Motion texture modelling and multi-parameter auto-models

Jian-Feng YAO

Institut de Recherche MAthématique de Rennes, France

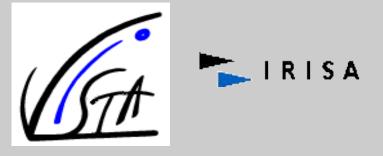
1

Cherry Bud Workshop 2006, Keio University

Collaborators

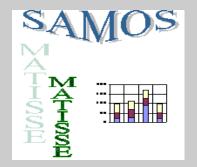
• Patrick BOUTHEMY, Gwënaelle PIRIOU

VISTA Project, INRIA/IRISA, Rennes



• C. Hardouin

SAMOS, Université de Paris 1



« Building models from data »

- I. *Data* : motion computation, motion textures
- **II.** *Models* : mixed-state auto-models
- **III.** More generally: multi-parameter auto-models
- **IV.** Back to the data : some experiments

I. Data : motion computation from videos

- Current challenges of video analysis in computer vision
 - Automated analysis via « dynamic content »
 - Applications: videos indexing, video summarizing ...

a). Motion computation

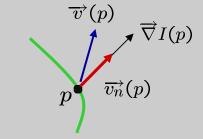
- Happening : dynamic content conveys much information
- Goal: Representation & modelisation of motion mesures
 - to cope with a large diversity of dynamic contents from videos
 - suited for detection, classification or recognition of dynamic contents

*** Warning : Quite almost all sample images are under copyright ***

More details

- I(p,t) = intensity value at pixel p and time t
- A video = { $I(p,t), p \in S, t=1,...,T$ }
- Unkown: vector field of motion $\{v(p,t)\}$
 - Optical flow: only part of information recovered
 - Inverse problem with missing information: non unique theory
 - Here: we choose the *measurable*, normal projections

$$\overrightarrow{v_n}(p) = -\frac{I_t(p)}{\|\overrightarrow{\nabla}I(p)\|} \cdot \frac{\overrightarrow{\nabla}I(p)}{\|\overrightarrow{\nabla}I(p)\|}$$



b). Scales of motions

• 1. Global motions

- Camera, zoom,
- Model: parametric 2D polynomials

Standard choice :

$$\mathbf{w}_{\theta}(p) = \begin{pmatrix} a_1 + a_2 x + a_3 y \\ a_4 + a_5 x + a_6 y \end{pmatrix}$$

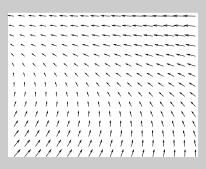
with
$$p = (x, y)$$
 et $\theta = (a_1, a_2, a_3, a_4, a_5, a_6)$

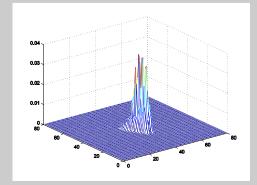
References:

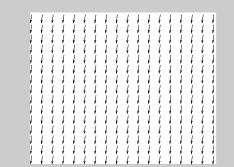
Odobez J.M. and P. Bouthemy, 1995. *IEEE. Trans. Pattern Analysis Mach. Intelligency.*

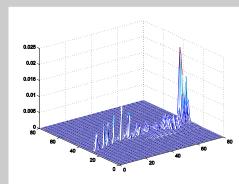
Global motions

$\mathbf{w}_{\theta_t}(p)$









Scale of motions

2. Local motions (scene depedent)

Approximation by locally smoothing the normal projections $\{v_n(p,t)\}$ [Irani *et al.* 92], [Odobez et Bouthemy 94]

