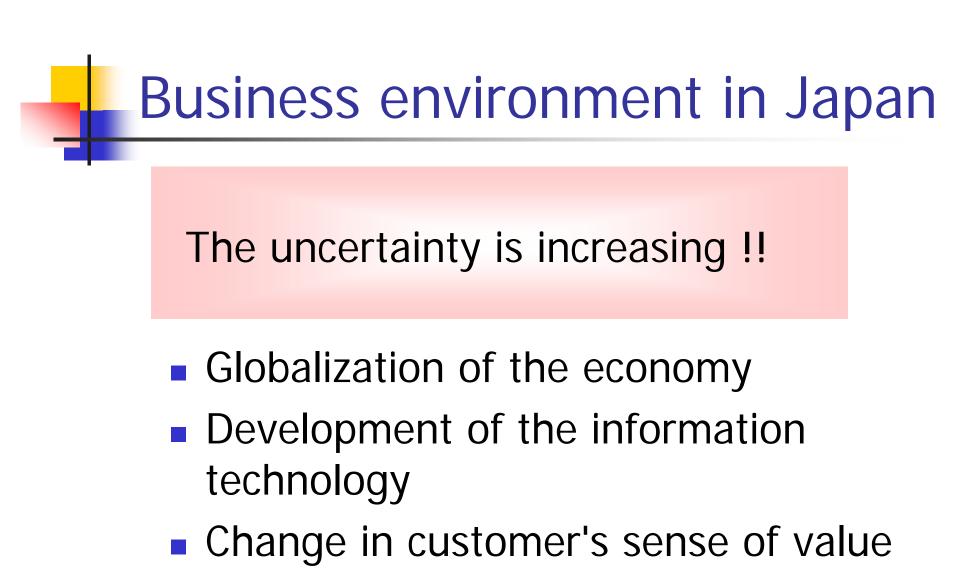
Measuring the Effectiveness of Marketing Activities and Baseline Sales from POS Data using Bayesian State Space Models

Tomohiro Ando

Graduate School of Business Administration, Keio University, Japan

Presented at, Cherry Bud Workshop 2007, March 16, 2007



Deregulation

Main aim

- To develop the methodology for predicting daily and baseline sales of individual items by considering specific factors
- The prediction is very useful for
 - inventory management
 - marketing strategy planning
 - manpower planning
 - production planning

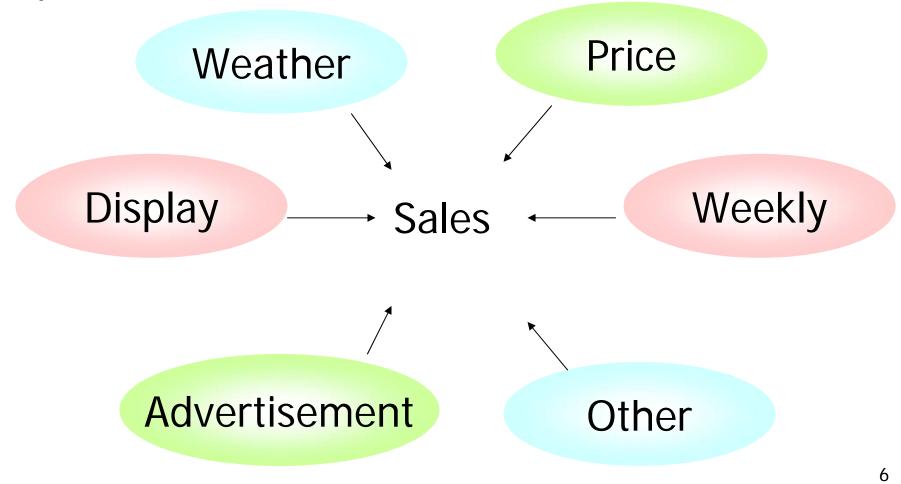
Agenda

- Data description
- Model description
- Bayesian MCMC Estimation
- Model evaluation
- Application results
- Conclusion

