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Abstract

Abstract� �� Introduction and applications.� Expressions of the characteristic function and the
density of a general stable distribution.� The density of a general stable distribution close to
the normal distribution.� Fisher information close to the normal distribution.� Numerical study (symmetric case).� �
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Heavy tailed data

Example� �� Financial data.� Network models.� Telecommunication� �

How to deal with ?� �� Extreme value theory� Heavy tailed distribution (e.x. pareto distribution)� Heavy tailed time series model (e.x. GARCH, SV)� Copulas� �

Note that stable distributions can model very heavy tailed data
only. (no second moments)
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Definition and Properties

Definition� �� The distribution R is stable (in the broad sense) if for
each n there exist constants n > 0; n such thatSn d= nX + n
and R is not concentrated at one point. R is stable in
the strict sense with n = 0.� �

Widely known distributions;
Normal distribution, Cauchy distribution and Lévy distribution.
Except these 3 distributions, Probability densities have
no analytic expression.

Tail is very tick;
Except Normal distribution, no second moment exists.
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Definition and Properties

Domain of Attraction� �� The distribution F of the independent random vari-
ables Xk belongs to the domain of attraction of a
distribution R if there exist norming constants an >0; bn such that the distribution of a�1n (Sn�bn) tends
to R.� �

A distribution R possesses a domain of attraction iff it is stable.

Many applications
(see recently published book, Uchaikin and Zolotarev (1999)):
Chaos, fractal, physics, astrophysics, cosmology.
In economics financial applications are expected.
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Characteristic function: �(t;�; �)

Zolotarev’s (M) parameterization (see p.11 of Zolotarev (1986)).

�(t;�; �; �; �) = exp��j�tj�[1+i�(tan 2�� )(sgn t)(j�tj1��)�1)℄+i�t�:

0 < � � 2; �1 � � � 1; �1 < � <1; � > 0.
location: �, scale: �, kurtosis: �, skewness: �.

We consider the standard case (�; �) = (0; 1).

�(t;�; �) = expf�jtj�[1+ i�(sgn t)(tan 2�� )(jtj1��� 1)℄g:

Location scale family f(x;�; �) := f(x; 0; 1; �; �):

f(x;�; �; �; �) = 1�f(x� �� ;�; �):
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Density: f(x; �; �)

Let � = �� tan ��2 ;

% = 2�� artan(� tan ��2 ):
From (2.2.18) of Zolotarev (1986), for � 6= 1 and x > �,

f(x;�; �) = �(x� �)1=(��1)2j�� 1j Z 1�%A(') exp ��(x��)�=(��1)A(')�d':

A(';�; �) = (os �2�%) 1��1  os �2'sin �2�('+ %)! ���1 os �2 (�%+ (�� 1)')os �2' ;

f(x;�; �) = f(�x;�;��) for x < �.
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Normal: f(x; 2)

As � " 2, � and %! 0.
Unusual representation of the normal distribution(� = 0; � = 2),

f(x; 2) = x Z 10 1=(2 sin �2')2 exp(�x2=(2 sin �2')2) d':
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Definition of problem

MLE of stable distributions� Brorsen ans Yang (1990),� Nolan (2001),� Matsui and Takemura (2004).

Behavior of the Fisher information matrix� DuMouchel (1975, 1983) proved
Fisher information I�� (w.r.t �) !1 as �! 2.� Nagaev and Shkol’nik (1988) derived asymptotic behavior ofI�� as �! 2 in symmetric case.

I�� = 14� log(1=�)(1 + o(1)); � = 2� �:
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Definition of problem

Nagaev and Shkol’nik (1988) stated
“We note the problems under study are as yet unresolved for
non-symmetric stable distributions.”

We clarify the limiting values of the 4� 4 Fisher Information
matrix with respect to �, �, � and �.

