Unstable periodic orbits of a chaotic growth cycle model

Yoshitaka Saiki

Department of Mathematical Sciences University of Tokyo

(with Ken-ichi Ishiyama)

March 28, 2006

Business cycle theory [2]

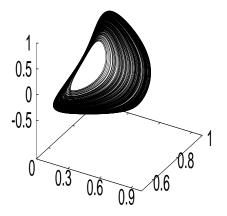
- Important topic in macro-economics
- Periodic fluctuation is essential characteristic
- Low dimensional dynamical systems
 - Stable model (Periodic point)
 - [Gap exists, even if dynamics look similar] - Chaotic model

 \Downarrow

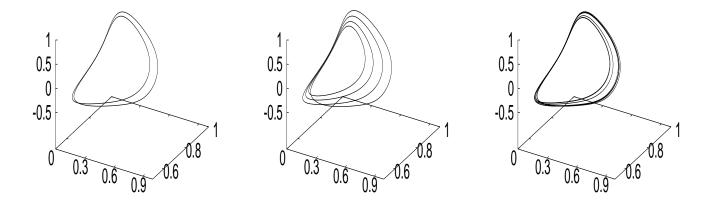
How to bridge the gap ?

Purpose [3]

Clearly recognize <u>chaotic behavior</u> by unstable periodic orbits (UPOs)



Chaotic behavior (Complicated object) \uparrow



UPOs (Simple objects)

Preparation [4]

<u>'Chaos'</u>: No single definition

Deterministic behavior with two properties;

- Instability
- <u>Reccurence</u>
- \rightarrow Chaotic

$\begin{array}{c} \Downarrow & \text{Special solution} \\ \textbf{Unstable periodic solution} \end{array}$

<u>'Chaos'↔UPOs</u>

- \bullet Chaotic attractor: Infinite number of <u>UPOs</u> are (densely) embedded
- Chaotic orbit: '<u>UPO</u> of infinite period'

Chaotic Analysis by UPOs [5]

<u>Detection of UPOs: Difficult</u> \Rightarrow A few studies

Background

UPO analysis of fluid turbulence (Kawahara & Kida(2001), Kato & Yamada(2003))

 $\begin{array}{c} \underline{\text{Small number of UPOs}} \text{ (Only one or two)} \\ \downarrow \\ \text{Coherent structure, Turbulent statistics} \end{array}$

Our study

Two country chaotic business cycle model \downarrow Numerically detect <u>1000 sorts of UPOs</u> [using PC cluster (40 CPUs)] \downarrow

Characterize various chaotic behaviors by UPOs

Plan [6]

- 1. Chaotic business cycle model
- 2. Chaotic Analysis based on UPOs
 - Regime and Regime transitions
 - Statistical properties
 - Growth rate of the number of UPOs

3. Summary

Two country business cycle model [7]

<u>Skeleton of the model</u>

- Three agents in each country
 - Capitalists
 - Workers
 - Government with Keynesian fiscal policy
- Investment interaction between two countries
- The only difference between two countries is their Keynesian fiscal policies

\Downarrow

Six dimensional ODEs (i = 1, 2)

- Labor share rate u_i
- Employment rate v_i
- Expected rate of inflation π_i^e

Mutual action parameter between countries: η ($\eta = 3.5$: usual)

Model (Keyenes-Goodwin type) [8]

The first country [weak Keynesian policy]

$$\frac{du_1}{dt} = 0.5 \left(\frac{0.1}{1 - v_1} + \pi_1^e - 0.5\right) u_1$$

$$\frac{dv_1}{dt} = 0.1(1.5(1-u_1)^5 + \frac{\eta(u_2-u_1)^3}{+0.5u_1 - 0.875v_1 - 0.1})v_1$$

$$\frac{d\pi_1^e}{dt} = \frac{v_1(0.4\pi_1^e + 0.2) - 0.4\pi_1^e - 0.16}{1 - v_1}$$

The second country [strong Keynesian policy]

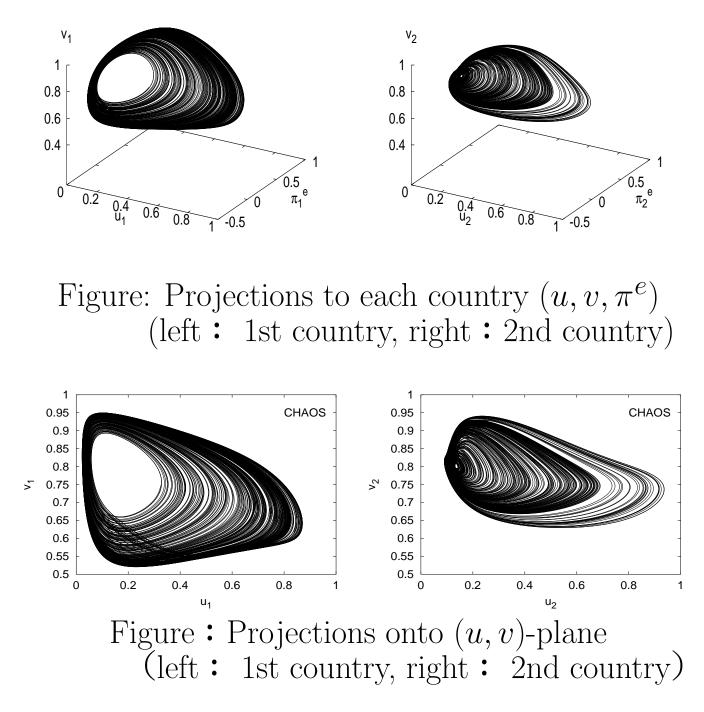
$$\frac{du_2}{dt} = 0.5 \left(\frac{0.1}{1 - v_2} + \pi_2^e - 0.5 \right) u_2$$
$$\frac{dv_2}{dt} = 0.1 (1.5(1 - u_2)^5 + \frac{\eta(u_1 - u_2)^3}{+ 0.5u_2 - 4.2v_2 + 2.56}) v_2$$