Data description

- Daily unit sales for 10 foods
 - Cold beverages
 - Coffee
 - Tea beverages
 - Cup noodle
 - Rice balls
 - Sandwiches
 - Packed lunches
 - Jelly
 - Yogurt

Data description



Main aim

- To develop the methodology for predicting daily and baseline sales of individual items by considering specific factors
- The prediction is very useful for
 - inventory management
 - marketing strategy planning
 - manpower planning
 - production planning

Agenda

Model description

Bayesian MCMC Estimation

- Model evaluation
- Application results

Conclusion

- A general state space model (Kitagawa, 1987) enables us to conduct flexible time series modeling.
- Observation model

$$y_t \sim f(y_t | F_t, h_t, ..., h_1)$$

System model

$$h_t \sim f(h_t | F_t, h_{t-1}, ..., h_1)$$

Observation model

Daily unit of sales

- = Baseline sales
- + Sales affected by environmental effect
- + Sales obtained from marketing promotion

Observation model (Poisson model) Daily unit sales

 $\mathbf{\dot{y}}_{t} \sim Poisson(\lambda_{t} | \mathbf{x}_{t})$ $\mathbf{x}_{t} = (w_{t}, r_{t}, p_{t}, d_{t}, a_{t})'$ $\lambda_{t} = h_{t} + \beta_{1}w_{t} + \beta_{2}r_{t} + \beta_{3}p_{t} + \beta_{4}d_{t} + \beta_{5}a_{t}$ Baseline unit sales Weather effect Price promotion effect

Weekly effect Display promotion effect Advertisement effect

System model (q-th order trend model)

$$\Delta^q h_t = \varepsilon_t \qquad \varepsilon_t \sim N(0, \sigma^2)$$

Example

$$(q = 1): h_{t} = h_{t-1} + \varepsilon_{t}$$
$$(q = 2): h_{t} = 2h_{t-1} - h_{t-2} + \varepsilon_{t}$$

Each of the 10 foods follow the Poisson model.

$$y_{jt} \sim Poisson(\lambda_{jt} | \mathbf{x}_{jt}), \ j = 1,...,10$$

We consider that the daily unit sales are mutually dependent on each other.

$$\begin{cases} \Delta^{q} h_{jt} = \varepsilon_{jt}, \ \varepsilon_{jt} \sim N(0, \sigma_{j}^{2}), \ j = 1, ..., 10 \\ Cov(\varepsilon_{j,t}, \varepsilon_{k,t}) = \sigma_{jk} \end{cases}$$

Summarizing the above specification leads to the following observation equation and the system equation:

Observation equation

$$y_{jt} \sim f(y_{jt} | h_{jt}; \mathbf{x}_{jt}, \boldsymbol{\beta}_{j})$$

System equation

$$\mathbf{h}_{t} \sim f(\mathbf{h}_{t} | \mathbf{h}_{t-1}, ..., \mathbf{h}_{t-q}, \Sigma), \Sigma = (\sigma_{ij})$$

Agenda

Model description

Bayesian MCMC Estimation

- Model evaluation
- Application results
- Conclusion

Bayesian estimation via Markov chain Monte Carlo (1/2)

- A set of n independent observations
- Likelihood function

$$L(D_{n}|\boldsymbol{\theta}, X_{n}) = \prod_{t=1}^{n} f(\boldsymbol{y}_{t}|F_{t-1}, \boldsymbol{x}_{t}, \boldsymbol{\theta})$$

$$= \prod_{t=1}^{n} \left[\prod_{j=1}^{p} f(y_{jt}|F_{t-1}, \boldsymbol{x}_{jt}, \boldsymbol{\theta}) \right]$$

$$= \prod_{t=1}^{n} \left[\prod_{j=1}^{p} \int f(y_{jt}|h_{jt}; \boldsymbol{x}_{jt}, \boldsymbol{\beta}) f(\boldsymbol{h}_{t}|\boldsymbol{h}_{t-1}, ..., \boldsymbol{h}_{t-q}; \boldsymbol{\Sigma}) d\boldsymbol{h}_{t} \right]$$