From here let � = 2� �;�� = � sgn(x� �):
and let w(t) > 0 be a function which satisfies the propertylimt!0w(t) = 0:
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Theorem 2.1:Density near the normal distribution

Let j�j 6= 1 be fixed. We defineF1(x;�; �) = f(jx� �j; 2);F2(x;�; �) = �(1 + ��)jx� �j��3;g(x;�; �) = F1(x;�; �) + F2(x;�; �):
Then for an arbitrarily small � > 0 there exit �0 and x0 such
that for all � < �0 and jxj > x0,jf(x;�; �)=g(x;�; �)� 1j < �:

Furthermore, for an arbitrarily small constant Æ > 0,

g(x;�; �) = 8<: F1(x;�; �)(1 + w(�)) if jx� �j � (2� Æ)(log 1=�)1=2F2(x;�; �)(1 + w(�)) if jx� �j � (2 + Æ)(log 1=�)1=2:
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Visualization: Integrand near Normal
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Figure 1: � = 1:999999; x = 15:0 Figure 2: � = 1:9999999999; x = 21:0

The integrand of density near Normal and x!1.f(x;�; �) = �(x� �)1=(��1)2j�� 1j Z 1�%A(') exp �� (x� �)�=(��1)A(')�d':
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Proof

Assume x� � > 0.
Notations:�; �0; �; � := arbitrarily small positive numbers; := any positive constant;� := 1� ';'� := 1��1=2��;z := (x� �)�=(��1) := x2;'0 := '� � z�1=2+� :

f(x;�; �) = �(x� �)1=(��1)2j�� 1j �H:
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Proof

We divide integral

H = Z 1�%A(';�; �) exp(�zA(';�; �))d';
into H = 6Xk=1Hk
where each Hk corresponds to the integration of H for k-th
intervals of[�%; 1� �); [1� �; '0); ['0; '�)['�; 1��=�0); [1��=�0; 1���0); [1���0; 1℄:
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Lemmas

Lemma 2.1 : A(') on [1��=�0; 1���0)
As �! 0 and for 0 � � � �=�0,

A(1� �) = (�=�) 11�� (1 + � + �=�)(1 + � + 2�=�)2 (1 + o(� log(1=�))):

Lemma 2.2 : A(') on ['0; '�) and ['�; 1��=�0)

As �! 0
A('�) = 14 + �216�1�2� + o(�);

A0('�) = ��28 �1=2�� � (1 + �)28 �1=2+3� + o(�):
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Lemmas

Lemma 2.3 : A(') on ['0; '�)

As �! 0 and �! 0

for ' = 1� � < '� = 1��1=2��,

A(1� �) = 14 + �216�2 + o(�2);

A0(1� �) = ��28 �� �2(1� �+ �)28�3 + o(�2);

A00(1� �) = �28 + �28 �2 � 38�2(1� �+ �)2�4+ 34�2(1� �+ �)�3 �1� �(1� �+ �)2�2 �

+ o(�2):
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Lemmas

Note since0 � ' � '� , �=� � �1=2�� � � � 1 ) � = o(�2),
we have to consider terms like �2=�4 or �2=�3 in Lemma 2.3.

Lemma 2.4 :
If � is sufficiently small, A(') is a monotonically decreasing
function on (�%; 1) (integral range).
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Calculation of H1

Lemma 2.1 ) A('�) > 14 .
Lemma 2.4 and 1� � < '�) 9� 2 (0; 1) such that �A(1� �) > 14 .

H1 = 1z(1� �) Z 1���%� z(1� �)A(') expf�z�A(')� z(1� �)A(')gd'� 1z(1� �) exp(�z�A(1� �))= O(exp(�z)=z); for  > 14 :
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Calculation of H2

Lemma 4 ) H2 = Z '01��A(') exp(�zA('))d'= �A(1� �) exp(�zA('0))= O(exp(�zA('0))):

A('0) = A('�) +A0('�)('0 � '�) + 12A00(�)('0 � '�)2;

Lemma 2.2, Lemma 2.3 and '0 � '� = �z�1=2+� )

H2 = O �exp��z4 �R1(�; z; �)�R2(�; z; �)� z2���;

R1(�; z; �) = O(z�1�2�) > 0; R2(�; z; �) = O(�1=2��z1=2+� ) > 0:
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Calculation of H3

