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How can the director of baseball

team use data for the team?

(Especially, if he is a probabilist.)



In US, many statisticians and com-

puter scientists moved from

“Wall Street” to “Major League”

as the next market to apply their

ideas, which they used in the stock

market.

SABERMETRICS

( = Statistical analysis of baseball)



Billy Beane, the GM of a poor team

The Oakland Athletics, leveled up

his team to be similar to a rich team

The New York Yankees, by using

SABERMETRICS.

Bill James joined The Boston Red

Sox in 2002, and used SABERMET-

RICS to make the team the cham-

pion!

But, there is a limitation.



There are two waves for the victory

in Major league.

1. Sabermetrics

2. Traditional strategy



Bondesson (1992)

“Since a lot of the standard distributions now

as known to be infinitely divisible, the class

of infinitely divisible distributions has perhaps

partly lost its interest. Smaller classes should

be more in focus.”



I. Introduction

(1) Class B (Goldie–Steutel–Bondesson class

on R+)

Bondesson (1981) studied generalized convo-

lution of mixtures of exponential distributions

on R+. (The smallest class that contains all

mixtures of exponential distributions and that

is closed under convolution and weak conver-

gence on R+.)



(2) Class T (Thorin class on R+)

Thorin (1977a, 1977b, 1978) studied general-

ized Γ-convolutions on R+ and R. (The small-

est class that contains all Γ-distributions and

that is closed under convolution or making lin-

ear combinations of independent gamma ran-

dom variables, and weak convergence on R+

and R.)



(3) Class G (Class of type G distributions, which

are symmetric on R)

V 1/2Z, where V > 0, L(V ) ∈ I(R), Z is the

standard normal random variable, and V and

Z are independent.



(4) Class L (Class of selfdecomposable distri-

butions on R)

For any 0 < c < 1, µ̂(z) = µ̂(cz)ρ̂c(z) for some

ρc ∈ I(Rd).

X
d
= cX +Yc, where X and Yc are independent.



II. Notation

I(Rd) = {all infinitely

divisible distributions on Rd}
Isym(Rd) = {µ ∈ I(Rd) : µ is symmetric }
Ilog(Rd) = {µ ∈ I(Rd) :

∫
Rd log+ |x|µ(dx) < ∞}

Ilogm(Rd) = {µ ∈ I(Rd) :∫
Rd(log+ |x|)mµ(dx) < ∞}

L(X) : the law of a random variable X



Lévy-Khintchine representation of µ ∈ I(Rd)

µ̂(z) =exp
{
i〈z, γ〉 − 1

2
〈z, Az〉

+
∫

Rd

(
ei〈z,x〉 − 1− i〈z, x〉1{|x|<1}(x)

)
ν(dx)

}
,

where

A : d× d nonnegative-definite matrix,

γ ∈ Rd，
ν : Lévy measure satisfying

ν({0}) = 0,
∫

Rd
(‖x‖2 ∧ 1)ν(dx) < ∞.

(A, ν, γ) is unique and called the generating

triplet of µ or µ̂.



Polar decomposition of Lévy measures :

ν(B) =
∫

S
λ(dξ)

∫ ∞
0

1B(rξ)νξ(dr),

B ∈ B(Rd \ {0}),
where

λ : a measure on S = {ξ ∈ Rd : |ξ| = 1} with

0 < λ(S) ≤ ∞
{νξ : ξ ∈ S} : a family of measures on (0,∞)

such that νξ(B) is measurable in ξ for each

B ∈ B((0,∞)), 0 < νξ((0,∞)) ≤ ∞ for each

ξ ∈ S.

Here λ and {νξ} are uniquely in some sense.



{Xt, t ≥ 0} on Rd is Lévy process (in law), if

(i) X0 = 0 a.s.,

(ii) independent increments,

(iii) stationary increments,

(iv) stochastically continuous.

(Examples : Brownian motion, Poisson pro-

cess, compound Poisson process)

(i) {Xt, t ≥ 0} on Rd is Lévy process

⇒ L(Xt) ∈ I(Rd)

(ii) µ ∈ I(Rd) ⇒
there exists uniquely a Lévy process

{Xt, t ≥ 0} on Rd such that L(X1) = µ.

Notation:

{X(µ)
t , t ≥ 0} is a Lévy process with L(X1) = µ.



III. Characterization of B, T, G, L in terms

of Lévy measures

(1) Class B(Rd) (Goldie–Steutel–Bondesson class)

νξ(dr) = `ξ(r)dr,

where `ξ(r) is measurable in ξ ∈ S and com-

pletely monotone on (0,∞).

(2) Class T (Rd) (Thorin class)

νξ(dr) =
kξ(r)

r
dr,

where kξ(r) is measurable in ξ ∈ S and com-

pletely monotone on (0,∞).