Observation model System model 16

Bayesian estimation via Markov chain Monte Carlo (2/2)

 Markov chain Monte Carlo considers the state vector as model parameters

 $\mathbf{h} = (\mathbf{h}_1, \mathbf{h}_2, \dots, \mathbf{h}_n)$

A posterior distribution

$$\pi(\boldsymbol{\theta}, \boldsymbol{h} | D_n, X_n) \propto \pi(\boldsymbol{\theta})$$

$$\times \prod_{t=1}^n \prod_{t=1}^n f(y_{jt} | h_{jt}; \boldsymbol{x}_{jt}, \boldsymbol{\beta}) f(\boldsymbol{h}_t | \boldsymbol{h}_{t-1}, ..., \boldsymbol{h}_{t-q}; \Sigma).$$

Agenda

Model description

Bayesian MCMC Estimation

- Model evaluation
- Application results

Conclusion

Maximisation of the posterior mean of the expected likelihood

 Ando (2006) considered the maximization of the posterior mean of the expected loglikelihood (PMELL):

$$\eta = E_{Z_n} \left[E_{\boldsymbol{\theta}|D_n, X_n} [\log L(Z_n | \boldsymbol{\theta}, X_n)] \right]$$
$$= \int \left[\int \log L(Z_n | \boldsymbol{\theta}, X_n) \pi(\boldsymbol{\theta} | D_n, X_n) d\boldsymbol{\theta} \right] dG(Z_n | X_n),$$

• The best model is chosen by maximising η .

Ando (2006)

The asymptotic bias is

$$n\hat{b} \approx E_{\boldsymbol{\theta}|D_n, X_n} [\log\{L(D_n|\boldsymbol{\theta}, X_n)\pi(\boldsymbol{\theta})\}] + \dim\{\boldsymbol{\theta}\}/2$$
$$-\log\{L(D_n|\hat{\boldsymbol{\theta}}_n, X_n)\pi(\hat{\boldsymbol{\theta}}_n)\} + \operatorname{tr}\left\{J_n^{-1}(\hat{\boldsymbol{\theta}}_n)I_n(\hat{\boldsymbol{\theta}}_n)\right\},$$

where

$$I_{n}(\boldsymbol{\theta}) = \frac{1}{n} \sum_{t=1}^{n} \left\{ \frac{\partial \eta_{n}(\boldsymbol{y}_{t}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}} \frac{\partial \eta_{n}(\boldsymbol{y}_{t}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta}'} \right\},$$

$$J_{n}(\boldsymbol{\theta}) = -\frac{1}{n} \sum_{t=1}^{n} \left\{ \frac{\partial^{2} \eta_{n}(\boldsymbol{y}_{t}, \boldsymbol{\theta})}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}'} \right\},$$

with $\eta_n(\boldsymbol{y}_t, \boldsymbol{\theta}) = \log f(\boldsymbol{y}_t | F_{t-1}, \boldsymbol{x}_t, \boldsymbol{\theta}) + \log \pi(\boldsymbol{\theta})/n.$ 20

Ando (2006)

- The prior is dominated by the likelihood as the sample size becomes large.
- The specified parametric models contain the true model or are close to the true model

Bayesian predictive information criterion

 Bayesian predictive information criterion (BPIC Ando (2006)):

BPIC =
$$-2E_{\theta|D_n,X_n} \left[\log L(D_n | \theta, X_n) \right] + 2\dim\{\theta\}$$

 We choose the predictive distribution that minimises the BPIC score.

Agenda

Model description

Bayesian MCMC Estimation

- Model evaluation
- Application results

Conclusion

Application results

The posterior mean of the log-likelihood and BPIC scores for each of q-th order trend models.

q	1	2	3	4
$\hat{\eta}$	-1543.081	-1507.530	-1492.693	-1483.921
BPIC	3296.162	3245.060	3235.386	3237.842
CPU time	16.75	17.54	18.28	19.09

 The CPU time (seconds) to generate 100 iterations is also reported.

