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Abstract

We wish to model weekly inflows to a number of NZ lakes used for hydro electricity
generation. We are particularly interested in the extent to which we can generate
forward realisations over time scales of up to 2–3 years. Of particular interest are
extremely low inflows that can occur during the summer months, typically, about
once in 5–10 years. A primary objective is to estimate persistently low inflows, which
could cause considerable risk to stable electricity generation.

Three models were fitted to the data. The base model is a periodic autoregression
model (PAR). The two other models are semi-parametric variations on this model.
The standard PAR model has strictly periodic stochastic properties that do not
account for dynamically changing seasonal patterns. The two variants attempt to
incorporate dynamic seasonality and longer term variability.

The first variant involves block bootstrapping the innovations from the fit of the
PAR model to the historical series. This includes building into the simulated
sequence, in a non-parametric way, structure that occurs in the historical series that
cannot be accounted for by the PAR model.

The second variant involves extracting evolving trend and seasonal components
using conventional smoothing windows. With these subtracted, a standard PAR
model is fitted to the residuals. A simulated sequence is generated by simulating a
pure PAR process, then adding back the evolving seasonal and trend components by
block bootstrapping them from those estimated from the historical data.

We determine which model fits “best” by comparing the characteristics of the
simulated sequences from the three models to those of the observed time series. As
well as the usual methods of evaluating model goodness of fit, we have derived



others that are more special to the problem concerned. For example, if we simulate
a long sequence of data from each of the three models, what is the probability
distribution of having a run length (weeks) of inflows below a given threshold, given
that the run starts in a given week? How does this distribution compare to that
using the historical data?

Residual structure after fitting all three models indicates that the inflow series
probably contain episodic or abrupt changes in level. These could be caused by
changes between seasons, where the times of these changes can be somewhat
random from year to year. A possible modification to the above models would be to
include a Markov switching component, where the change points between the
Markov states (seasons) is hidden.

This study was undertaken as a benchmarking exercise for the New Zealand
Electricity Commission. In the light of our findings, other hopefully more appropriate
risk forecasting models are proposed.



Introduction

NZ lakes used for hydro electricity generation

Problem: Persistently low inflows in some years (extremes) during

summer – insufficient generation potential for winter

Weekly time series {Xt} of inflows, from beginning 1931 to end 2004

9 lakes, different parts of country, different seasonality
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Arapuni: Untransformed Weekly Inflows (cumecs/1000)
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Arapuni: Logarithm of Weekly Inflows
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Benmore: Untransformed Weekly Inflows (cumecs/1000)
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Data Transformation

Fit log-normal distribution

Zt =
log(Xt − θt)− µt

σt

where

θt = θt+52

µt = µt+52

σt = σt+52

θt does not form part of the seasonal dynamics

Estimate θt using concentrated likelihood, 13 week moving window
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Arapuni: Standardised Series



Decomposition of Shifted-Log Series

shifted-log series (black line) = log(Xt − θt)

strictly periodic weekly series (red line) = µt

Trend Tt estimated with moving 3 yr window

Seasonal St estimated with a 7 yr window

log(Xt − θt)− µt = Tt + St + Rt

green line = µt + Tt

blue line = µt + Tt + St
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Benmore: Decomposition of Shifted−Log Series (1980−1984)
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Benmore: Decomposition of Shifted−Log Series (1985−1989)
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Benmore: Decomposition of Shifted−Log Series (1990−1994)
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Benmore: Decomposition of Shifted−Log Series (1995−1999)



Parametric Linear PAR(1) Model

{Yt} is a 1st order periodic autoregressive process if Yt has mean µt

and variance σ2
t , and satisfies

(Yt − µt) = φt(Yt−1 − µt−1) + εt

εt has zero mean and variance σ2
t − φ2

t σ2
t−1

φt = φt+52

µt = µt+52

σt = σt+52

θt = θt+52

Shifted-log series:

Yt = log(Xt − θt)

STL residual series:

Rt = log(Xt − θt)− µt − Tt − St
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Arapuni: PAR(1) Model Fitted to log((Xt −− θθt))
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Semiparametric Model: Srinivas & Srinivasan

Fit PAR(1) to Yt = log(Xt − θt)

Extract innovations: ε1, ε2, · · · , εn

Simulation: divide into 2 year overlapping blocks:

ε1, · · · , ε104

ε53, · · · , ε156

ε105, · · · , ε208

ε157, · · · , ε260
...

