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The Model

We presume that the births in human
populations  follow  the  Poisson
distribution with A as a fixed birthrate.
The proportions of male and female
offspring are denoted by p and ¢
respectively. As the two types of births
occur independently we have




The joint probability mass function of
the births is given by

- 3 _ e—xl}ﬁerypqu
Ax=xY=yl)=r e
()

It 1s, further, assumed that A follows the
Pearson’s type III distribution as given
below
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Here 1 and k denote the average number

of births per mother and a constant
respectively.




Case (I). BIVARIATE COMPOUND
POISSON DISTRIBUTION

These assumptions lead us to the
probability mass function of the bivariate
compound Poisson distribution (also
known as a bivariate negative binomial
distribution), which is mentioned below:
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X=xY=v)=
A=er= T+ D]
where x, y=0, 1, 2, .... (3)

This appears 1n a reparameterized form
of the bivariate compound Poisson

distribution referred to by Arbous and
Kerrich (1951).



The marginal distributions of (3) are
obtained as
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The conditional distribution of Y given
X 1s given below:
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This yields that
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Similarly, using Px=xY=y) we derive
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The Operating Characteristic  for
“Birth Proneness”

This may be defined as the probability of
a mother with a known number of male
offspring (x) to have o or more female
offspring (Y). This 1s given below:
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Likewise, we define P(X > g]Y =y) where
denotes the given number of male
offspring.

The formula for the product moment
correlation coefficient in terms of the
parameters of the model (3) 1s given by
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This is given by Rao, Mazumdar, Waller
and L1 (1973).

(1) Applications of the Model

To examine the adequacy of model (3)
we consider the bivariate distribution of

births occurred 1n France, which 1s
referred to by James (1975).

The wunivariate negative  binomial
distribution (NBD) 1s fitted to the
distribution of births of male and female
offspring taken together. The adequacy
of the model examined by the chi-square
test indicates that the model provides a
good fit to the observed distribution.



The maximum likelihood method used
for the estimation of the parameters
yields the following estimates:

(=13916 k=1.18764 , p=05164 and § = 0.48356 .

Note that the proportion of male 1s
significantly different from 0.5 at 5%
level of significance

The equation (13) provides the value of

the  product moment  correlation
coefficient as 0.36919.

It 1s included 1in the 95% confidence
limits for the Pearson’s correlation
coefficient  (0.36063), which are
computed as 0.33289 (lower) and
0.38774 (upper).



The model (3) describes the bivariate
distribution fairly well as judged by the
chi-square test. The observed and the

expected frequencies are given in Table
1.

Further, we obtain the conditional
expected number of male and female
offspring on the basis of (6) and (8),
which are given below.

E(X]y = y)=0.45877+0.38628 y

and

E(Y|X =x)=041925+0.35301x

The results so obtained are given 1n
Tables 2 and 3. The values compare
reasonably well with the observed ones.
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Next, we find P(Y > o/X = x) and P(X >
BIY =y), which are given below.

118764y
P(XZ,B‘YZy)zl (0'72133 §(0.27863x1_’(x4-y+1.18764)

1(1.18764+1) 5 D(x+1)
and
P(Y >l =x)=1- (0.73909)""" §(0.26091) [(x+y+1.18764)
I(1.18764 + x) 1= r(y+1)

Tables 4 and 5 present the probabilities,
the observed and the expected number of
offspring.

The resemblance between the two 1s very
good.
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Table 1. The observed and the expected (inside
parentheses) number of mothers having x sons and y

daughters
X 0 1 2 3 4 5 6+ Total
Y
0 1499 552 163 45 13 4 2 2278
(1539.81) (509.58) (155.32) (45.99) (13.41) (3.88) (1.56) (2269.55)
1 506 290 114 43 16 7 3 979
(477.14) (290.85) (129.22) (50.24) (18.16) (6.26) (3.09) (974.96)
2 142 107 60 30 15 7 3 364
(136.17) (120.94) (70.56) (34.01) (14.66) (5.87) (3.48) (385.69)
3 37 38 29 19 11 6 3 143
(37.75)  (44.05) (31.83) (18.30) (9.16) (4.18) (2.95) (148.22)
4 10 14 13 11 8 5 3 64
(10.31)  (14.90) (12.85) (8.58) (4.89) (2.51) (2.11) (56.15)
5 3 6 6 6 5 3 0 29
(2.79) (4.81) (4.82) (3.66) (234) (1.33) (1.30) (21.05)
6+ 1 2 3 3 2 0 0 11
(1.01)  (2.15)  (2.59) (2.33) (1.74) (1.15) (1.41) (12.38)
Total 2198 1009 388 157 70 32 14 3868

