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What is “Exact” Discrete Inference?

• Use exact small-sample distributions (e.g., binomial), rather
than large-sample approximations (e.g., normal), to obtain
P-values and confidence intervals.

• For contingency tables, best known is “Fisher’s exact test”
for 2×2 tables, which conditions on row and column
margins and uses hypergeometric dist. to get P-value.

• Now a large literature on small-sample inference for
contingency tables, including multi-way tables and models.

• Most literature for large tables uses conditional approach
(Fisher) of eliminating nuisance parameters by conditioning
on sufficient statistics.
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Computations for “Exact” Inference

• Software now readily available, mainly for conditional
approach, such as
StatXact – contingency table methods
LogXact – logistic regression
r × c tables, stratified tables, dependent samples and
clustered data, logistic and multinomial regression

• Almost all exact tests execute within a few seconds when
n < 30, but computations grow exponentially in n.
e.g., 5×6 table, margins (7, 7, 12, 4, 4), (4, 5, 6, 5, 7, 7):
Up to 1.6 billion contingency tables have same margins and
contribute to exact tests.

• For cases that are infeasible, fast and precise Monte Carlo
approximations available.
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“Exact” Inference is not Exact in terms of Error Rates

• For a parameter θ, H0: θ = θ0, let T = test statistic, tobs =
observed value, P-value = Pθ0

(T ≥ tobs), nominal P (Type I
error) = 0.05 (i.e., reject H0 when P-value ≤ 0.05).

• Let 95% confidence interval (CI) be set of θ0 for H0: θ = θ0

such that P-value > .05.

– Because of discreteness, error probabilities do not exactly
equal nominal values.

ex.: If possible P-values for exact distribution are 0.031, 0.187,
..., (binomial n = 5, θ0 = 0.50) then actual size = 0.031.
For CI, inverting test with actual size ≤ .05 for all θ0 guarantees
actual coverage probability ≥ 0.95.

– Inferences are conservative –
actual error probabilities ≤ 0.05 nominal level.
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Outline

• For small n, large-sample methods may work poorly yet
small-sample ‘exact’ methods may be very conservative
(and both true for larger n than you’d expect).

• Example: Small-sample CI for a binomial proportion

• Randomization and fuzzy inference for eliminating
conservatism while maintaining exactness

• Quasi-exact inferences based on mid P-value

• Simple adjustments of popular large-sample CIs for
proportions work well for small samples also

• Based partly on paper with Anna Gottard, Univ. of Firenze
(to appear, Comput. Statist. & Data Anal., 2007)
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Example: T is binomial (n, π), π̂ = T/n

Consider the popular 95% CI

π̂ ± 2.0

√

π̂(1−π̂)
n

Called Wald CI, since based on inverting Wald test;
i.e. values in CI are π0 for H0: π = π0 satisfying

|π̂−π0|√
π̂(1−π̂)/n

≤ 2.0

At a fixed π, actual coverage probability equals sum of
(

n
t

)

πt(1 − π)n−t

for all t such that CI contains π. (Figure: n = 15)
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Small-sample CI

Best known small-sample ‘exact’ CI based on inverting binomial
test (Clopper and Pearson, 1934)

Uses tail method: Invert two separate one-sided tests each of
size ≤ 0.025. (P-value = double the minimum tail probability.)
Endpoints are solution (πL, πU ) to

n
∑

k=tobs

(

n

k

)

πk
L(1 − πL)n−k = 0.025

and
tobs
∑

k=0

(

n

k

)

πk
U (1 − πU )n−k = 0.025
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Discreteness and conservatism

• Discreteness implies finite set of possible P-values, not
usually including 0.05, and actual coverage probability (i.e.,
sum of

(

n
t

)

πt(1 − π)n−t for all t such that CI contains π)
cannot normally achieve exactly 0.95.

• Actual coverage prob. ≥ nominal coverage prob.

• If T has cdf F (t; θ), conservatism results from distribution of
F (T ; θ) (and P -value) stochastically larger than uniform
(Casella and Berger 2001, pp. 77, 434)

• Actual coverage prob varies for different θ values and is
unknown in practice.
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Randomizing Eliminates Conservatism in Exact Tests

• In theory, (see, e.g., Lehmann) can set up critical function
φ(t) for the probability of rejecting the null hypothesis

– φ(t) = 1 for t inside rejection region,
– φ(t) = 0 for t outside rejection region,
– φ(t) on boundary of rejection region, such that size

equals desired value.

ex. Suppose T is bin(5, π), H0: π = 0.50, Ha: π > 0.50,

Under H0, P (T = 5) = 0.031, P (T = 4) = 0.156.