$$\frac{d\pi_2^e}{dt} = \frac{v_2(0.4\pi_2^e + 0.2) - 0.4\pi_2^e - 0.16}{1 - v_2}$$

(Parameters: Yoshida & Asada (2001))

Chaotic attractor [9]

Bounded & Positive Lyapunov exponent(0.099)

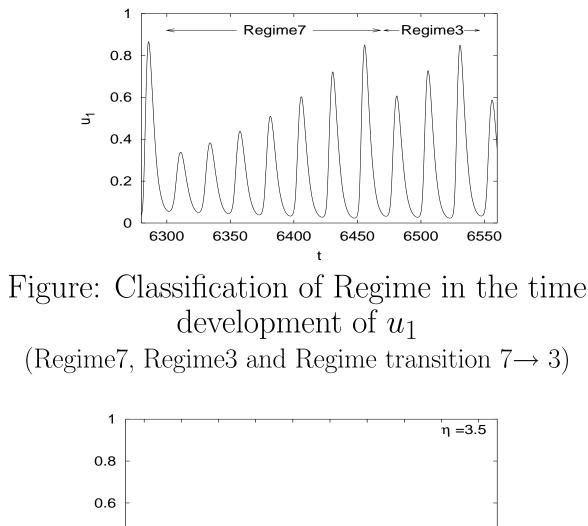


• Consistent with the empirical research by Havie(2000)

Classification of typical dynamics [10]

Regime: Time period in which local maxima in u_1 are monotone increasing Regime n: Regime which has noscillations

Regime transition $m \to n$: Regime $m \to \text{Regime } n$



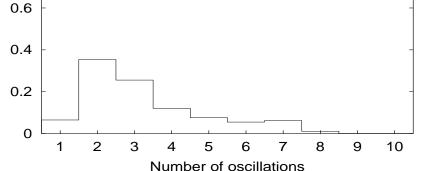


Figure: Regime appearance in a chaotic orbit (99% of the Regimes are classified into Regime 1 to Regime 7)

Chaotic analysis by UPOs [11]

Detection

Newton-Raphson-Mees method with modification

9000 UPOs are numerically detected \Downarrow Remove indistinguishable UPOs <u>1000 sorts of UPOs are identified</u>

Most of UPOs with short period are covered !

UPOs with only one Regime [12]

UPOn: UPO with n oscillations making a single Regime n

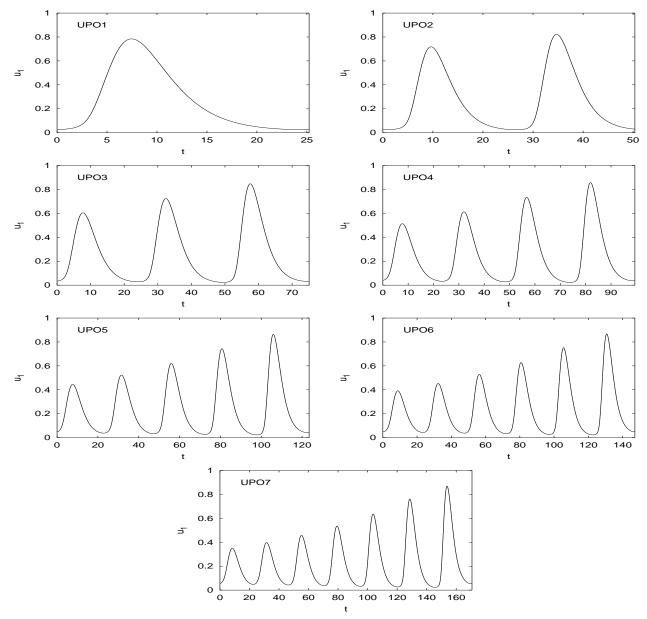


Figure: Time development of u_1 along UPOn $(T \approx 25n)$

Seven types of UPOs $(UPO1, \cdots, UPO7)$ are detected (NO UPO8 is found) \downarrow This corresponds to the main Regimes appearing <u>in a chotic orbit</u>

UPOs with several Regimes [13]

Ex)UPOn.m [composed of Regime n and Regime m]