εn−103, · · · , εn
To simulate m years, sample with replacement m/2 blocks and

post-blacken
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Srinivas & Srinivasan Method: 1000 Years Simulated Data
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The historical data can be thought of as containing components:

{PAR(1)}+ {evolving Tt and St}+ {other}

Semiparametric Modified Model

Fit PAR(1) to: Rt = log(Xt − θt)− µt − Tt − St

Simulate Rt by generating white noise and post-blackening

Add in the Tt + St component by block bootstrapping (2 yr blocks)

from:

T1 + S1, · · · , T104 + S104

T53 + S53, · · · , T156 + S156

T105 + S105, · · · , T208 + S208

T157 + S157, · · · , T260 + S260
...

Tn−103 + Sn−103, · · · , Tn + Sn
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Arapuni: Historical Series (74 Years)
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Modified Method: 1000 Years Simulated Data

Week



Evaluation of Forecasting Performance

The historical data can be thought of as containing components:

{PAR(1)}+ {evolving Tt and St}+ {other}

Srinivas & Srinivasan’s semiparametric model contains all components

The modified semiparametric model contains components 1 and 2
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Runs of Low Inflows

Define a “run” as a sequence of weekly values that are all less than

some threshold value



Arapuni: Threshold Value = 65

Historical Series Pure PAR(1) Model
0 2 4 6 8 10 12 14 16 18 20 22 24 26 0 2 4 6 8 10 12 14 16 18 20 22 24 26

28 0.44 0.68 0.75 0.85 0.86 0.88 0.92 0.93 0.95 0.96 0.99 1 1 1 28 0.46 0.73 0.80 0.90 0.94 0.96 0.97 0.99 0.99 1 1 1 1 1
32 0.36 0.63 0.70 0.75 0.81 0.85 0.89 0.92 0.97 0.99 1 1 1 1 32 0.41 0.71 0.83 0.90 0.93 0.96 0.99 0.99 1 1 1 1 1 1
36 0.41 0.56 0.71 0.78 0.88 0.90 0.97 0.99 1 1 1 1 1 1 36 0.46 0.68 0.79 0.89 0.96 0.98 0.99 1 1 1 1 1 1 1
40 0.38 0.63 0.81 0.89 0.97 0.99 1 1 1 1 1 1 1 1 40 0.31 0.65 0.87 0.96 0.99 1 1 1 1 1 1 1 1 1
44 0.48 0.81 0.95 0.97 0.99 1 1 1 1 1 1 1 1 1 44 0.50 0.82 0.94 0.99 1 1 1 1 1 1 1 1 1 1
48 0.71 0.95 0.96 0.99 1 1 1 1 1 1 1 1 1 1 48 0.68 0.93 0.99 1 1 1 1 1 1 1 1 1 1 1
52 0.85 0.95 0.99 1 1 1 1 1 1 1 1 1 1 1 52 0.85 0.98 1 1 1 1 1 1 1 1 1 1 1 1
4 0.92 1 1 1 1 1 1 1 1 1 1 1 1 1 4 0.90 0.98 0.99 1 1 1 1 1 1 1 1 1 1 1
8 0.86 0.95 0.96 0.96 0.96 0.97 0.99 0.99 0.99 0.99 0.99 0.99 1 1 8 0.87 0.98 0.99 1 1 1 1 1 1 1 1 1 1 1
12 0.89 0.95 0.95 0.97 0.99 0.99 0.99 0.99 0.99 0.99 1 1 1 1 12 0.89 0.97 0.99 1 1 1 1 1 1 1 1 1 1 1
16 0.78 0.95 0.97 0.97 0.97 0.99 0.99 0.99 1 1 1 1 1 1 16 0.82 0.95 0.98 0.99 0.99 1 1 1 1 1 1 1 1 1
20 0.74 0.88 0.92 0.95 0.96 0.97 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 20 0.75 0.88 0.95 0.98 0.98 0.99 0.99 1 1 1 1 1 1 1
24 0.68 0.89 0.92 0.95 0.96 0.97 0.97 0.97 0.99 0.99 0.99 0.99 0.99 1 24 0.65 0.87 0.92 0.95 0.97 0.98 0.99 0.99 1 1 1 1 1 1

Srinivas and Srinivasan Model Modified Model
0 2 4 6 8 10 12 14 16 18 20 22 24 26 0 2 4 6 8 10 12 14 16 18 20 22 24 26

