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Abstract

Homonyms are partitioned into smaller groups by their accents. The property of accents

in English, Japanese and Chinese languages is different, but has a common role to distinguish

homonyms. The difference of the role of accents in the three languages is shown by a

parameter of the generalized Stirling distribution, derived from Pitman’s random partition,

fitted to dictionary datasets.

1 Introduction and preliminaries

Homonyms, or homographs more exactly, are words of the same spelling, appearing as dif-

ferent items in a dictionary. The number yn,k of homonym groups of n words clustered into

k types of accents, k = 1, . . . , n, n > 1, are collected from an English, a Japanese and a Chi-

nese dictionaries, by Sibata and Shibata (1990), to study the role of accents to distinguish

homonyms in the three languages. To these datasets, a sort of the Stirling family of distri-

butions, derived from Pitman’s random partition is fitted. Values of a parameter distinguish

clearly the three languages.

Stirling numbers have been extended in many directions. Hsu and Shiue (1998) unified

them through a factorial product representation of the polynomial ring. In this paper, the

Stirling family of discrete probability distributions, Sibuya (1988) and Nishimura and Sibuya

(1997), is extended along with the new unification.
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Random partition

Suppose a set of n elements (n ∈ N+) is partitioned randomly into k nonempty and mutually

exclusive subsets, or clusters, of size c1, . . . , ck (ci > 0, 1 ≤ i ≤ k,
∑k

i=1 ci = n). If the

elements are undistinguishable, and the order of clusters are irrelevant, the available statistics

are the ordered size of clusters and summarized by Sj =
∑k

i=1 I[ci = j], j = 1, . . . , n. The

quantity S = (S1, . . . , Sn) is a random partition of an integer n, such that Sj ≥ 0 and∑n
j=1 jSj = n, and called size index (frequency spectrum, or frequency of frequencies). A

celebrated distribution of size index is Pitman’s random partition (or Pitman’s sampling

formula), defined by

p(s;n, θ, α) =
n!θ(θ + α) . . . (θ + (k − 1)α)

θn

n∏
j=1

(
(1 − α)j−1

j!

)sj

1
sj !

, (1)

s = (s1, . . . , sn) ∈ Cn, k =
n∑

j=1

sj , n ∈ N ,

where Cn = {s = (s1, . . . , sn), sj ≥ 0, j = 1, . . . , n;
∑n

j=1 jsj = n} and yj = y(y+1) . . . (y+

j − 1), while yj is the descending factorial product to be used later. The expression (1) is

positive for any 1 ≤ k ≤ n in {(α, θ) : 0 ≤ α < 1, −α < θ or θ = −mα > 0, m =

1, 2, . . . }. We are concerned with, in this paper, only the case θ = mγ, γ = −α > 0,

m = 2, 3, . . .

Pitman’s random partition (1) of the case γ = −α > 0 can be constructed in another way.

Suppose that X = (X1, . . . , Xm) follows the symmetric(homogeneous) multivariate negative

hypergeometric distribution, MvNgHg(m, n; (γ, . . . , γ)),

P{X = x} =

⎛⎝ m∏
j=1

Γ(γ/m + xj)
Γ(γ/m)xj !

⎞⎠/Γ(n + γ)
Γ(γ)n!

, (2)

xj ≥ 0, j = 1, . . . , m,
m∑

j=1

xj = n; γ > 0.

Put Sj =
∑m

i=1 I[Xi = j], j = 1, . . . , n, and S = (S1, . . . , Sn), is Pitman’s random

partition, (1). This genesis gives the intuitive meaning of the parameter γ.

