The behavior of the general stable distributions and their Fisher information matrix near the normal distribution

By Muneya MATSUI

mmatsui@grad.e.u-tokyo.ac.jp

Graduate School of Economics, University of Tokyo

Cherry Bud Workshop 2006

The behavior of the general stable distributions and their Fisher information matrix near the normal distribution - p.1/46

Abstract

- Abstract
 - Introduction and applications.
 - Expressions of the characteristic function and the density of a general stable distribution.
 - The density of a general stable distribution close to the normal distribution.
 - Fisher information close to the normal distribution.
 - Numerical study (symmetric case).

Heavy tailed data

- Example
 - Financial data.
 - Network models.
 - Telecommunication

How to deal with ? -

- Extreme value theory
- Heavy tailed distribution (e.x. pareto distribution)
- Heavy tailed time series model (e.x. GARCH, SV)
- Copulas

Note that stable distributions can model very heavy tailed data only. (no second moments)

Definition and Properties

Definition

• The distribution R is stable (in the broad sense) if for each n there exist constants $c_n > 0$, γ_n such that

$$S_n \stackrel{d}{=} c_n X + \gamma_n$$

and R is not concentrated at one point. R is stable in the strict sense with $\gamma_n = 0$.

Widely known distributions;

Normal distribution, Cauchy distribution and Lévy distribution. Except these 3 distributions, Probability densities have no analytic expression.

Tail is very tick;

Except Normal distribution, no second moment exists.

Definition and Properties

Domain of Attraction

• The distribution F of the independent random variables X_k belongs to the domain of attraction of a distribution R if there exist norming constants $a_n > 0$, b_n such that the distribution of $a_n^{-1}(S_n-b_n)$ tends to R.

A distribution *R* possesses a domain of attraction iff it is stable.

Many applications (see recently published book, Uchaikin and Zolotarev (1999)): Chaos, fractal, physics, astrophysics, cosmology. In economics financial applications are expected.

Characteristic function: $\Phi(t; lpha, eta)$

Zolotarev's (M) parameterization (see p.11 of Zolotarev (1986)).

$$\Phi(t;\mu,\sigma,lpha,eta)=\expig(-|\sigma t|^lpha[1+ieta(anrac{2lpha}{\pi})(\operatorname{sgn} t)(|\sigma t|^{1-lpha})-1)]+i\mu tig).$$

 $0 < \alpha \leq 2, \quad -1 \leq \beta \leq 1, \quad -\infty < \mu < \infty, \quad \sigma > 0.$ location: μ , scale: σ , kurtosis: α , skewness: β .

We consider the standard case $(\mu, \sigma) = (0, 1)$.

$$\Phi(t;lpha,eta)=\exp\{-|t|^lpha[1+ieta(\operatorname{sgn} t)(anrac{2lpha}{\pi})(|t|^{1-lpha}-1)]\}.$$

Location scale family $f(x; \alpha, \beta) := f(x; 0, 1, \alpha, \beta)$:

$$f(x;\mu,\sigma,lpha,eta)=rac{1}{\sigma}f(rac{x-\mu}{\sigma};lpha,eta).$$

Density: f(x, lpha, eta)

Let

$$\zeta = -\beta \tan \frac{\pi \alpha}{2},$$

$$q=rac{2}{\pilpha}rctan(eta anrac{\pilpha}{2})$$

From (2.2.18) of Zolotarev (1986), for lpha
eq 1 and $x > \zeta$,

$$f(x;lpha,eta)=rac{lpha(x-\zeta)^{1/(lpha-1)}}{2|lpha-1|}\int_{-arrho}^1A(arphi)\expig(-(x-\zeta)^{lpha/(lpha-1)}A(arphi)ig)darphi.$$

$$A(\varphi;\alpha,\beta) = (\cos\frac{\pi}{2}\alpha\varrho)^{\frac{1}{\alpha-1}} \left(\frac{\cos\frac{\pi}{2}\varphi}{\sin\frac{\pi}{2}\alpha(\varphi+\varrho)}\right)^{\frac{\alpha}{\alpha-1}} \frac{\cos\frac{\pi}{2}(\alpha\varrho+(\alpha-1)\varphi)}{\cos\frac{\pi}{2}\varphi},$$

$$f(x; lpha, eta) = f(-x; lpha, -eta)$$
 for $x < \zeta$.

