When did the JGB market become efficient?

Cherry Bud Workshop 2007 The 21st Century COE Program at Keio University

> University of Electro-Communications Koichi Miyazaki (Co-worked with Satoshi Nomura)

History of JGB Outstanding Amount and its Ratio to GDP

History of the Sector Weight of New JGB Issuance

Preceding Research

- >Efficiency~Liquidity is usual perception
- > Annual Trading Frequency
- > Bid/Ask Spread
- > Existence Rate of Quoted Price
- > Price Impact in the Execution
- > Amount of the order around current execution price (板の厚さ)

Annual Trading Frequency

> Annual Trading Frequency=Annual Trading Volume ÷ Fiscal Year End Outstanding Amount

Bid/Ask Spread

In Year 1998:

- > Benchmark: 0.5BP
- Maturity Over 10Y:2~4BP
- > Maturity 7~10Y:0.5~1BP
- Maturity 2~7Y:2BP
- Maturity Less Than 2Y: 2~4BP

Timing of the change in efficiency

Model1

O Relative comparison of bond yields

Yield Dynamics

Time-series-wise relative comparison of bond yields

> Factor Analysis

- The yield of each maturity bond is represented by the linear combination of factor loading (maturity specific) and the common factor (time series).
- The difference between the actual yield and the represented yield clarifies trading opportunity.

Butterfly Spread Analysis

 \boldsymbol{Y}_{S} , \boldsymbol{Y}_{M} , \boldsymbol{Y}_{L} : Three different maturity bond yields from the short end

Important remarks on empirical analysis

> What is the criteria of fairness in the butterfly analysis?

The butterfly spread is not corrected when it stays within Bid/Offer spread
Introduce some thresholds

> How to remove the effects of yield level and market volatility?

$$|\varepsilon| = \gamma Y_M + \delta \sigma + \xi$$
 Use ξ

When the coefficients are not statistically significant, we may use butterfly spread itself.

Count # of the business days that the butterfly spread exceed the threshold quarterly basis

Model2

• Focus on the correction speed of the richness/cheapness Butterfly Spread \mathcal{E} Inefficient 0 Efficient Time Once the butterfly spread exceeds the threshold, its

 $d\varepsilon_t = -\kappa \varepsilon_t dt + \sigma_{SP} dW_t$

 κ : Mean-reversion parameter σ_{SP} : Volatility

dynamics follows:

X Half lives of the butterfly spread : $\tau = \frac{1}{r} \ln 2$

Another evaluation model of the market efficiency

Model3

O The model to capture the timing of the change in efficiency Model1 : Quantify # of the butterfly spreads that exceed the threshold quarterly basis.

Model2:Quantify the average half-lives of the butterfly spreads (Dates) quarterly basis.

 $Y_{t} \sim \begin{cases} POI(\lambda) & t = 1, \dots, k \\ POI(\phi) & t = k + 1, \dots, n \end{cases} \quad \lambda : \text{Intensity in Inefficient} \\ \phi : \text{Intensity in Efficient} \end{cases}$

n: # of data, k: the timing of the change

Markov Chain Monte Carlo Method (MCMC)

MCMC

 (λ, ϕ) Priors : $\lambda \sim Gamma(a_0, b_0), \phi \sim Gamma(c_0, d_0)$ k Prior : discrete uniform distribution on 1, 2, ..., n.

 $(\lambda, \phi) \text{ Posteriors : } \lambda \sim Gamma(a_1, b_1), \phi \sim Gamma(c_1, d_1)$ Where, $a_1 = a_0 + \sum_{t=1}^k y_t, b_1 = b_0 + k, c_1 = c_0 + \sum_{t=k+1}^n y_t, d_1 = d_0 + (n-k)$

k Posteriors :

$$\pi(k|\lambda,\phi,y) = \frac{w_k}{\sum_t w_t}, \qquad w_k = \lambda^{a_1-1}\phi^{c_1-1}\exp\left\{-(\lambda-\phi)k\right\}$$

Method of the Empirical Analysis

Model1

Model2

STEP1-1:

In each quarter, derive $\boldsymbol{\xi}$ based on the daily data

STEP1-2:

In each quarter, count # of days that the butterfly spread ξ exceeds the threshold.

STEP2-1: Derive ξ as in STEP1-1 STEP2-2: Estimate the mean-reversion parameter of ξ STEP2-3: Compute the averages of the halflives τ for all butterfly trade combination

Model3

Estimate the timing of the change in market efficiency

Data and the Setting

Data periods
 Jan.4.1989~Mar.31.2005
 (4Q1988~4Q2004)

O JGB Yields
 2Y • 5Y • 7Y • 10Y • 20Y JGB Yields

 (10 kinds of butterfly spreads)
 O Threshold Values
 3BP • 5BP • 7BP (Three kinds of settings)

Average # of days for which all kinds of butterfly spread *E* exceeded each threshold value

