



# Estimating risk through data

Richard Jarrett Stream Leader, Quantitative Risk Management CSIRO Mathematical and Information Sciences

Cherry Bud Workshop, 13 March 2007

www.csiro.au



#### Purpose of the study:

- To determine failure rates in water pipes
- To predict forward in time
- To decide appropriate \$ for replacement each year
- To compare various replacement strategies
- To determine which pipes to replace each year

### We will look at:

- "Risk"
- Getting the data "right"
- Getting the modelling "right"
- Creating "value" for the client



# How is "Risk" defined here?

Risk:

- Measured in terms of a combination of
  - the likelihood of an event, and
  - the consequences of that event

In this case, it is represented as

## **Risk =** $\Sigma_{\text{events}}$ **Probability** × **Consequence** AS/NZS 4360:2004

- We will deal today mainly with the "probability"
- Then combine it with the "consequences"
- Aim to "minimise expected costs"



## The challenge

#### Water distribution systems in major cities We need to know

- How much to spend of replacing, rather than just repairing, pipes that fail?
- Which pipes to replace and when?

## Traditional approach

- Cohort of pipes
  - define a "lifetime" and replace at end of useful life.
- Individual pipes
  - wait till each pipe "goes bad" and replace it,
  - for example, if "3 failures in a year", replace





"Data collected for other purposes"...

Data is generally from two sources:

- Asset database, generally in a GIS system
  - so we know where pipes are,
  - which valves to turn off
- Failure database, generally simple database
  - starts in a call centre
  - is completed by field workers after the pipe is repaired



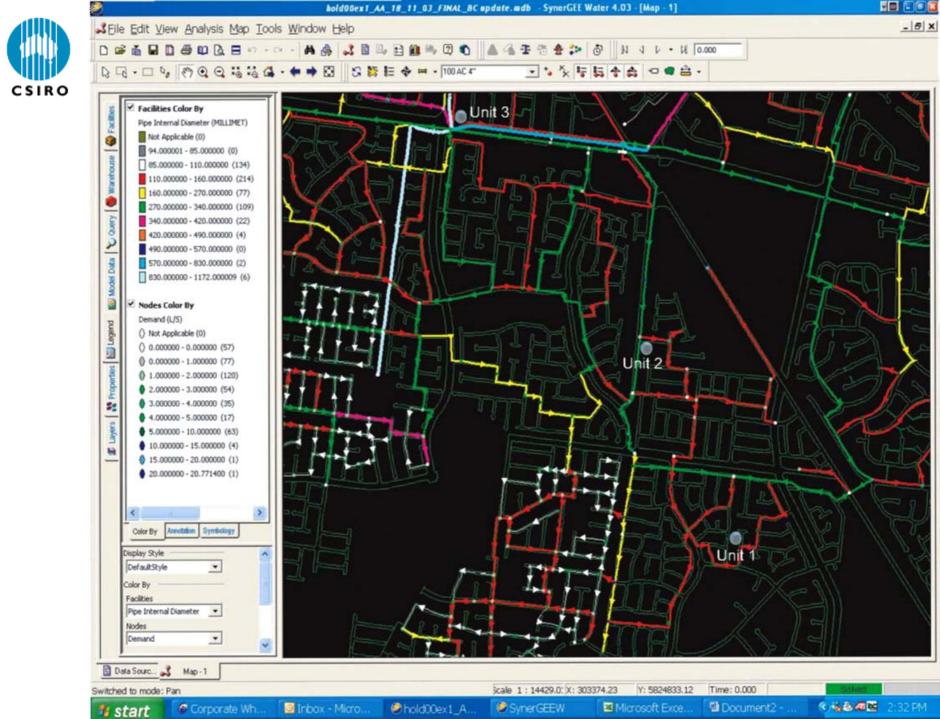
## Data issues: Assets

#### Assets typically have:

- Material
- Diameter
- Length
- Date laid/abandoned/rehabilitated
- Pressure, Soil, Traffic condition, ...

