A Primer of Archimedean Copulas in High Dimensions

Johanna Nešlehová
(joint work with Alexander J. McNeil)

Department of Mathematics
ETH Zurich
Switzerland
www.math.ethz.ch/~johanna

Cherry Bud Workshop, March 2007
Why copulas?

Many useful multivariate distributions exist (normal, t, GH, EVD).

However:

- Danish fire insurance losses over 1 mi. DK from 1980 to 2002. A three dimensional data set consisting of losses for a building and its contents as well as losses of business earnings. Each loss is well modeled by a heavy tailed Generalized Pareto distribution with a different tail index, [McNeil et al].

- Maximum annual flow (in m^3/s) of the Harricana river in Canada and the corresponding volume (in hm^3) for 85 consecutive years, starting 1915 and ending in 1999. For the annual flow, the Gumbel distribution seems appropriate, whereas the annual volume is best modeled by the Gamma distribution, [Genest-Favre].
What to do when marginal distributions differ?

Marginal distributions and a one-number summary of dependence, e.g. Pearson’s correlation coefficient do not identify the joint distribution uniquely.
The notion of a copula

Univariate case
Recall from classical statistics:

\[U \sim \mathcal{R}(0, 1) \implies F^{-1}(U) \sim F \]

Furthermore, if \(F \) is a continuous univariate distribution function,

\[X \sim F \implies F(X) \sim \mathcal{R}(0, 1) \]

Higher dimensions
Define a copula \(C \) as a joint distribution function (restricted to \([0, 1]^d\)) whose univariate margins are \(\mathcal{R}(0, 1) \).
Sklar’s theorem for distribution functions

Let H be a d-dimensional joint distribution function with marginals F_1, \ldots, F_d. Then there always exists a copula C so that, for any $(x_1, \ldots, x_d) \in \mathbb{R}^d$,

$$H(x_1, \ldots, x_d) = C(F_1(x_1), \ldots, F_d(x_d)).$$

If the marginals are continuous then C is unique.

And conversely, if C is a copula and F_1, \ldots, F_d are (arbitrary) univariate marginal distribution functions, then

$$C(F_1(x_1), \ldots, F_d(x_d)) \equiv H(x_1, \ldots, x_d)$$

defines a d-dimensional distribution function with marginals F_1, \ldots, F_d.
Sklar’s theorem for survival functions

Let \tilde{H} be a d-dimensional joint survival function with marginals $\tilde{F}_1, \ldots, \tilde{F}_d$. Then there always exists a survival copula \tilde{C} so that, for any $(x_1, \ldots, x_d) \in \mathbb{R}^d$,

$$\tilde{H}(x_1, \ldots, x_d) = \tilde{C}(\tilde{F}_1(x_1), \ldots, \tilde{F}_d(x_d)).$$

If the marginals are continuous then \tilde{C} is unique.

And conversely, if \tilde{C} is a copula and $\tilde{F}_1, \ldots, \tilde{F}_d$ are (arbitrary) univariate marginal survival functions, then

$$\tilde{C}(\tilde{F}_1(x_1), \ldots, \tilde{F}_d(x_d)) \equiv \tilde{H}(x_1, \ldots, x_d)$$

defines a d-dimensional survival function with marginals $\tilde{F}_1, \ldots, \tilde{F}_d$.
Copula \((U_1, \ldots, U_d) \sim C \) if and only if \((1 - U_1, \ldots, 1 - U_d) \sim \tilde{C} \).
Basics

Archimedean copulas

Appendix

Copula

Survival copula

$$(U_1, \ldots, U_d) \sim C \iff (1 - U_1, \ldots, 1 - U_d) \sim \bar{C}$$
Copula modeling

- Start with given **marginal information** in terms of F_1, \ldots, F_d

- Any copula C yields a **joint model** consistent with that information via

$$H(x_1, \ldots, x_d) = C(F_1(x_1), \ldots, F_d(x_d))$$

- Data from such a model can be simulated using

$$(U_1, \ldots, U_d) \sim C \implies (F_1^{-1}(U_1), \ldots, F_d^{-1}(U_d)) \sim H$$
Danish fire insurance data
Are copulas visible from data?