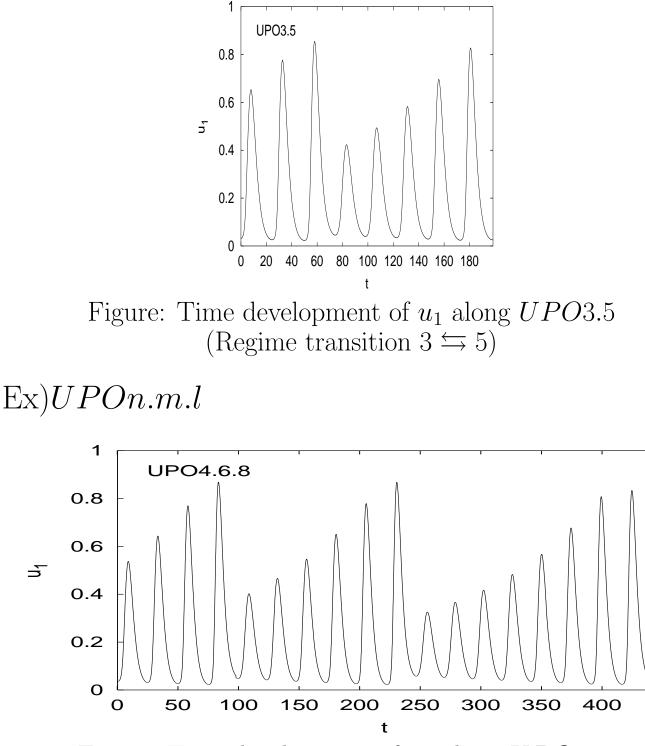


Figure: Time development of u_1 along UPO4.6.8(Regime transition $4 \rightarrow 6, 6 \rightarrow 8, 8 \rightarrow 4$)

Regime transitions of chaos and UPOs [14]

From\To	1	2	3	4	5	6	7	8	9
1	CU	CU	CU						
2	CU	CU	CU						
3	CU	CU	CU	CU	CU	CU			
4	CU								
5	CU	CU	CU	CU	СU	CU	CU	СU	
6	CU	СU							
7	CU								
8			CU	CU	CU				
9									

Table: Regime transitions observed in a chaotic orbit (C) and UPOs (U)

All Regime transitions in a chaotic orbit are recognized by UPOs

Ex) Chaos: Existence of Regime transition $4\rightarrow 6$, Regime transition $6\rightarrow 8$ and Regime transition $8\rightarrow 4$ \uparrow consistent UPO: Existence of UPO4.6.8

Ex) Chaos: Non-existence of Regime transition $8 \rightarrow 8$ \uparrow consistent UPO: Non-existence of UPO8

Bifurcations of periodic orbits [15]

Change of interaction between two countries (η)

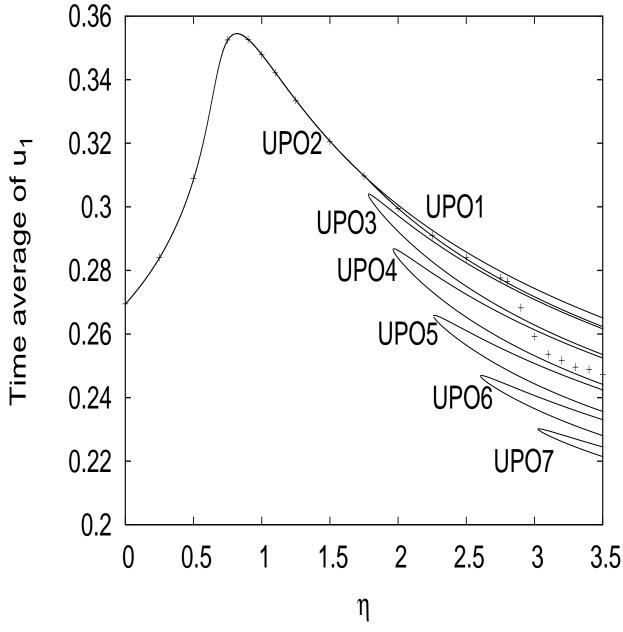


Figure: Time average of u_1 along UPOs at each η (+ Time average along an orbit on the attractor)

 $\eta = 3.5 \text{ (usual)}$: $UPO1, \dots, UPO7 \text{ exist}$ $\eta = 2.6$: $UPO1, \dots, UPO5 \text{ exist}$

UPOs embedded in the attractor and chaos $(\eta = 2.6)$ [16]

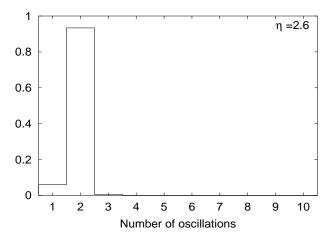


Figure: Regime appearance in a chaotic orbit $(\eta = 2.6)$

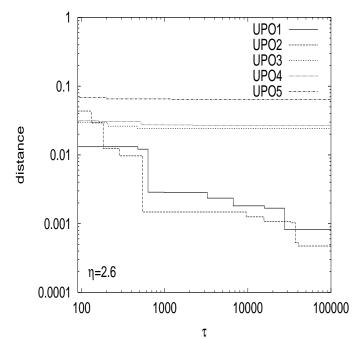


Figure: Distance between a point on the UPO (\boldsymbol{x}_{UPO}) and a chaotic orbit $\{\phi_t(\boldsymbol{X})\}_{t\geq 0}$ $(d(\tau) = \min_{t\leq \tau} |\phi_t(\boldsymbol{X}) - \boldsymbol{x}_{UPO}|)$