Decreased in late 1990s

The effects of yield level and volatility

	1-Year Yield		Volatility	ity		10-Year Y	10-Year Yield			
	γ	t-value	δ	t-value	R^2	Y	t-value	δ	t-value	R^2
<i>"</i> 2–5–7 <i>"</i>	0.29	19.3	0.024	15.4	0.18	0.46	23.8	0.021	13.8	0.21
~2-5-10	0.46	21.0	0.025	11.1	0.16	0.64	22.4	0.023	10.2	0.17
<i>"</i> 2–5–20″	0.52	19.4	0.028	10.1	0.14	0.63	17.5	0.028	10.0	0.12
<i>"</i> 2–7–10″	0.40	20.5	0.023	11.4	0.16	0.56	22.0	0.021	10.5	0.17
<i>"</i> 2–7–20 <i>"</i>	0.52	18.1	0.022	7.5	0.11	0.58	15.0	0.023	7.8	0.09
<i>"</i> 2–10–20 <i>"</i>	0.40	18.9	0.022	10.2	0.13	0.48	16.9	0.023	10.1	0.12
<i>"</i> 5–7–10″	0.29	20.3	0.015	10.6	0.15	0.43	23.3	0.013	9.3	0.17
<i>"</i> 5–7–20″	0.32	18.7	0.016	9.3	0.13	0.45	19.7	0.015	8.5	0.14
<i>‴</i> 5–10–20″	0.33	21.4	0.023	14.1	0.18	0.47	22.9	0.021	13.2	0.20
<i>‴</i> 7–10–20″	0.26	19.1	0.017	12.2	0.15	0.41	22.9	0.015	10.8	0.18

Average # of days for which all kinds of butterfly spread ξ exceeded each threshold value

Decreased in late 1990s

Averages of the half-lives for all butterfly trade combinations

Decreased in late 1990s

Parameter estimation results for Model3 based on the Model1 results ε : all the quarters

	Threshold Value	Mean	S.D.	95%Low	95%High
	3BP	31.2	0.34	30.6	31.9
λ	5BP	18.5	0.26	18.0	19.0
	7BP	10.8	0.21	10.4	11.2
	3BP	12.3	0.19	12.0	12.7
ϕ	5BP	4.5	0.11	4.3	4.8
	7BP	2.3	0.08	2.2	2.5
	3BP	30.3	0.03	30.3	30.4
k	5BP	29.2	0.03	29.1	29.2
	7BP	27.8	0.05	27.7	27.9

The timing of the change in market efficiency is around k=30 (Q1FY1996)

Parameter estimation results for Model3 based on the Model1 results ε : excluding Q21997-Q21998

	Threshold Value	Mean	S.D.	95%Low	95%High
	3BP	29.8	0.13	29.5	30.0
$\mathcal{\lambda}$	5BP	17.4	0.10	17.2	17.6
	7BP	10.5	0.07	10.4	10.7
ϕ	3BP	13.2	0.09	13.0	13.4
	5BP	5.1	0.16	4.8	5.4
	7BP	2.5	0.03	2.4	2.6
	3BP	34.4	0.11	34.2	34.6
k	5BP	32.3	0.32	31.7	32.9
	7BP	29.6	0.12	29.4	29.9

The timing of the change in market efficiency is around k=30 \sim 35 (k=30:Q1FY1996)

Parameter estimation results for Model3 based on the Model1results ξ : all the quarters

	Control Yield	Mean	S.D.	95%Low	95%High
2	1Year	10.1	0.19	9.7	10.4
Λ	10Year	9.9	0.19	9.5	10.3
ϕ	1Year	3.2	0.10	3.0	3.4
	10Year	3.4	0.11	3.2	3.6
k	1Year	34.4	0.29	33.8	35.0
	10 Year	32.7	0.29	32.1	33.2

The timing of the change in market efficiency is around k= $32 \sim$ 35 (k=30:Q1FY1996)

Parameter estimation results for Model3 based on the Model1results ξ: excluding Q21997-Q21998

	Control Yield	Mean	S.D.	95%Low	95%High
2	1Year	9.9	0.06	9.8	10.0
Λ	10Year	9.8	0.08	9.7	10.0
ϕ	1Year	3.7	0.04	3.6	3.7
	10Year	4.3	0.06	4.2	4.4
k	1Year	35.5	0.12	35.3	35.7
K	10Year	31.5	0.20	31.1	31.8

The timing of the change in market efficiency is around k=31 \sim 36 (k=30:Q1FY1996)

Parameter estimation results for Model3 based on the Model2 results 7 : all the quarters

	Mean	S.D.	95%Low	95%High
λ	5.4	0.13	5.1	5.6
ϕ	3.8	0.11	3.6	4.0
k	33.1	0.10	32.9	6.7

The timing of the change in market efficiency is around k=33 (k=30:Q1FY1996)

Background of the change in JGB market efficiency

- Deregulations on repo/reverse market
- Regarding the issuance, from syndication to competitive bidding
- Overseas investors participate in the market
 Increasing variety of available JGB

Percentage of overseas investors in JGB market

Summary

O We examined the change in the market efficiency. We introduced three models. Model1: Relative comparison of bond yields Model2: Price correction speed of the bond Model3: Timing of the change in efficiency Around FY1996, the JGB market became efficient

- MoF and TSE accelerated JGB market reform. (Repo)
- The presence of overseas investors