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The Model 
 

We presume that the births in human 
populations follow the Poisson 
distribution with λ as a fixed birthrate. 
The proportions of male and female 
offspring are denoted by p and q 
respectively. As the two types of births 
occur independently we have 
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The joint probability mass function of 
the births is given by  
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It is, further, assumed that λ follows the 
Pearson’s type III distribution as given 
below 
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Here μ and k denote the average number 
of births per mother and a constant 
respectively. 
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Case (I). BIVARIATE COMPOUND 
POISSON DISTRIBUTION
 

These assumptions lead us to the 
probability mass function of the bivariate 
compound Poisson distribution (also 
known as a bivariate negative binomial 
distribution), which is mentioned below: 
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where x, y = 0, 1, 2, ….          (3) 

 
This appears in a reparameterized form 
of the bivariate compound Poisson 
distribution referred to by Arbous and 
Kerrich (1951).  
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The marginal distributions of (3) are 
obtained as 
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The conditional distribution of Y given 
X is given below: 
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This yields that 
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and 
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Similarly, using  ( )yYxXP ==  we derive 
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The Operating Characteristic for 
“Birth Proneness” 
 
This may be defined as the probability of 
a mother with a known number of male 
offspring (x) to have α or more female 
offspring (Y). This is given below:  
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Likewise, we define ( )yYXP =≥ β  where β 
denotes the given number of male 
offspring. 
 

The formula for the product moment 
correlation coefficient in terms of the 
parameters of the model (3) is given by 
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This is given by Rao, Mazumdar, Waller 
and Li (1973). 
 
 

(1) Applications of the Model 
 

To examine the adequacy of model (3) 
we consider the bivariate distribution of 
births occurred in France, which is 
referred to by James (1975). 
 
 
 

The univariate negative binomial 
distribution (NBD) is fitted to the 
distribution of births of male and female 
offspring taken together. The adequacy 
of the model examined by the chi-square 
test indicates that the model provides a 
good fit to the observed distribution.  
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The maximum likelihood method used 
for the estimation of the parameters 
yields the following estimates:  
 

39168.1ˆ =μ , , 18764.1ˆ =k 5164.0ˆ=p  and . 48356.0ˆ =q
 

Note that the proportion of male is 
significantly different from 0.5 at 5% 
level of significance. 
 
 

The equation (13) provides the value of 
the product moment correlation 
coefficient as 0.36919.  
 
It is included in the 95% confidence 
limits for the Pearson’s correlation 
coefficient (0.36063), which are 
computed as 0.33289 (lower) and 
0.38774 (upper).  
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The model (3) describes the bivariate 
distribution fairly well as judged by the 
chi-square test. The observed and the 
expected frequencies are given in Table 
1.  
 
Further, we obtain the conditional 
expected number of male and female 
offspring on the basis of (6) and (8), 
which are given below: 
 

( ) yyYXE 38628.045877.0 +==  
 

and 
 

( ) xxXYE 35301.041925.0 +==  
 

The results so obtained are given in 
Tables 2 and 3. The values compare 
reasonably well with the observed ones.  
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Next, we find P(Y ≥ α|X = x) and P(X ≥ 
β|Y = y), which are given below. 
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Tables 4 and 5 present the probabilities, 
the observed and the expected number of 
offspring.  
 
The resemblance between the two is very 
good.  
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Table 1. The observed and the expected (inside 
parentheses) number of mothers having x sons and y 
daughters 

X 
Y 

0 1 2 3 4 5 6+ Total 

0 1499 
(1539.81) 

552 
(509.58)

163 
(155.32)

45 
(45.99)

13 
(13.41)

4 
(3.88) 

2 
(1.56)

2278 
(2269.55)

1 506 
(477.14) 

290 
(290.85)

114 
(129.22)

43 
(50.24)

16 
(18.16)

7 
(6.26) 

3 
(3.09)

979 
(974.96)

2 142 
(136.17) 

107 
(120.94)

60 
(70.56) 

30 
(34.01)

15 
(14.66)

7 
(5.87) 

3 
(3.48)

364 
(385.69)

3 37 
(37.75) 

38 
(44.05) 

29 
(31.83) 

19 
(18.30)

11 
(9.16)

6 
(4.18) 

3 
(2.95)

143 
(148.22)

4 10 
(10.31) 

14 
(14.90) 

13 
(12.85) 

11 
(8.58) 

8 
(4.89)

5 
(2.51) 

3 
(2.11)

64 
(56.15) 

5 3 
(2.79) 

6 
(4.81) 

6 
(4.82) 

6 
(3.66) 

5 
(2.34)

3 
(1.33) 

0 
(1.30)

29 
(21.05) 

6+ 1 
(1.01) 

2 
(2.15) 

3 
(2.59) 

3 
(2.33) 

2 
(1.74)

0 
(1.15) 

0 
(1.41)

11 
(12.38) 

Total 2198 
(2204.98) 

1009 
(987.28)

388 
(407.19)

157 
(163.11)

70 
(64.36)

32 
(25.18) 

14 
(14.49)

3868 
(3868.00)
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Table 2: The observed ( x ) and expected 
( ( yYXE = )) number of sons to a mother having 
Y daughters 
 

y x  ( )yYXE =

0 0.482 0.459 
1 0.780 0.845 
2 1.181 1.231 
3 1.713 1.618 
4 2.312 2.004 
5 2.448 2.390 
6 2.273 2.776 