So, if φ(5) = 1, φ(4) = 0.12, then

P(reject H0 | H0 true) = 0.031 + 0.12(0.156) = 0.05.
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Randomized P-value and CI

• For testing H0 : θ = θ0 against Ha : θ > θ0 using T , a
randomized test corresponds to using P-value

Pθ0
(T > tobs) + U × Pθ0

(T = tobs)

where U is a uniform(0,1) random variable.
• To construct CI with coverage probability 0.95,

PθU
(T < tobs) + U × PθU

(T = tobs) = 0.025

and

PθL
(T > tobs) + (1 − U) × PθL

(T = tobs) = 0.025.
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Use randomized methods in practice?

• Randomized CI suggested by Stevens (1950), for binomial
parameter

• Pearson (1950): Statisticians may come to accept
randomization after performing experiment just as they
accept randomization before the experiment.

• Stevens (1950): “We suppose that most people will find
repugnant the idea of adding yet another random element to
a result which is already subject to the errors of random
sampling. But what one is really doing is to eliminate one
uncertainty by introducing a new one. ... It is because this
uncertainty is eliminated that we no longer have to keep ‘on
the safe side’, and can therefore reduce the width of the
interval.”
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Fuzzy Inference

To avoid arbitrariness of picking random number, Geyer and
Meeden (2005) suggested fuzzy inference.

• For H0 : θ = θ0, construct critical function φ(t, θ0) having
desired size α = 0.05.

• For fixed t, [1 − φ(t, θ)] is fuzzy confidence interval over
space of θ, and for given θ, [1 − φ(T, θ)] has unconditional
coverage probability 0.95.

• Geyer and Meeden provided UMPU fuzzy inference, but
computationally complex.

• Given t, plot fuzzy CI to portray inference while
guaranteeing desired coverage probability. (Example for
binomial with n = 10, tobs = 0, 1, 2, 3, 4, 5)
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Fuzzy 95% CI: Geyer-Meeden (- -) Agresti-Gottard (—)
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Alternative but simpler fuzzy CI

• Core = set of θ for which [1 − φ(t, θ) = 1].

• Support = set of θ for which [1 − φ(t, θ) > 0].
• Agresti and Gottard (2005): Directly generalize Stevens

(1950) randomized CI to fuzzy CI for exponential family

– As U increases from 0 to 1, lower and upper endpoints
are monotonically increasing.

– U = 0: Lower bound = lower bound from conservative CI.
– U = 1: Upper bound = upper bound from conservative CI.
– Support: Ordinary conservative confidence interval

(e.g., Clopper–Pearson CI for binomial).
– Core: θ values that fall in every possible randomized CI –

goes from θL when U = 1 to θU when U = 0.
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Mid-P Quasi-Exact Approach

• Mid-P-value (Lancaster 1949, 1961): Count only
(1/2)Pθ0

(T = tobs) in P-value; e.g., for Ha : θ > θ0,

Pθ0
(T > tobs) + (1/2)Pθ0

(T = tobs).

• Unlike randomized P-value, depends only on data.
• Under H0, ordinary P-value stochastically larger than

uniform, E(mid-P-value)= 1/2.
• Sum of right-tail and left-tail P-values is 1 + Pθ0

(T = tobs) for
ordinary P-value, 1 for mid-P-value.

• Lancaster: Like uniform P-value for continuous r.v., can
easily combine for several independent samples.

• Mid-P-value not probability of particular sample set, does
not satisfy Pθ0

(P-value ≤ 0.05) ≤ 0.05.
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CI based on mid-P-value

• Mid-P CI based on inverting tests using mid-P-value:

PθL
(T > tobs) + (1/2) × PθL

(T = tobs) = 0.025.

PθU
(T < tobs) + (1/2) × PθU

(T = tobs) = 0.025.

• Coverage prob. not guaranteed ≥ 0.95, but mid-P CI tends
to be a bit conservative.

• R function (A. Gottard) for mid-P binomial CI at
www.stat.ufl.edu/∼aa/cda/software.html

• For binomial, how do Clopper–Pearson and mid-P CI
behave as n increases?
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Clopper-Pearson (—) and mid-P (- -) CIs for π = 0.50
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Quartiles of coverage probabilities, when π uniform, for

C-P (- -) and mid-P (—) CIs
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u-P-value and related CI

• u-P CI based on inverting tests using u-P-value:

PθL
(T > tobs) + u × PθL

(T = tobs) = 0.025.