(3) Class G(Rd) (Class of type G distributions)

µ ∈ Isym(Rd) and νξ(dr) = gξ(r
2)dr,

where gξ(r) is measurable in ξ ∈ S and com-

pletely monotone on (0,∞).

(4) Class L(Rd) (Class of selfdecomposable dis-

tributions)

νξ(dr) =
kξ(r)

r
dr,

where kξ(r) is measurable in ξ ∈ S and nonin-

creasing on (0,∞).



IV. Relationships among classes

(1) T (Rd) $ B(Rd) ∩ L(Rd) (by definition)

(2) B(Rd) ∩ Isym(Rd) $ G(Rd)

(Aoyama-M-Rosiński (2006))



3. Mappings

{X(µ)
t } : a Lévy process on Rd with L(X1) = µ.

Definition 1 (Υ-mapping)

(Barndorff-Nielsen+M+Sato (2006))

For µ ∈ I(Rd),

Υ(µ) = L
(∫ 1

0
log

1

t
dX

(µ)
t

)
.

For d = 1, this Υ-mapping was introduced by

Barndorff-Nielsen+Thorbjørnsen (2002).

Definition 2 (Φ-mapping)

For µ ∈ Ilog(Rd),

Φ(µ) = L
(∫ ∞−

0
e−tdX

(µ)
t

)
.



Definition 3 (Ψ-mapping)

Let e(x) =
∫∞
x e−uu−1du and denote its inverse

function by e∗(t).

For µ ∈ Ilog(Rd),

Ψ(µ) = L
(∫ ∞−

0
e∗(t)dX

(µ)
t

)
.

Result(Barndorff-Nielsen+M+Sato (2006))

Ψ = Υ ◦Φ = Φ ◦Υ



Definition 4 (G-mapping) (Aoyama+M (2007))

Let ϕ(u) = 1√
2π

e−u2/2 and h(x) =
∫∞
x ϕ(u)du,

x ∈ R, and denote its inverse function by h∗(t).

For µ ∈ I(Rd),

G(µ) = L
(∫ 1

0
h∗(t)dX

(µ)
t

)
.



Results

(1) B(Rd) = Υ(I(Rd))

(Barndorff-Nielsen+M+Sato (2006))

(2) L(Rd) = Φ(Ilog(Rd))

(Wolfe (1982) and others)

(3) T (Rd) = Ψ(Ilog(Rd))

(Barndorff-Nielsen+M+Sato (2006))

(4) G(Rd) = G(I(Rd))

(Aoyama+M (2007))



4. Decreasing subclasses

B0(Rd) = B(Rd),
L0(Rd) = L(Rd),
T0(Rd) = T (Rd),
G0(Rd) = G(Rd)

For m = 0,1,2, ...,

Bm(Rd) = Υm+1(I(Rd))

Lm(Rd) = Φm+1(Ilogm+1(Rd))

Tm(Rd) = (Υ ◦Φm+1)(Ilogm+1(Rd))

= Υ(Lm(Rd))

Gm(Rd) = Gm+1(I(Rd))

They are decreasing as m increases.

Fact T∞(Rd) = L∞(Rd)(= S(Rd))
(Barndorff-Nielsen+M+Sato (2006))

(S(Rd) = all stable distributions on Rd)



IV. Examples on R
(S = {−1,1})

(1) gamma distribution

γc,λ : gamma random variable with parameter

c > 0, λ > 0

◦ P (γc.λ ∈ B) = λc

Γ(c)

∫
B∩(0,∞) xc−1e−λxdx.

(If c = 1, it is exponential.)

◦ Lévy measure: ν(dx) = ce−λx1
x1(0,∞)(x)dx.

(See Jurek (1997).)

L(γc,λ) ∈ T (R+), (from the form of the Lévy

measure of L(γc,λ)).

L(γc,λ) /∈ L1(R).

(Barndorff-Nielsen+Pedersen+Sato (2001).)



(2) logarithm of gamma random variable γc,λ

◦ Lévy measure: ν(dx) = ecx

|x|(1−ex)1(−∞,0)(x)dx.

(a) L(log γc,λ) ∈ L(R)

(Shanbhag+Sreehari (1977).)

(b) L(log γc,λ) ∈ L1(R) if c ≥ 1
2

(Akita+M (2002))

(c) L(log γc,λ) ∈ L2(R) if c ≥ 1

(Akita+M (2002))

(a’) Υ(L(log γc,λ)) ∈ T (R)

(Barndorff-Nielsen+M+Sato (2006))

(b’) Υ(L(log γc,λ)) ∈ T1(R) if c ≥ 1
2

(Barndorff-Nielsen+M+Sato (2006))

(c’) Υ(L(log γc,λ)) ∈ T2(R) if c ≥ 1

(Barndorff-Nielsen+M+Sato (2006))



(3) symmetrized gamma distribution (with pa-

rameter c > 0, λ > 0) (sym-gamma (c, λ)).