Observation model

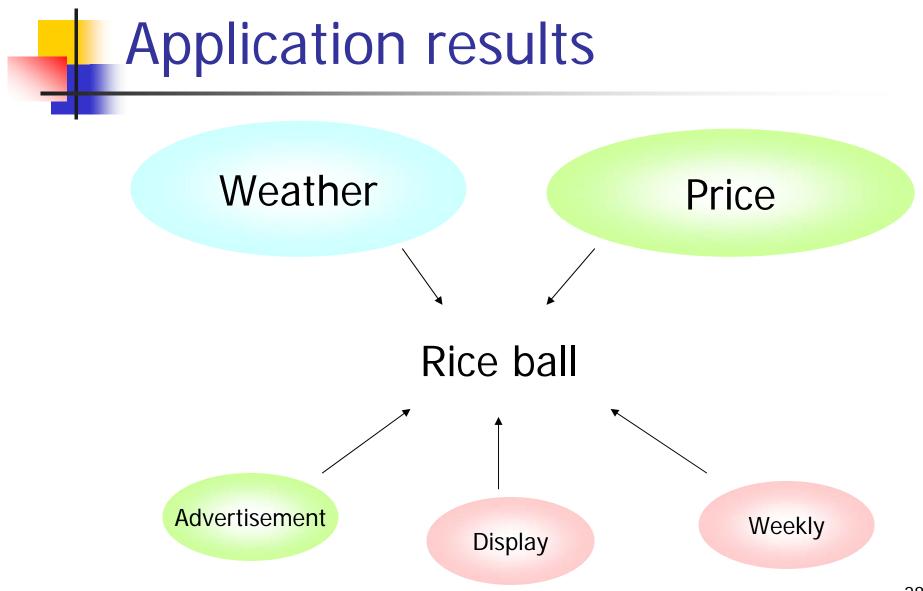
 $y_{t} \sim Poisson(\lambda_{t} | \mathbf{x}_{t})$ $\mathbf{x}_{t} = (w_{t}, r_{t}, p_{t}, d_{t}, a_{t})'$ $\lambda_{t} = h_{t} + \beta_{1}w_{t} + \beta_{2}r_{t} + \beta_{3}p_{t} + \beta_{4}d_{t} + \beta_{5}a_{t}$ Baseline unit sales Weather effect Price promotion effect
Weekly effect Display promotion effect Advertisement effects