If F_1, \ldots, F_d are continuous then

- $(X_1, \ldots, X_d) \sim H \Rightarrow (F_1(X_1), \ldots, F_d(X_d)) \sim C$
- $(X_1, \ldots, X_d) \sim H \Rightarrow (\bar{F}_1(X_1), \ldots, \bar{F}_d(X_d)) \sim \bar{C}$
- $(U_1, \ldots, U_d) \sim C \Leftrightarrow (1 - U_1, \ldots, 1 - U_d) \sim \bar{C}$

For a given data set X_1, \ldots, X_N

- Construct the component-wise ranks R_1, \ldots, R_N
- For N large, $\frac{R_1}{N+1}, \ldots, \frac{R_N}{N+1}$ yields approximatively a sample from C
- For N large, $1 - \frac{R_1}{N+1}, \ldots, 1 - \frac{R_N}{N+1}$ is approximatively a sample from \bar{C}
Danish fire insurance data
Danish fire insurance data
Frechét-Hoeffding bounds

“A copula captures precisely those properties of the joint distribution which are invariant under increasing transformations.”

\[
\max(u_1 + \cdots + u_d - d + 1, 0) \leq C(u_1, \ldots, u_d) \leq \min(u_1, \ldots, u_d)
\]
Model selection

Copula modeling does not take away the problem of model choice

Useful copula families

- Extreme value copulas (Gumbel, Galambos, Hüsler-Reiss, ...)
- Elliptical copulas (Gaussian, t, ...)
- Archimedean copulas (Clayton, Gumbel, Frank, ...)
- Other (Plackett, ...)

Helpful techniques for model selection

- Graphical tools
- Goodness of fit tests
- Context
Archimedean copulas

A copula is called Archimedean if it can be written in the form

\[C(u_1, \ldots, u_d) = \psi(\psi^{-1}(u_1) + \cdots + \psi^{-1}(u_d)) \]

for some generator function \(\psi \) and its generalized inverse \(\psi^{-1} \).

The generator \(\psi \) satisfies

- \(\psi : [0, \infty) \rightarrow [0, 1] \) with \(\psi(0) = 1 \) and \(\lim_{x \to \infty} \psi(x) = 0 \)
- \(\psi \) is continuous
- \(\psi \) is strictly decreasing on \([0, \psi^{-1}(0)]\)
- \(\psi^{-1} \) is given by \(\psi^{-1}(x) = \inf\{u : \psi(u) \leq x\} \)
Clayton copula

Take $\psi_\theta(x) = \max \left((1 + \theta x)^{-\frac{1}{\theta}}, 0 \right)$ for $\theta \geq -\frac{1}{d-1}$.

generator ψ_θ for $\theta = 1$

Sample from a Clayton copula for $\theta = 1$
Basic questions

• Is $\psi(\psi^{-1}(u_1) + \cdots + \psi^{-1}(u_d))$ always well defined?

• What is the interpretation of $\psi(\psi^{-1}(u_1) + \cdots + \psi^{-1}(u_d))$?

• What are the dependence properties of $\psi(\psi^{-1}(u_1) + \cdots + \psi^{-1}(u_d))$?

• How can we sample from $\psi(\psi^{-1}(u_1) + \cdots + \psi^{-1}(u_d))$?

• How can we obtain interesting parametric classes, in particular when $d \geq 3$?
What generators ψ are permissible?

Take

$$\psi(x) = \begin{cases}
1 - x & \text{if } x \in [0, \frac{1}{2}], \\
\frac{3}{2} - 2x & \text{if } x \in \left[\frac{1}{2}, \frac{3}{4}\right], \\
0 & \text{if } x \in \left[\frac{3}{4}, \infty\right].
\end{cases}$$

ψ is a generator but $\psi(\psi^{-1}(u_1) + \psi^{-1}(u_2))$ is not a copula.
Necessary and sufficient conditions on ψ for $d = 2$

Ling (1965)

A generator ψ induces a bivariate copula if and only if ψ is convex.

Counterexample for $d \geq 3$

Take $\psi(x) = \max(1 - x, 0)$. Then

$$\psi(\psi^{-1}(u_1) + \psi^{-1}(u_2)) = \max(u_1 + u_2 - 1, 0)$$

which is the Frechét-Hoeffding lower bound. However,

$$\psi(\psi^{-1}(u_1) + \cdots + \psi^{-1}(u_d)) = \max(u_1 + \cdots + u_d - d + 1, 0).$$

Right-hand side is not a copula for $d \geq 3$.
Necessary and sufficient conditions on ψ for $d \geq 2$

Kimberling (1974)
A generator ψ induces an Archimedean copula in any dimension if and only if ψ is completely monotone, i.e. $\psi \in C^\infty(0, \infty)$ and $(-1)^k\psi^{(k)}(x) \geq 0$ for $k = 1, \ldots$.