28 0.44 0.72 0.80 0.88 0.90 0.91 0.94 0.95 0.96 0.97 0.99 1 1 1 28 0.47 0.76 0.84 0.90 0.93 0.95 0.96 0.97 0.98 0.99 0.99 1 1 1
32 0.37 0.64 0.72 0.77 0.82 0.86 0.91 0.94 0.98 0.99 1 1 1 1 32 0.45 0.73 0.84 0.89 0.91 0.94 0.96 0.98 0.99 1 1 1 1 1
36 0.41 0.56 0.71 0.77 0.89 0.92 0.98 0.99 1 1 1 1 1 1 36 0.47 0.69 0.77 0.86 0.92 0.96 0.98 0.99 1 1 1 1 1 1
40 0.40 0.63 0.83 0.91 0.98 0.99 1 1 1 1 1 1 1 1 40 0.34 0.68 0.86 0.93 0.97 0.99 0.99 1 1 1 1 1 1 1
44 0.51 0.84 0.95 0.98 0.99 1 1 1 1 1 1 1 1 1 44 0.53 0.83 0.95 0.98 0.99 1 1 1 1 1 1 1 1 1
48 0.73 0.94 0.95 0.98 1 1 1 1 1 1 1 1 1 1 48 0.74 0.94 0.98 1 1 1 1 1 1 1 1 1 1 1
52 0.85 0.94 0.99 1 1 1 1 1 1 1 1 1 1 1 52 0.86 0.98 0.99 1 1 1 1 1 1 1 1 1 1 1
4 0.93 1 1 1 1 1 1 1 1 1 1 1 1 1 4 0.92 0.97 0.99 1 1 1 1 1 1 1 1 1 1 1
8 0.90 0.96 0.98 0.98 0.98 0.99 1 1 1 1 1 1 1 1 8 0.92 0.99 1 1 1 1 1 1 1 1 1 1 1 1
12 0.91 0.96 0.96 0.99 1 1 1 1 1 1 1 1 1 1 12 0.91 0.98 0.99 1 1 1 1 1 1 1 1 1 1 1
16 0.81 0.97 0.99 0.99 0.99 1 1 1 1 1 1 1 1 1 16 0.85 0.96 0.99 0.99 0.99 1 1 1 1 1 1 1 1 1
20 0.77 0.90 0.93 0.95 0.97 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 20 0.81 0.91 0.96 0.98 1 1 1 1 1 1 1 1 1 1
24 0.70 0.89 0.93 0.97 0.97 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 1 24 0.70 0.89 0.94 0.97 0.97 0.98 0.99 0.99 0.99 1 1 1 1 1



Te Anau: Threshold Value = 260

Historical Series Pure PAR(1) Model
0 2 4 6 8 10 12 14 16 18 20 22 24 26 0 2 4 6 8 10 12 14 16 18 20 22 24 26

28 0.41 0.70 0.85 0.88 0.90 0.93 0.95 0.96 0.97 0.99 0.99 0.99 0.99 0.99 28 0.43 0.66 0.80 0.88 0.92 0.95 0.98 0.99 0.99 1 1 1 1 1
32 0.37 0.63 0.78 0.88 0.92 0.93 0.96 0.99 0.99 0.99 0.99 0.99 0.99 0.99 32 0.33 0.58 0.73 0.86 0.94 0.97 0.98 0.99 1 1 1 1 1 1
36 0.40 0.73 0.85 0.90 0.95 0.97 0.97 0.97 0.97 0.99 0.99 0.99 0.99 1 36 0.33 0.67 0.87 0.93 0.96 0.99 0.99 0.99 1 1 1 1 1 1
40 0.56 0.79 0.90 0.95 0.95 0.96 0.97 0.99 0.99 0.99 0.99 1 1 1 40 0.49 0.74 0.86 0.96 0.98 0.99 0.99 1 1 1 1 1 1 1
44 0.41 0.71 0.84 0.88 0.92 0.97 0.97 0.97 0.97 1 1 1 1 1 44 0.37 0.73 0.86 0.93 0.96 0.97 0.98 0.99 0.99 1 1 1 1 1
48 0.41 0.73 0.82 0.93 0.93 0.97 0.97 1 1 1 1 1 1 1 48 0.41 0.66 0.79 0.87 0.91 0.95 0.97 0.98 0.99 1 1 1 1 1
52 0.30 0.68 0.77 0.88 0.93 0.97 0.99 1 1 1 1 1 1 1 52 0.34 0.60 0.73 0.83 0.90 0.94 0.98 0.99 1 1 1 1 1 1
4 0.23 0.53 0.75 0.85 0.95 0.99 0.99 0.99 1 1 1 1 1 1 4 0.24 0.55 0.73 0.84 0.93 0.97 1 1 1 1 1 1 1 1
8 0.29 0.56 0.82 0.96 0.99 0.99 1 1 1 1 1 1 1 1 8 0.25 0.53 0.79 0.91 0.98 0.99 1 1 1 1 1 1 1 1
12 0.51 0.79 0.93 0.95 0.99 1 1 1 1 1 1 1 1 1 12 0.54 0.81 0.96 0.98 0.99 1 1 1 1 1 1 1 1 1
16 0.59 0.84 0.96 0.99 0.99 1 1 1 1 1 1 1 1 1 16 0.63 0.87 0.94 0.97 0.99 0.99 1 1 1 1 1 1 1 1
20 0.62 0.84 0.95 0.96 0.97 0.99 0.99 0.99 0.99 1 1 1 1 1 20 0.57 0.81 0.92 0.96 0.99 0.99 1 1 1 1 1 1 1 1
24 0.44 0.82 0.93 0.95 0.97 0.97 0.97 0.99 0.99 1 1 1 1 1 24 0.46 0.78 0.91 0.94 0.97 0.98 0.99 0.99 1 1 1 1 1 1