 

 
Table 3: The observed ( y ) and the expected 
( ( x=XYE )), number of daughters to a mother 
having X sons 

x y  ( )x=XYE

0 0.438 0.419 
1 0.710 0.772 
2 1.085 1.125 
3 1.605 1.478 
4 2.114 1.831 
5 2.312 2.184 
6 2.143 2.537 
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Table 4: The observed and the expected 
number of mothers to have β (β = 1, 2, ... , 
6) or more sons when they have Y (y =  0, 1, 
2, ..., 6) daughters 
 
Y 0 1 2 3 4 5 6 
P(X ≥ 1|Y) 
Exp. No. 
Obs. No. 
 

0.32156 
732.50 
779 

0.51062 
499.89 
473 

0.64699 
235.50 
222 

0.74537 
106.59 
106 

0.81632 
52.54 
54 

0.86751 
25.16 
26 

0.90443 
9.95 
10 

P(X ≥ 2|Y) 
Exp. No. 
Obs. No. 
 

0.09703 
221.04 
227 

0.21230 
207.84 
183 

0.33344 
112.37 
115 

0.44824 
64.10 
68 

0.55082 
33.25 
40 

0.63907 
18.53 
20 

0.71302 
7.84 
8 

P(X ≥ 3|Y) 
Exp. No. 
Obs. No. 
 

0.02860 
65.15 
64 

0.07981 
78.13 
69 

0.15050 
54.78 
55 

0.23348 
33.39 
39 

0.32192 
20.60 
27 

0.41031 
11.90 
14 

0.49467 
5.44 
5 

P(X ≥ 4|Y) 
Exp. No. 
Obs. No. 
 

0.00834 
19.00 
19 

0.02827 
27.68 
26 

0.06235 
22.70 
25 

0.11006 
15.74 
20 

0.16911 
10.82 
16 

0.23634 
6.85 
8 

0.30834 
3.39 
2 

P(X ≥ 5|Y) 
Exp. No. 
Obs. No. 
 

0.00243 
5.53 
6 

0.00942 
9.22 
10 

0.02436 
8.87 
10 

0.04826 
6.90 
9 

0.08195 
5.24 
8 

0.12499 
3.62 
3 

0.17610 
1.94 
0 

P(X ≥ 6|Y) 
Exp. No. 
Obs. No. 

0.00072 
1.64 
2 

0.00323 
3.16 
3 

0.00914 
3.32 
3 

0.02006 
2.87 
3 

0.03732 
2.39 
3 

0.06177 
1.79 
0 

0.09365 
0.84 
0 
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Table 5: The observed and the expected 
number of mothers to have α (α = 1, 2, ..., 6) 
or more daughters when they have X (x = 0, 
1, 2, ..., 6) son 
 
X 0 1 2 3 4 5 6 
P(Y ≥ 1|X) 
Exp. No. 
Obs. No. 
 

0.30167 
663.07 
699 

0.48387 
448.23 
457 

0.61853 
239.99 
225 

0.71806 
112.74 
112 

0.79162 
55.41 
57 

0.84599 
27.07 
28 

0.88617 
12.41 
12 

P(Y ≥ 2|X) 
Exp. No. 
Obs. No. 
 

0.08528 
187.45 
193 

0.18928 
190.28 
167 

0.30127 
116.89 
111 

0.41002 
64.37 
69 

0.50958 
35.67 
41 

0.59736 
19.11 
21 

0.67271 
9.42 
9 

P(Y ≥ 3|X) 
Exp. No. 
Obs. No. 
 

0.02353 
51.71 
51 

0.06677 
67.37 
60 

0.12796 
49.65 
51 

0.20155 
31.64 
39 

0.28192 
19.73 
26 

0.36422 
11.66 
14 

0.44471 
6.22 
6 

P(Y ≥ 4|X) 
Exp. No. 
Obs. No. 
 

0.00641 
14.08 
14 

0.02216 
22.36 
22 

0.04976 
19.31 
22 

0.08936 
14.03 
20 

0.13960 
9.77 
15 

0.19821 
6.34 
8 

0.26252 
3.67 
3 

P(Y ≥ 5|X) 
Exp. No. 
Obs. No. 
 

0.00173 
3.80 
4 

0.00706 
7.12 
8 

0.01820 
7.06 
9 

0.03677 
5.77 
9 

0.06360 
4.45 
7 

0.09872 
3.16 
3 

0.14146 
1.98 
0 

P(Y ≥ 6|X) 
Exp. No. 
Obs. No. 

0.00080 
1.76 
1 

0.00218 
2.21 
2 

0.00636 
2.47 
3 

0.01430 
2.24 
3 

0.02716 
1.90 
2 

0.04583 
1.47 
0 

0.07078 
0.99 
0 

 

 
See Sinha, Rai and Kumar (2003) for 
more details. 
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Case (II). THE ZERO-TRUNCATED 
BIVARIATE COMPOUND 
POISSON DISTRIBUTION 
 

In many situations the frequency of the 
zeroth cell of a bivariate distribution is 
either not available or difficult to record.  
For such cases we need to have the zero-
truncated bivariate compound Poisson 
distribution with unequal proportion of 
male and female births. It is defined 
below: 
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The marginal probability mass function 
of X is obtained as follows: 
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where x = 1, 2, …. 
 