Nelsen ...
A generator ψ induces an Archimedean copula in dimension d if $\psi \in C^d(0, \infty)$ and $(-1)^k\psi^{(k)}(x) \geq 0$ for any $k = 1, \ldots, d$.

McNeil & Neslehova (2007)
A generator ψ induces an Archimedean copula in dimension d if and only if ψ is d-monotone, i.e. $\psi \in C^{d-2}(0, \infty)$ and $(-1)^k\psi^{(k)}(x) \geq 0$ for any $k = 1, \ldots, d-2$ and $(-1)^{d-2}\psi^{(d-2)}$ is non-negative, non-increasing and convex on $(0, \infty)$.

J. Nešlehová ETH Zurich
A Primer of Archimedean Copulas in High Dimensions
Example 1

Consider the generator

$$\psi_d(x) = \max \left((1 - x)^{d-1}, 0 \right)$$

- ψ_2 generates the Frechét-Hoeffding lower bound
- ψ_d is k-monotone for $k = 2, \ldots, d$
- ψ_d is not k-monotone for $k = d + 1, \ldots$
- ψ_d can generate an Archimedean copula in dimension up to d but no higher.
Example 2

Consider the Clayton generator

\[\psi_\theta(x) = \max \left((1 + \theta x)^{-\frac{1}{\theta}}, 0 \right) \]

- \(\psi_\theta \) is completely monotone for \(\theta > 0 \)
- \(\psi_\theta = \exp(-x) \) for \(\theta = 0 \) which is again completely monotone
- \(\psi_\theta \) is \(d \)-monotone for \(\theta \geq -\frac{1}{d-1} \)
- \(\psi_\theta \) is not \(d \)-monotone for \(\theta < -\frac{1}{d-1} \)
- \(\psi_\theta \) can generate an Archimedean copula in dimension \(d \) if and only if \(\theta \geq -\frac{1}{d-1} \)
Archimedean copulas with completely monotone generators

If ψ is a completely monotonic generator then ψ is the Laplace transform of some non-negative random variable W.

1. Consider an Archimedean copula with completely monotone generator (or LT generator) ψ,

$$C(u_1, \ldots, u_d) = \psi(\psi^{-1}(u_1) + \cdots + \psi^{-1}(u_d))$$

2. find W so that ψ is the Laplace transform of W

3. Then C is a survival copula of

$$\left(X_1, \ldots, X_d \right) \overset{d}{=} \frac{1}{W}(Y_1, \ldots, Y_d)$$

for W and Y independent and $Y = (Y_1, \ldots, Y_d)$ a vector of iid standard exponential variables
Archimedean copulas with completely monotone generators cont’d

- Archimedean copulas with LT generators have restricted dependence characteristics

\[\psi \text{ is a LT generator } \Rightarrow \psi^{-1}(u_1) + \cdots + \psi^{-1}(u_d) \geq u_1 \cdots u_d \]

•
Archimedean copulas and simplex distributions

Consider a non-negative random variable R with $P(R = 0) = 0$ and a random vector S_d independent of R and uniformly distributed on

$$S_d = \left\{ x \in \mathbb{R}^d_+ : |x_1| + \cdots + |x_d| = 1 \right\}$$

Then the survival copula of $X \overset{d}{=} RS_d$ is Archimedean.

If $C(u) = \psi(\psi^{-1}(u_1) + \cdots + \psi^{-1}(u_d))$ and $U \sim C$, then

$$X \overset{d}{=} (\psi^{-1}(U_1), \ldots, \psi^{-1}(U_d))$$

follows a simplex distribution with no atom at zero.
Spherical vs. simplex distributions
Spherical vs. simplex distributions
Reasons from real analysis

- If C is a d-dimensional Archimedean copula, then $\psi(x)$ defines a univariate survival function and

$$\bar{H}(x_1, \ldots, x_d) = \psi(x_1 + \cdots + x_d), \quad (x_1 + \cdots + x_d) \in [0, \infty)^d$$

defines a multivariate survival function with marginals ψ.