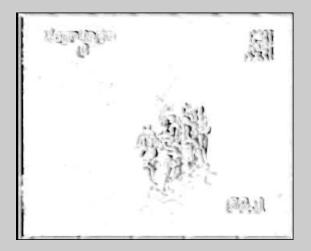
$$v_{res}(p,t) = \frac{\sum_{q \in \mathcal{F}(p)} \|\nabla I(q,t)\|^2 \cdot |v_n^{res}(q,t)|}{N_{\mathcal{F}(p)} \cdot \max\left(G_m^2, \frac{1}{N_{\mathcal{F}(p)}} \sum_{q \in \mathcal{F}(p)} \|\nabla I(q,t)\|^2\right)}$$

with
$$v_n^{res}(p,t) = -\frac{DFD_{\hat{\theta}_t}(p)}{\|\nabla I(p,t)\|}$$

$$DFD_{\widehat{\theta}_t}(p) = I(p + w_{\widehat{\theta}_t}(p), t+1) - I(p, t)$$

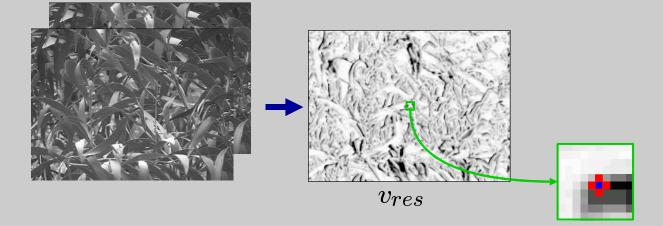
Local motions

Example:

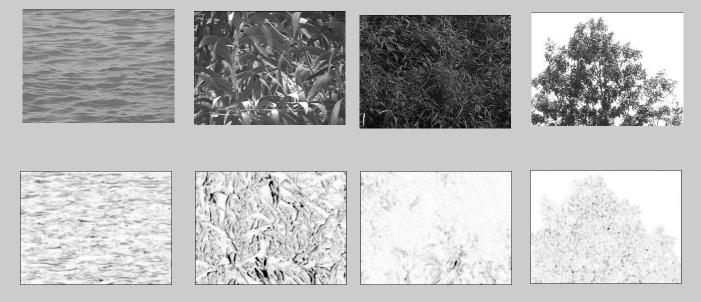


c). Focus: modelling of motion textures

- Images as well as motions are *spatially homogeneous*
- Modelling of spatial dependence



Motion textures: examples

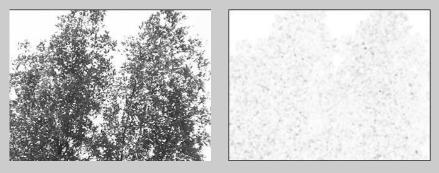


Aims:

- spatial modelling of these motion measurements
- Possibly: sptio-temporal modelisation (dynamic spatial models)

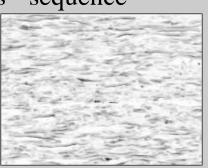
IV. Experiements with Gaussian mixed-state auto-models

- Isotropy & anisotropy
 - Trees sequence



Modèle complet	a $ $	b	c_1	<i>c</i> ₂
	-5.8049	3.0435	3.0568	2.9541
Modèle isotrope	a	b	c	
	-5.7813	3.0441	3.0000	
				_

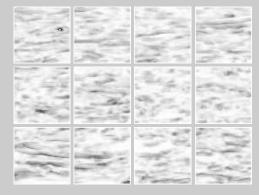
Sea-waves sequence



Modèle complet	a	b	c_1	<i>c</i> ₂
	-7.9412	0.3697	5.7920	1.4219

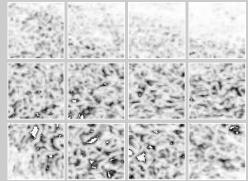
Experiments:

- Spatial stationarity
 - Sea-Waves sequence



	a	b	c_1	<i>c</i> 2
<i>B</i> ₁	-9.30205	0.29694	5.87898	2.13676
<i>B</i> ₂	-9.39952	0.32878	5.46864	2.72478
B_3	-9.04816	0.34152	7.23150	1.14051
B_4	-9.60199	0.32897	7.33581	1.36095
B_5	-8.91001	0.37100	5.65410	2.04668
B_6	-7.35726	0.39963	5.74128	1.10768
B7	-7.57434	0.43946	5.24632	1.71629
B_8	-7.47818	0.58794	5.08877	1.85792
B_9	-8.30468	0.36271	6.36993	1.18090
B_{10}	-7.61364	0.30174	6.41590	0.70918
B_{11}	-8.86299	0.28625	7.59329	0.65160
B ₁₂	-8.87836	0.32870	5.83942	1.85034
Écart-type	0.8220	0.0830	0.8403	0.6203
B ₁₂ Écart-type				