• $\eta = 2.6$: Regime 1 and 2 are mainly observed $\leftrightarrow UPO1, \cdots, UPO5$ are detected. But only UPO1, UPO2 are embedded UPOs embedded in the attractor and chaos $(\eta = 3.5: \text{ Usual})$ [17]

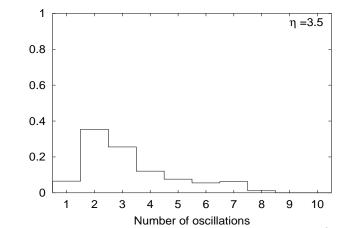


Figure: Regime appearance in a chaotic orbit

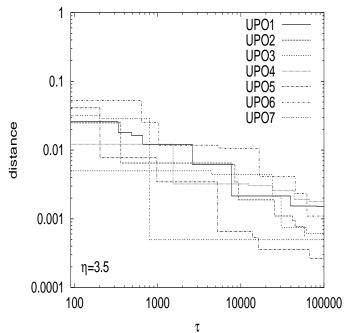


Figure: Distance between a point on the UPO (\boldsymbol{x}_{UPO}) and a chaotic orbit $\{\phi_t(\boldsymbol{X})\}_{t\geq 0}$

η = 3.5 : Regime1 ···· 7 are mainly observed
 ↔ UPO1 ···· 7 are embedded in the attractor
 <u>UPOs are to be embedded in the attractor</u>
 for capturing chaotic behavior

UPO2 is embedded in the attractor at various $\eta \; [18]$

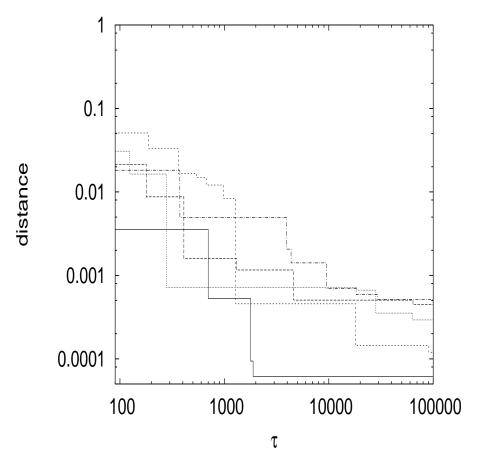
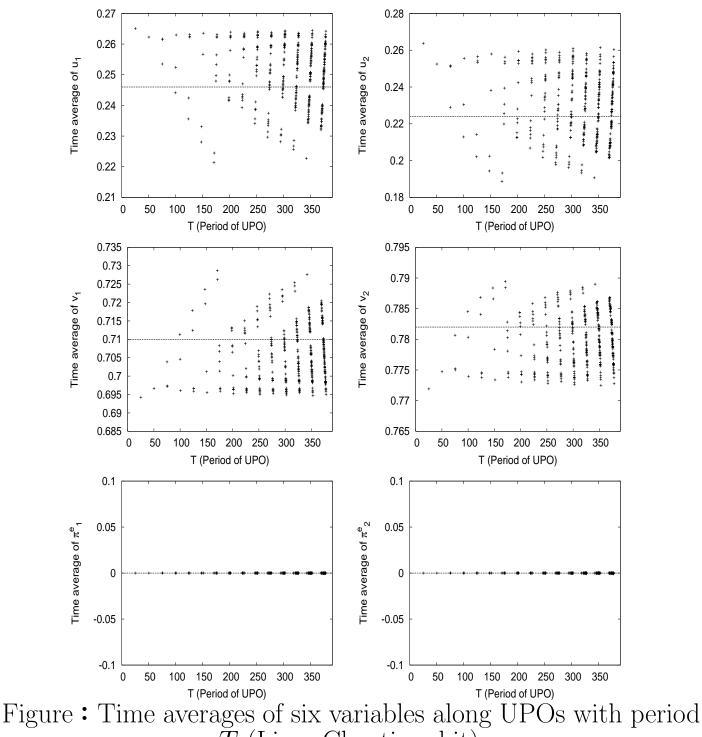


Figure : Distance between a point on the UPO2 and chaotic orbit ($\eta = 2.7, 2.9, 3.1, 3.3, 3.5$)

 $0 \leq \eta \lesssim 2.5$: UPO2 itself becomes the attractor $\downarrow \downarrow$ UPO2 is embedded in the attractor at various η $(0 \leq \eta \leq 3.5)$ $\downarrow \downarrow$