H3 = exp(�zA('�))�Z '�'0 A(') exp��zA0('�)('� '�)� z2A00(�)('� '�)2� d':

Lemma 2.2 and Lemma 2.3 )A(') = 14 + O(�2);zA('�) = z4 +R1(�; z; �);zA0('�)('� '�) = R3(�; z; �); 0 < R3(�; z; �) � R2(�; z; �);z2A00(�)('� '�)2 = z2 �28 ('� '0)2 + O(z�1+4� ) + O(�4�z2� ):
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Calculation of H3

H3 = R(�;�; z; �)14 exp��z4�Z '�'0 exp��z2 �28 ('� '�)2� d';

R(�;�; z; �) = (1 + o(1)) exp (�R1(�; z; �)�R3(�; z; �)) :Z '�'0 exp��z2 �28 ('� '0)2� d'

= 1pz Z 10 exp��z2 �28 '2� d'� 1pz Z 1z� exp��z2 �28 '2� d'

= 2p�z � O � 1z1=2+� exp��z2�2 �� :

H3 = 12p�z exp��z4 �R1(�; z; �)�R3(�; z; �)� (1 + o(1)):
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Calculation of H4

Lemma 2.4 )
H4 � Z 1��=�0'� A('�) exp(�zA(1��=�0))d'� �1=2��A('�) exp(�zA(1��=�0)):�=� � 1=�0, Lemma 2.1 and 2.4 )

A(1��=�0) = 14(1� w(�0)); as �! 0:) H4 � O ��1=2�� exp��z4(1� w(�0))��:
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Calculation of H5

From Lemma 1 for �0 � �=� � 1=�0, A(') is bounded. Then

H5 = Z 1���01��=�0 A(') exp(�zA('))d'� (�=�0 ���0) sup'2(1��=�0;1���)A(') exp(�zA('))� O(� exp(�z)):
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Calculation of H6

Lemma 2.1 ) for �=� � �0

A(';�; �) = 1 +R4(�; �0)1 + � (�=�)1=(1��);

R4(�; �0) = O(�0) + O(� log(1=�)).' = 1� �! � in H6H6 = �1 +R41 + � �Z ��00 (�=�)1=(1��) exp��z �1 +R41 + � � (�=�)1=(1��)� d�:

� = �� 1 + �1 +R4 xz�1�� ! x; g(z) = �01=(1��) �1 +R41 + � � z;

H6 = �(1 + �)1��z2�� Z g(z)0 x exp(�x)dx� (1 + o(1)):
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Calculation of H6
Z g(z)0 x exp(�x)dx = ��xe�x � e�x�g(z)0= 1 + O �ge�g� ;g(z)!1 as z !1. ThereforeH6 = �(1 + �)z��2(1 + o(1)):
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Review

f(x;�; �) = �(x� �)1=(��1)2j�� 1j �H:

H = Z 1�%A(';�; �) exp(�zA(';�; �))d';

H = 6Xk=1Hk
where each Hk corresponds to the integration of H for k-th
intervals of[�%; 1� �); [1� �; '0); ['0; '�)['�; 1��=�0); [1��=�0; 1���0); [1���0; 1℄:

The behavior of the general stable distributions and their F isher information matrix near the normal distribution – p.26/46



Calculation of H
H1 = O(exp(�z)=z); for  > 14H2 = O�exp��z4 �R1(�; z; �)�R2(�; z; �)� z2���

H3 = 12p�z exp��z4 �R1(�; z; �)�R3(�; z; �)� (1 + o(1)):

H4 � O��1=2�� exp��z4(1� w(�0))��H5 � O(� exp(�z))H6 = �(1 + �)z��2(1 + o(1)):)

max(H1; H2;H4; H5) = o(max(H3; H6)):
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Calculation of H

For an arbitrarily small Æ > 0,H6 = o(H3) if z � (4� Æ) log 1=�;H3 = o(H6) if z � (4 + Æ) log 1=�:
If z � (4� Æ) log 1=�, R1(�; z; �) # 0; R3(�; z; �) # 0,

H3 = 12p�z exp��z4� (1 + o(1)):
2
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f�(x;�; �)

Lemma 3.1 :

As � = 2� �! 0, there exists x0 and for all jxj � x0,f�(x;�; �) =� 1jyj1+� �1 + �� +�(M1 +M2 log jyj) + M3jyj + M4 +M5 log jyjjyj� �

+o� 1jyj1+2�� ;

where y = x� � and M 0is are some constants. 2

Lemma 3.1 covers the case of � = 2.
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Information matrix

Theorem 4.1 :

As � = 2� �! 0, Behavior of Fisher information matrix of
general stable distributions when � = 0, � = 1, � 6= �1 is
given as follows.