For Pitman’s random partition, see, e.g., Johnson, Kotz and Balakrishnan (1997), Pitman

(1999, 2002), Sibuya and Yamato (2000), Yamato, Sibuya and Nomachi (2001). Hoshino

(2001) applied the random partition to another research field.
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Generalized Stirling Distribution

If S = (S1, . . . , Sn) is Pitman’s random partition (1), the number of clusters K =
∑n

j=1 Sj

has the probability mass function (pmf),

P{K = k} =
mkγk

(mγ)n
sγ(n, k), 1 ≤ k ≤ �; � = min(n,m), n, m ∈ N , (3)

where sγ(n, k) is a type of the generalized Stirling numbers, defined by the polynomial

identity

xn =
n∑

k=1

sγ(n, k)
k−1∏
j=0

(x − jγ). (4)

Actually sα(n, k) is a polynomial in γ of degree n − k with integer coefficients. For the

generalized Stirling number see Pitman (2002) and the Appendix. The distribution (3) will

be called Generalized Stirling Distribution and denoted by GStr(n,m, γ). The shapes of the

pmf (3) are shown in Figs. 1 and 2. If g or m is small the pmf is decreasing, if g or m is

larger the pmf is increasing, otherwise it is unimodal.

Let p(k; m, m, γ) denote the pmf (2) of GStr(n,m, γ). It satisfies the recurrence formula

p(k; n + 1, m, γ) =
1

mγ + n
((kγ + n) p(k; n, m, γ) + (m − k + 1) γ p(k − 1; n, m, γ)) , (5)

with p(1; 1, 1, γ) = 1, and

p(1; n, m, γ) =
(1 + γ)n−1

(1 + mγ)n−1
; n, m > 1,

p(n; n, m, γ) =
mnγn

(mγ)n

⎧⎪⎨⎪⎩
> 0, m ≥ n,

= 0, m < n.

The recurrence formula is used for the numerical computation of the pmf. Moreover, using

the formula

E(m − K)r) = mr ((m − r)γ)n

(mγ)n
, r = 1, 2, . . .

In particular

E(K) = m

(
1 − ((m − 1)γ)n

(mγ)n

)
=: µ, (6)

and

Var(K) =
m2((m − 2)γ)n

(mγ)n
− (m − µ) (m − 1 − µ).

Pitman’s random partition, as well as GStr(n,m, γ), is generated by an urn model. There

are m urns, U1, . . . , Um, and balls are randomly thrown into U1, U2, . . . , sequentially as
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follows. The first one is put into U1. If U1, . . . , Uk are occupied by c1, . . . , ck balls respectively

(ci > 0, i = 1, . . . , k, k < m;
∑k

i=1 ci = n), the n + 1 st ball is thrown into

urn Ui (occupied) with the probability ci+γ
mγ+n , i = 1, . . . , k,

urn Uk+1 (empty) with the probability (m−k)γ
mγ+n .

At the n-th stage of this process, the size index follows (1) and the number K of occupied

urns follows GStr(n,m, γ). In this model any two balls are put into different urns with the

probability

P{K = 2|n = 1} =
(m − 1)γ
mγ + 1

=: ρ ∈ (0, 1 − 1/m), (7)

and in the same urn with the probability

P{K = 1|n = 1} =
1 + γ

mγ + 1
= 1 − ρ.

Conversely γ = γ(ρ;m) = ρ/(m(1 − ρ) − 1). ρ = ρ(γ; m), m = 2, 3, . . . is increasing, and

concave in γ and the upper limit is (m − 1)/m (γ → ∞).

2 Homonyms

English

Homonym is “any of two or more words spelt and pronounced alike but different in meaning”

(Longman Dictionary of the English Language). More precisely, homonym is homophone (has

the same sound) or homograph (written the same). For example the word “desert” has three

entries in the dictionary:

desert1 : to leave without permission,

desert2 : an arid region,

desert3 : the fact of deserving reward or punishment,

and these are homographs, partitioned into two accent groups {desert1, desert3} and {desert2}.
While,

dessert : a sweet course,

is a homophone of {desert1, desert3}.
Homographic words are distinguished sometimes by accents. In this paper, homonym

is defined as a group of homographic words. That is, ‘desert’ is a homonym group of three
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words (or size three), separated into two clusters by accents. The number of accent clusters

are less than or equal to the number of syllables and the size of the group.