Problems:

- Missing fields, particularly older pipes
- "Pretend" pipes added to get connectivity





## Data issues: Failures

#### Failure data base typically has:

- Failure date
- Location, often street address
- Failure type, failure cause

### Problems:

- Typically details are incomplete
- A proportion of failures cannot be matched to assets (10-40%)
- Recording rate may vary over time
- Relatively short period of matched data



#### For each failure:

- Match each failure to an asset, where possible
- Determine "match rate" for each year
- Determine "recording rate" for each year (except for first and last)

For each asset:

Determine number of failures for each year in the period

| Year     | Fail Year |      |  |      |      | Tot | Len |
|----------|-----------|------|--|------|------|-----|-----|
| Laid     | 1992      | 1993 |  | 2000 | 2001 |     |     |
| Pipe 1   | 1         | 0    |  | 0    | 1    | 2   |     |
| Pipe 2   | 3         | 1    |  | 2    | 3    | 9   |     |
|          |           |      |  |      |      |     |     |
| Pipe n-1 |           |      |  | 4    | 0    | 4   |     |
| Pipe n   |           |      |  |      | 2    | 2   |     |



# Getting the modelling right

Darroch and Constantine (1990s):

 Nonhomogeneous Poisson process (NHPP) where failure rate increases with age, with cumulative intensity function for ith asset at age t :

$$H_i(t) = L_i \exp(\alpha' x_i) t^{\beta}$$

where  $L_i$  = length,  $\beta$  =shape parameter,  $x_i$  =covariates.

• covariates were just material, diameter.

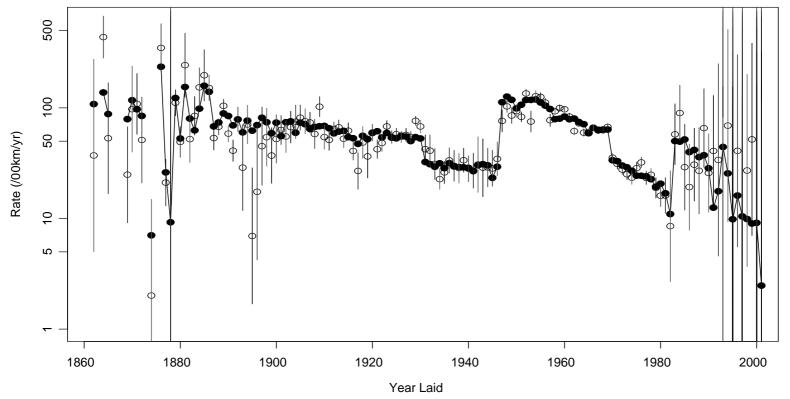
When we reviewed the methodology in 2000, we found:

- forward predictions not 'realistic'
- no real 'goodness of fit' measures
- material properties varied according to date laid
- "early failures" change shape of age curve
- reporting/recording/matching rates were not consistent over time



## Failure rate vs Year Laid

- Failure Rate against Year Laid for cast iron pipes
- Material properties clearly vary with Year Laid

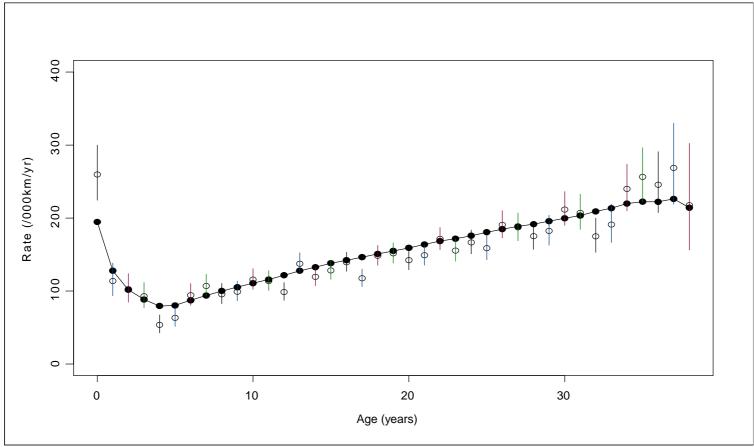


CIxx - YearLaid



## Early failures

- Failure rate vs Age for one material
- Problems through first 4 years.





## A revised model

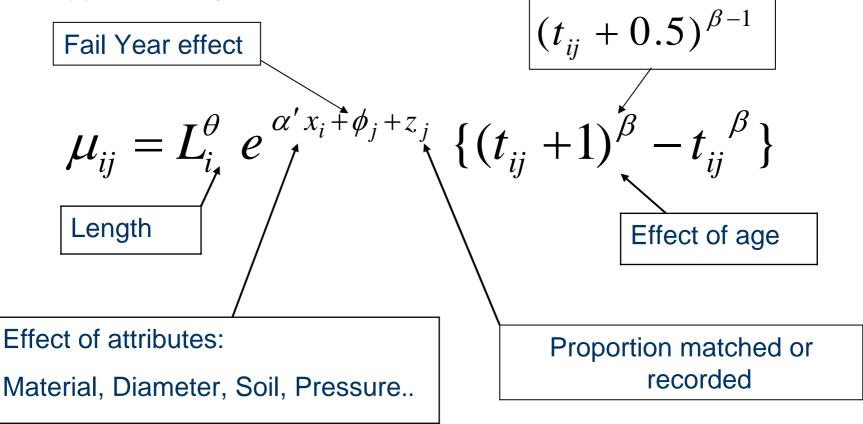
#### The final model takes into account many issues including:

