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Outline

Description of ‘simple’ hidden Markov models

Maximum likelihood estimate (using Baum-
Welch algorithm) – mode

Bayes (or Least square error) estimate – mean

Comparison of the mode and mean

‘simple’ HMMs?

‘simplest’ HMM (1)
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‘simplest’ HMM (2)
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Conditional Probabilities

Baum-Welch Algorithm
to Maximize the Log Likelihood
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Baum-Welch Algorithm (1)
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Baum-Welch Algorithm (2)

So, the goal is to maximize the expected value of the log 
likelihood function, given the observation sequence and the 
current estimate.
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Baum-Welch Algorithm (3)
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Baum-Welch Algorithm (4)

Characteristics

An implementation of E-M algorithm.

VERY widely used in various field.

Baum-Welch Algorithm (5)

Advantages

Maximizes the likelihood the majority of times.

The convergence is quick enough the majority of times.

Still feasible when the state and observation space size is 
large.

Implementation is easy.

Baum-Welch Algorithm (6)

Disadvantages

Strong dependency on the initial estimate.

Guaranteed only to find a local maximum.

‘Overfitting’ problem: not close to the true parameter set 
when the data size is small.

Convergence is sometime very slow.

Online computation is not possible.
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Least Square Error (LSE) Estimate
(or Bayes Estimate)

LSE (Bayes) Estimate (1)

where
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LSE (Bayes) Estimate (3)
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LSE (Bayes) Estimate (4)
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NOTE: Because of the symmetry in the probability distribution, 
the integration should be under some restriction; e.g., 
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LSE (Bayes) Estimate (5)
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LSE (Bayes) Estimate (6)
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LSE (Bayes) Estimate (7)
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LSE (Bayes) Estimate (7)
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LSE (Bayes) Estimate (8)
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LSE (Bayes) Estimate (9)

Advantages

Closer than B-W estimates to the true parameters when 
the data size is small.

Online computation is possible.

Finds the exact expected values (unbiased).

One-time computation.

LSE (Bayes) Estimate (10)

Disadvantage

Computational complexity grows still exponentially in the 
state space size.
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Example 1
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Baum-Welch estimate

LSE (Bayes) estimate

Example 2: B-W and LSE estimates
with a small data set (1)
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Outline:

As for B-W estimates:

Find 10 estimates using 10 randomly picked initial estimates.

Pick the one with the largest basin.

Example 2: B-W and LSE estimates
with a small data set (2)

The first 100 are plotted.  On the average, the B-W estimates (orange
dots) were farther away from the true parameters than LSE ones (green
dots) by 0.073 and less stable. 
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