About two-thirds of English homonym groups are one-syllable words, and they are out

of scope of this paper. It is remarkable that homophones are almost all one-syllable words.

Japanese

In written Japanese language, two types of characters, Kanji (ideogrammatic Chinese char-

acter) and Kana (phonogram), are used. The reading of a Kanji is not unique, and we are

concerned here with only Kana spelling. Kana characters do not correspond to syllables

exactly, and linguists use the notion of ‘mora’ as a unit of pronunciation. Accents are in-

tonation of moras. In this paper, a Japanese homonym group is the collection of the same

Kana spelling, and homographs are separated into clusters by mora-intonation. For example,

hashi: end, HAshi: chopstick, haSHI: bridge.

Since there is a word of flat tone moras, a homonym group of r-mora words can have r + 1

accent clusters.

Chinese

In written Chinese, a character corresponds to a syllable, which is expressed by phonetic

‘pinyin’ spelling, and may have four tones. For example,

mā : mother, wipe, pair má : hemp, numb

mǎ : horse, mà : swear

In this paper, a homonym group is defined as that of words of the same pinyin spelling,

disregarding the four tones. In this example, ‘ma’ is a homonym group of seven words

partitioned into four accent clusters. A group of r characters can have logically 4r accent

clusters, but actually there are not so many kinds of accent. Words in a accent cluster have

different meaning and different ideogrammatic characters. (In China, Main Land, words of

the same pronunciation tend to be written by the same character. That is, Chinese characters

are becoming more phonetic.)

Homonym datasets

Shibata and Shibata (1990) surveyed all the entries of three small-size dictionaries of English,

Japanese and Chinese languages to count homonyms. It is evident that the role of accents

is quite different in these languages, and the authors intended to find a numeric measure
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to show the difference. There are 1430 English homonym groups and 918 of them are one-

syllable words. There are 3038 Japanese homonym groups, and 5019 Chinese groups. The

difference of these numbers is remarkable, but the frequency aspects of homonyms are not

analyzed in this paper.

The data shown in Shibata and Shibata (1990) are, for each of the three languages,

ynmk, the number of homonym groups with n homographic words (size n), which can have

m different accents (possible number of accent clusters) and actual number of clusters k,

1 ≤ k ≤ �, � = min(n,m).

For English words of r syllables, m = r; for Japanese words of r moras, m = r + 1; and

for Chinese words of r characters (r pinyin syllables), m = 4r. The values of ynmk for the

three languages are shown in Tables 6–?? in Appendix.

The dataset (ynm1, ynm2, . . . ) is assumed to follow the multinomial distribution Mn(ynm·,

(p1, . . . , pk)), given ynm· =
∑�

k=1 ynmk, where pk = p(k; m, n, γnm) is the GStr(n,m, γnm)

probabilities.

Shibata and Shibata (1990) fitted a modification of binomial distribution to ynmk. Sibuya

(1991) disregarded m, regarding syllables to be formed randomly, and fitted Ewen’s random

partition to ynm·, to find a surprisingly good fit.

3 Inference

The likelihood p(k; n, m, γ) behaves unfavorably for smaller and larger values of k. It is

shown that p(1; n, m, γ) → 1 (γ → 0), and p(n; n, m, γ) → 1 (γ → ∞). Hence the maximum

likelihood method cannot be used. The expectation µ, (6), of K satisfies

µ < m

(
1 −

(
1 − 1

m

)n)
, γ ∈ R+

and it is a strictly decreasing and convex function of γ, and the moment method is appli-

cable when K is not very large. Tables 1 and 2 show the moment estimates of γnm and

corresponding ρnm calculated by (7) for the three languages. The values give rough ideas

of the datasets, and entries for l = min(n,m) = 2, and γ̂ = 0 or Inf, are also minimum

chi-square estimates. Hence the minimum chi-square method is used further for estimating