- Matching rates, recording rates,
- Identifying sets of "Year Laid" whose assets have higher or lower rate of failure
- Burn-in problems (early failures)
- Goodness of fit, and allowance for extra-variation
- Incorporating spatial information



## "Expected" failures

For asset *i*, the number of failures we see in year *j* is  $Y_{ij}$ , which we suppose initially is Poisson with mean





## Data can be represented in an (incomplete) two-way table

Note that

Age = (Fail Year – Year Laid)

and the 3 linear effects of these are confounded.

| Year | Fail Year |      |  |      |      | Tot | Len |
|------|-----------|------|--|------|------|-----|-----|
| Laid | 1992      | 1993 |  | 2000 | 2001 |     |     |
| 1881 | 1         | 0    |  | 0    | 1    |     |     |
| 1882 | 3         | 1    |  | 2    | 3    |     |     |
|      |           |      |  |      |      |     |     |
| 2000 |           |      |  | 4    | 0    |     |     |
| 2001 |           |      |  |      | 2    |     |     |



How do we fit the model? There are typically 100,000 pipes x 10-15 years of record

Marginal likelihood: total failures for pipe i

$$Y_i \sim Poisson [L_i^{\theta} exp(\alpha' x_i) \Sigma_j f_j \{(t_{ij} + 1)^{\beta} - t_{i,j-1}^{\beta}\}]$$

where  $f_j = exp(\phi_j + z_j)$ .

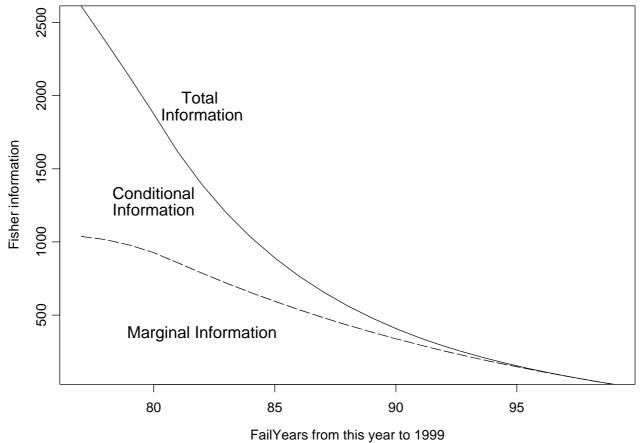
Conditional likelihood: where do the failures occur in time?

 $Y_{ij}|Y_i \sim Multinomial[Y_i; f_j\{(t_{ij}+1)^{\beta} - t_{i,j-1}^{\beta}\} / \Sigma_k f_k \{(t_{ik}+1)^{\beta} - t_{i,k-1}^{\beta}\}]$ for those with  $Y_i > 0$ .

Can estimate  $\beta$  from the conditional distribution, then use that value as given in the marginal distribution. Is there information about  $\beta$  in the marginal likelihood?



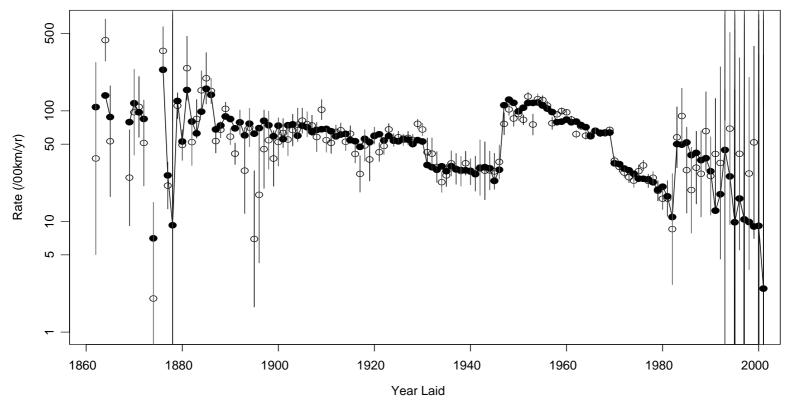
#### Is there information about $\beta$ in the marginal likelihood?