Srinivas and Srinivasan Model Modified Model
0 2 4 6 8 10 12 14 16 18 20 22 24 26 0 2 4 6 8 10 12 14 16 18 20 22 24 26

28 0.42 0.71 0.84 0.88 0.90 0.93 0.94 0.96 0.98 0.99 0.99 0.99 0.99 0.99 28 0.43 0.69 0.81 0.87 0.91 0.95 0.98 0.99 0.99 0.99 1 1 1 1
32 0.35 0.60 0.76 0.87 0.91 0.93 0.96 0.99 0.99 0.99 0.99 0.99 0.99 0.99 32 0.36 0.59 0.73 0.87 0.94 0.97 0.98 0.99 1 1 1 1 1 1
36 0.40 0.73 0.86 0.91 0.95 0.98 0.98 0.98 0.98 0.99 0.99 0.99 0.99 1 36 0.28 0.65 0.84 0.92 0.95 0.98 0.99 0.99 1 1 1 1 1 1
40 0.54 0.79 0.90 0.95 0.95 0.96 0.98 0.99 0.99 0.99 0.99 1 1 1 40 0.47 0.76 0.87 0.94 0.97 0.98 0.99 0.99 1 1 1 1 1 1
44 0.41 0.71 0.85 0.89 0.94 0.98 0.98 0.98 0.98 1 1 1 1 1 44 0.36 0.72 0.89 0.93 0.96 0.98 0.98 0.99 1 1 1 1 1 1
48 0.41 0.74 0.84 0.95 0.95 0.98 0.98 1 1 1 1 1 1 1 48 0.38 0.63 0.78 0.86 0.90 0.95 0.97 0.98 0.99 0.99 1 1 1 1
52 0.29 0.68 0.77 0.89 0.95 0.97 0.99 1 1 1 1 1 1 1 52 0.29 0.59 0.71 0.84 0.90 0.94 0.97 0.98 0.99 1 1 1 1 1
4 0.23 0.55 0.76 0.84 0.95 0.99 0.99 0.99 1 1 1 1 1 1 4 0.25 0.58 0.74 0.85 0.94 0.96 0.99 1 1 1 1 1 1 1
8 0.30 0.53 0.83 0.96 0.99 0.99 1 1 1 1 1 1 1 1 8 0.25 0.54 0.79 0.90 0.97 0.99 0.99 1 1 1 1 1 1 1
12 0.51 0.79 0.93 0.94 0.98 1 1 1 1 1 1 1 1 1 12 0.48 0.81 0.95 0.98 0.99 1 1 1 1 1 1 1 1 1
16 0.57 0.83 0.95 0.98 0.98 1 1 1 1 1 1 1 1 1 16 0.60 0.85 0.94 0.97 0.98 0.99 1 1 1 1 1 1 1 1
20 0.59 0.82 0.93 0.95 0.98 0.99 0.99 0.99 0.99 1 1 1 1 1 20 0.59 0.82 0.92 0.96 0.99 0.99 1 1 1 1 1 1 1 1
24 0.44 0.80 0.93 0.95 0.97 0.97 0.97 0.98 0.98 1 1 1 1 1 24 0.45 0.80 0.91 0.95 0.97 0.98 0.99 0.99 1 1 1 1 1 1