γ. The result for the Japanese datasets is shown in Table 3, and the p-values of chi-square

statistics are shown by the PP-plot in Fig. 3 because the degrees of freedom are not the

same. Since the observed frequency is small in some entries, the PP-plot is not against the

proposed mode.
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English

m n = 2 3 4 5 6

2 0.026 0.063 0 NA NA

3 0.009 0.000 NA NA NA

4 0.000 NA NA NA NA

5 0.000 NA NA NA NA

Japanese

m n = 2 3 4 5 6 7 8

2 6.000 0.400 1.084 Inf Inf Inf Inf

3 0.529 0.730 0.343 0.281 0.331 0.453 0.000

4 0.162 0.142 0.122 0.193 0.189 0.142 0.081

5 0.045 0.047 0.049 0.060 0.078 0.000 0.031

6 0.026 NA NA NA NA NA NA

7 0.059 NA NA NA NA NA NA

8 0.000 NA NA NA NA NA NA

Chinese

m n = 2 3 4 5 6 7 8

4 Inf Inf 51.641 4.736 374.776 2.827 Inf

42 0.502 0.767 0.716 0.794 0.956 1.834 0.804

43 0.079 Inf NA NA NA NA NA

44 0.020 NA NA NA NA NA NA

Table 1: Moment estimates γ̂nm.
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English

m n = 2 3 4 5 6

2 0.025 0.056 0 NA NA

3 0.017 0.000 NA NA NA

4 0.000 NA NA NA NA

5 0.000 NA NA NA NA

Japanese

m n = 2 3 4 5 6 7 8

2 0.462 0.222 0.342 1.000 1.000 1.000 1.000

3 0.409 0.458 0.338 0.305 0.332 0.384 0.000

4 0.295 0.271 0.246 0.327 0.323 0.272 0.184

5 0.148 0.153 0.157 0.183 0.224 0.000 0.107

6 0.111 NA NA NA NA NA NA

7 0.250 NA NA NA NA NA NA

8 0.000 NA NA NA NA NA NA

Chinese

m n = 2 3 4 5 6 7 8

4 1.000 1.000 0.746 0.712 0.75 0.689 1.00

42 0.834 0.867 0.862 0.869 0.88 0.907 0.87

43 0.822 1.000 NA NA NA NA NA

44 0.833 NA NA NA NA NA NA

Table 2: Moment estimates ρ̂nm.
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n k m = 3 4 5
3 1 37.42 41 112.04 111 192.28 193

2 60.12 53 73.33 81 53.31 52
3 8.47 12 6.63 0 2.41 3

4 1 18.99 18 32.70 33 57.22 57
2 23.29 26 21.57 21 21.92 24
3 3.72 2 2.68 3 1.83 0
4 0.00 0 0.05 0 0.03 0

5 1 7.55 8 11.31 12 22.31 22
2 8.87 8 17.09 20 11.24 12
3 1.58 2 5.29 1 1.39 1
4 0.00 0 0.31 1 0.05 0
5 0.00 0 0.00 0 0.00 0

6 1 5.02 5 3.48 3 5.29 5
2 7.96 8 4.88 6 4.60 6
3 2.02 2 1.53 1 1.04 0
4 0.00 0 0.10 0 0.07 0
5 0.00 0 0.00 0 0.00 0
6 0.00 0 0.00 0 0.00 0

7 1 2.95 4 2.88 3 2.72 3
2 7.20 5 3.21 3 0.27 0
3 2.85 4 0.85 1 0.01 0
4 0.00 0 0.05 0 0.00 0
5 0.00 0 0.00 0 0.00 0
6 0.00 0 0.00 0 0.00 0

Japanese, γ̂nm

m n = 3 4 5 6 7
3 0.731 0.360 0.283 0.331 0.445
4 0.157 0.123 0.242 0.199 0.145
5 0.047 0.053 0.060 0.094 0.010

Japanese, ρ̂nm

m n = 3 4 5 6 7
3 0.458 0.346 0.306 0.332 0.381
4 0.289 0.247 0.369 0.332 0.276
5 0.153 0.167 0.186 0.255 0.038

Table 3: Number of Japanese homonym groups ynmk, fitted and observed, (a part of Table 6).
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If the homonyms are formed by a common Pitman clustering process, the parameter

γnm of ynmk is independent of n, and the common values γ·m are determined from a com-

mon probability ρ by (7). Hence, like the two-way contingency tables, the following three

hypotheses are possible.