River sequence



	·			
	a	Ь	c_1	<i>c</i> 2
<i>B</i> ₁	-10.02623	0.36189	4.76893	3.48537
B ₂	-8.39303	0.44575	5.71362	1.93230
B_3	-7.10429	0.69088	3.51732	3.46525
B_4	-5.69048	0.87768	3.22945	2.40213
B_5	17.13015	0.11962	21.95125	10.82028
B_6	8.17958	0.11417	13.38513	7.91897
B7	8.27053	0.10669	13.18007	8.31032
B8	8.18484	0.12814	13.56948	8.01166
B_9	-11.78903	0.11195	9.79198	1.06964
B ₁₀	8.04156	0.07512	13.68093	7.89088
B_{11}	-3.50982	0.09938	11.51522	-4.15503
B ₁₂	-12.91980	0.11302	4.74714	5.13039
Écart-type	10.1118	0.2690	5.6741	4.1530

Some conclusions

- Random field modelling for motion measurements is just *starting*.
- Mixed-state observations are frequent,
 - Need adapted solutions: time series, Markov chains for these ?
 - Can avoid the use of a hidden process
- New: multi-parameter auto-models
 - In particular, provide a rigourous solution for mixed-state observations
- Further researches:
 - An estimation theory
 - > Dynamic mixed-state auto-models :
 - Motion measurements, daily rainfall data, ...

Motion texture modelling and multi-parameter auo-models (Part II.)

Jian-feng YAO

Joint works with P. BOUTHEMY, G. PIRIOU and C. HARDOUIN

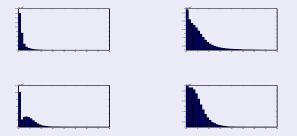
Cherry Bud Workshop 2006, Building Models from Data

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ④ ●

Outline Of Part II.

- II. Motion measurements are mixed
- III. More generally: multi-parameter auto-models
- IV. Back to the data: some experiments

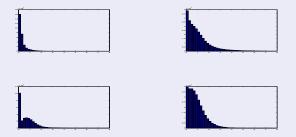
Measurements from motion textures: histograms



Top to bottom, and left to right: grass, foliage, trees and sea-waves.

◆□> ◆□> ◆三> ◆三> ● □ ● ○ ○ ○

Measurements from motion textures: histograms



Top to bottom, and left to right: grass, foliage, trees and sea-waves.

Observations are mixed :

- A prominent peak at the origin:
 - \longrightarrow regions without motion
- a continuous component
 - \longrightarrow actual motion in the images

Problem :

• Spatial model for motion mixed-state motion measurements

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Problem :

• Spatial model for motion mixed-state motion measurements

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

• Solved as a Gaussian specification of a general setting

Conditionally specified models

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Construction of a random field

- Random system $\{X_i, i \in S\}$, $S = \{1, \ldots, n\}$
- Its probability distribution $\mu(dx)$ to be constructed

Conditionally specified models

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Construction of a random field

- Random system $\{X_i, i \in S\}$, $S = \{1, \ldots, n\}$
- Its probability distribution $\mu(dx)$ to be constructed
- For a *site i*, let

$$\mu_i(x_i|\cdot) = \mu_i(x_i|x_j, j \neq i) = \text{p.d.f of } X_i \mid \{X_j = x_j, j \neq i\} ,$$

Conditionally specified models

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Construction of a random field

- Random system $\{X_i, i \in S\}$, $S = \{1, \ldots, n\}$
- Its probability distribution $\mu(dx)$ to be constructed
- For a site i, let

$$\mu_i(x_i|\cdot) = \mu_i(x_i|x_j, j \neq i) = \text{p.d.f of } X_i \mid \{X_j = x_j, j \neq i\} ,$$