(See Steutel+van Harn (2004), p.142.)

◦ ch.f.: ϕc(z) =
(

λ2

λ2+z2

)c
.

◦ Lévy measure: ν(dr) = c
|r|e

−λ|r|dr, (r 6= 0).

(See Steutel+van Barn (2004), p.279.)

◦ When c = 1: Laplace distribution

(a) sym-gamma (c, λ) ∈ T (R).

(from the form of the Lévy measure above.)

Thus

(b) sym-gamma (c, λ) ∈ G(R).

(See Rosinski (1991), p.29.)



(4) tempered stable distribution (Rosiński (2004))

Definition (0 < α < 2)

Tα : tempered α-stable random variable, if

νξ(dr) = r−α−1qξ(r)dr, r > 0,

where qξ is completely monotone and

qξ(0+) = 1, qξ(+∞) = 0.

(not stable)

(Barndorff-Nielsen+M+Sato (2006))

(a) L(Tα) ∈ T (R)

(b) L(Tα) ∈ T1(R) if 1 ≤ α < 2

(c) L(Tα) ∈ L1(R) if 1
4 ≤ α < 2

(d) L(Tα) ∈ L2(R) if 2
3 ≤ α < 2

(e) L(Tα) /∈ L1(R) if 0 < α < 1
4

and qξ = c(ξ)e−b(ξ)r



(5) Examples in T (R) (MANY!!)

1. L(χ2(r)) ∈ T (R+), r ∈ N,

(since χ2(r) = γr/2,1/2).

2. Generalized inverse Gaussian distributions

belong to T (R).

3. Let Xα be a positive stable random variable

with 0 < α < 1.

Then L(logYα) ∈ T (R).

(See Bondesson (1992), p.114.)



(6) Examples in L(R). (MANY!!) The follow-

ing are some of them.

1. Let L(Z) be the standard normal, L(t) the

student t distribution and L(F ) the F distri-

bution. Then L(log |Z|) ∈ L(R), L(log |t|) ∈
L(R), L(logF ) ∈ L(R).

(Shanbhag+Sreehari (1977).)

2. Let G1(x) = 1 − e−ex
, x ∈ R, and G2(x) =

e−e−x
, x ∈ R. G1 (resp. G2) is the distribution

of the plus (resp. minus) of logarithm of the

standard exponential random variable. They

are in L(R). (See Steutel+van Harn (2004).)

3. Hyperbolic sine and cosine distributions be-

long to L(R). (See Jurek (1998).)

◦ ch.f. of hyperbolic sine distribution: ϕ(z) =

πz(sinhπz)−1.



◦ ch.f. of hyperbolic cosine distribution: ϕ(z) =

πz(cosh(πz/2))−1.

4. Generalized hyperbolic distributions belong

to L(R).

5. Let Y be a beta random variable. Then

L
(
log Y

1−Y

)
∈ L(R).

(Barndorff-Nielsen et al. (1982).)

6. (The stochastic area of two-dimensional

Brownian motion by Lévy.)

The density function is

f(x) =
1

π coshx
=

2

π(ex + e−x)

and it belongs to L(R). In this case, kξ(r) in

(2.3) is |2 sinhx|−1.

(See Sato (1999), p. 98 Example 15.15.)



(7) Limits of generalized Ornstein-Uhlenbeck

processes

(a) Let {(Xt, Yt), t ≥ 0} be a 2-dimensional

Lévy process. Suppose that {Xt} does not

have positive jumps, 0 < E[X1] < ∞ and

L(Y1) ∈ Isym(R), where νY is the Lévy measure

of {Yt}. Then

L
(∫ ∞

0
e−Xt−dYt

)
∈ L(R).

(Bertoin+Lindner+Maller (2006).)



(b) Let {Nt} be a Poisson process, and let {Yt}
be a strictly stable Lévy process or a Brownian

motion with drift. Then

L
(∫ ∞

0
e−Nt−dYt

)
∈ L(R).

(Kondo+M+Sato (2006).)

(c) Let Xt = 2t−Nt, where {Nt} is a standard

Poisson process and Yt = t. Then

L
(∫ ∞

0
e−(2t−Nt−)dt

)
/∈ L1(R).

(Lindner+M (2007).)



(8) type S

Let 0 < α < 1, X
d
= Y 1/αXα, where Y and Xα

are independent, and where Y
d
= γc,1 and Xα

d
=

strictly α-stable.

(a) L(X) ∈ G(T (R)) ⊂ T (R)

(See Bondesson (1992), p.38.)