 

 
The conditional probability mass 
function of Y given X is derived as 
follows 
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 where y = 1, 2, 3, … and 

 17



 

( ) ( )
( ) ( )

xky

k
q

k
q

xky
yxkxXyYP

+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++Γ+Γ

++Γ
===

μ
μ

μ
μ 1

1  
                                                  (15) 

 
 where x = 1, 2, 3, … and y = 0, 1, 2, 
3, …. 
 

These expressions help obtain the 
conditional mean and variance of Y, 
which are given below: 
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and for x = 1, 2, 3, …, 
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The Operating Characteristic for 
“Birth Proneness” 

 

These are obtained by the Prob(Y ≥ 
α|X=0) and Prob(Y ≥ α|X=x) when x = 1, 
2, …. . These are given below: 
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For x = 1, 2, 3,  . . .  we have 
 

( ) ( )
( )
( )

y

y

xk

k
q

y
yxk

k
q

kx
xXYP ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++Γ

++Γ
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

−
+Γ

−==≥ ∑
−

=

+

μ
μ

μ
μα

α 1

1 1
111

 

                                                                                                                            (21) 
 

 
The formula to obtain the correlation 
coefficient between X and Y in terms of 
the parameters when Z = X + Y follows 
the zero-truncated negative binomial 
distribution is given by 
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See Hamdan (1975) for this result.  
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(2) Applications of the Model 

 

The American births of offspring 
referred to by Rao, Mazumdar, Waller 
and Li (1973) is used to examine the 
adequacy of the model. 
 
The estimates of the parameters are 
obtained by fitting the zero-truncated 
negative binomial distribution to the 
observed distribution of the total births.  
 
 
The distribution of Z = X+Y is given by  
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Its zero-truncated form appears as 
follows: 
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For fitting the model the maximum 
likelihood estimates of the parameters 
are obtained as: 
 

.64649.2ˆ65678.3ˆ == kandμ
. 

 
The model provides a good fit to the 
observed distribution.  
 
For the observed bivariate distribution 
we obtain the proportion of male 
offspring, i.e., an estimate of p, as 0.521 
and the proportion of the female 
offspring, i.e., an estimate of q, as 0.479.  
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The proportion of male offspring is 
found significantly different from 0.5 for 
both one tailed and two tailed tests. 
 
 
This, in turn, reveals that the two 
proportions of births cannot be 
considered equal.  
 

 
 
 
 
On putting these estimates we obtain the 
following bivariate model: 
 
 
( ) ( ) ( )( ) ( )

( ) ( )11)64649.2(
27788.030225.064649.211184.0,

+Γ+ΓΓ
++Γ

===
yx

yxyYxXP
yx

. 
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Table 6. The observed and expected 
number of American families with X 
male offspring and Y female offspring 
 
X |Y 0 1 2 3 4 5 6 7+ Total 
0 - 183 

(154.5) 
90 
(78.3) 

44 
(33.7) 

13 
(13.2) 

3 
(4.9) 

1 
(1.7) 

2 
(0.9) 

336 
(287.2) 

1 211 
(168.1) 

206 
(170.3) 

101 
(110.0)

61 
(57.5) 

17 
(26.6) 

6 
(11.3)

6 
(4.5) 

7 
(2.7) 

615 
(551.0) 

2 96 
(92.6) 

105 
(119.6) 

94 
(93.8) 

46 
(57.8) 

23 
(30.7) 

13 
(14.7)

2 
(6.6) 

3 
(4.7) 

382 
(420.5) 

3 43 
(43.4) 

60 
(68.0) 

67 
(62.8) 

37 
(44.5) 

18 
(26.7) 

11 
(14.3)

9 
(7.1) 

6 
(5.7) 

251 
(272.5) 

4 12 
(18.5) 

37 
(34.2) 

30 
(36.3) 

30 
(29.1) 

22 
(19.5) 

9 
(11.5)

6 
(6.2) 

4 
(5.9) 

152 
(161.2) 

5 6 
(7.4) 

19 
(15.8) 

18 
(19.0) 

10 
(17.0) 

12 
(12.5) 

6 
(8.1) 

4 
(4.8) 

1 
(5.1) 

76 
(89.7) 

6 3 
(2.9) 

8 
(6.9) 

4 
(9.2) 

9 
(9.1) 

4 
(7.4) 

3 
(5.2) 

4 
(3.3) 

0 
(3.9) 

35 
(47.9) 

7+ 3 
(1.8) 

8 
(4.9) 

5 
(7.3) 

4 
(8.3) 

5 
(7.1) 

3 
(8.2) 

3 
(4.5) 

1 
(6.9) 

32 
(49.0) 

Total 374 
(334.7) 

626 
(574.2) 

409 
(416.7)

241 
(257.0)

114 
(143.7)

54 
(78.2)

37 
(38.7) 

34 
(35.8)

1879 
(1879.0)
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The equation (22) gives the correlation 
coefficient as 0.327, but the value of the 
product moment correlation coefficient is 
0.24173, which is significantly different 
from zero at 1% level of significance.  
 
