Parameter estimation for discrete hidden Markov models

Junko Murakami $^{\scriptscriptstyle (1)}$ and Tomas Taylor $^{\scriptscriptstyle (2)}$

Victoria University of Wellington
Arizona State University

Outline

Description of 'simple' hidden Markov models

- Maximum likelihood estimate (using Baum-Welch algorithm) – mode
- Bayes (or Least square error) estimate mean
- ▶ Comparison of the mode and mean

Baum-Welch Algorithm (1)

Consider the likelihood function $L(\theta)$,

$$L(\theta) = P(Y^{1,n}, X^{1,n} \mid \theta)$$

the probability of having sequences $Y^{1,n}$ and $X^{1,n}$, given the parameter set θ , where

$$\theta = \{ r_0, a_{00}, a_{11}, b_{00}, b_{11} \}.$$

Baum-Welch Algorithm (2)

Using the *k*th estimate, $\theta^{(k)}$, we want $\theta^{(k+1)}$ to be the θ - value that maximizes $Q(\theta, \theta^{(k)})$ defined below.

$$Q(\theta, \theta^{(k)}) = E(\log L(\theta) | Y^{1,n}, \theta^{(k)})$$

So, the goal is to maximize the expected value of the log likelihood function, given the observation sequence and the current estimate.

Baum-Welch Algorithm (5)

Advantages

- Maximizes the likelihood the majority of times.
- The convergence is quick enough the majority of times.
- Still feasible when the state and observation space size is large.
- Implementation is easy.

Baum-Welch Algorithm (6)

Disadvantages

- Strong dependency on the initial estimate.
- Guaranteed only to find a local maximum.
- 'Overfitting' problem: not close to the true parameter set when the data size is small.
- Convergence is sometime very slow.
- Online computation is not possible.

Least Square Error (LSE) Estimate (or Bayes Estimate)

LSE (Bayes) Estimate (1)

Finds the expected value of the parameter set given an observation sequence; i.e.,

$$\hat{\theta} = E[\theta] = \int \theta P(\theta \mid Y^{1,n}) d\theta.$$

Assuming the uniform distribution of θ (i.e., letting $P(\theta) = 1$), and using Bayes' theorem, we have

 $E[\theta] = \frac{1}{P(Y^{1,n})} \sum_{X^{1,n} \in \Omega_n} \int \theta P(Y^{1,n}, X^{1,n} \mid \theta) d\theta$

 $P(Y^{1,n}) = \sum_{X^{1,n} \in \Omega_n} \int P(Y^{1,n}, X^{1,n} \mid \theta) d\theta.$

where

LSE (Bayes) Estimate (2)

NOTE

The summation is over $\Omega_n \in \{ \text{all the possible values of } X^{1,n} \}$, which has the size 2^n .

LSE (Bayes) Estimate (3)

First, we let

$$k_{ij} = \# (X_t = i \text{ and } X_{t+1} = j) \text{ and}$$
$$k_{ij} = \# (X_t = i \text{ and } Y_t = u)$$

for $i, j, u \in \{0, 1\}$, where # (event) means the total number of events over $t \in \{1, 2, ..., n\}$.

Let $K = \{k_{ij}\}$ and $L = \{l_{m}\}$.

LSE (Bayes) Estimate (4) If we fix r_0 as 1/2 for simplicity, $P(x^{1,n}, X^{1,n} \mid \theta)$ is in the form $\frac{1}{2}a_{00}^{1}b_{00}(1-a_{00})^{1}b_{01}a_{11}^{1}b_{01}(1-a_{11})^{1}b_{00}b_{00}^{1}b_{00}(1-b_{00})^{1}b_{01}b_{11}^{1}b_{01}(1-b_{11})^{1}b_{01}$, and so both $\int \theta P(Y^{1,n}, X^{1,n} \mid \theta) d\theta$ and $\int P(Y^{1,n}, X^{1,n} \mid \theta) d\theta$ are functions of K and $I_{s,0} \theta = \{r_0, a_{00}, a_{11}, b_{00}, b_{11}\}$. NOTE: Because of the symmetry in the probability distribution, the integration should be under some restriction; e.g., $a_{00} \ge a_{11}$.

LSE (Bayes) Estimate (5)

Fact

- 1. To evaluate the integrals, all we need to know are the values of **K**. **L**.
- **2.** $[\underline{K}, \underline{I}]$ can be expressed as a function of $\{k_1, \underline{k_1}, \underline{f_1}, X_1, X_n\}$, instead, where k_1 is the number of 1's in $X^{1,n}$.
- $\blacksquare \quad \text{All we need is } \omega_n = \{k_1, k_{11}, l_{11}, X_1, X_n\}.$

LSE (Bayes) Estimate (6)

Fact

Given a particular $Y^{1,n}$, different state sequences $X^{1,n}$ can produce the same value of $\omega_n = \{k_1, k_{11}, l_{11}, X_1, X_n\}$.

-

Let $h_n(\omega_n)$ be the number of $X^{1,n}$ values that corresponds to the ω_n given.

LSE (Bayes) Estimate (7)

If we find the values of $h_n(\omega_n)$ for all ω_n , then the summations can be done over ω_n such that $h_n(\omega_n) > 0$, instead of over all possible values of $X^{1,n} \in \Omega_n$.

The algorithm shows that the number of ω_n values such that $h_n(\omega_n) > 0$ are polynomial of *n*.

LSE (Bayes) Estimate (7)

If we find the values of $h_n(\omega_n)$ for all ω_n , then the summations can be done over ω_n such that $h_n(\omega_n) > 0$, instead of over all possible values of $X^{1,n} \in \Omega_n$.

The algorithm shows that the number of ω_n values such that $h_n(\omega_n) > 0$ are polynomial of *n*.

NOTE : The observation state space size can be extended from m = 2 (this example) to any integer m in general.

LSE (Bayes) Estimate (8)

Let $h_1(0, 0, 0, 0, 0) = 1$ for *t* from 1 to n - 1with all $\omega_t = (k_1, k_{11}, l_{11}, 0, X_t)$ such that $h_t(\omega_t) > 0$ increment $h_{t+1}(k_1, k_{11}, l_{11}, 0, 0)$ and $h_{t+1}(k_1 + 1, k_{11} + X_t, l_{11} + X_{t+1}, 0, 1)$ by the value $h_t(\omega_t)$ end for

(Because of the symmetry, we can find $h_n(\omega_n)$ for $X_1 = 1$ once the ones for $X_1 = 0$ is obtained.)

LSE (Bayes) Estimate (9)

Advantages

Closer than B-W estimates to the true parameters when the data size is small.

- Online computation is possible.
- Finds the exact expected values (unbiased).
- One-time computation.

LSE (Bayes) Estimate (10)

Disadvantage

Computational complexity grows still exponentially in the state space size.

Acknowledgement

The presenter (J. Murakami) would like to thank Keio University and NZIMA for their support.