<u>UPO2 constructs the skeleton of economic behavior</u> at various η

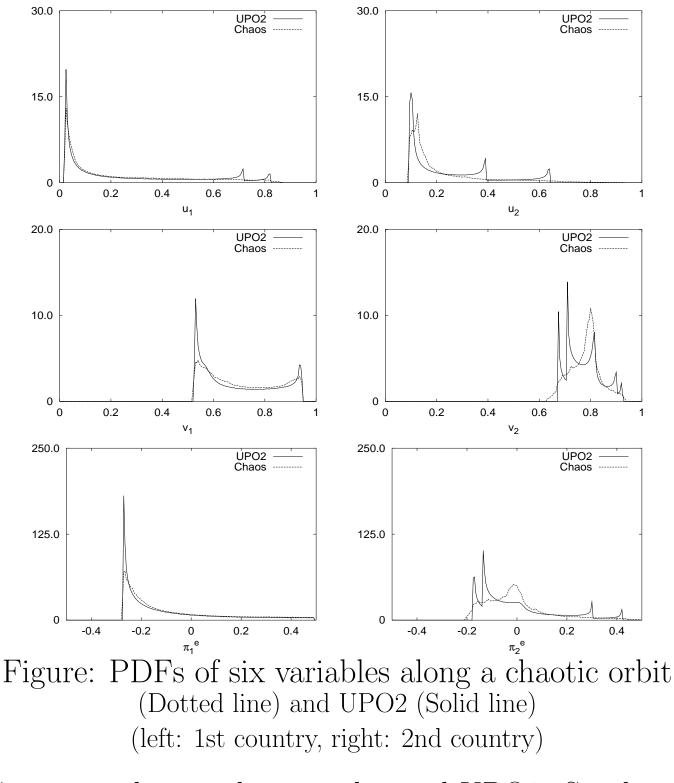
Statistical property (Time average along UPO) [19]



 \overline{T} (Line: Chaotic orbit)

We can roughly estimate the time average of a chaotic orbit by one of any UPOs

Statistical correspondence between chaotic orbits and UPO2 [20]



Statistics along a chaotic orbit and UPO2: Similar

Number of UPOs [21]

Topological variations of chaotic orbits can be estimated by variations of UPOs

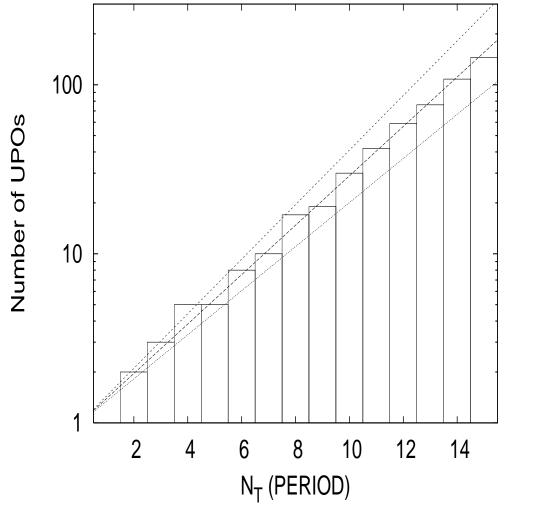


Figure: Number of UPOs against number of oscillations $(N_T \approx T/25)$ and $1.35^{N_T}, 1.4^{N_T}, 1.45^{N_T}$

```
#{UPOs with N_T-oscillations} \approx 1.4^{N_T}

\downarrow

Topological entropy is log 1.4

\downarrow

Complexity of the model: Low
```

Conclusion [22]

Two-country chaotic business cycle model

- Several characteristics of the model are captured by <u>various UPOs</u>.
 - Typical structure (Regime, Regime transition) of a chaotic business cycle
 - Statistical property (Time average)
 - Complexity of chaos (Growth rate of number of UPOs)
- Macroscopic character is captured by only one of any UPOs (e.g. UPO2).
- UPO2 is still embedded in the attractor with weaker interactions between two countries

 \Downarrow

UPO2 is the skeleton of the attractor over a range of η

Remarks [23]

Business cycle theory

- Important topic in macro-economics
- Periodic fluctuation is essential characteristic
- Low dimensional dynamical systems
 - Stable model (Periodic point)
 - [Gap exists, even if dynamics look similar]
 - Chaotic model

Our study

Chaotic business cycle model

 \downarrow Characterized by unstable periodic orbits

Bridge the gap through periodic orbit

 $[Details \Rightarrow Please see our papers !]$

Acknowledgements [24]

Researchers

- Abraham C.-L. Chian (INPE, Brazil)
- Kei-ichi Ishioka (Kyoto University)
- Shuhei Hayashi (University of Tokyo)
- Genta Kawahara (Osaka University)
- Toru Maruyama (Keio University)
- Michio Yamada (Kyoto University)

Financial support

 \bullet 21st century COE program at University of Tokyo

Computer resource

• PC cluster at University of Tokyo

Future work [25]

Construct and analyze more realistic economic model by UPOs

- Non-hyperbolic structure [Quasi-stationary state]
- 'Multiple attractor'
- Chaotic no-attractor [Chaotic transient]

(Chian et al. (2006))

Collaboration

Let's try UPO analyses about some chaotic model ! Please E-mail me ! \Rightarrow saiki@ms.u-tokyo.ac.jp