- If ψ is a d-monotonic generator then ψ is the Williamson d-transform of some non-negative random variable R with $P(R = 0) = 0$, i.e.

$$\psi(x) = \mathcal{W}_d F_R(x) = \int_{(x, \infty)} \left(1 - \frac{x}{t}\right)^{d-1} dF_R(t)$$

- Conversely, if R is a non-negative random variable so that $P(R = 0) = 0$ then its Williamson d-transform generates an Archimedean copula in d dimensions.
Archimedean generator vs. radial part

For an Archimedean copula \(\psi(\psi^{-1}(u_1) + \cdots + \psi^{-1}(u_d)) \), the radial part of the corresponding simplex distribution has df

\[
F_R(x) = 1 - \sum_{k=0}^{d-2} \frac{(-1)^k x^k \psi^{(k)}(x)}{k!} - \frac{(-1)^{d-1} x^{d-1} \psi^{(d-1)}(x)}{(d - 1)!}
\]

For a simplex distribution with radial part \(R \) the corresponding survival copula \(\psi(\psi^{-1}(u_1) + \cdots + \psi^{-1}(u_d)) \) has generator

\[
\psi(x) = \mathcal{W}_d F_R(x) = \int_{(x, \infty)} \left(1 - \frac{x}{t}\right)^{d-1} dF_R(t)
\]

Archimedean generator vs. radial part

<table>
<thead>
<tr>
<th>Basics</th>
<th>Archimedean copulas</th>
<th>Appendix</th>
</tr>
</thead>
</table>

J. Nešlehová

A Primer of Archimedean Copulas in High Dimensions

ETH Zurich
Example 1 revisited
For
\[\psi_d^L(x) = \max \left((1 - x)^{d-1}, 0 \right) \]
the radial part is degenerate, i.e. \(R = 1 \) a.s. In other words, \(\psi_d^L \)
generates the survival copula of \(S_d \).

Example 2 revisited
For the Clayton generator
\[\psi_\theta(x) = \max \left((1 + \theta x)^{-\frac{1}{\theta}}, 0 \right) \]
and \(d = 2 \),
\[F_R(x) = 1 - (1 + \theta x)^{-\frac{1}{\theta}} \left(1 + \frac{x}{1 + \theta x} \right) \]
Sampling from an arbitrary Archimedean copula

1. Generate R
2. Generate independently S_d using

$$S_d \overset{d}{=} \left(\frac{Y_1}{Y_1 + \cdots + Y_d}, \ldots, \frac{Y_d}{Y_1 + \cdots + Y_d} \right)$$

where Y_1, \ldots, Y_d are iid with $Y_i \sim \text{Exp}(1)$
3. Return

$$\left(\psi \left(R \frac{Y_1}{Y_1 + \cdots + Y_d} \right), \ldots, \psi \left(R \frac{Y_d}{Y_1 + \cdots + Y_d} \right) \right)$$
\[\psi(x) = \max \left((1 - x^{1/\theta}), 0 \right), \quad \theta \geq 1 \]
A simple goodness-of-fit test

Ingredients

Let \(C \) be a \(d \)-dimensional Archimedean copula \(C \) with generator \(\psi \).

Then

\[
(U_1, \ldots, U_d) \sim C \implies Y = \psi^{-1}(U_1) + \cdots + \psi^{-1}(U_d) \equiv R
\]

\[
(U_1, \ldots, U_d) \sim C \implies V = \left(\frac{\psi^{-1}(U_1)}{Y}, \ldots, \frac{\psi^{-1}(U_d)}{Y} \right) \equiv S_d
\]

Numerical tests

- Test whether \(Y \) and \(V_j \) are independent, \(j = 1, \ldots, d \)
- Test whether \((1 - V_j)^{d-1}, j = 1, \ldots, d\) are standard uniform
Construction of new families of Archimedean copulas

- Choose a parametric class of non-negative distributions with no atoms at zero

\[\mathcal{R}_\Theta = \{ F_\theta : \theta \in \Theta \} \]

- Consider

\[\mathcal{C}_\Theta = \{ C_\theta : \theta \in \Theta \} \]

where \(C_\theta, \theta \in \Theta \) is an Archimedean copula with generator

\[\psi_\theta(x) = \mathcal{W}_d F_\theta(x) = \int_{(x, \infty)} \left(1 - \frac{x}{t}\right)^{d-1} dF_\theta(t) \]