Its 99% confidence limits almost include 
the population correlation coefficient 
based on (22). This illustrates the 
suitability of the theory with the 
observed data.  
 
 
Further, we get from (16) and (17): 
 

( ) .763425.10 ==XYE
 

and for x = 1,2,  . . . 
 

( ) ).64649.2(38482.0 xxXYE +==
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Similarly, we obtain 
 

( ) 866.10 ==YXE  
and for y  = 1, 2, 3, …, 
 

( ) ).64649.2(43318193.0 yyYXE +==
 

Table 7. The expected number, ( )XYE  
and ( )YXE  and the observed average 
number of sons ( x ) and daughters ( y ) 

   
           ___________________________________________________________ 

X or Y      ( )XYE          y           ( )YXE             x  
           ___________________________________________ 

0  1.76  1.73  1.89   1.75 
1  1.40  1.27  1.58   1.52 
2  1.79  1.63  2.01   1.87 
3  2.17  2.11  2.45   2.14 
4  2.56  2.62  2.88   2.86 
5  2.94  2.57  3.31   3.18 
6  3.33  2.80  3.75   3.62 
7  3.71  3.26  4.18   2.37 
8  4.10  3.50  4.61   4.00 
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Operating Characteristics for Birth 
Proneness 
 

Equations (20) and (21) provide 
 

( ) ( )
( )

( ) ( )y

y y
yxYP 27788.0

1
64649.2

64649.2
73152.010

1

1
∑
−

= +Γ
+Γ

Γ
−==≥

α

α  
and 
( ) ( )

( )
( )

( ) ( )y

y

x

y
yx

x
xXYP 27788.0

1
64649.2

64649.2
72212.01

1

1

64649.2

∑
−

=

+

+Γ
++Γ

+Γ
−==≥

α

α . 
 
Similarly, we can obtain  
 

( ) ( )yYXP and 0 =≥=≥ ββ yXP  
 
for y =1, 2, 3, . . .. 
 
For more details see Sinha and Mishra 
(2004). 
 

Case (III). THE SYMMETRICAL 
BIVARIATE COMPOUND 
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POISSON DISTRIBUTION (THE 
SYMMETRICAL BIVARIATE 
NEGATIVE BINOMIAL 
DISTRIBUTION) 
 

In many situations the two proportions 
may not be significantly different and so 
one could safely consider that p = q = 0.5. 
In this case the bivariate compound 
Poisson model may be referred to as the 
symmetrical bivariate compound Poisson 
distribution.  
 
It is more commonly called as the 
symmetrical bivariate negative binomial 
distribution (SBNBD).  
 
 
 
Its probability mass function is given by 
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( ) ( )[ ] ( )[ ]

( ) ( ) ( )11
2/2/),(

+Γ+ΓΓ
++++Γ

===
+

yxk
mkmmkkyxkyYxXP

yxk

    
                                                         (23) 

 
Here, 
 

( ) ( )xk
mk

mxXYE +⎟
⎠
⎞

⎜
⎝
⎛

+
==

      

                                                                                                                         (24) 
 

 
and 

 

( ) ( )
( )

( )xk
mk

mkmxXY +⎥
⎦

⎤
⎢
⎣

⎡

+
+

== 2

2var
    

                                                                                                                  (25) 
 

 
 
 
Similarly, using  ( )yYxXP ==  we derive 
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( ) ( yk
mk

myYXE +⎟
⎠
⎞

⎜
⎝
⎛

+
== )       

                                                           (26) 
and 

 

( ) ( )
( )

( )yk
mk

mkmyYX +⎥
⎦

⎤
⎢
⎣

⎡

+
+

== 2

2var
.          

                                                                                                                                 (27) 
 
 
We obtain  

( ) ( )
( )
( )

y

y

xk

mk
m

y
yxk

mk
m

kx
xXYP ⎟

⎠
⎞

⎜
⎝
⎛
++Γ

++Γ
⎟
⎠
⎞

⎜
⎝
⎛

+
−

+Γ
−==≥ ∑

−

=

+

212
111

1

0

α

α .    
                                                           (28) 
Similarly, one could get an expression 
for ( ).yYXP =≥ β  
Here, 

mk
m

XY +
=ρ .                                     (29) 

In fact, ( )
( )NEN
NEN

XY +
−

=
)var(
)var(ρ  , when  N = X+Y. 
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This is given by Rao, Mazumdar, Waller 
and Li (1973), and Arbous and Sichel 
(1954). Interestingly, Newbold (1927) 
has also referred to the formula.  
 

 
 
 
 
All the above expressions follow directly 
from the case (I), i.e., the bivariate 
compound Poisson distribution by 
putting p = q = 0.5 and μ=2m.  
See Sinha (1985). 
 

 
 
 
 

(3) Applications of the Model 
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Arbous and Sichel (1954) investigated 
the model to describe the phenomenon of 
“absence – proneness” in a group of 
individuals. Its applications in the field 
of doctor-patient consultations in general 
practice, one day industrial absence and 
accidents are studied by Froggatt (1970).  
 
 
 
Sinha (1985) considers the model to 
describe the bivariate distributions with 
male and female offspring for Indian and 
American families. For the Indian 
families the product moment correlation 
turns out to be  
    r = 0.31183. 
 