Reference (1/2) [26]

- Bowen, R., On axiom A diffeomorphisms, Regional conference series in mathematics, 24 (American Mathematical Society, The United States of America, 1978).
- Chian, A. C.-L., E. L. Rempel and C. Rogers, Complex economic dynamics: Chaotic saddle, crisis and intermittency, to appear in Chaos, Solitons and Fractals (2006).
- Devaney, R. L., An Introduction to Chaotic Dynamical Systems, (Westview Press, The United States of America, 1986).
- Goodwin, R. M., A growth cycle, in: C. H. Feinstein, ed., Socialism, capitalism, and economic growth, (The United States of America, 1967).
- Harvie, D., Testing Goodwin : Growth Cycles in Ten OECD countries, *Cambridge Journal of Economics*, **24**(3) (2000) 349–376.
- Ishiyama, K. and Y. Saiki, Unstable periodic orbits embedded in a chaotic economic dynamics model, Applied Economics Letters, 12 (2005a) 749–753.
- Ishiyama, K. and Y. Saiki, Unstable periodic orbits and chaotic economic growth, *Chaos, Solitons and Fractals*, **26** (2005b) 33–42.
- Ishiyama, K. and Y. Saiki, Unstable periodic orbits and chaotic transitions among growth patterns of an economy, The Practical Fruits of Econophysics: Proceedings of the Third Nikkei Econophysics Symposium, (Springer, 2006) 339– 343.
- Kato, S. and M. Yamada, Unstable periodic solutions embedded in a shell model turbulence, *Physical Review E*, 68(2)(2003) 25302–25305.

Reference (2/2) [27]

- Kawahara, G. and S. Kida, Periodic motion embedded in plane Couette turbulence: regeneration cycle and burst, *Journal* of Fluid Mechanics, **449** (2001) 291–300.
- Mees, A. I., *Dynamics of Feedback Systems* (John Wiley and Sons, New York, N. Y., 1981).
- Phillips, A. W., The relation between unemployment and the rate of change of money wage rates in the United Kingdom, 1861-1957, *Economica*, **25** (1958) 283–299.
- Pohjola, M. J., Stable and Chaotic Growth: the Dynamics of a Discrete Version of Goodwin's Growth Cycle Model, Journal of Economics / Zeitschrift für Nationalökonomie, 41 (1981) 27–38.
- Saiki, Y., Numerical study about a chaotic dynamical system based on unstable periodic orbits –Business cycle model of macro-economics–, PhD thesis, The University of Tokyo (2006).
- Skott, P., Effective demand, class struggle and cyclical growth, International Economic Review, 30(1) (1989) 231–247.
- Sportelli, M. C., A Kolmogoroff generalized predator-prey model of Goodwin's growth cycle, *Journal of Economics / Zeitschrift für Nationalökonomie*, **61** (1995) 35–64.
- Wolfstetter, E., Fiscal policy and the classical growth cycle, Journal of Economics / Zeitschrift für Nationalökonomie, **42** (1982) 375–393.
- Yoshida, H. and T. Asada, Dynamic analysis of policy lag in a Keynes-Goodwin model: stability, instability, cycles and chaos, Nagoya Gakuin University Discussion Paper, **53** (2001).

Validity of periodic orbits [A1]

Numerical error grows exponentially by time

rounding off error : $\delta = 10^{-16}$ stability exponent : $\lambda = 0.03$ permitted error : $err = 10^{-8}$

Maximum value of $t (t_{max})$ satisfying

$$\delta e^{\lambda t} \le err \tag{1}$$
is
$$t_{max} \approx 613 \tag{2}$$

- Chaotic orbit : Numerically invalid in general
- Detected periodic orbit : <u>Numericaly valid</u> ↓ Big advantage

Numerical method for detecting unstable periodic orbits [A2]

 $(Newton \cdot Raphson \cdot Mees method + damping)$

 $\{\phi_t(\mathbf{X})\}_{t\in\mathbf{R}}$: the orbit passing through $\mathbf{X}(\in\mathbf{R}^n)$ at t=0 of

$$\frac{d\boldsymbol{x}}{dt} = f(\boldsymbol{x}) \ (\boldsymbol{x} \in \mathbf{R}^n) \tag{3}$$

Periodic is identified by the zeros of

 $H(\boldsymbol{X},T) = \phi_T(\boldsymbol{X}) - \boldsymbol{X}.$

n+1 unknowns: one point X^* + period T^* .