2666664
I�� I�� I�� I��� I�� I�� I��� � I�� I��� � � I��

3777775 =
2666666666666664
0:5 + o(1) o(1) o(1) O(�)� 2:0 + o(1) �12 log log 1=� o(� log log 1=�)� � 14� log 1=� o � 1log 1=��

� � � �4(1��2) log 1=�
3777777777777775

:
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Information matrix

Table 1: Limit of information matrix at � = 2I�� � � � �� 0.5 0 0 0� 0 2.0 �1 0� 0 �1 1 0� 0 0 0 0
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Visualization: Density and Score in Symmetric
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Figure 3: f�(x;�; 0) Figure 4: f�(x;�; 0)=f(x;�; 0)

While f(x;�; 0) is exponential order as x!1 at � = 2,f�(x;�; 0) is polynomial order as x!1 at � = 2.
Therefore Fisher information I�� " 1.
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Numerical work

Numerical work� �� Maximum likelihood estimation.� Observed Fisher information matrix.� Numerical confirmation of I�� as �! 2.� �

All numerical works are done in symmetric case.
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Maximum Likelihood Estimation (Symmetric Case)

n ^� ^� ^� ^I�� ^I�� ^I��
0 1.0 2.0 0.5 2.0 1

50 0.00014 0.977 1.976 0.607 1.875 5.647
100 0.00017 0.975 1.990 0.868 1.402 9.445
200 0.00094 0.977 1.994 0.784 1.239 12.77

0 1.0 1.8 0.4552 1.3898 0.5937
50 0.0012 0.991 1.818 0.487 1.231 0.676

100 0.0033 1.002 1.822 0.482 1.356 0.584
200 -0.0000 1.000 1.810 0.450 1.399 0.603

0 1.0 1.5 0.4281 0.9556 0.4737
50 -0.0022 1.012 1.548 0.3161 0.5796 0.4252

100 -0.0000 1.000 1.524 0.3914 0.9138 0.4278
200 -0.0003 1.000 1.510 0.4028 0.9474 0.4683

0 1.0 1.0 0.5 0.5 0.8590
50 -0.0029 0.996 1.026 0.4243 0.4877 0.670

100 -0.0041 0.988 1.001 0.4438 0.4205 0.746
200 -0.0039 1.001 1.006 0.4929 0.5013 0.845

0 1.0 0.8 0.6800 0.3586 1.3928
50 -0.0016 1.005 0.815 0.5434 0.3243 1.111

100 -0.0001 1.003 0.811 0.6015 0.3459 1.171
200 -0.0009 1.000 0.805 0.6232 0.3708 1.303
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Observed Fisher information

Observed Fisher information w.r.t. �

^I��(x1; : : : ; xn) = � 1n nXi=1 �2 log f(xi; ^�)��2

= 1n nXi=1�f�(xi; ^�)f(xi; ^�) �2 � 1n nXi=1 f��(xi; ^�)f(xi; ^�)

We define this as ^I��(2). Observed Fisher information only use
the first derivatives

^I��(1) = 1n nXi=1�f�(xi; ^�)f(xi; ^�) �2
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Observed Fisher information

Simulated observed Fisher information ( Sample size n = 50,1000 iterations)
In table, ^I��(i); i = 1; 2 are means of 1000 iterations. and the
variances of ^I��(i); i = 1; 2 are in ().� �� ^I��(1) ^I��(2) I��

1.5 1.531 0.4863 (0.033) 0.5145 (0.018) 0.4737
1.0 1.025 0.8541 (0.157) 0.9001 (0.099) 0.8590
0.5 0.509 4.2819 (3.517) 4.4660 (2.755) 4.2748^I��(1): small bias and large variance.^I��(2): small variance and large bias.