- 2D-Markovian construction:
 - **1** Specify the family $\{\mu_i(x_i|\cdot)\}$;
 - 2 Check their consistency

Besag's auto-models (1974)

• Assume the positivity condition,

$$\mu(dx) = P(x)dx , \qquad P(x) = Z^{-1} \exp Q(x) ,$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Besag's auto-models (1974)

• Assume the positivity condition,

$$\mu(dx) = P(x)dx , \qquad P(x) = Z^{-1} \exp Q(x) ,$$

Construction based on:

[A] The spatial dependence is pairwise only

$$Q(x) = \sum_{i \in S} G_i(x_i) + \sum_{\{i,j\}} G_{ij}(x_i, x_j) .$$

Besag's auto-models (1974)

Assume the positivity condition,

$$\mu(dx) = P(x)dx , \qquad P(x) = Z^{-1} \exp Q(x) ,$$

Construction based on:

[A] The spatial dependence is pairwise only

$$Q(x) = \sum_{i \in S} G_i(x_i) + \sum_{\{i,j\}} G_{ij}(x_i, x_j) .$$

[B] For each site *i*, the conditional distribution $\mu_i(x_i|\cdot)$ belongs to a one parameter exponential family:

$$\log \mu_i(x_i|\cdot) = A_i(\cdot)B_i(x_i) + C_i(x_i) + D_i(\cdot) , \ A_i(\cdot) \in \mathbb{R}, \ B_i(x_i) \in \mathbb{R}.$$

Theorem

[Besag, 1974] Assume the random field probability distribution μ and its energy function Q(x) satisfy Conditions **[A]-[B]**. Then, there are for all $i, j \in S$, $i \neq j$, a family of real constants $\alpha_i \in \mathbb{R}$ and β_{ij} such that

$$A_i(\cdot) = \alpha_i + \sum_{j \neq i} \beta_{ij} B_j(x_j) .$$
⁽¹⁾

Consequently the set of potentials is given by

$$G_i(x_i) = \alpha_i B_i(x_i) + C_i(x_i) , \qquad (2)$$

$$G_{ij}(x_i, x_j) = \beta_{ij} B_i(x_i) B_j(x_j) .$$
(3)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• "Nicely" applied to Gaussian, exponential, Gamma and Poisson schemes auto-normal, auto-exponential, auto-Poisson models

- Unfortunately, this result inapplicable to mixed-state data!
- Reason: motion measurements belong to a exponential family with more parameters!

Need extensions!

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Mixed-state distributions

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

A Gaussian mixed-state distribution

- A model Z for **one** motion measure:
 - With probability p, Z = 0
 - With probability 1 p, $Z = |\mathcal{N}(0, \sigma^2)|$ with density

$$g_{s}(x) = rac{2}{\sigma\sqrt{2\pi}}e^{-rac{x^{2}}{2\sigma^{2}}} = g_{s}(0)e^{-sx^{2}}, \quad s = (2\sigma^{2})^{-1}.$$

Mixed-state distributions

A Gaussian mixed-state distribution

- A model Z for **one** motion measure:
 - With probability p, Z = 0
 - With probability 1 p, $Z = |\mathcal{N}(0, \sigma^2)|$ with density

$$g_s(x) = rac{2}{\sigma\sqrt{2\pi}}e^{-rac{x^2}{2\sigma^2}} = g_s(0)e^{-sx^2}, \quad s = (2\sigma^2)^{-1}.$$

• Take the reference measure on $E = \{0\} + (0, \infty)$:

$$m(dx) = \delta_0(dx) + \lambda(dx) ,$$

where $\delta_0 = \text{Dirac}$ measure, $\lambda = \text{Lebesgue}$

Mixed-state distributions

A Gaussian mixed-state distribution

- A model Z for **one** motion measure:
 - With probability p, Z = 0
 - With probability 1 p, $Z = |\mathcal{N}(0, \sigma^2)|$ with density

$$g_s(x) = rac{2}{\sigma\sqrt{2\pi}}e^{-rac{x^2}{2\sigma^2}} = g_s(0)e^{-sx^2}, \quad s = (2\sigma^2)^{-1}.$$