(2204.98) (987.28) (407.19) (163.11) (64.36) (25.18) (14.49) (3868.00)
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Table 2: The observed (X) and expected
(E(X]Y =y)) number of sons to a mother having

Y daughters

X  HXY=y)
0.482 0.459
0.780 0.845
1.181 1.231
1.713 1.618
2312 2.004
2.448 2.390
2273 2.776

NN B W= O

Table 3: The observed (J_’ ) and the expected
(HYX=x)), number of daughters to a mother
having X sons

y  E(Y[x=x)

X

0 0438 0419
I 0.710 0.772
2 1.085 1.125
3 1.605 1478
4
5
6

2.114 1.831
2.312 2.184
2.143 2.537
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Table 4: The observed and the expected
number of mothers to have p (=1, 2, ...,

6) or more sons when they have Y (y= 0, 1,
2, ..., 6) daughters

Y 0 1 2 3 4 5 6
PX>=1]Y) |0.32156 |0.51062 | 0.64699 |0.74537 |0.81632 | 0.86751 | 0.90443
Exp. No. 732.50 499.89 235.50 106.59 52.54 25.16 9.95
Obs. No. 779 473 222 106 54 26 10
P(X>=2]Y) |0.09703 |0.21230 | 0.33344 | 0.44824 | 0.55082 | 0.63907 | 0.71302
Exp. No. 221.04 207.84 112.37 64.10 33.25 18.53 7.84
Obs. No. 227 183 115 68 40 20 8
P(X>3]Y) |0.02860 |0.07981 | 0.15050 | 0.23348 | 0.32192 | 0.41031 | 0.49467
Exp. No. 65.15 78.13 54.78 33.39 20.60 11.90 5.44
Obs. No. 64 69 55 39 27 14 5
P(X>4]Y) |0.00834 |0.02827 | 0.06235 | 0.11006 | 0.16911 | 0.23634 | 0.30834
Exp. No. 19.00 27.68 22.70 15.74 10.82 6.85 3.39
Obs. No. 19 26 25 20 16 8 2
P(X>5]Y) |0.00243 | 0.00942 | 0.02436 | 0.04826 | 0.08195 | 0.12499 | 0.17610
Exp. No. 5.53 9.22 8.87 6.90 5.24 3.62 1.94
Obs. No. 6 10 10 9 8 3 0
P(X>6]Y) |0.00072 |0.00323 | 0.00914 | 0.02006 | 0.03732 | 0.06177 | 0.09365
Exp. No. 1.64 3.16 3.32 2.87 2.39 1.79 0.84
Obs. No. 2 3 3 3 3 0 0
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Table 5: The observed and the expected
number of mothers to have a (oo =1, 2, ..., 6)
or more daughters when they have X (x =0,

1,2,...,6)son

X 0 1 2 3 4 5 6
P(Y>=1|X) |0.30167 |0.48387 |0.61853 |0.71806 |0.79162 | 0.84599 | 0.88617
Exp. No. 663.07 448.23 239.99 112.74 55.41 27.07 12.41
Obs. No. 699 457 225 112 57 28 12

P(Y 22|X) |0.08528 | 0.18928 | 0.30127 | 0.41002 | 0.50958 | 0.59736 | 0.67271
Exp. No. 187.45 190.28 116.89 64.37 35.67 19.11 9.42
Obs. No. 193 167 111 69 41 21 9

P(Y >3|X) |0.02353 | 0.06677 | 0.12796 | 0.20155 | 0.28192 | 0.36422 | 0.44471
Exp. No. 51.71 67.37 49.65 31.64 19.73 11.66 6.22
Obs. No. 51 60 51 39 26 14 6

P(Y >4/X) | 0.00641 |0.02216 | 0.04976 | 0.08936 | 0.13960 | 0.19821 | 0.26252
Exp. No. 14.08 22.36 19.31 14.03 9.77 6.34 3.67
Obs. No. 14 22 22 20 15 8 3

P(Y >5X) |0.00173 | 0.00706 | 0.01820 | 0.03677 | 0.06360 | 0.09872 | 0.14146
Exp. No. 3.80 7.12 7.06 5.77 4.45 3.16 1.98
Obs. No. 4 8 9 9 7 3 0