Algorithm (Newton method):

 $\Delta H(\boldsymbol{X},T) \approx D_{\boldsymbol{X}} H(\boldsymbol{X},T) \Delta \boldsymbol{X} + D_{T} H(\boldsymbol{X},T) \Delta T$ Determine $\Delta \boldsymbol{X}$ and ΔT satisfying

 $\underline{H(\boldsymbol{X},T) + \Delta H(\boldsymbol{X},T) = 0.}$ (4)

Additional constraint : Modified vector ΔX is orthogonized by the orbit;

 $< f(\mathbf{X}), \Delta \mathbf{X} >= 0.$

 $\downarrow n+1 \text{ constraints}$ **Introducing damping coefficient** m $(\boldsymbol{X'}, T') = (\boldsymbol{X}, T) + 2^{-m} (\Delta \boldsymbol{X}, \Delta T)$ $(2^{-m} \sim 1/e^{\lambda T} (\lambda : \text{stability exponent}))$

Criterion of convergence [A3]

- $\left| \phi_{T^{(i)}}(\boldsymbol{X}^{(i)}) \boldsymbol{X}^{(i)} \right|$ (Practical error)
- $\left| (\Delta \mathbf{X}^{(i)}, \Delta T^{(i)}) \right|$ (Absolute value of modified vecor)

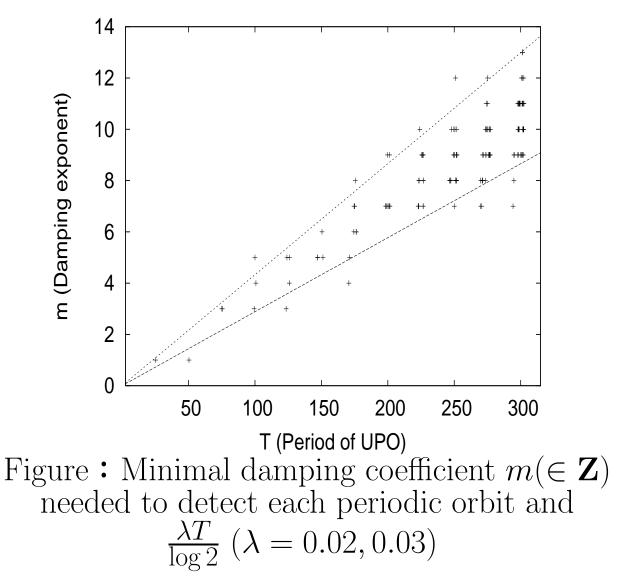
are sufficiently small (order: 10^{-9} , 10^{-7})

Detecting unstable periodic orbit

More than 9000 periodic orbits are numerically detected

 \Downarrow (remove overlapped orbits) 1000 sorts of UPOs

Damping coefficient [A4]



This corresponds to the fact that Floquet exponent of periodic orbits are between 0.02 and 0.03.

Validity of periodic orbit (time step) [A5]

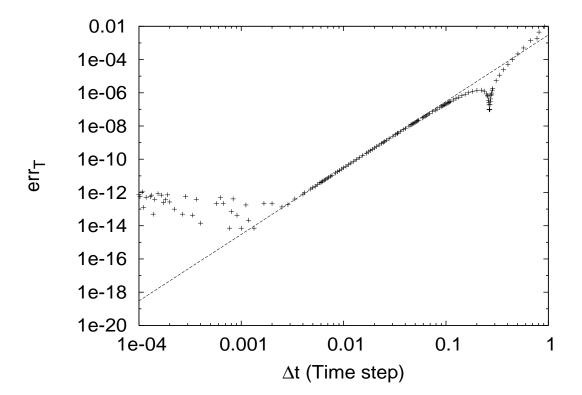


Figure : Error $(err_T(\Delta t) := |T - 50.344307687915|)$ about the period of UPO2 numerically integrated by various time steps (Δt)

$$err_T(\Delta t) \propto (\Delta t)^4 \quad (0.003 \lesssim \Delta t \lesssim 0.1)$$

 \uparrow
Fourth order Runge-Kutta method
 \downarrow
Numerical time integration of UPO2: Valid
(Cancelling effect: $(\Delta t \lesssim 0.003)$)

Goodwin type growth cycle model [A6]

Class conflict between capitalists and labors

- Goodwin(1967) : continuous, conservative (stable (center)) periodic orbit
- Desai(1973) : continuous, dissipative (limit cycle : Expected rate of inflation)
- Pohjola(1981) : discrete (chaos)
- Wolfstetter(1982) : continuous, dissipative (fixed point, limit cycle : Keynes type finantial policy)
- Sportelli(1995):continuous, dissipative (limit cycle: price rigidity)
- Yoshida & Asada(2001) : continuous, dissipative (Choas : time lag in policy)
- Ishiyama & Saiki(2005) : continuous, dissipative (Chaos : two countries)

Harvie(2000) : Empirical research (OECD ten countries)

Skelton of the model [A7]

(Agents : capitalists, labors, government)

Labor share rate
$$u \equiv \frac{wL}{pY} \left(=\frac{w}{pa}\right) \left[\frac{du}{dt} = (\hat{w} - (\hat{p} + \hat{a}))u\right]$$

Employment rate $v \equiv \frac{L}{N} \left(=\frac{Y}{aN}\right) \left[\frac{dv}{dt} = (\hat{Y} - (\hat{a} + \hat{N}))v\right]$
Expected rate of inflation π^e $\left[\frac{d\pi^e}{dt} = \theta \left(\hat{p} - \pi^e\right)\right]$

Variable

- w: Nomial wage rate
- L: Labor level
- p: Price level
- Y: Gross national output