## Failure rate vs Year Laid

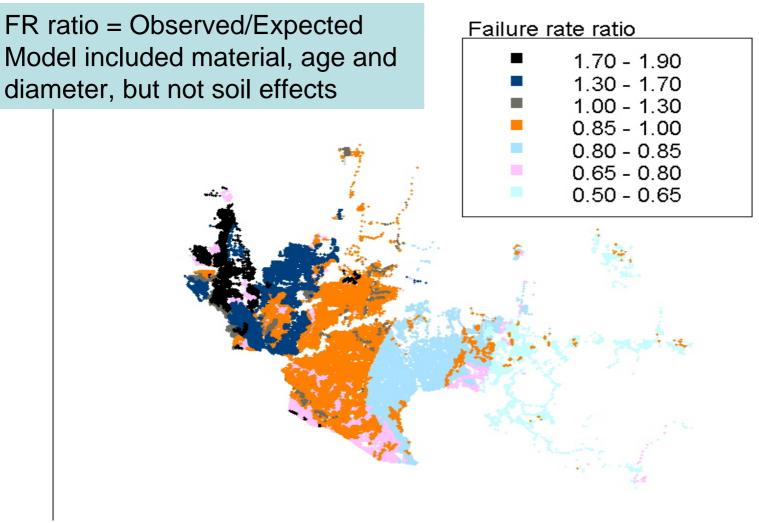
- Failure Rate against Year Laid for cast iron pipes
- Model now captures the step changes in quality of cast iron pipes



CIxx - YearLaid



## Soil and pH effects





Residual deviance << DF for both the marginal and conditional likelihoods, but that is not enough!!

Pearson Chisquare shows ~15% extra-variation

|                | DF     | Pearson Chisq | Mean PChisq |
|----------------|--------|---------------|-------------|
| Between assets | 91028  | 172966        | 1.9000      |
| Within assets  | 665685 | 742675        | 1.1157      |
| Total          | 756721 | 915641        | 1.2100      |

Poisson predicts too few zeros and not enough multiple failures

This causes problems in delivering to the client:

- We need to identify which pipes are "worst" in order to find those that should be replaced
- We need to predict their failures in an unbiased way if we are to predict the gains to be made from replacement
- Current replacement strategies are often based on "replace any pipe which has 3 failures in a year"

Cherry Bud Workshop, 13 March 2007



Use a "random effects" model to deal with extra-variation

- 1. Random effect for each pipe *i* :
- Suppose there is an unobserved "z<sub>i</sub>" which is Gamma with mean 1, variance 1/γ, and then we observe Poisson(μ<sub>i</sub>z<sub>i</sub>)
- Unconditionally, the moments are:

| Count | Poisson Model |    | One random effect |                  |  |
|-------|---------------|----|-------------------|------------------|--|
|       | Mean Variance |    | Mean              | Variance         |  |
| Yi    | Дi            | Цi | , Ш і             | μi(1+μi /γ)      |  |
| Yij   | Líj Líj       |    | ${\cal L}$ ij     | μ ij (1+μ ij /γ) |  |

• The conditional distribution of  $Y_{ij}$  given  $Y_i$  is still multinomial



- 2. Random effect for each pipe *i* in each year *j*:
- Suppose there is an unobserved "z<sub>ij</sub>" which is Gamma with mean 1, variance 1/ω, and then we observe Poisson(μ<sub>ij</sub>z<sub>ij</sub>)
- Unconditionally, the moments are:

| Count | Poisson Model |                | Two random effects |                                                                                                               |  |  |
|-------|---------------|----------------|--------------------|---------------------------------------------------------------------------------------------------------------|--|--|
|       | Mean Variance |                | Mean               | Variance                                                                                                      |  |  |
| Yi    | Цi            | μ <sub>i</sub> | Цi                 | $\mathcal{M}_{i}$ i {1+ $\mathcal{M}_{i}$ / $\gamma$ + $\sum_{j}$ $\mathcal{M}_{ij}^{2}$ /( $\mathcal{M}_{i}$ |  |  |
| Yij   | , Ш ij        | , Ш ij         | , Ш ij             | $\mathcal{M}_{ij} \left(1 + \mathcal{M}_{ij}^{\Omega}\right)^{+} \mathcal{M}_{ij} / \omega$                   |  |  |

The conditional distribution of Y<sub>ij</sub> given Y<sub>i</sub> is no longer multinomial



We define  $1/\gamma$  and  $1/\omega$  relative to the underlying expected number of failures  $\xi_{ij} = \mu_{ij} / f_j$ ; that is, before it gets reduced by matching and recording losses, and adjusted by FailYear effects.