P(Y >6/X) | 0.00080 |0.00218 | 0.00636 | 0.01430 | 0.02716 | 0.04583 | 0.07078
Exp. No. 1.76 2.21 2.47 2.24 1.90 1.47 0.99
Obs. No. 1 2 3 3 2 0 0

See Sinha, Rai and Kumar (2003) for

more details.
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Case (II). THE ZERO-TRUNCATED
BIVARIATE COMPOUND
POISSON DISTRIBUTION

In many situations the frequency of the
zeroth cell of a bivariate distribution 1s
either not available or difficult to record.
For such cases we need to have the zero-
truncated bivariate compound Poisson
distribution with unequal proportion of
male and female births. It 1s defined
below.

o kel el
e T M+
(11)
k

where f%o:(mj andx+y=1,2,3, ...

andx,y=0,1, 2, ...
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The marginal probability mass function
of X 1s obtained as follows.

weorlelled) ]

and k *
}](X:x):(l_E)f)(l{c(_kF;Cg(x+l) (k‘:;pj (kf’ip]
(13)

wherex =1, 2, ....

The conditional probability mass
function of Y given X i1s derived as
follows

P(Y = ylx =0)= [F(ﬁk;)ﬁgk)}(k fujk[kiquy

[[kfkpjk_gml

(14)

wherey=1, 2,3, ... and
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AY=){x=x :r(f(f;)f(; ):L)x) (kﬁqﬂ j (l_lﬁljkﬂ
(15)

where x=1,2,3,...andy=0, 1, 2,
3, ...

These expressions help obtain the
conditional mean and variance of Y,
which are given below.

k+1
k
ﬂq[k+ﬂpj

Mk +ku pjk ) POO} 1o

e 7] S
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(17)

E(¥|x =0)=

18



varlv|x —0)= —A#atklug+rpy |, kug

(k+up) {1 - (k];ﬂﬂp Jk} (g +1)+ u}{l - [Tfﬂk}

(18)
and forx=1, 2,3, ...,
k+x
Var(Y‘X:x):{ﬁ}(k+y) (19)

The Operating Characteristic for
“Birth Proneness”

These are obtained by the Prob(Y >
a|X=0) and Prob(Y > a/X=x) when x = 1,
2, ..... These are given below:

Py > e —0)- 1_(kl+€yjk r(lk) Zi?((l:yy))( 4 )y

() -n]"
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Forx=1,2,3, ... we have

ket

}vmw%ﬂI§wa@ymk”ﬂ%wT

k) &S T+y) ke

(21)

The formula to obtain the correlation
coefficient between X and Y 1n terms of
the parameters when Z = X + Y follows
the zero-truncated negative binomial
distribution 1s given by

() s Alkc+1)—4]
[l +41p)~kpa pl1— A) [ Al + 1) kg1 - 4]

k
k
A=1-
where (kJrﬂj

Pxy =

(22)

See Hamdan (1975) for this result.

20



(2) Applications of the Model

The American births of offspring
referred to by Rao, Mazumdar, Waller
and L1 (1973) 1s used to examine the
adequacy of the model.

The estimates of the parameters are
obtained by fitting the zero-truncated
negative binomial distribution to the
observed distribution of the total births.

The distribution of Z = X+Y is given by

HZ=2))= Tk+2) ( kﬂ)k( 17 j =012,

TR Tz+)\ k) \k+pe
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Its zero-truncated form appears as
follows:

7= -k (k+f;’;ﬁ?(k) [(z+] [k fu]k (kfﬂjz’ i

For fitting the model the maximum
likelihood estimates of the parameters
are obtained as:

[1=3.65678and k = 2.64649

The model provides a good fit to the
observed distribution.

For the observed bivariate distribution
we obtain the proportion of male
offspring, 1.e., an estimate of p, as 0.521
and the proportion of the female
offspring, 1.e., an estimate of g, as 0.479.
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The proportion of male offspring 1s
found significantly different from 0.5 for
both one tailed and two tailed tests.

This, 1n turn, reveals that the two
proportions of births cannot be
considered equal.

