] and
3, = Elsin p(o - )

B, = 0|, for all p, if distribution is

reflectively symmetric.



-------------------- L A Ry sl ,0 > O[ ,uo = O[ BZ - O'

p >0, u, defined, B, = 0.

)
JJ
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p >0, u, defined, B, =0.

p =0, u, and B, undefined.

But the distribution of

30

IS

unimodal and asymmetric with:

p>0, u, 20, g, #0.



5. Omnibus Test for Reflective Symmetry

Results for the large-sample distribution of (@, R, b,, &)’ are

available in Pewsey (2004).

For p (0,1), the marginal distribution of b, is normal with, to order

3

O(n‘3/2), mean 5, _|_i _y _ P n 20, 5
np p p

and variance 1{1 ~ % _ 2a, - fi + 2 {a3 ;% L-a, )H
n 2 Yo,
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Substituting R, a, and b,
test of

for p, a,, B, a large-sample omnibus

Ho: Underlying distribution is reflectively symmetric
Y
Hi: Underlying distribution is not reflectively symmetric

can be based on (Pewsey (2002)) a comparison of the test statistic

1[1-3 2a at-a,))"
b,/ |~ Y28, + 2 ay v v T2
ni 2 R R

with the percentiles of the standard normal distribution. Large values

of the test statistic lead to the rejection of H,.
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6. Symmetric Models

6.1 von Mises

f(@; Mo K) = 240 () exp{/c cos(@ — Uy )},

l, (x

where « > 0 and I,(x) is the modified Bessel function of the first kind

and order p.

Maximum entropy distribution on the circle with given mean

direction u, and mean resultant length p = A(x) = I, (x)/I,(x).

Popular due to its mathematical tractability. Maximum likelihood

(ML) estimates are 2, =@ and & = A™(R).
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6.2 Wrapped normal

: { (0 - o - 27k

207

F(0; 1y, 0% ) = \/% }, where u, = u(mod2r).

Construction, properties and moment estimation
If X~N(g,02), ¢y (t) = expliut - t?c?/2) and © = X(mod2z) ~ WN(y,, o?)
has c.f. ¢, = ¢ (p) = expliup - p*c?/2)= a, + i, = p, expliu, ). Hence,
a, = E[cos(p®)] = exp(- p>o? /2)cos(pu),  p, = expl- p*c?/2),
B, = Elsin(pe)] = exp(- p*c? 2)sin(pu),  tanlu,)= B,/a, = tan(pu).
2

So, p=p, =expl- 02/2):> o? =-2log(p) and &% =-2log(R). Also,

1, = 1, = p(mod2rz)and i, = i(mod2rx)=4.
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6.3 Wrapped distributions in general

1.

If X is a linear r.v. then its (circular) wrapped equivalent is
® = X(mod2r).

If the c.f. of X is known then the trigonometric moments of ® are
easily identified.

Moment equations may be solvable with unique admissible
solutions, solvable with unique but inadmissible solutions,
solvable with more than one solution, or insolvable.

ML generally messy as density has to be represented as an
(approximation to) an infinite sum. However, unless the tails of
the distribution of X are very heavy, not many terms are required

for a reasonable approximation.
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6.4 Wrapped Cauchy

If X ~ Cauchy with

f(x; u,a)= i(az +(j_ﬂ)2 j, where 1z e % and a > 0,

then ® = X(mod2r) is wrapped Cauchy with

(0 100 0)= " 3 ° - e
PHor PI= T a +(0—py+27k) | 27 1+p° - pcosl@ - u) |

where u, = u(mod2rz) and p = exp(- a).
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6.5 Wrapped symmetric stable

The wrapped normal and wrapped Cauchy distributions are special
cases of the wrapped symmetric stable family (Mardia, 1972; Gatto
& Jammalamadaka, 2003).