H1 : γnm = γ·m, H2 : γnm = γn·, H3 : γnm = γ··.

Moreover uniformity of ρ is a difenrent alternative for H2 and H3. Among them only the case

H1 fit well as shown in Table 4. In the other cases the alternatives are strongly significant.

English

m γ̂ ρ̂ d.f. p-value

2 0.300 0.188 3 0

3 0.0084 0.016 2 .987

all 0.100 7 0

0.025 .995

Japanese

m γ̂ ρ̂ d.f. p-value

2 1.280 0.360 6 .784

3 0.503 0.401 12 .391

4 0.100 0.229 17 .000

5 0.050 0.160 21 .997

all 0.143 62 0

0.270 0

Chinese

m γ̂ ρ̂ d.f. p-value

4 11.912 0.735 16 0.262

42 0.642 0.854 27 0.013

43 0.700 0.963 2 0.000

Table 4: Minimum chi-square estimate γ̂, assuming uniformity within the same m.
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Appendix

Generalized Stirling numbers

Hsu and Shiue (1998) succeeded to unify various extensions of Stirling numbers proposed so

far. Their definition was modified slightly by Remmel and Wachs (2004), and the modified

one is adopted in this paper. Let Pochhammer’s notation of the descending factorial be

generalized such that

(z|α)n :=
n−1∏
j=0

(z − jα), (z)n = (z|1)n, zn = (z|0)n, zn = (z| − 1)n.

The generalized Stirling numbers of the first and the second kind, S1 and S2 respectively,

are defined by

(t − r|α)n ≡
n∑

k=0

S1
n,k(α, β, r) (t|β)k, (t|β)n ≡

n∑
k=0

S2
n,k(α, β, r) (t − r|α)k,

for any real numbers α, β, r. They are orthogonal in the sense that

n∑
k=m

S2
n,k(α, β, r) S1

k,m(α, β, r) = I[m = n], 1 ≤ m ≤ n,

and satisfy the recurrence formulas

S1
n+1,k(α, β, r) =(kβ − nα − r) S1

n,k(α, β, r) + S1
n,k−1(α, β, r), 0 ≤ k ≤ n + 1,

S1
0,0(α, β, r) =1; S1

n,k(α, β, r) = 0, if k < 0 or k > n,

S2
n+1,k(α, β, r) =(kα − nβ + r) S2

n,k(α, β, r) + S2
n,k−1(α, β, r), 0 ≤ k ≤ n + 1,

S2
0,0(α, β, r) =1; S2

n,k(α, β, r) = 0, if k < 0 or k > n.

In terms of the classical Stirling numbers,

S1
n,k(α, β, r) =

∑
0≤k≤�≤m≤n

[
n

m

](
m

�

){
�

k

}
(−α)n−m(−r)m−�β�−k,

S2
n,k(α, β, r) =

∑
0≤k≤�≤m≤n

[
n

m

](
m

�

){
�

k

}
(−β)n−mrm−�α�−k.

Note that, if r = 0 one should read m = �. These expressions show the relationship between

S1 and S2.