On putting these estimates we obtain the
following bivariate model:

(0.11184T1(2.64649+ x + )(0.30225"(0.2778¢’
(264649 T(x+1)[(y+1)

PX=xY=y)=
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Table 6. The observed and expected
number of American families with X

male offspring and Y female offspring

XY [0 1 2 3 4 5 6 7+ | Total
0 |- 183 |90 44 13 3 1 2 336
(154.5) | (78.3) | (33.7) | (13.2) | (4.9) |(1.7) | (0.9) |(287.2)
1 211 206|101 |6l 17 6 6 7 615
(168.1) | (170.3) | (110.0) | (57.5) |(26.6) |(11.3)|4.5) |(2.7) | (551.0)
2 |96 105 |94 46 23 13 |2 3 382
(92.6) |(119.6)](93.8) |(57.8) | (30.7) |(14.7)](6.6) | (4.7) | (420.5)
3 |43 60 67 37 18 THE 6 251
43.4) |(68.0) |(62.8) |(44.5) |67 |(14.3)|(7.1) |(5.7) | (272.5)
4 12 37 30 30 22 9 6 4 152
(18.5) |(34.2) | (36.3) [(29.1) | (19.5) |(11.5)](6.2) | (5.9) | (161.2)
5 |6 19 18 10 12 6 4 1 76
(7.4) | (15.8) | (19.0) |(17.0) |[(12.5) |8.1) | @.8) [(5.1) |(89.7)
6 |3 8 4 9 4 3 4 0 35
29 6.9 |02 [0 |74 [(52) |33) |39 |49
7+ |3 8 5 4 5 3 3 1 32
(1.8) |49 |73 [83) |71 |82 |45 |69 |49.0)
Total | 374 | 626 409 |241 | 114 |54 |37 |34 |1879
(334.7) | (574.2) | (416.7) | (257.0) | (143.7) | (78.2) | (38.7) | (35.8) | (1879.0)
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The equation (22) gives the correlation
coefficient as 0.327, but the value of the
product moment correlation coefficient is
0.24173, which 1s significantly different
from zero at 1% level of significance.

Its 99% confidence limits almost include
the population correlation coefficient
based on (22). This 1illustrates the
suttability of the theory with the
observed data.

Further, we get from (16) and (17):

E(Y|x =0)= 1763425

and forx=1.2, ...

E(Y]X = x)= 0.384822.64649+ x).
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Similarly, we obtain

E(X|y =0)= 1.866
and fory =1,2,3, ...,

E(X]Y =)= 0.433181932.64649+ ).

Table 7. The expected number, E(Y‘X)
and E(X]Y) and the observed average
number of sons ( ¥ ) and daughters (7 )

xovy HYY ¥  E(x) X

0 1.76 1.73 1.89 1.75
1 1.40 1.27 1.58 1.52
2 1.79 1.63 2.01 1.87
3 2.17 2.11 2.45 2.14
4 2.56 2.62 2.88 2.86
5 2.94 2.57 3.31 3.18
6 3.33 2.80 3.75 3.62
7 3.71 3.26 4.18 2.37
8 4.10 3.50 4.61 4.00
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Operating Characteristics for Birth
Proneness

Equations (20) and (21) provide

0.73152 «\I(2.64649+ y)

Y>ax=0)=1 (02778¢
Arzdx=0)=1 12 64649}Z M+y) 3
and
P(Yza‘X:x) . (O 72212)264649*- 2 (2 64649+x+y)(0 27788)y

'(2.64649+ x) 1= T(1+y)

Similarly, we can obtain
P(X > fly=0)andP(X> gAY =y)
fory=1,2,3,....

For more details see Sinha and Mishra
(2004).

Case (III). THE SYMMETRICAL
BIVARIATE COMPOUND
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POISSON DISTRIBUTION (THE
SYMMETRICAL BIVARIATE
NEGATIVE BINOMIAL
DISTRIBUTION)

In many situations the two proportions
may not be significantly different and so
one could safely consider that p =q = 0.5.
In this case the bivariate compound
Poisson model may be referred to as the
symmetrical bivariate compound Poisson
distribution.

It 1s more commonly called as the

symmetrical bivariate negative binomial
distribution (SBNBD).

[ts probability mass function is given by
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(k+x+y) [k /(k+2m)]* [m/(k + 2m)["™

P(sz,Yzy)zF

T(k)0(x +1)0(y +1)
(23)
Here,
E(Y|x = x)= (k _’fm j (k + x)
(24)
and
V&I‘(Y‘X = x) = {m(lfli;z)’f)}(k +X)
(25)

Similarly, using P(X=x[Y =y) we derive
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| (26)
an
V&I‘(X‘Y = y) = {m(lgk:mZ)T)}(k +y)

(27)

We obtain

Hy>dx=o=1— (1 m jkﬂ“‘l krx+y) m j

T+ k+2m) 5 T+y) \k+2m) -
(28)
Similarly, one could get an expression
for P(x > ply = y)
Here,

m

k+m - (29)

In fact, Pn = zz;g;i% ,when N = X+Y.