Sometimes ^I��(1) (only use the first derivatives) is useful.
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Numerical confirmation of I�� as �! 2

In symmetric case we numerically examine
Nagaev and Shkol’nik (1988) results.I�� = 14� log(1=�)(1 + o(1)); � = 2� �:� I��(1) I��(2) N&S I��(1) I��(2)2:0� 10�10 106860414 92384764 108573620 �1.3482 �1.34272:0� 10�9 10810787 10167389 12063736 �1.3482 �1.33952:0� 10�8 1144778 1131645 1357170 �1.3482 �1.31232:0� 10�7 127953 127802 155105.2 �1.3478 �1.25532:0� 10�6 14724 14722 18095.60 �1.2094 �1.1923

1.99999 1750 1750 2171.472 �1.1100 �1.1100

1.9999 217 217 271.4341 �1.0069 �1.0069I��(1) near x!1 Taylor expansion at � = 2 w.r.t. �.I��(2) near x!1 use asymptotic expansion.
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Future work

What can do ? with stable� �� Very heavy tail model.� Distributions with finite order moments.� �

Future work� �� Tail is not so heavy (have second moment)� Non i.i.d. dependent data.� Multivariate data.� �

Copulas ? Resampling method?

important = why, for what purpose, how you use this model.
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Proof of I��

We divide integral of Fisher information matrix into tree parts.

I�� = Z 10 ff�(x+ �;�; �)g2f(x+ �;�; �) dx+ Z 10 ff�(x+ �;�;��)g2f(x+ �;�;��) dx

+ Z ��� ff�(x;�; �)gf(x;�; �) dx= I1�� + I2�� + I3��:
This is obtained by the relation f(x;�; �) = f(�x;�;��) forx� � < 0.
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Proof of I��I1�� into five subintegrals,

I1�� = 5Xk=1 I��(k)
where each I��(k) corresponds to the k-th intervals of [0; T ),[T; x1(�)), [x1(�); x2(�)), [x2(�); x3(�)), [x3(�);1).x1(�) = (2� Æ)(log 1=�)1=2; x2(�) = (2 + Æ)(log 1=�)1=2;x3(�) = exp(��1=2):
Theorem 2.1 and Lemma 3.1I��(1) <1:
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Proof of I��

For I��(2),f(x+�;�; �) = f(x; 2)(1+o(1)); f�(x+�;�; �) = const�x��3:I��(2) = const� Z x1(�)T x2��6 exp�x24 � dx= const� 1�1�Æ(log 1=�)5=2�� :
For I��(3),f(x+�;�;�) = const��x��3; f�(x+�;�; �) = const�x��3:I��(3) = const� 1� Z x2(�)x1(�) x��3dx

= const� Æ� log 1=� :
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Proof of I��

For I��(4),f(x+ �;�; �) = (1 + �)�x��3(1 + o(1));f(x+ �;�; �) = �(1 + �)x��3(1 + o(1)):I��(4) = 1 + �� (1 + o(1)) Z x3(�)x2(�) x��3dx

= 1 + �8� log 1=�(1 + o(1)):
For I��(5),f(x+ �;�; �) = (1 + �)�x��3(1 + o(1));f�(x+ �;�; �) = �(1 + � +� log x)x��3(1 + o(1)):
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Proof of I��
I��(5) = const� 1� Z 1x3(�) x��3fmax(1 + �;� log x)g2dx

� const�� Z e(1+�)=�x3(�) x��3(log x)2dx

+const� 1� Z 1e(1+�)=� x��3dx� const� 1� Z 1x3(�) x��3dx= O(e�2=�1=2=�) ! 0; as � ! 0:
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Proof of I��
I1�� = 1 + �8� log 1=�(1 + o(1)):

Setting � ! �� in I1��, we obtain I2��. By � = O(�) and
finiteness of the integrand of I3��, I3�� = O(�). 2
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