The definition induces a family of pmf’s p1 and p2 on {0, 1, . . . , n} if r �= 0 and on
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{1, . . . , n} if r = 0, provided that emerging factors are non-negative:

p1(k, n + 1; t, α, β, r) =
kβ − r − nα

t − r − nα
p1(k; n, t; α, β, r)

+
t − (k − 1)β
t − r − nα

p1(k − 1; n, t; α, β, r), 1 ≤ k ≤ n,

p2(k, n + 1; t, α, β, r) =
kα + r − nβ

t − nβ
p2(k; n, t; α, β, r)

+
t − r − (k − 1)α

t − nβ
p2(k − 1; n, t; α, β, r), 1 ≤ k ≤ n.

They will be called the family of generalized Stirling distributions.

α β r

−1 0 0 classical 1st kind (A3)

0 1 0 classical 2nd kind (A2)

0 0 ±1 Binomial distribution (B)

−1 γ 0 (γ > −1) Pitman’s random partition (A1)

−1 1 0 Lah distribution (A1)

−1 0 r r < 0, Nishimura and Sibuya 1st kind (B)

0 1 r r < 0, Nishimura and Sibuya 2nd kind (B)

Table 5: Possible range of parameter values for p1(n, k;α, β, r).

The family defines random walks on the square lattice. A particle starts from (0, 0), if

r �= 0, or from (1, 1), if r = 0, and moves from (n, k) to⎧⎪⎪⎨⎪⎪⎩
(n + 1, k) with the probability

kβ − r − nα

t − r − nα
,

(n + 1, k + 1) with the probability
t − kβ

t − r − nα
,

in the case of p1. A similar random walk is defined by p2. p1 (or p2) is the probability

distribution of the particle arriving at (n, k) at the n-th step.

Proposition The p1 is a valid pmf in the following cases.

A r = 0,

A1 t < β < α & t ≤ nβ & β ≤ nα; (α < β < t & nβ ≤ t & nα ≤ β;)

A2 α = 0 & 0 < nβ < t; (α = 0 & t < nβ < 0;)

A3 β = 0 & α < 0 < t; (β = 0 & t < 0 < α.)

B r �= 0,
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t < iβ < r + jα, 0 ≤ i ≤ j ≤ n; (r + jα < iβ < t, 0 ≤ i ≤ j ≤ n.)

Similar result is obtained for p2. The following list shows the relationship of the new

families of generalized Stirling distributions with known distributions. The unspecified pa-

rameters, restricted to some domain, become the distribution parameters.
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n k m = 2 3 4 5 6 7 8
2 1 7 156 592 875 8 3 2

2 6 109 248 152 1 1 0
3 1 6 41 111 193 0 0 0

2 3 53 81 52 0 0 0
3 – 12 0 3 0 0 0

4 1 5 18 33 57 0 0 0
2 8 26 21 24 0 0 0
3 – 2 3 0 0 0 0
4 – – 0 0 0 0 0

5 1 0 8 12 22 0 0 0
2 1 8 20 12 0 0 0
3 – 2 1 1 0 0 0
4 – – 1 0 0 0 0
5 – – – 0 0 0 0

6 1 0 5 3 5 0 0 0
2 2 8 6 6 0 0 0
3 – 2 1 0 0 0 0
4 – – 0 0 0 0 0
5 – – – 0 0 0 0

7 1 0 4 3 3 0 0 0
2 1 5 3 0 0 0 0
3 – 4 1 0 0 0 0
4 – – 0 0 0 0 0
5 – – – 0 0 0 0

8 1 0 1 1 5 0 0 0
2 2 0 1 2 0 0 0
3 – 0 0 0 0 0 0
4 – – 0 0 0 0 0
5 – – – 0 0 0 0

Table 6: Number of Japanese homonym groups with n: size, m: kinds of accents, k: number of

clusters. Each row shows ynmk, 1 ≤ k ≤ �, � = min(n, m). The short hyphens denote impossible

entries. For n ≥ 6, zeros for k ≥ 6 are unlisted.
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Figure 1: The probability function of K when m and γ vary (n = 10).
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Figure 2: The probability function of K when m and γ vary (n = 20).
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Figure 3: PP-plot of chi-square statistics of Table 3.
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