Pxy =




This 1s given by Rao, Mazumdar, Waller
and L1 (1973), and Arbous and Sichel

(1954). Interestingly, Newbold (1927)
has also referred to the formula.

All the above expressions follow directly
from the case (I), 1.e., the bivariate
compound Poisson distribution by
putting p = q = 0.5 and p=2m.

See Sinha (1985).

(3) Applications of the Model
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Arbous and Sichel (1954) investigated
the model to describe the phenomenon of
“absence — proneness” 1n a group of
individuals. Its applications in the field
of doctor-patient consultations in general
practice, one day industrial absence and
accidents are studied by Froggatt (1970).

Sinha (1985) considers the model to
describe the bivariate distributions with
male and female offspring for Indian and
American families. For the Indian
families the product moment correlation
turns out to be

r=0.31183.

The SBNBD provides a good fit to the
observed distributions. It 1s given 1n
Table 10. The parameters are estimated
by estimating the mean pu (1.e., 2m) and k

32



of the wunivariate negative binomial
distribution for the family size by the
maximum likelthood method. The
univariate binomial distribution provides
a good fit to the distribution of the family
size. Thus we obtain

m = 2.18766, k=3.8158, py, =0.36440.

The 95 percent confidence limits for the

product moment correlation coefficient
(0.31183) are 0.24762 (lower) and
0.37330 (upper). This includes the value

of pPyy. This illustrates the suitability of
the theory with the observed data.

Next, we get E(Y|X =x)=(1.39048+0.3644x)
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Table 8: The actual (¥ ) and predicted

E(r|x =x)
X[ v [e0jx=)
0 1.38750 |1.39048
1 1.91623 | 1.75488
2 2.35849 12.11928
3 2.62931 |2.48368
= 3.09639 |2.84808
5 2.81081 [3.21248
6 3.05882 [3.57688
Also, we get
x+3.81581 x+y+3 8158])
> afx)=1-(0.732
Ay afx)=1-(07329) (.x+381581)Z y+1)

(026708

Table 9: The expected and observed

number
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X >1x) Expected Actual
P(y B ‘ ) number number

0 0.69445 111.112 110

1 0.77606 148.227 151

2 0.83587 132.903 136

3 0.87970 102.045 107

4 091183 75.682 80

5 0.93538 34.609 35

6 0.95264 32.390 31

7 0.96529 6.757 7

8 097456  2.924 3

9 0.98135 2.944 3

10 0.98633 0.986 1

Tablel0: The observed and expected
of the Indian data (x:
daughters, and y: sons).

frequencies

10

Total

0 50
(43.04)

40
(43.87)

23

9

(28.21) | (14.61)

6.65 | (2.78)

(1.09) | (0.41) | (0.15) | (0.05)

(0.03)

130
(140.89)
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1 54 52 34 19 11 6 5 1 182
(43.87) | (56.42) | (43.82) | (26.59) | (13.88) | (6.53) | (2.86) | (1.18) | (0.47) | (0.18) | (0.10) | (195.90)
2 29 47 43 38 20 12 9 2 1 201
(28.21) | (43.82) | (39.88) | (27.75) | (1634) | (8.57) | (4.12) | (1.86) | (0.80) | (0.33) | (0.20) | (171.88)
3 15 21 21 18 20 6 4 105
(14.61) | (26.59) | (27.75) | (21.78) | (14.28) | (8.25) | (4.34) | (2.12) | (0.98) | (0.43) | (0.30) | (121.43)
4 6 11 18 16 13 5 4 3 2 1 79
(6.65) | (13.88) | (16.34) | (14.28) | (10.31) | (6.51) | (3.71) | (1.96) | (0.97) | (0.45) | (0.35) | (75.41)
5 2 12 9 10 9 3 3 1 1 50
2.78) | (6.53) | (857) | (825) | (6.51) | (4.46) | (2.74) | (1.55) | (0.82) | (0.41) | (0.34) | (42.96)
6 1 4 5 3 4 1 4 1 | 24
(1.09) | 286) | (4.12) | 434) | 3.71) | 2.74) | (1.81) | (1.09) | (0.61) | (0.32) | (0.30) | (22.99)
7 2 3 1 2 1 2 15
041) | (1.18) | (1.86) | (2.12) | (1.96) | (1.55) | (1.09) | (0.70) | (0.42) | (0.23) | (0.22) | (11.74)
8 1 1 1 1 4
0.15) | (0.47) | (0.80) | (0.98) | (0.97) | (0.82) | (0.61) | (0.42) | (0.26) | (0.15) | (0.17) | (5.80)
9 1 1 2
0.05) | (0.18) | (0.33) | (0.43) | (0.45) | (0.41) | (0.32) | (0.23) | (0.15) | (0.10) | (0.11) | (2.76)
10+ 1 1 2
0.03) | (0.10) | (020) | (0.30) | (0.35) | (0.34) | (0.30) | (0.22) | (0.17) | (0.11) | (0.12) | (2.24)
Total 160 191 159 116 83 37 34 7 3 3 1 794
(140.89) | (195.90) | (171.88) | (121.43) | (75.41) | (42.96) | (22.99) | (11.74) | (5.80) | (2.76) | (2.24) | (794.00)
Case (IV). THE

