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Outline

Description of ‘simple’ hidden Markov models

Maximum likelihood estimate (using Baum-
Welch algorithm) — mode

Bayes (or Least square error) estimate — mean

Comparison of the mode and mean

‘simple’ HMMs?

‘simplest’ HMM (1)

State sequence (Markov chain) x' = (X, X,,..., X,)

Observation sequence YV = (¥, Y, Y,)

X" e{0,1} and ¥ €{0,1}

‘simplest’ HMM (2)

Conditional Probabilities
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Also,let r, = P(X, =0) and r, = P(X, =1)
Note: a; =1-a;, b, =1-b,, and n, =1—-r, for i =0,1.

Baum-Welch Algorithm
to Maximize the Log Likelihood




Baum-Welch Algorithm (1)

Consider the likelihood function L(8),
()= P(r', x| 6)

the probability of having sequences Y'" and X', given
the parameter set 9, where

9={V0’“00’“11’b00’b11}~

Baum-Welch Algorithm (2)

Using the th estimate, 8%, we want 8%*) to be the @ - value
that maximizes Q(H, H(k))defined below.

oo, 6" = Ellog (o) v, 6%))

So, the goal is to maximize the expected value of the log
likelihood function, given the observation sequence and the
current estimate.

Baum-Welch Algorithm (3)

The algorithm finds two types of probabilities.

Leti e {0,1}

= forward procedure —
Recursively find ¢, (i) = P(Y"‘, X, =i 0(")),
starting fromtime ¢t = luptos = n.

= backward procedure D —
Recursively find 4,(i) = Py | x, =i,0"),
starting from time = ndowntos =1.

Then, uses a = {o, (i)}, B = {B,(i)},and 6*) to compute 6**.

Baum-Welch Algorithm (4)

Characteristics

7+ An implementation of E-M algorithm.

7+ VERY widely used in various field.

Baum-Welch Algorithm (5)

Advantages

B Maximizes the likelihood the majority of times.
B The convergence is quick enough the majority of times.

B Still feasible when the state and observation space size is
large.

B Implementation is easy.

Baum-Welch Algorithm (6)

Disadvantages

B Strong dependency on the initial estimate.
¥ Guaranteed only to find a local maximum.

B ‘Overfitting’ problem: not close to the true parameter set
when the data size is small.

F Convergence is sometime very slow.

E Online computation is not possible.




Least Square Error (LSE) Estimate
(or Bayes Estimate)

LSE (Bayes) Estimate (1)

Finds the expected value of the parameter set given an
observation sequence; i.e.,

6=Elo)=[o Plo|y™)de.

Assuming the uniform distribution of 4 (i.e., letting P(¢) = 1),
and using Bayes' theorem, we have
1
E[0] = 7—) oprly x' 0)do
P Yl,n X‘%Q”I ( )
where

Plyr)= 3 [Pl x| 6)as.

X""eﬂ“

LSE (Bayes) Estimate (2)

NOTE

The summationisover Q, e {aII the possible values of X" }

which has the size 2".

LSE (Bayes) Estimate (3)

First, we let

ky = #(x, =iand X,,, = j) and
[, = #(X, =iandY, = u)

for i, j,u e {0,1}, where # (event)means the total number of
eventsovert e {1,2,...,n}.

Let K = {k;]and L ={L,}

LSE (Bayes) Estimate (4)

If we fix r,, as 1/2 for simplicity, P(Y‘*”, b H)is in the form

%aoomj (1 ) )km a 1k“ (1 —ap )km boo!DD (1 = by YD' by 1!“ (1 - by )-’m,
and soboth [0 P(r', X' | 6)doand [ Py, X' | 6)d6 are
functions of K and L. 0 = {r,, agy» a1, boo» b1, }

NOTE: Because of the symmetry in the probability distribution,

the integration should be under some restriction; e.g.,
Qoo 2 ayy-

LSE (Bayes) Estimate (5)

Fact

1. Toevaluate theintegrals, all we need to know are the
values of {k, L},

2. {K, L}can be expressed as a function of { by kL s X, X, }
instead, where k, is the number of 1'sin X",

=p Alweneedisw, = { k. kL. X, X, }




LSE (Bayes) Estimate (6)

Fact
Given a particular Y'", different state sequences X' can
produce the same value of w, = { k;, k;,, 1,1, X, X, }

-
Let 4, (w, )be the number of X' values that corresponds
to the w, given.

LSE (Bayes) Estimate (7)

If we find the values of 4, (w, ) for all ,, then the summations
can be done over o, such that 4, (w, ) > 0, instead of over all

possible values of X" € Q,.

The algorithm shows that the number of @, values such that
h,(@,) > 0 are polynomial of n.

LSE (Bayes) Estimate (7)

If we find the values of 4, (w, ) for all ,, then the summations
can be done over o, such that 4, (w, ) > 0, instead of over all

possible values of X" € Q,.

The algorithm shows that the number of @, values such that
h,(w,) > 0 are polynomial of .

NOTE : The observation state space size can be extended from m = 2 (this
example) to any integer m in general.

LSE (Bayes) Estimate (8)

Let /,(0,0,0,0,0)=1
fortfromlton—1
withall @, = (k,, k,,,1,,,0, X, )such that /,(@,) > 0
increment #,,,(k,, k,,1,,,0,0)and
B (ky + Lk + X, 0y + X0, 0,1)
by the value ,(w,)
end for

(Because of the symmetry, we can find /, (w, ) for X, =1
once the ones for X, = 0is obtained.)

LSE (Bayes) Estimate (9)

Advantages

B Closer than B-W estimates to the true parameters when
the data size is small.

¥ Online computation is possible.
B Finds the exact expected values (unbiased).

B One-time computation.

LSE (Bayes) Estimate (10)

Disadvantage

B Computational complexity grows still exponentially in the
state space size.




Example 1

Baum-Welch estimate

LSE (Bayes) estimate

: 7
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Example 2: B-W and LSE estimates
with a small data set (1)

Outline:

Generate 200 @ - values, randomly with respect to the determinant
of 4= {a” }and to the difference b, — b,,.

For each 6, generate a set of {X“”, Y } n =100, and obtain the
estimates.

As for B-W estimates:
Find 10 estimates using 10 randomly picked initial estimates.

\

Pick the one with the largest basin.

Example 2: B-W and LSE estimates
with a small data set (2)

The distance from the true parametsr set

BwW
+ LSE

05 05 1

o
det(a)

The first 100 are plotted. On the average, the B-W estimates (orange
dots) were farther away from the true parameters than LSE ones (green
dots) by 0.073 and less stable.
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