6.6 Jones-Pewsey

The von Mises and wrapped Cauchy distributions (amongst others)
are special cases of the Jones-Pewsey family (Jones & Pewsey,
2005) with density

f(@; ot K, w) oC {1 + tanh(Kt//)COS(H — U )}W,
where 4, €[0,27), x>0 and w e ®R. Scaling factor involves an
associated Legendre function.
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6.7 Wrapped t

If X~ t,, where v >0 (not necessarily integer), with density

>\—(v+1)/2
oL +1)2)(, X7
f(x;v)= (v 2) [1+ y ] ,

and Y = u+ AX, then ® =Y(mod2r) is wrapped t (Pewsey, Lewis &
Jones, 2007) with density

f(el Hor j*l V)

((V s 1 /2) i (9 ok - s, )2 —(v+1)/2
ANV T(v/2) ¢ 2y '

where u, = u(mod2r).
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6.8 Modelling multimodality using mixtures with
symmetric components

23



1. Flexible.

2. Easy to interpret. Due to symmetry, the mean = mode = median
is an easily interpreted measure of central location for each of
the components. The interpretation of the weighting probabilities

in any mixture is also simple.

3. Rather parameter heavy for modelling asymmetry (particularly
heavy-tailed skew data). Need at least 5 parameters (generally)
to model skew unimodal data whereas can often get away with

using a 4 (or even 3) parameter asymmetric unimodal model.
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/. Skew Models

7.1 Wrapped skew-normal

If X ~ skew-normal with

Fx; &,m, )= ¢[ f] {( f]}

where &,1eR, n>0, then ® = X(mod2x) is wrapped skew-normal

(Pewsey, 2000) with

oo )< Z¢(9+2ﬂk goj {}{mzzk—éo)},

J) J)
where &, = £mod2r).

Wrapped normal (1=0) and wrapped half-normal (1 =+w) are
limiting special cases.
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wrapped normal (1=0), wrapped skew-normal (1=5), wrapped
half-normal (4 = o).
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7.2 Wrapped exponential and Laplace

Wrapped Laplace distributions are appropriately scaled mixtures of
two wrapped exponential distributions (Jammalamadaka &
Kozubowski, 2004).

The behaviour around the mode of the densities of both distributions

would appear to rule them out as useful models for real circular

data.
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7.3 Wrapped stable

X ~S(a, B, v, 0) if its c.f. is given by

o <fexp( i {1 +if3 sign(t) tan( 8 ){(;/‘t‘) }} T lat] o # 1,

exp(— y‘t‘{l +iB sign(t) 2 Iog(y\t\)} + iét} a=1.
7T

e (0,2] (index of stability), g e|-1,1] (skewness),
y >0 (scale), o R (location).

Includes normal (a=2, f=0) and Cauchy (a =1, p=0) distributions.

Distributions with =0 are symmetric.
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Density of the wrapped stable random variable © = X(mod2r)

(Mardia, 1972; Pewsey, 2006) can be represented as

27

(o) = > {1+zz p. cos(pd - ﬂp)}

where
py = expl-(p)'} < [0]

is the pth mean resultant length,

(50p + f tan(”_aj{(yp)“ - yp} (mod2z), a =1,

2

5 < [0,27)
5P - B~ plog(p) (mod2z),  a=1,

Hp =

is the pth mean direction, and &, = §(mod2x).
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density
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1 2 3 4 5
heading (radians)
Distribution No. of Parameters /
von Mises mixture 5 -2131.10
wrapped stable 4 -2127.73
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7.4 Testing for reflective symmetry (revisited)

For a parametric family of distributions containing asymmetric as

well as symmetric cases, testing
Ho: Underlying distribution is reflectively symmetric
H.: Underlying distribution is not reflectively symmetric

can be conducted using the usual likelihood ratio test based on the
values of the log-likelihood for the best fitting member of the family

and the best fitting symmetric member of the family.
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7.5 Modelling multimodality using mixtures with skew

1.

components

Even more flexible (than using mixtures with just symmetric

components).

Interpretation generally not so simple. Due to the lack of
symmetry, the median and the percentiles of the components will

generally be of greater interest than the mean or mode.

If there is asymmetry present, can generally get away with using
fewer parameters than those for mixture models made up of

symmetric components alone.
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