T

RUNCATED
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B
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The probability mass function of the
model 1s given by

e V_ _r(k+X+y)[k/(k+2m)]k[m/(k+2m)]X+y
J e (R ¥ T e e

(30)

Here x+y=1,2,...butx,y=0,1,2, ...
and

The marginal probability mass function
of X 1s obtained as follows:

o e

(1)

and
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KX:X):(l—ﬁjﬁ(Zﬁ?(xﬂ)(kfmjk(kijx (32)

wherex =1, 2, ...

The conditional probability  mass
function of Y given X 1s derived as
follows

Py =){x=0)= { 1+y+)1{k}(k+2m) (k+2m]

{( k k_ } (33)
k+
wherey=1, 2, 3, ... and

T(k+x+y) m Y m )"
AV =3lX =2)=r OF (k+x)(k+2mj (l‘mm]
(34)
where x=1,2,3,...andy=0, 1, 2,
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These expressions help obtain the
conditional mean and variance of Y,
which are given below:

EX|x =0)= m(kfmj

and forx=1, 2,3, ...,
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var(Y|X = x)= m(f ;;)}(k +2m)
(38)

The Operating Characteristic _ for
“Birth Proneness”

Pr>alx=0)=1-

Forx=1,2,3, ... we have

HY>dX=z)=1— (1 m j% k+xny) m j

T+ k+2m) 5 T{1+y) Ue+2m
(40)

The formula to obtain the correlation
coefficient between X and Y 1n terms of
the parameters when Z = X + Y follows
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the zero-truncated negative binomial
distribution is given by

m[A(k +1)- k]
P “TaGk +m)—km (- 4)] (41)

k k
A=1-
where (k+2mj

This formula may also be obtained from

the formula derived by Hamdan (1975)

k
after putting 7= r+2,, 10 his formula for

the correlation coefficient.

Note that the model and 1ts
characteristics could be directly obtained
by putting p = q = 0.5 and u=2m 1in case

(10).
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The model 1s investigated by Sinha and
Kumar (2001).

(4) Applications of the Model

For describing the application of the
model we use the data set (Indian Data)
referred to by Sinha (1985). The zero-
truncated NBD model 1s fitted to the
observed  distribution of  children
(Z=X+Y) using the maximum likelihood
estimates of the parameters involved.

These estimates are obtained as k=46129
and 6 = 0.50730 .
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The model provides a fairly good fit to
the observed distribution. Also, we
obtain

2m = 4.66667 , and p,, =0.29035,

Using the estimates of m and k the zero-
cell truncated SBNBD is fitted. Table 11
shows the observed as well as the
expected frequency. It 1s a fairly good fit.

The product moment correlation
coefficient 1s obtained as 0.23890 using
Karl Pearson’s method. As 1t 1s
significantly different from zero at 5%
level of significance,

Its 95 percent confidence limits are
obtained as 0.16994 (lower) and 0.30553
(upper), which include the estimated
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value of the population correlation
coefficient (p) obtained on the basis of
the parameters of the model.

Further, we use the regression equations
involving the parameters to obtain the
expected number of daughters (Y) and
sons (X) a mother can have who has
already a given number of sons and
daughters respectively. For this, we use
the following equations:

E(r|x =0)=2.10224 = E(x|r =0)
E(Y|x)=1.54954 +0.33591 x;
E(X|y)=1.54954 +0.33591 y

wherex=1,2,...,andy=1,2, ....
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The observed and the expected values
are given 1n Table 12.