The SBNBD provides a good fit to the 
observed distributions. It is given in 
Table 10. The parameters are estimated 
by estimating the mean μ (i.e., 2m) and k 
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of the univariate negative binomial 
distribution for the family size by the 
maximum likelihood method. The 
univariate binomial distribution provides 
a good fit to the distribution of the family 
size. Thus we obtain 
 
 m = 2.18766, 81581.3ˆ=k , 36440.0XY =ρ . 
 
 
The 95 percent confidence limits for the 
product moment correlation coefficient 
(0.31183) are 0.24762 (lower) and 
0.37330 (upper). This includes the value 
of XYρ .  This illustrates the suitability of 
the theory with the observed data. 
 
 
 
Next, we get ( ) ( )xxXYE 3644.039048.1 +== . 
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Table 8: The actual ( y ) and predicted 
( )xXYE =   

 

X y  ( )xXYE =

0 1.38750 1.39048 
1 1.91623 1.75488 
2 2.35849 2.11928 
3 2.62931 2.48368 
4 3.09639 2.84808 
5 2.81081 3.21248 
6 3.05882 3.57688 

 

 
 
Also, we get 
 
( ) ( ) ( )

( )
( ) ( )∑

−

=

+

+Γ
++Γ

+Γ
−=≥

1

0

81581.3 26708.0
1
81581.3

81581.3
173292.01

α

α
y

yx

y
yx

x
xyP

. 

 
 
Table 9: The expected and observed 
number  
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X ( xyP 1≥ ) Expected 
number  

Actual 
number  

0 0.69445 111.112 110 
1 0.77606 148.227 151 
2 0.83587 132.903 136 
3 0.87970 102.045 107 
4 0.91183 75.682 80 
5 0.93538 34.609 35 
6 0.95264 32.390 31 
7 0.96529 6.757 7 
8 0.97456 2.924 3 
9 0.98135 2.944 3 
10 0.98633 0.986 1 

 
 

 
 
 
 
 
 
 
Table10: The observed and expected 
frequencies of the Indian data (x: 
daughters, and y: sons). 
 

y 
x 

0 1 2 3 4 5 6 7 8 9 10 Total 

0 50 
(43.04) 

40 
(43.87) 

23 
(28.21) 

9 
(14.61)

3 
(6.65)

2 
(2.78)

3 
(1.09)

 
(0.41) 

 
(0.15) 

 
(0.05)

 
(0.03)

130 
(140.89)
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1 54 
(43.87) 

52 
(56.42) 

34 
(43.82) 

19 
(26.59)

11 
(13.88)

6 
(6.53)

5 
(2.86)

1 
(1.18) 

 
(0.47) 

 
(0.18)

 
(0.10)

182 
(195.90)

2 29 
(28.21) 

47 
(43.82) 

43 
(39.88) 

38 
(27.75)

20 
(16.34)

12 
(8.57)

9 
(4.12)

2 
(1.86) 

 
(0.80) 

1 
(0.33)

 
(0.20)

201 
(171.88)

3 15 
(14.61) 

21 
(26.59) 

21 
(27.75) 

18 
(21.78)

20 
(14.28)

6 
(8.25)

4 
(4.34)

 
(2.12) 

 
(0.98) 

 
(0.43)

 
(0.30)

105 
(121.43)

4 6 
(6.65) 

11 
(13.88) 

18 
(16.34) 

16 
(14.28)

13 
(10.31)

5 
(6.51)

4 
(3.71)

3 
(1.96) 

2 
(0.97) 

1 
(0.45)

 
(0.35)

79 
(75.41)

5 2 
(2.78) 

12 
(6.53) 

9 
(8.57) 

10 
(8.25) 

9 
(6.51)

3 
(4.46)

3 
(2.74)

 
(1.55) 

1 
(0.82) 

1 
(0.41)

 
(0.34)

50 
(42.96)

6 1 
(1.09) 

4 
(2.86) 

5 
(4.12) 

3 
(4.34) 

4 
(3.71)

1 
(2.74)

4 
(1.81)

1 
(1.09) 

 
(0.61) 

 
(0.32)

1 
(0.30)

24 
(22.99)

7 2 
(0.41) 

3 
(1.18) 

 
(1.86) 

1 
(2.12) 

2 
(1.96)

1 
(1.55)

2 
(1.09)

 
(0.70) 

 
(0.42) 

 
(0.23)

 
(0.22)

15 
(11.74)

8  
(0.15) 

1 
(0.47) 

1 
(0.80) 

1 
(0.98) 

 
(0.97)

1 
(0.82)

 
(0.61)

 
(0.42) 

 
(0.26) 

 
(0.15)

 
(0.17)

4 
(5.80) 

9  
(0.05) 

 
(0.18) 

1 
(0.33) 

1 
(0.43) 

 
(0.45)

 
(0.41)

 
(0.32)

 
(0.23) 

 
(0.15) 

 
(0.10)

 
(0.11)

2 
(2.76) 

10+ 1 
(0.03) 

 
(0.10) 

 
(0.20) 

 
(0.30) 

1 
(0.35)

 
(0.34)

 
(0.30)

 
(0.22) 

 
(0.17) 

 
(0.11)