(=Gross national income=Gross national expenditure) N: Labor supply

 $[a \equiv Y/L]$: Labor productivity]

 $[\hat{p}(\equiv \dot{p}/p):$ Actual inflation rate]

Constant

 $\alpha (\equiv \hat{a})$: Technical progress rate

- $\beta \equiv \hat{N}$: Growth rate of labors
- θ : Adaptive speed of worker's expectation
- $\bullet~Y$ is effected by the mutual action between countries
- \hat{x} means the growth rate of $x (\dot{x}/x)$

Details of the model [A8]

Wage bargaining
$$\hat{w}_i = f_i(v_i, \pi_i^e), \quad \frac{\partial f_i}{\partial v_i} > 0, \frac{\partial f_i}{\partial \pi_i^e} > 0,$$

Price fluctuation $\hat{p}_i = \gamma_i (\hat{w}_i - \alpha_i),$

(Elasticity coefficient $\gamma_i=0.5$, Technical progress rate $\alpha_i=0.02$)

Output plan
$$\hat{Y}_i = \varepsilon_i \left(\frac{I_i + G_i + C_i - Y_i}{Y_i} \right),$$

(Output adjustment coefficient $\varepsilon_i = 0.1$) Private investment $I_i = \underline{h_i(u_i, u_j)}Y_i$,

$$\frac{\partial h_i}{\partial u_i} < 0, \ \frac{\partial h_i}{\partial u_j} > 0, \ j = 1, 2, \ j \neq i.$$

Government expenses $G_i = \delta_i Y_i + \mu_i (v^* - v_i) Y_i$

(Income tax rate $\delta_i = 2/7$, Reaction coefficient of the government $\mu_1 = 1.25, \mu_2 = 6.0$)

Consumption
$$C_i = c_i \left((1 - \delta_i)((1 - u_i)Y_i + r_iB_i) - q_i \frac{dB_i}{dt} \right) + (1 - \delta_i)u_iY_i$$

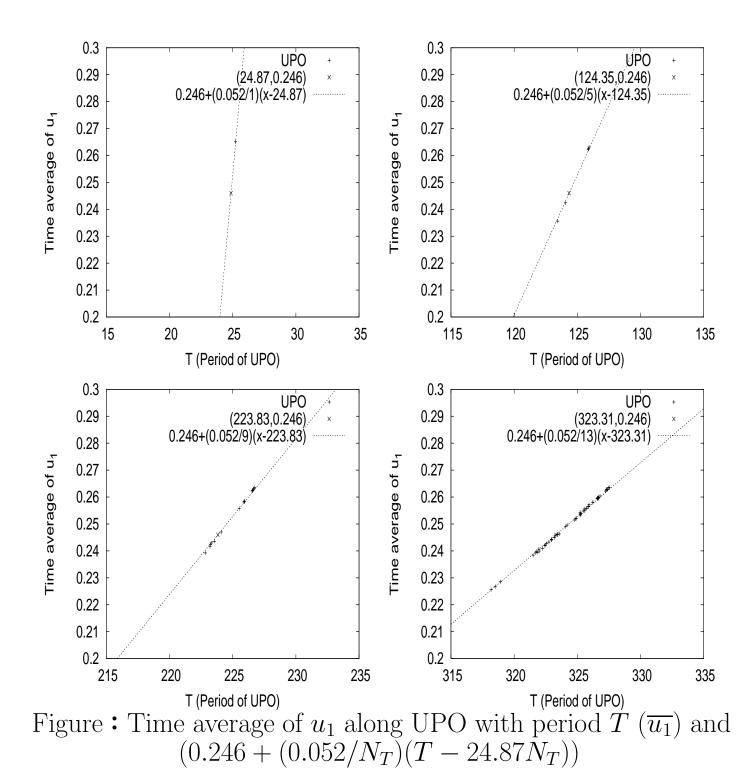
(Consumption coefficient of capitalists $c_i = 0.3$)

(Consumption coefficient of capitalists $c_i=0.3$)

Phillips curve
$$f_i(v_i, \pi_i^e) = 0.1 \left(\frac{1}{1 - v_i} - 4.8\right) + \pi_i^e$$

Investment function $h_i(u_i, v_j) = 1.5(1 - u_i)^5 + \eta (u_j - u_i)^3$, $\eta > 0$

Statistical value of UPO [A9]



Any UPOs seem to have macroscopically similar structure

New knowledges about the UPO analysis [A10]

- Detection of UPO: Damping coefficient is important [General]
- Various chaotic behavior: classified by UPOs [General (Hyperbolic)]
- UPO sometimes becomes out of the attractor by the change of parameter [General]
- Deformation of chaotic attractor corresponds to the change of variations of UPOs embedded in the attractor [General]
- Exponential growth rate of UPOs can be estimated by detected UPOs [Hyperbolic ('Single global structure')]
- Statistics of UPOs with the same Poincare map periods have smooth dependence on the period of UPO [Hyperbolic ('Single global structure')]
- Statistical values of chaos are approximated by one of any UPOs [Hyperbolic ('Single global structure')]
- UPO with long period does not necessarily well approximate the statistical value of chaos [General]