Table 11: Observed and expected number (under
parenthesis) of Indian mothers with X daughters and

Y sons
X| 0 1 2 3 4 5 6 7+ | Total
Y
0 - 40 23 9 3 2 3 - 80
(35.8) | (25.2) | (14.0) | (6.7) (2.9) (1.2) 0.7) (86.5)
1 54 52 34 19 11 6 5 1 182
(35.8) | (50.5) | (42.0) | (26.8) | (14.5) | (7.0) (3.1) (2.1) (181.8)
2 29 47 43 38 20 12 9 3 201
(252) | 42.0) | (42.0) | (29.0) | (175 | (9.3) (4.6) (3.6) (171.4)
3 15 21 21 18 20 6 4 - 105
(14.0) | (26.8) |(29.0) | (23.4) | (156) | (9.1 (4.8) (4.2) (126.9)
4 6 11 18 16 13 5 4 6 79
(6.7) (145) | (175 | @156 |114) |72 (4.1) (4.1) (81.1)
5 2 12 9 10 9 3 3 2 50
(2.9) (7.0) 9.3) 9.1) (7.2) (4.9) (3.0) (3.3) (46.7)
6 1 4 5 3 4 1 4 2 24
(1.2) (3.1) (4.6) (4.8) (4.1) (3.0) (2.0 (2.4) (25.2)
7+ |3 4 6 3 3 2 2 - 23
0.7) (2.1) (3.6) (4.2) (4.1) (3.3) (2.4) (4.0) (24.4)
Total | 110 191 159 116 83 37 34 14 744
(86.5) | (181.8) | (171.4) | (126.9) | (81.1) | (46.7) | (252) | (24.4) | (744.0)

The resemblance between the observed
and the expected values appears
reasonably good.
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Table 12: Acutal (X and Y) and expecte
number of [E(X]y) or E(Y|x)] of
daughters (X) and sons (Y) per mother
having x daughters and y sons.

Xor| ¥y | EXly)or | x
Y E(Y|x)
0 2.01 [2.10 1.91
1 |1.92 |1.88 1.58
2 1236 |2.22 2.31
3 12.63 [2.56 2.39
4 13.08 [2.89 3.06
5 2.81 [3.23 2.92
6 |3.06 |3.56 3.54
7 13.29 [3.90 2.60
8 [4.33 [4.24 2.75

For the birth proneness we have
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0.35668 &I

AY>dXx=0)=1- 46129492 f025143

0.35668 &
X>p[Y=0)= 02514 i
Ax =AY =0)=1 46129421 1) 3
P(Y > aly)=1- (0.2629 )(0.74855 )" Zf [(x+ y+4.61294 )(o 25145 )

r(4.61294 +x) = r(y+1)

and

(0.25145)"

(0.2629)0.74855)" ﬂi [(x+y+4.61294)

PlY = fy)=1- r(4.61294+y) = Tlx+1)

wherex=1,2,...andy=1, 2, ...
Here B(1, 2, ...) denotes the number of
daughters. The expected values along

with the observed values are given in
Tables 13 and 14.
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Table 13: Observed and expected number of
mothers having a (1, 2, ... 7) or more sons
given X number of daughters

Frequency X (Daughters)
0 1 2 3 4 5 6 7 8
Obs. (Y>1| 110 | 151 136 107 80 35 31 7 3
x) | 110.0 | 153.4 | 135.6 | 103.2 76.1 | 34.7 324 | 6.7 2.9
Exp.
Obs. (Y>2| 56 99 | 102 88 69 29 26 6 3
x)| 6451003 | 96.6 78.7 61.3 | 29.2 282 6.0 2.6
Exp.
Obs. (Y >3 | 27 52 59 50 49 17 17 4 3
x)| 324| 562 | 593 52.2 43.4| 21.8 2211 49 2.2
Exp.
Obs. (Y >4 | 12 31 38 32 29 11 13 4 3
x)| 146 28.1| 324 30.8 274 | 14.6 156 3.6 1.8
Exp.
Obs. (Y=5] 6 20 20 16 16 6 9 1 1
X) 6.0 129 | 16.2 16.6 158 8.9 10.1| 2.4 1.2
Exp.
Obs. (Y=>6| 4 8 11 6 7 3 6 1 0
X) 24 5.5 7.5 8.2 84| 5.0 6.0 1.5 0.8
Exp.
Obs. (Y=>7| 3 4 6 3 3 2 2 0 0
X) 0.9 2.2 33 3.8 42| 2.6 33| 09 0.5
Exp.
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Table 14: The observed and expected
number of mothers having 3 (1, 2, 7) or
more daughters given y number of sons