In other words, \(C_\theta, \theta \in \Theta \) is the survival copula of \(X \overset{d}{=} RS_d \) where \(R \sim F_\theta \in \mathcal{R}_\Theta \).
Example 3

Consider $R \sim F_\theta$ corresponding to the **Clayton copula** and take

$$R^* \sim F_{\theta,a} \quad \text{where} \quad F_{\theta,a}(x) = 1 - P(R > x | R > a)$$

$\psi_{\theta,a}$ and ψ_θ

simplex distribution

survival copula
Example 4

Consider $R \sim F_{\theta}$ corresponding to the Clayton copula and take

$$\tilde{R} \overset{d}{=} 1\{R \leq t\}t + 1\{R > t\}R$$

$\psi_{\theta,t}$, $\psi_{\theta,a}$ and ψ_{θ} simplex distribution survival copula
Example 5

Consider a radial part R with a density

$$f_{a,b}(x) = \frac{ab}{b-a} x^{-2}, \quad a \leq x \leq b, \quad 0 < a < b$$
Example 6

Consider a discrete radial part $R \sim F_{n,p}$, $n \in \mathbb{N}$, $p \in [0, 1]$:

$$P(R = k) = \binom{n}{k-1} p^{k-1} (1 - p)^{n-k+1}, \quad k = 1, \ldots, n + 1$$
When does an Archimedean copula have a density?

Proposition

Let \(C \) be a \(d \)-dimensional Archimedean copula with generator \(\psi \) and let \(R \) denote the radial part of the corresponding simplex distribution. Then

- \(C \) has a density if and only if \(R \) has a density.
- \(C \) has a density if and only if \(\psi^{(d-1)} \) is absolutely continuous on \((0, \infty)\).
- \(C \) has a density whenever \(\psi \) generates an Archimedean copula in dimension at least \(d + 1 \).
- If the density exists, then, for almost all \(u \in [0, 1]^d \),

\[
c(u) = \frac{\psi^{(d)}(\psi^{-1}(u_1) + \cdots + \psi^{-1}(u_d))}{\psi'(\psi^{-1}(u_1)) \cdots \psi'(\psi^{-1}(u_1))}
\]
In particular, **all lower dimensional marginals of an Archimedean copula have densities, even if R is purely discrete!**
Lower bound

Copulas are not bounded below point-wise

$$\max(u_1 + \cdots + u_d - d + 1, 0) \leq C(u_1, \ldots, u_d) \leq \min(u_1, \ldots, u_d)$$

where the right-hand side is not a copula.
Lower bound

Copulas are not bounded below point-wise

\[
\max(u_1 + \cdots + u_d - d + 1, 0) \leq C(u_1, \ldots, u_d) \leq \min(u_1, \ldots, u_d)
\]

where the right-hand side is not a copula.

Archimedean copulas are bounded below point-wise

\[
\psi_d \left((\psi_d)^{-1}(u_1) + \cdots + (\psi_d)^{-1}(u_d) \right) \leq \psi(\psi^{-1}(u_1) + \cdots + \psi^{-1}(u_d))
\]
Lower bound for $d = 3$
Bivariate marginals of the lower bound for $d = 2, 3, 5, 10$
Lower bound on Kendall’s tau

For a bivariate margin of a d-dimensional Archimedean copula,

$$
\tau = 4 \mathbb{E}(\psi(R)) - 1 \quad \text{and} \quad -\frac{1}{2d - 3} \leq \tau
$$
Conclusions
References I

Genest, C. and Favre, A.-C. (2007) Everything you always wanted to know about copula modeling but were afraid to ask. J. Hydrologic Eng., 12.

Level sets of Archimedean copulas

Level sets of a copula are

\[L(s) = \left\{ u \in [0, 1]^d : C(u) = s \right\}, \quad s \in [0, 1]. \]

For a \(d \)-dimensional Archimedean copula:

- \(P_C(L(s)) = P(R = \psi^{-1}(s)) \)
- \(P_C(L(0)) = \begin{cases}
\frac{(-1)^{d-1}(\psi^{-1}(0))^{d-1}\psi^{(d-1)}(\psi^{-1}(0))}{(d-1)!} & \text{if } \psi^{-1}(0) < \infty \\
0 & \text{otherwise} \end{cases} \)
- The level sets are convex