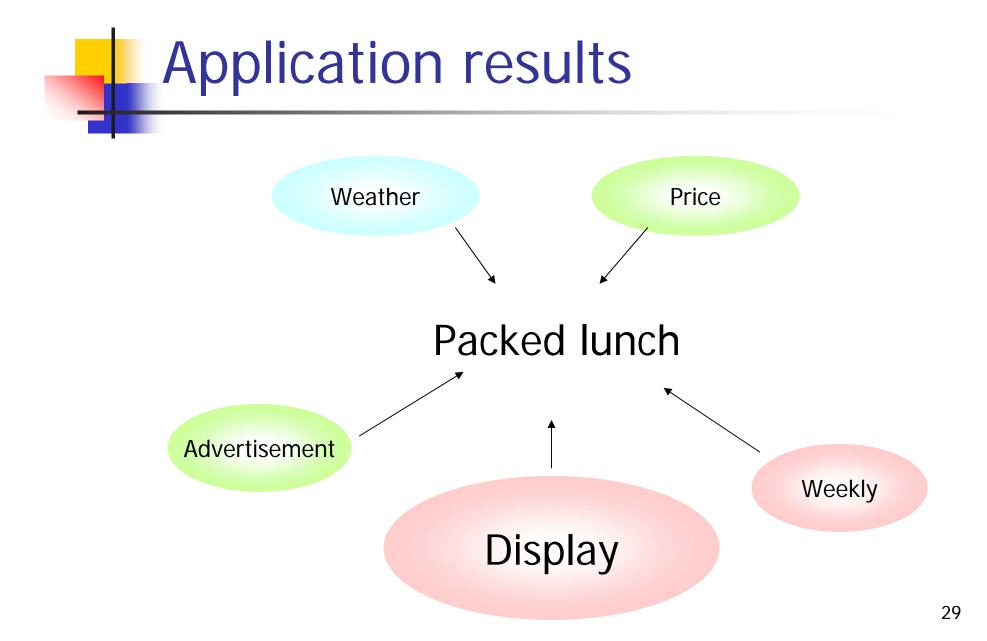
_			PMs	95	5% CIs			PMs	PMs 95	
(CB	β_{11}	0.66	[0.14	1.18]	SA	β_{61}	0.52	[0.06	0.97]
		β_{12}	7.52	[6.52	8.59]		β_{62}	0.22	[0.02	0.60]
		β_{13}	41.2	[40.2	42.3]		β_{63}	1.53	[0.17	2.56]
		β_{14}	6.38	[5.71	7.16]		eta_{64}	2.36	[1.85	2.71]
		β_{15}	1.37	[0.09	2.47]		β_{65}	0.64	[0.04	1.59]
_	CF	β_{21}	0.58	[0.15	1.06]	P1	β_{71}	0.52	[0.07	1.28]
- 1		β_{22}	13.2	[12.4	13.8]		β_{72}	0.99	[0.13	1.51]
		β_{23}	19.9	[19.3	20.6]		β_{73}	3.06	[1.04	4.21]
		β_{24}	4.82	[3.97	6.19]		β_{74}	17.0	[16.2	17.8]
		β_{25}	1.81	[1.10	2.68]		β_{75}	1.64	[0.98	2.40]
'	ТВ	β_{31}	0.63	[0.05	1.67]	P2	β_{81}	0.29	[0.04	0.64]
		β_{32}	9.67	[8.60	10.5]		β_{82}	0.71	[0.03	1.33]
		β_{33}	1.03	[0.21	1.59]		β_{83}	104.57	[103.6	105.4]
		β_{34}	3.15	[2.44	3.70]		β_{84}	0.45	[0.03	1.45]
		β_{35}	11.2	[10.4	12.2]		β_{85}	0.38	[0.04	0.84]
(CN	β_{41}	1.01	[0.06	1.97]	JE	β_{91}	5.65	[4.47	6.89]
		β_{42}	4.61	[3.95	5.24]		β_{92}	5.65	[4.06	6.56]
		β_{43}	1.66	[1.01	2.17]		β_{93}	0.55	[0.08	1.15]
		β_{44}	9.47	[8.50	11.0]		β_{94}	49.3	[48.4	51.3]
		β_{45}	2.68	[1.27	4.12]		β_{95}	36.3	[35.0	37.8]
]	RB	β_{51}	1.70	[0.30	2.68]	YO	β_{101}	1.52	[0.78	2.13]
		β_{52}	16.5	[15.4	17.3]		β_{102}	14.6	[14.1	15.1]
		β_{53}	3.23	[2.60	3.88]		β_{103}	0.36	[0.04	0.84]
		β_{54}	13.1	[12.5	13.7]		β_{104}	13.5	[11.7	14.9]
_		β_{55}	0.95	[0.50	1.69]		β_{105}	26.2	[25.7	26.9]