Frequency Y (Sons)
0 1 2 3 4 5 6 7 8
Obs. (X>1]y) 80 128 172 90 73 48 23 13 4
Exp. 80.0 | 1462 | 1714 93.4 72.5 46.9 22.9 14.4 3.9
Obs. (X>21y) 40 76 125 69 62 36 19 10 3
Exp. 46.9 95.6 | 1222 71.3 58.4 394 19.9 12.9 35
Obs. (X>3y) 17 42 82 48 44 27 14 6 2
Exp. 23.5 53.6 75.0 472 413 29.5 15.6 10.5 3.0
Obs. (X>4y) 8| 23 44 30 28 17 1 5 1
Exp. 10.6 26.7 41.0 279 26.1 19.8 11.0 7.8 24
Obs. (X>5y) 5 2] 24 10 15 8 7 3 1
Exp. | 44| 122] 204| 150] 150] 121 71| 53 1.6
Obs. (X>6y) 3 6 12 4 10 5 6 2 0
Exp.| 17| 52| 95 7.5 80| 68 42| 33 1.1
Obs. (X>71y) 0 1 3 0 6 2 2 0 0
Exp. | 06| 21| 41 3.5 40| 3.6 23] 19 0.7
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The models provide a good fit to the
observed distributions of sibship sizes
and are helpful 1n the investigations of
various characteristics of the observed
phenomena.

These models may be used by policy and
decision makers as well as research
workers for the study of other bivariate
situations too.

Weighted Distribution and Its
Impact

While studying “the effect of method of
ascertainment upon the estimation of
frequencies” Fisher (1934) imitiated and
explained the need for an adjustment in
specification depending on the way data
are ascertained. But Professor C. R. Rao
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formalized the concept and developed
the theory, which 1s called weighted
distributions as a method of adjustment
applicable to many situations. See Rao

(1997), and Patil and Rao (1977) for
more details.

Some the situations where this could
arise are given below.
(1) Truncation
(2) Partial destruction of observations
(3) Sampling with unequal chances of
observations.

The situations that generate weighted
distributions involve “non-response” . In
fact, these situations refer to instances
where the recorded observations cannot
be considered as a random sample from
the original distribution
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Let X be a non-negative observable
random variable with 1ts natural
probability function f(x,0) where 0€Q,
the parameter space. Suppose x of X

under f(x.0) enters the investigation
record with probability proportional
toa(x, 8). Here the recording function is a
non-negative function with
dxaﬁ)parameterﬂ , which represents the
recording mechanism. The recording
function 1s also called weight function.

Note that the recorded x i1s not an
observation on X but on the rv X“ with
the following pf:

(0, p)= 5P Nx0)

Q

Here o=Eax,B) and it is known as the
normalizing factor. The rv X* 1s the
weighted version of X and its distribution
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1s referred to as the weighted distribution
with the weight function » . In
case olx,f)=x, X =x" is said to be the
size-blased form of X  Then the
distribution of X 1s called to the size-
biased distribution with the following
probability function.

I (x; (9): xf (x,H)
u

where = E(X)

Note that f* denotes the size-biased
form of / . The resulting sighting
mechanism 1s referred to the size-biased
sampling. For example, the size-biased
negative binomial distribution 1s a
spectal case of the size-biased
distribution when X follows the negative
binomial distribution.
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Bivariate Weighted Distributions

Suppose (X.Y) is a pair of non-negative
rvs with a joint pdf / (v,) and @xy) is a
non-negative  weight function. We

assume here that E[CU(X,Y)] exists for the
joint pdf of(X.Y).

Thus the weighted form of J (X,J/) 1S
defined below:
CESVAESY

fw(XJ’) E{ca(X,Y)] .

Suppose @4x,))=x", This leads to

Xf&ﬁ
E[X“]
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On putting @ =1we can find out the size-
biased form of the bivariate distributions.
Mahfoud (1978) mentions a number of
useful weights functions that include
o(x,y) as 1, x, y, x+ty, x*y, x(x-1)+y(y-
1), x > + y°, max (x,y) etc. One could
obtain a number of  weighted
distributions  corresponding to the
bivariate compound Poisson models to
describe various bivariate data sets.
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