If we assume that the extra-variation is a constant multiple, we get:

 $1/\gamma = 0.0902/\xi$ , and  $1/\omega = 0.1129/\xi$ .

• This gives:

$$Var(Y_{ij}) = \mu_{ij} (1+0.2031 f_j),$$

while, if a pipe is present for all 9 years, we get:

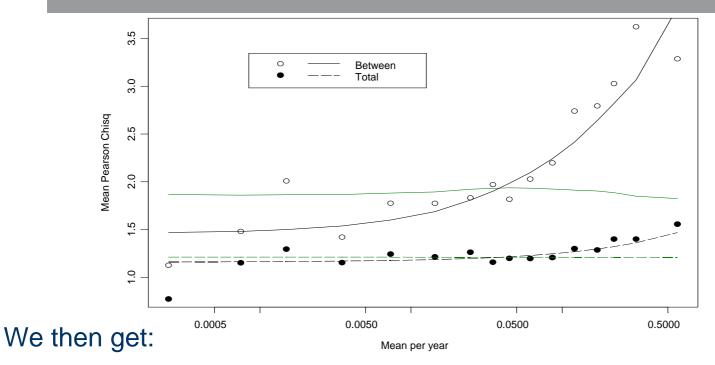
 $Var(Y_i) = \mu_i (1.9065)$ 

However, the Pearson Chisquare shows that it is not constant.

Cherry Bud Workshop, 13 March 2007



## "Predicted" failures (BLUPs)



 $1/\gamma = 0.04(1+11\xi^{2/3})/\xi$ , and  $1/\omega = 0.1129/\xi$ 

This gives

$$Var(Y_{ij}) = \mu_{ij} \{1+0.1529 \ f_j + 0.44 \ f_j \xi_i^{2/3} \} \ .$$

while, if a pipe is present for all 9 years, we get:

$$Var(Y_i) = \mu_i (1.494 + 4.086 \xi_i^{2/3})$$

Cherry Bud Workshop, 13 March 2007



Expected value for a past year:

 $\log\left(\mathcal{\mu}_{ij}\right) = \theta \log(L_i) + \alpha' x_i + \log[f_j \{(t_{ij} + 1)^{\beta} - t_{ij}^{\beta}\}],$ 

- which is the number expected allowing for matching, recording and FailYear effects across the years 1994-2002.
- If we suppose 100% matching/recording and an "average" FailYear, we can remove f<sub>j</sub>.

Expected number of failures for a future year,  $\xi_{ij}$ , is given by  $log(\xi_{ij}) = \theta log(L_i) + \alpha' x_i + log[\{(t_{ij} + 1)^{\beta} - t_{ij}^{\beta}\}]$ 



#### Predicted number of failures:

 This is a best linear unbiased predictor (BLUP), essentially a posterior mean given the data.

$$BLUP_{ij} = \xi_{ij} \times \frac{1 + \xi_i B_i / \omega + \mathbf{y}_i / \gamma}{1 + \xi_i B_i / \omega + \xi_i A_i / \gamma}$$

where  $A_i = \sum f_j$  and  $B_j = \sum f_j^2 / A_j$ , where the sum is over those years where the *i*th asset is present in the data.



# **Delivering value for the client**

Water utilities want a management tool:

- How much should we spend on asset replacement?
- Where should we spend it?
- What are good strategies to determine what to replace?
- How do we combine the probability models with the consequences/costs?





#### For each failure, we can

- Determine cost of repair
- Develop "social costs", such as disruption to supply, loss of business, traffic delays,...,

and hence obtain

# $\textbf{Risk} = \boldsymbol{\Sigma}_{\textbf{events}} ~ \textbf{Probability} \times \textbf{Consequence}$

We can then consider

- Strategies for replacement
- Costs of replacement/repair and hence compare different strategies



## How do our predictions perform?

For 2002, we looked at two ways in which one might have replaced 9.5 km of assets:

- Ranking by "number of bursts in 2001"
- Ranking by "Predicted failure rate for 2002"

| Option                  | Obs in 2001 | Obs in 2002 | Pred in 2002 |
|-------------------------|-------------|-------------|--------------|
| Replace if ≥3f in 2001  | 163         | 25          | 26.0         |
| Replace if in top 9.5km |             |             |              |
| for Pred FR *           | 82          | 43          | 55.7         |

\* With small penalty against "short" pipes

Lessons:

- Rough and ready rule: 100 years life implies replace 1% p.a.
- We can do a lot: eg reduce pressure by 10m,...
- Statistics can't help much with new materials...