PθU
(T < tobs) + u × PθU

(T = tobs) = 0.025.

• Now, u fixed rather than random.

• For given discrete problem, could choose u so that mean
coverage (for some distribution over parameter) = 0.95.

• For binomial, coverage pictures (as function of π) look like
mid-P CI, but with occasional poor coverages.
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Improving Large-Sample CIs for Use with Small n

• Usual large-sample tests are Wald, likelihood-ratio, score

• Simplest approach is Wald CI, θ̂± 2.0(std. error)

– Proportion: π̂ ± 2.0

√

π̂(1−π̂)
n

• Wald methods for proportions, differences of proportions,
etc., usually poor, especially near boundary of parameter
space

• Closer to nominal levels by inverting score test

Proportion (Wilson 1927):

|π̂ − π0|
√

π0(1 − π0)/n
≤ 2.0
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Score CI vs. Clopper-Pearson CI (n = 5)
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95% CIs for a binomial proportion

Wald CI: π̂ ± 2.0
√

π̂(1 − π̂)/n

Score CI: Inverting |π̂ − π0|/
√

π0(1 − π0)/n = 2.0,

π̂ + 2
n ± 2

√

[π̂(1 − π̂) + 1/n]/n

1 + 4/n

Wald method simplest to explain, but poor performance

Score CI better, but messy to explain when teaching basic
statistics in classroom or consulting environment
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Simpler way to view the score CI

Score CI has form M ± 2s with

M =

(

n

n + 4

)

π̂ +

(

4

n + 4

)

1

2
=

tobs + 2

n + 4

s2 =
1

n + 4

[

π̂(1 − π̂)

(

n

n + 4

)

+
1

2

1

2

(

4

n + 4

)]
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Adjusted Wald CI approximates score CI

For 95% CI, this suggests adjusted CI

π̃ ± 2.0
√

π̃(1 − π̃)/ñ

with π̃ = tobs+2
n+4 and ñ = n + 4

Midpoint same as 95% score CI, but wider (Jensen’s inequality)
In fact, simple adjustments of Wald improve performance
dramatically:

– Proportion: Add 2 successes and 2 failures before computing
Wald CI (Agresti and Coull 1998)

– Difference: Add 2 successes and 2 failures before computing
Wald CI (Agresti and Caffo 2000)

– Paired Difference: Add 2 successes and 2 failures before
computing Wald CI (Agresti and Min 2005)
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Clopper-Pearson, Wald, and “Add 2+2” CI (n = 10)
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Some comparisons (95% CI)

• For all n tremendous improvement for π near 0 or 1.

e.g., Brown, Cai, and Das Gupta (2001):
n0 required such that cov. prob. ≥ 0.94 for all n ≥ n0 is

π Wald Adjusted

0.01 ??
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Some comparisons (95% CI)

• For all n tremendous improvement for π near 0 or 1.

e.g., Brown, Cai, and Das Gupta (2001):
n0 required such that cov. prob. ≥ 0.94 for all n ≥ n0 is

π Wald Adjusted

0.01 7963 1
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Some comparisons (95% CI)

• n0 required such that cov. prob. ≥ 0.94 for all n ≥ n0 is
π Wald Adjusted

0.01 7963 1
0.10 646 11
0.20 292 89
0.30 245 78
0.50 194 94
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Comments

• Poor performance of Wald intervals due to centering at π̂,
(π̂1 − π̂2) rather than being too short.

• Wald CI has greater length than adjusted intervals unless
parameters near boundary of parameter space.

• Shrinkage form of adjusted intervals suggests intervals
resulting from Bayesian approach also perform well in a
frequentist sense.

Single proportion: Brown et al. (2001)

Comparing proportions: Agresti and Min (2005)
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Sample size guidelines (well ... )

Finally, an embarrassing difficulty with ordinary large-sample
Wald CIs is sample size guidelines for their use.

Advantage of add two successes and two failures adjusted
intervals is decent performance for (nearly) all n.

In fact, you don’t need any data !!! :-)

Single-sample: π̃ = (tobs + 2)/(n + 4) = 2/4

95% adjusted CI is .5 ± 2
√

(.5)(.5)/4, or (0, 1).

Two-sample: π̃1 = 1/2 and π̃2 = 1/2
95% adjusted CI is

(.5 − .5) ± 2
√

[(.5)(.5)/2] + [(.5)(.5)/2], or (−1,+1).
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