(b) Suppose Xα is symmetirc.

L(X) is of type Sα, thus it belongs to G(R).

(See Kondo+M+Sato (2006).)



(9) Convolution of stable distributions of dif-

ferent indeces.

ch.f.: φ(z) = exp
{∫

(0,2)−|z|αm(dα)
}
, where

m is a measure on the interval (0,2).

(a) ∈ L∞(R)

(See, e.g. Roch-Arteaga+Sato (2003).)

Thus

(b) ∈ G∞(R) ⊂ G(R)

(Rosinski (2001).)



(10) Product of independent standard normal

random variables

Z1, Z2 : independent standard normal random

variables

(a) L(Z1Z2) ∈ G1(R). (M+Rosinski (2001).)

Since L(Z1Z2) = L(sym-gamma(1
2,1))

(see Steutel+Van Harn (2004), p.504),

(b) L(Z1Z2) ∈ T (R)

(c) L(Z1Z2) ∈ G(L(R))

Proof. Z1Z2
d
= (Z2

1)1/2Z2 and L(Z2
1) is χ2-

distribution, which is known to be selfdecom-

posable (see, e.g. Jurek (1997), p.98).



(11) Examples related to gamma random vari-

ables

(a) (Product of independent gamma random

variables)

X1, X2, ...Xn : independent gamma random vari-

ables

q1, q2, ..., qn ∈ R with |qj| ≥ 1

Then L(Xq1
1 X

q2
2 · · ·Xqn

n ) ∈ L(R+).

(Steutel+Van Barn (2004), p.360.)

(b) (exponential function of gamma random

variable)

X : denumerable convolution of gamma ran-

dom variables γcj,λj
with cj ≥ 1

Then L(eX) ∈ T (R+).

(Bondesson (1992), p.94.)



(12) log-normal distribution

Z : standard normal

Then log-normal distribution L(eZ) ∈ T (R+).

(Bondesson (1992), p.59.)



(13) Examples in T (R). (random excursion of
Bessel processes)

The following is from Bertoin+Fujita+
Roynette+Yor (2006).

Let {Rt, t ≥ 0} be a Bessel process with R0 = 0,
with dimension d = 2(1 − α). (0 < α < 1,
equivalently 0 < d < 2.) When α = 1

2, {Rt} is
a Brownian motion. Let

g
(α)
t := sup{s ≤ t : Rs = 0},

d
(α)
t := inf{s ≥ t : Rs = 0}

and

∆(α)
t := d

(α)
t − g

(α)
t ,

which is the length of the excursion above 0,
straddling t, for the process {Ru, u ≥ 0}, and
let ε be a standard exponential variable inde-
pendent from {Ru, u ≥ 0}. Let ∆α := ∆(α)

ε .
Then

L(∆α) ∈ T (R+)(⊂ L(R+)).



In Bertoin+Fujita+Roynette+Yor (2006), only

“∈ L(R)” is mentioned. However, they actu-

ally showed that

E
[
e−λ∆α

]

= exp

{
−(1− α)

∫ ∞
0

(
1− e−λx

) E[e−xGα]

x
dx

}
, λ > 0,

with a random variable Gα. (The density func-

tion of Gα is explicitly known.) Since k(x) :=

E[e−xGα] is completely monotone by Bernstein

theorem, L(∆α) belongs to not only L(R+)

but also T (R+).



(14) PCP (R) = {µ ∈ I(R) :

µ is positive compound Poisson distribution}.

(a) L(∆α) ∈ Φ(PCP (R)).

(Bertoin+Fujita+Roynette+Yor (2006).)

(b) L(γc,λ) ∈ Φ(PCP (R)). (Jurek (1997).)

Question. Characterize the class Φ(PCP (R)).



(15) Examples in B(R)

(a) Compound Poisson X =
∑N

j=1 Yj, where

{Yj} are i.i.d. exponential.

Then L(X) ∈ B(R+).

(Bondesson (1992), p.143.)

(b) X = − logY , Y = Y (α, β) is a beta random

variable.

(b1) L(X) ∈ B(R+)

(b2) L(X) ∈ L(R+) iff 2α + β ≥ 1

(Bondesson (1992), pp.143-144.)

(16). From the observation above, we see

the following. We know that the compound

Poisson distribution is not selfdecomposable.

Hence,

L(∆α) /∈ Φ2(I(R)) = L1(R).



(17) Examples in T (R) ∩ L1(R)c. (Revisit.)

(a) L(γc,λ). (See (1).)

(b) L(Tα) if 0 < α < 1
4. (See (4), (a) and (e).)

(c) L
(∫∞

0 e−(2t−Nt−)dt
)
. (See (7), (a) and (c).)

(d) L(∆α). (See (12) and (14).)