• Take the reference measure on $E = \{0\} + (0, \infty)$:

$$m(dx) = \delta_0(dx) + \lambda(dx) ,$$

where $\delta_0 = \text{Dirac}$ measure, $\lambda = \text{Lebesgue}$

• Therefore, Z has a density w.r.t. m(dx),

$$f_{\theta}(x) = p\delta(x) + (1-p)\delta^*(x)g_s(x).$$

Exponential family with 2 parameters!

Rewriting:

$$\begin{aligned} \hat{b}(x) &= p\delta(x) + (1-p)\delta^*(x)g_s(x) \\ &= \exp\left[-\delta^*(x)\log\frac{p}{(1-p)g_s(0)} - sx^2 + \log p\right] \\ &= \exp\left[\langle \theta, B(x) \rangle + \log p\right] \end{aligned}$$

with

$$heta = (heta_1, heta_2)^T = \left(\log \frac{(1-p)g_s(0)}{p}, s\right)^T$$
, $B(x) = (\delta^*(x), -x^2)^T$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Exponential family with 2 parameters!

Rewriting:

$$\begin{aligned} \hat{f}_{\theta}(x) &= p\delta(x) + (1-p)\delta^*(x)g_s(x) \\ &= \exp\left[-\delta^*(x)\log\frac{p}{(1-p)g_s(0)} - sx^2 + \log p\right] \\ &= \exp\left[\langle \theta, B(x) \rangle + \log p\right] \end{aligned}$$

with

$$heta = \left(heta_1, heta_2
ight)^T = \left(\log rac{(1-p)g_s(0)}{p}, s
ight)^T, \quad B(x) = \left(\delta^*(x), -x^2
ight)^T.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

• Name: positive mixed-state Gaussian distribution

III. Multi-parameters auto-models

うして ふぼう ふほう ふほう しょうくの

Assume

• The positivity condition for the random field

$$\mu(dx) = P(x)dx , \qquad P(x) = Z^{-1} \exp Q(x) .$$

[A] The spatial dependence is pairwise only

$$Q(x) = \sum_{i \in S} G_i(x_i) + \sum_{\{i,j\}} G_{ij}(x_i, x_j) .$$

[B2] For each site *i*, the conditional distribution $\mu_i(x_i|\cdot)$ belongs to a *multi-parameter exponential family*:

 $\log \mu_i(x_i|\cdot) = \langle A_i(\cdot), B_i(x_i) \rangle + C_i(x_i) + D_i(\cdot) , \ A_i(\cdot) \in \mathbb{R}^d, \ B_i(x_i) \in \mathbb{R}^d.$

III. Multi-parameters auto-models

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Assume

• The positivity condition for the random field

$$\mu(dx) = P(x)dx , \qquad P(x) = Z^{-1} \exp Q(x) .$$

[A] The spatial dependence is pairwise only

$$Q(x) = \sum_{i \in S} G_i(x_i) + \sum_{\{i,j\}} G_{ij}(x_i, x_j) .$$

[B2] For each site *i*, the conditional distribution $\mu_i(x_i|\cdot)$ belongs to a *multi-parameter exponential family*:

 $\log \mu_i(x_i|\cdot) = \langle A_i(\cdot), B_i(x_i) \rangle + C_i(x_i) + D_i(\cdot) , \ A_i(\cdot) \in \mathbb{R}^d, \ B_i(x_i) \in \mathbb{R}^d.$

[C] The family of sufficient statistics $\{B(x_i)\}$ is regular in the sense that for all $i \in S$, $\operatorname{Span}\{B_i(x_i), x_i \in E\} = \mathbb{R}^d$.