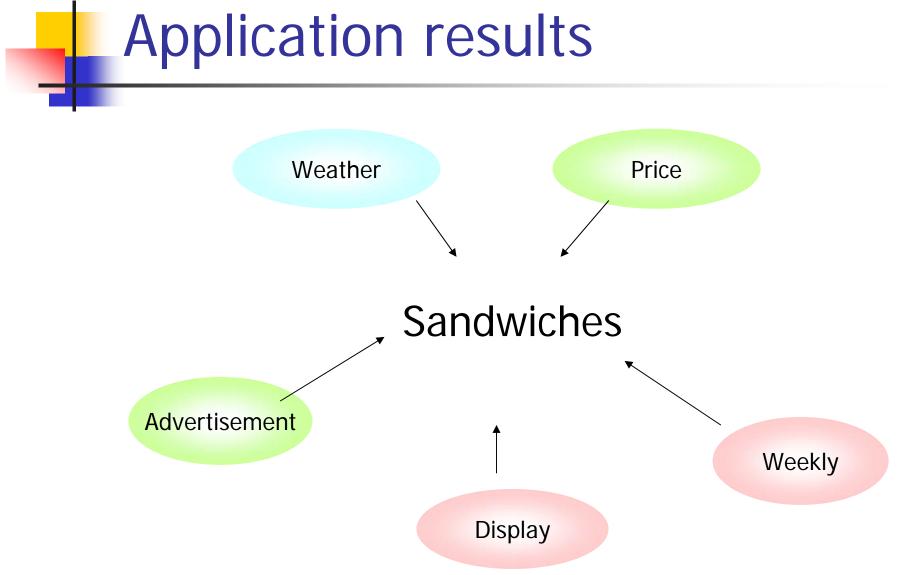
Application results

Observation model

 $y_t \sim Poisson(\lambda_t | \mathbf{x}_t)$ $\mathbf{X}_{t} = (w_{t}, r_{t}, p_{t}, d_{t}, a_{t})'$ $\lambda_t = h_t + 1.7 w_t + 16.5 r_t + 3.2 p_t + 13.1 d_t + 0.95 a_t$ Baseline unit sales Weather effect Price promotion effect Weekly effect Display promotion effect Advertisement effect







Each of the 10 foods follow the Poisson model.

$$y_{jt} \sim Poisson(\lambda_{jt} | \mathbf{x}_{jt}), \ j = 1,...,10$$

We consider that the daily unit sales are mutually dependent on each other.

$$\begin{cases} \Delta^{q} h_{jt} = \varepsilon_{jt}, \ \varepsilon_{jt} \sim N(0, \sigma_{j}^{2}), \ j = 1, ..., 10 \\ Cov(\varepsilon_{j,t}, \varepsilon_{k,t}) = \sigma_{jk} \end{cases}$$

Application results

The posterior means of correlation

	CB	CF	TB	CN	RB	SA	P1	P2	JE	YO
CB:	1.00	0.54	0.35	0.15	0.52	0.18	0.17	0.24	0.35	0.46
CF:	0.54	1.00	0.37	0.29	0.40	0.21	0.36	0.12	0.49	0.44
TB:	0.35	0.37	1.00	0.55	0.74	0.13	0.34	0.34	0.28	0.36
CN:	0.15	0.29	0.55	1.00	0.47	0.23	0.28	0.17	0.41	0.29
RB:	0.52	0.40	0.74	0.47	1.00	0.07	0.31	0.35	0.59	0.61
SA:	0.18	0.21	0.13	0.23	0.07	1.00	0.43	0.34	0.22	0.23
P1:	0.17	0.36	0.34	0.28	0.31	0.43	1.00	-0.24	0.41	0.61
P2:	0.24	0.12	0.34	0.17	0.35	0.34	-0.24	1.00	0.20	0.13
JE:	0.35	0.49	0.28	0.41	0.59	0.22	0.41	0.20	1.00	0.83
YO:	0.46	0.44	0.36	0.29	0.61	0.23	0.61	0.13	0.83	1.00

CB: cold beverages, CF: coffee, TB: tea beverages, CN: cup noodle, RB: rice balls, SA: sandwiches, P1: packed lunches (type1), P2: packed lunches (type2), JE: jelly and YO: yogurt. 32

Agenda

Model description

Bayesian MCMC Estimation

- Model evaluation
- Application results

Conclusion

Conclusion

- The problem of identifying unobserved baseline sales, marketing promotion effects and other specific effects using POS data is considered.
- General state space model
- Bayesian MCMC estimation
- Bayesian predictive information criterion is utilized.
- The unobserved baseline sales, marketing promotion effects and other specific effects are estimated simultaneously.

Thank you for your attention