 
(0.12)

2 
(2.24) 

Total 160 
(140.89) 

191 
(195.90) 

159 
(171.88)

116 
(121.43)

83 
(75.41)

37 
(42.96)

34 
(22.99)

7 
(11.74) 

3 
(5.80) 

3 
(2.76)

1 
(2.24)

794 
(794.00)

 
 
 
 
 

 
 
 
 
Case (IV). THE ZERO-
TRUNCATED SYMMETRICAL 
BIVARIATE NEGATIVE 
BINOMIAL DISTRIBUTION 
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The probability mass function of the 
model is given by 
 

( ) ( )[ ] ( )[ ]
( ) ( ) ( ) ( )111

2/2/),(
00 +Γ+ΓΓ−

++++Γ
===

+

yxkP
mkmmkkyxkyYxXP

yxk

.   
                                                           (30) 
 
Here x+y = 1, 2, . . . but x,y = 0, 1, 2, . . . 
and  
 

k

mk
kP ⎟

⎠
⎞

⎜
⎝
⎛

+
=

200 . 
 

The marginal probability mass function 
of X is obtained as follows: 
 

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−⎟

⎠
⎞

⎜
⎝
⎛

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

== 00
001

10 P
mk

k
P

XP
k

   
                                                   (31) 

and 
 

 37



( ) ( )
( ) ( ) ( )

xk

mk
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mk
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⎜
⎝
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==

11 00
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where x = 1, 2, … 
 
 
The conditional probability mass 
function of Y given X is derived as 
follows 
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 where y = 1, 2, 3, … and 
 

( ) ( )
( ) ( )

xky

mk
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mk
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xky
yxkxXyYP
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                                                                                                                        (34) 
 

 where x = 1, 2, 3, … and y = 0, 1, 2, 
3, … 
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These expressions help obtain the 
conditional mean and variance of Y, 
which are given below: 
 

( )
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                                                 (35) 
( ) ( xk
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                                                 (36) 
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                   (37) 
 
 
 
and for x = 1, 2, 3, …, 
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The Operating Characteristic for 
“Birth Proneness”  
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For x = 1, 2, 3,  . . .  we have 
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The formula to obtain the correlation 
coefficient between X and Y in terms of 
the parameters when Z = X + Y follows 
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the zero-truncated negative binomial 
distribution is given by 
 
 

( )[ ]
( ) ([ ])AkmmkA

kkAm
XY −−+

−+
=

1
1ρ  .          (41) 

 

where        

k

mk
kA ⎟

⎠
⎞

⎜
⎝
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+
−=

2
1  

 

 
 
 
This formula may also be obtained from 
the formula derived by Hamdan (1975) 

after putting mk
k
2+

=θ  in his formula for 
the correlation coefficient. 
 
 
Note that the model and its 
characteristics could be directly obtained 
by putting p = q = 0.5 and μ=2m in case 
(II).  
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The model is investigated by Sinha and 
Kumar (2001). 
 

 
 
 
 
 
 

 
(4) Applications of the Model 

 
 

For describing the application of the 
model we use the data set (Indian Data) 
referred to by Sinha (1985). The zero-
truncated NBD model is fitted to the 
observed distribution of children 
(Z=X+Y) using the maximum likelihood 
estimates of the parameters involved. 
These estimates are obtained as 6129.4ˆ=k  
and . 50730.0ˆ =θ
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The model provides a fairly good fit to 
the observed distribution. Also, we 
obtain 
 

66667.4ˆ2 =m , and 29035.0ˆ =XYρ . 
 
 
Using the estimates of m and k the zero-
cell truncated SBNBD is fitted. Table 11 
shows the observed as well as the 
expected frequency. It is a fairly good fit.  
 
 

The product moment correlation 
coefficient is obtained as 0.23890 using 
Karl Pearson’s method. As it is 
significantly different from zero at 5% 
level of significance,  
 
Its 95 percent confidence limits are 
obtained as 0.16994 (lower) and 0.30553 
(upper), which include the estimated 
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value of the population correlation 
coefficient (ρ) obtained on the basis of 
the parameters of the model.  
 
 
 
 
 
 
 
 

Further, we use the regression equations 
involving the parameters to obtain the 
expected number of daughters (Y) and 
sons (X) a mother can have who has 
already a given number of sons and 
daughters respectively. For this, we use 
the following equations: 
 

( ) ( )
( )
( ) yyXE

xxYE

YXEXYE

33591.054954.1

;33591.054954.1

010224.20

+=

+=

====

 

where x = 1, 2, …, and y = 1, 2, …. 
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The observed and the expected values 
are given in Table 12. 
 

