

Modelling Breath Flow Time Series

Ritei Shibata Dept. Math., Keio University

Breath Flow and Heart Rate

Task

- Peak time of R-wave
 - Point Process
 - 16-20 peaks /minute
- Breath flow Speed
 - Regularly observed Time Series /0.5sec
 - Litter/sec \pm
 - 8 -9 litter/minute
- Task(mental arithmetic) × Health Condition

Data

- Before Task, During Task, After Task
- Good Health Condition, Bad Health Condition

Bad Health Condition

BR1

Before Task

During Task

GT

GR2

Integrative Mathematical Sciences 統合数理科学

GR2

Whole Breath Flow Time Series

ΒT

BR2

GR1

GT

GR2

Whole durations of R-R peaks

Homogeneous Part

Breath Flow Time Series

- Almost Cyclic
 - Randomness: Value, Cycle
- The aim of model building
 - Effect of Task and Health Condition
 - Input to Breath-HeartBeat
 System

 $X(t) = \mathbf{R}\cos(\theta t + \mathbf{B}(t)) ?$

Bad Health Condition Good Health Condition

0.10

Before Task

During Task

Time

Time

After Task

Periodgrams

$$\frac{X_{t+\Delta} - X_t}{X_t - X_{t-\Delta}} = a \qquad \Longrightarrow X_t = \exp\left(\frac{\log a}{\Delta}t + b\right) + c$$

a = 0.4 (*Bad Health*), 0.9 (*Good Health*)

Peak to Peak Time

Explanatory Model

- Health Condition
 - Amplitude: $\pm 100ml/\sec(Bad)$, $\pm 70ml/\sec(Good)$

$$X_{t} = R\left(\exp\left(\frac{\log a}{\Delta}(t-t_{k})\right) - \frac{1}{2}\right) \text{ for } t_{k} < t < t_{k}'$$
$$= R\left(\frac{1}{2} - \exp\left(\frac{\log a}{\Delta}(t-t_{k}')\right)\right) \text{ for } t_{k}' < t < t_{k+1}$$
$$a: 0.4 (Bad), 0.9(Good)$$

- Task
 - Peak to Peak Time $t_{k+1} t_k$: Expectation $\approx 3.0 \,\text{sec}$, Variance \uparrow

Generic Process ?

- Better understanding of the generic process (meta model) of building good models from data for the underlying phenomena concerned
 - Well understanding of the phenomena
 - Find homogeneity
 - Good insight
 - Start from scratch
 - Step by step without prejudice

Models

- Statistical Model
 - Probability Theory
 - Methods
- Data Driven Model
 - Understanding of Data
 - Simple
 - Enough for Promoting Further Investigation (Operational Model)
- Physical Model
 - Fully understandable