# How do our predictions perform?

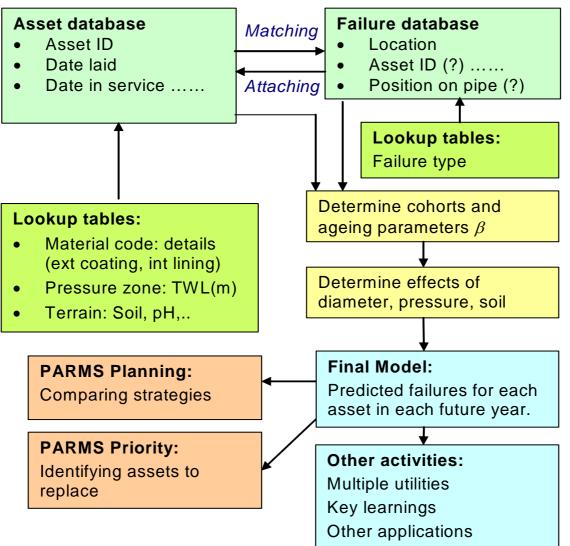
## Compare two strategies:

- Just continue to repair failures as they occur (Old)
- Spend \$1M/yr replacing the "worst" pipes with the best of the new materials

| Year | E(B.Old) | E(B.New) | d(E(B)) | E(BCostOld) | E(BCostNew) | d(E(BCost)) |
|------|----------|----------|---------|-------------|-------------|-------------|
| 2001 | 2520.72  | 2464.8   | 55.91   | 3,949,629   | 3,863,953   | 85,676      |
| 2002 | 2566.07  | 2468.3   | 97.77   | 4,020,592   | 3,872,395   | 148,197     |
| 2003 | 2611.82  | 2477.31  | 134.52  | 4,092,177   | 3,887,153   | 205,024     |
| 2004 | 2657.99  | 2487.91  | 170.08  | 4,164,400   | 3,904,580   | 259,820     |
| 2005 | 2704.52  | 2498.94  | 205.58  | 4,237,198   | 3,923,350   | 313,848     |
|      |          |          |         |             |             |             |
| 2020 | 3739.48  | 2891.64  | 847.84  | 5,877,212   | 4,577,438   | 1,299,774   |
| 2021 | 3819.45  | 2920.5   | 898.95  | 6,004,435   | 4,625,383   | 1,379,052   |
| 2022 | 3900.57  | 2951.91  | 948.66  | 6,133,537   | 4,675,801   | 1,457,736   |
| 2023 | 3982.85  | 2980.63  | 1002.21 | 6,264,538   | 4,724,427   | 1,540,111   |
| 2024 | 4066.3   | 3011.69  | 1054.61 | 6,397,458   | 4,774,745   | 1,622,713   |
| 2025 | 4150.93  | 3041.08  | 1109.85 | 6,532,316   | 4,824,147   | 1,708,169   |
|      |          |          |         | 127,631,432 | 106,825,879 | 20,805,553  |



# Software called "PARMS":





# What have we learnt?

- A third of the time goes in getting the data right
- A third of the time doing the modelling
- A third of the time goes in making it useful for the client
- Models for "risk" for the client need both probabilities and consequences
- A model is only "good" if it makes sense to the client and produces results that they believe



### Water distribution systems

- Utilities have "asset classes" (pipes), then model prob of failure, and how it changes over time.
- Modelling done on individual pipes, with a variety of predictors.
- Pipes fail, are "repaired" and may fail again.
- There are costs associated with each failure
- Seasonal and long term weather changes mean that prob of failure changes over time in a rather smooth way.

#### Finance

- Banks have "asset classes"

   (accounts), then model prob of failure, and how it changes over time.
- Modelling done on individual accounts, with a variety of predictors.
- Accounts default, are "repaired" and may default again.
- There are costs associated with each default
- Economic cycles imply that prob of default changes dynamically over