Table 11: Observed and expected number (under 
parenthesis) of Indian mothers with X daughters and  
Y sons 

X 
Y 

0 1 2 3 4 5 6 7+ Total 

0 - 40 
(35.8) 

23 
(25.2) 

9 
(14.0) 

3 
(6.7) 

2 
(2.9) 

3 
(1.2) 

- 
(0.7) 

80 
(86.5) 

1 54 
(35.8) 

52 
(50.5) 

34 
(42.0) 

19 
(26.8) 

11 
(14.5) 

6 
(7.0) 

5 
(3.1) 

1 
(2.1) 

182 
(181.8) 

2 29 
(25.2) 

47 
(42.0) 

43 
(42.0) 

38 
(29.0) 

20 
(17.5) 

12 
(9.3) 

9 
(4.6) 

3 
(3.6) 

201 
(171.4) 

3 15 
(14.0) 

21 
(26.8) 

21 
(29.0) 

18 
(23.4) 

20 
(15.6) 

6 
(9.1) 

4 
(4.8) 

- 
(4.2) 

105 
(126.9) 

4 6 
(6.7) 

11 
(14.5) 

18 
(17.5) 

16 
(15.6) 

13 
(11.4) 

5 
(7.2) 

4 
(4.1) 

6 
(4.1) 

79 
(81.1) 

5 2 
(2.9) 

12 
(7.0) 

9 
(9.3) 

10 
(9.1) 

9 
(7.2) 

3 
(4.9) 

3 
(3.0) 

2 
(3.3) 

50 
(46.7) 

6 1 
(1.2) 

4 
(3.1) 

5 
(4.6) 

3 
(4.8) 

4 
(4.1) 

1 
(3.0) 

4 
(2.0) 

2 
(2.4) 

24 
(25.2) 

7+ 3 
(0.7) 

4 
(2.1) 

6 
(3.6) 

3 
(4.2) 

3 
(4.1) 

2 
(3.3) 

2 
(2.4) 

- 
(4.0) 

23 
(24.4) 

Total 110 

 
(86.5) 

191 
(181.8) 

159 
(171.4) 

116 
(126.9) 

83 
(81.1) 

37 
(46.7) 

34 
(25.2) 

14 
(24.4) 

744 
(744.0) 

 

The resemblance between the observed 
and the expected values appears 
reasonably good.  
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Table 12: Acutal ( x  and y ) and expecte 
number of [E(X|y) or E(Y|x)] of 
daughters (X) and sons (Y) per mother 
having x daughters and y sons. 
 

X or 
Y 

y  E(X|y) or 
E(Y|x) 

x  

0 2.01 2.10 1.91 
1 1.92 1.88 1.58 
2 2.36 2.22 2.31 
3 2.63 2.56 2.39 
4 3.08 2.89 3.06 
5 2.81 3.23 2.92 
6 3.06 3.56 3.54 
7 3.29 3.90 2.60 
8 4.33 4.24 2.75 

 
 
 
 
 
 
 

For the birth proneness we have 
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( ) ( )
( )
( ) ( )y

y y
kyXYP 25145.0
161294.4

35668.010
1

1
∑
−

= +Γ
+Γ

Γ
−==≥

α

α  

 

( ) ( )
( )
( ) ( )x

x x
kxYXP 25145.0
161294.4

35668.010
1

1
∑
−

= +Γ
+Γ

Γ
−==≥

β

β  

 

( ) ( )( )
( )

( )
( ) ( )y

y

x

y
yx

x
xYP 25145.0

1
61294.4

61294.4
74855.02629.01

1

0
∑
−

= +Γ
++Γ

+Γ
−=≥

α

α  

 
and 

( ) ( )( )
( )

( )
( ) ( )x

x

y

x
yx

y
yXP 25145.0

1
61294.4

61294.4
74855.02629.01

1

0
∑
−

= +Γ
++Γ

+Γ
−=≥

β

β  

where x = 1, 2, … and y = 1, 2, … 
 

Here β(1, 2, …) denotes the number of 
daughters. The expected values along 
with the observed values are given in 
Tables 13 and 14. 
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Table 13: Observed and expected number of 
mothers having α (1, 2, ... 7) or more sons 
given x number of daughters 
 

X (Daughters) Frequency 
0 1 2 3 4 5 6 7 8 

Obs. (Y ≥ 1 | 
x) 

Exp. 

110 
110.0 

151 
153.4 

136
135.6

107
103.2

80
76.1

35
34.7

31 
32.4 

7 
6.7 

3
2.9

Obs. (Y ≥ 2 | 
x) 

Exp. 

56 
64.5 

99 
100.3 

102
96.6

88
78.7

69
61.3

29
29.2

26 
28.2 

6 
6.0 

3
2.6

Obs. (Y ≥ 3 | 
x) 

Exp. 

27 
32.4 

52 
56.2 

59
59.3

50
52.2

49
43.4

17
21.8

17 
22.1 

4 
4.9 

3
2.2

Obs. (Y ≥ 4 | 
x) 

Exp. 

12 
14.6 

31 
28.1 

38
32.4

32
30.8

29
27.4

11
14.6

13 
15.6 

4 
3.6 

3
1.8

Obs. (Y ≥ 5 | 
x) 

Exp. 

6 
6.0 

20 
12.9 

20
16.2

16
16.6

16
15.8

6
8.9

9 
10.1 

1 
2.4 

1
1.2

Obs. (Y ≥ 6 | 
x) 

Exp. 

4 
2.4 

8 
5.5 

11
7.5

6
8.2

7
8.4

3
5.0

6 
6.0 

1 
1.5 

0
0.8

Obs. (Y ≥ 7 | 
x) 

Exp. 