Multi-parameters auto-models

Theorem

[Hardouin and Y.,2005] Assume that the random field probability distribution μ of (6) and its energy function Q(x) satisfy Conditions [A]-[B2]-[C]. Then, there are for all $i, j \in S$, $i \neq j$, a family of vectors $\alpha_i \in \mathbb{R}^d$ and a family of $d \times d$ matrices β_{ij} satisfying $\beta_{ij} = \beta_{ji}^T$, such that

$$A_i(\cdot) = \alpha_i + \sum_{j \neq i} \beta_{ij} B_j(x_j) .$$
(4)

Consequently the set of potentials is given by

$$G_i(x_i) = \langle \alpha_i, B_i(x_i) \rangle + C_i(x_i) , \qquad (5)$$

$$G_{ij}(x_i, x_j) = B_i^{\mathsf{T}}(x_i)\beta_{ij}B_j(x_j) .$$
(6)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Such a model is called a multi-parameter auto-model
- Condition [C] is specific to the multi-parameter case

IV. Back to the data

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Mixed-state auto-models for motion textures

Start by assuming

 $\mu_i(x_i|\cdot) \in \text{ family of mixed-state Gaussian } \{f_{\theta_i(\cdot)}(x_i)\}$

where

$$\theta_i(\cdot) = \theta_i(x_j, j \neq i).$$

1

That is,

 $\log \mu_i(x_i|\cdot) = \langle \theta_i(\cdot), B(x_i) \rangle + \log p_i(\cdot) , \quad B(x) = (\delta^*(x), -x^2).$

IV. Back to motion textures

うして ふぼう ふほう ふほう しょうくの

Mixed-state auto-models for motion textures

 by the Theorem, there are a family of vectors α_i = (a_i, b_i) ∈ ℝ² and 2 × 2 matrices

$$eta_{ij} = egin{pmatrix} {\sf c}_{ij} & {\sf d}_{ij} \ {\sf d}_{ij}^* & {\sf e}_{ij} \end{pmatrix} \;,$$

satisfying $\beta_{ij} = \beta_{ji}^T$, such that

$$heta_i(\cdot) = lpha_i + \sum_{j \neq i} eta_{ij} B(x_j) \; .$$

Moreover, the associated energy function is given by

$$Q(x_1,...,x_n) = \sum_{i \in S} \left[a_i \delta^*(x_i) - b_i x_i^2 \right] + \sum_{\{i,j\}} (\delta^*(x_i), -x_i^2) \beta_{ij} (\delta^*(x_j), -x_j^2)^T$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A simple specification with the 4NN system

- Sites $S = \{1, ..., n\} = [1, M] \times [1, N]$
- each *i* has 4 neighbours

$$\{i_e = i + (1,0), i_o = i - (1,0), i_n = i + (0,1), i_s = i - (0,1)\}$$

▲ロト ▲帰 ト ▲ヨト ▲ヨト 三三 - のへぐ

A simple specification with the 4NN system

- Sites $S = \{1, ..., n\} = [1, M] \times [1, N]$
- each *i* has 4 neighbours

$$\{i_e = i + (1,0), i_o = i - (1,0), i_n = i + (0,1), i_s = i - (0,1)\}$$

• assume also space homogeneity, spatial cooperation

A simple specification with the 4NN system

- Sites $S = \{1, ..., n\} = [1, M] \times [1, N]$
- each *i* has 4 neighbours

$$\{i_e = i + (1,0), i_o = i - (1,0), i_n = i + (0,1), i_s = i - (0,1)\}$$

- assume also space homogeneity, spatial cooperation
- The model reduced to 4 parameters

$$a, b, c_1, c_2$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

A simple specification with the 4NN system

- Sites $S = \{1, ..., n\} = [1, M] \times [1, N]$
- each i has 4 neighbours

$$\{i_e = i + (1,0), i_o = i - (1,0), i_n = i + (0,1), i_s = i - (0,1)\}$$

- assume also space homogeneity, spatial cooperation
- The model reduced to 4 parameters

$$a, b, c_1, c_2$$

• Estimation by the pseudo-likelihood method Besag, (1975); Guyon (1989).