3 
0.9 

4 
2.2 

6
3.3

3
3.8

3
4.2

2
2.6

2 
3.3 

0 
0.9 

0
0.5
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Table 14: The observed and expected 
number of mothers having β (1, 2, 7) or 
more daughters given y number of sons 
 
 

Y (Sons) Frequency 
0 1 2 3 4 5 6 7 8 

Obs. (X ≥ 1 | y) 
Exp. 

80 
80.0 

128 
146.2 

172
171.4

90
93.4

73
72.5

48
46.9

23 
22.9 

13 
14.4 

4
3.9

Obs. (X ≥ 2 | y) 
Exp. 

40 
46.9 

76 
95.6 

125
122.2

69
71.3

62
58.4

36
39.4

19 
19.9 

10 
12.9 

3
3.5

Obs. (X ≥ 3 | y) 
Exp. 

17 
23.5 

42 
53.6 

82
75.0

48
47.2

44
41.3

27
29.5

14 
15.6 

6 
10.5 

2
3.0

Obs. (X ≥ 4 | y) 
Exp. 

8 
10.6 

23 
26.7 

44
41.0

30
27.9

28
26.1

17
19.8

11 
11.0 

5 
7.8 

1
2.4

Obs. (X ≥ 5 | y) 
Exp. 

5 
4.4 

12 
12.2 

24
20.4

10
15.0

15
15.0

8
12.1

7 
7.1 

3 
5.3 

1
1.6

Obs. (X ≥ 6 | y) 
Exp. 

3 
1.7 

6 
5.2 

12
9.5

4
7.5

10
8.0

5
6.8

6 
4.2 

2 
3.3 

0
1.1

Obs. (X ≥ 7 | y) 
Exp. 

0 
0.6 

1 
2.1 

3
4.1

0
3.5

6
4.0

2
3.6

2 
2.3 

0 
1.9 

0
0.7
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The models provide a good fit to the 
observed distributions of sibship sizes 
and are helpful in the investigations of 
various characteristics of the observed 
phenomena. 
These models may be used by policy and 
decision makers as well as research 
workers for the study of other bivariate 
situations too. 

 
 

Weighted Distribution and Its 
Impact 

 

While studying “the effect of method of 
ascertainment upon the estimation of 
frequencies” Fisher (1934) initiated and 
explained the need for an adjustment in 
specification depending on the way data 
are ascertained. But Professor C. R. Rao 
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formalized the concept and developed 
the theory, which is called weighted 
distributions as a method of adjustment 
applicable to many situations. See Rao 
(1997), and Patil and Rao (1977) for 
more details.  
 

 Some the situations where this could 
arise are given below. 

(1) Truncation 
(2) Partial destruction of observations 
(3) Sampling with unequal chances of 

observations. 
 

The situations that generate weighted 
distributions involve “non-response” . In 
fact, these situations refer to instances 
where the recorded observations cannot 
be considered as a random sample from 
the original distribution. 
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Let X be a non-negative observable 
random variable  with its natural 
probability function ( )θ,xf  where Ω∈θ , 
the parameter space.  Suppose x of X 
under ( )θ,xf  enters the investigation 
record with probability proportional 
to ( )βω ,x . Here the recording function  is a 
non-negative function with 
( )βω ,x parameter β , which represents the 

recording mechanism. The recording 
function is also called weight function.  
 
Note that the recorded x is not an 
observation on X but on the rv ωX  with 
the following pf: 
 

( ) ( ) ( )
ω

θβωβθω ,,,; xfxxf =  

 

Here ([ )]βωω ,xE=  and it is known as the 
normalizing factor. The rv ωX  is the 
weighted version of X and its distribution 
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is referred to as the weighted distribution 
with the weight function ω . In 
case ( ) xx =βω , , ωXX =∗  is said to be the 
size-biased form of X. Then the 
distribution of X is called to the size-
biased distribution with the following 
probability function: 
 

( ) ( )
μ
θθ ,; xfxxf =∗

 

where ( )XE=μ . 
 
 

 
Note that  denotes the size-biased 
form of

∗f
f .  The resulting sighting 

mechanism is referred to the size-biased 
sampling. For example, the size-biased 
negative binomial distribution is a 
special case of the size-biased 
distribution when X follows the negative 
binomial distribution. 
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Bivariate Weighted Distributions 
 

Suppose  is a pair of non-negative 
rvs with a joint pdf 

( YX , )
( )yxf ,  and ( yx, )ω  is a 

non-negative weight function. We 
assume here that ( )[ ]YX,Eω  exists for the 
joint pdf of ( ).  YX,
 
 
 
 
Thus the weighted form of  is 
defined below: 

( yxf , )

( ) ( ) ( )
( )[ ]YXE

yxfyxyxf
,

,,,
ω

ωω = . 

Suppose ( ) αω xyx =, . This leads to  
 

( ) ( )
[ ]α

α
ω

XE
yxfxyxf ,, = . 
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On putting 1=α we can find out the size-
biased form of the bivariate distributions. 
Mahfoud (1978) mentions a number of 
useful weights functions that include 
( yx, )ω  as 1, x, y, x+y, x*y, x(x-1)+y(y-

1), x 2  + y2, max (x,y) etc. One could 
obtain a number of weighted 
distributions corresponding to the 
bivariate compound Poisson models to 
describe various bivariate data sets. 
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THANK   YOU 
 

VERY  MUCH. 
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