Normal: f(x; 2)

As $\alpha \uparrow 2$, ζ and $\rho \to 0$. Unusual representation of the normal distribution $(\mu = 0, \sigma = 2)$,

$$f(x;2) = x \int_0^1 1/(2\sin{\pi\over 2}arphi)^2 \exp(-x^2/(2\sin{\pi\over 2}arphi)^2) \, darphi.$$

Definition of problem

MLE of stable distributions

- Brorsen ans Yang (1990),
- Nolan (2001),
- Matsui and Takemura (2004).

Behavior of the Fisher information matrix

- DuMouchel (1975, 1983) proved Fisher information $I_{\alpha\alpha}$ (w.r.t α) $\rightarrow \infty$ as $\alpha \rightarrow 2$.
- Nagaev and Shkol'nik (1988) derived asymptotic behavior of $I_{\alpha\alpha}$ as $\alpha \to 2$ in symmetric case.

$$I_{lphalpha} = rac{1}{4\Delta\log(1/\Delta)}(1+o(1)), \qquad \Delta = 2-lpha.$$

Definition of problem

Nagaev and Shkol'nik (1988) stated "We note the problems under study are as yet unresolved for non-symmetric stable distributions."

We clarify the limiting values of the 4×4 Fisher Information matrix with respect to μ , σ , α and β .

From here let

 $\Delta = 2 - lpha,$

$$\beta^* = \beta \operatorname{sgn}(x - \zeta).$$

and let w(t) > 0 be a function which satisfies the property

 $\lim_{t\to 0} w(t) = 0.$

Theorem 2.1:Density near the normal distribution

Let $|\beta| \neq 1$ be fixed. We define

$$egin{array}{rll} F_1(x;lpha,eta)&=&f(|x-\zeta|;2),\ F_2(x;lpha,eta)&=&\Delta(1+eta^*)|x-\zeta|^{\Delta-3},\ g(x;lpha,eta)&=&F_1(x;lpha,eta)+F_2(x;lpha,eta). \end{array}$$

Then for an arbitrarily small $\epsilon > 0$ there exit Δ_0 and x_0 such that for all $\Delta < \Delta_0$ and $|x| > x_0$,

$$|f(x;lpha,eta)/g(x;lpha,eta)-1|<\epsilon.$$

Furthermore, for an arbitrarily small constant $\delta > 0$,

$$g(x;lpha,eta) = \left\{ egin{array}{ll} F_1(x;lpha,eta)(1+w(\Delta)) & ext{if } |x-\zeta| \leq (2-\delta)(\log 1/\Delta)^{1/2} \ F_2(x;lpha,eta)(1+w(\Delta)) & ext{if } |x-\zeta| \geq (2+\delta)(\log 1/\Delta)^{1/2}. \end{array}
ight.$$

Visualization: Integrand near Normal

The integrand of density near Normal and $x \to \infty$.

$$f(x;lpha,eta)=rac{lpha(x-\zeta)^{1/(lpha-1)}}{2|lpha-1|}\int_{-arrho}^1A(arphi)\expig(-(x-\zeta)^{lpha/(lpha-1)}A(arphi)ig)darphi.$$

Proof

Assume $x - \zeta > 0$. Notations:

 $egin{aligned} \epsilon,\epsilon', au,\eta &:= & ext{arbitrarily small positive numbers},\ c &:= & ext{any positive constant},\ \lambda &:= & 1-arphi,\ arphi &:= & 1-arphi,\ arphi &:= & 1-\Delta^{1/2-\epsilon},\ z &:= & (x-\zeta)^{lpha/(lpha-1)} &:= x^2,\ arphi_0 &:= & arphi \Delta - z^{-1/2+ au}. \end{aligned}$

$$f(x;lpha,eta)=rac{lpha(x-\zeta)^{1/(lpha-1)}}{2|lpha-1|} imes H.$$

Proof

We divide integral

$$H=\int_{-arrho}^1 A(arphi;lpha,eta) \exp(-zA(arphi;lpha,eta)) darphi,$$

into

$$H = \sum_{k=1}^{\circ} H_k$$

6

where each H_k corresponds to the integration of H for k-th intervals of

$$egin{aligned} & [-arrho,1-\mu), & [1-\mu,arphi_0), & [arphi_0,arphi_\Delta) \ & [arphi_\Delta,1-\Delta/\epsilon'), & [1-\Delta/\epsilon',1-\Delta\epsilon'), & [1-\Delta\epsilon',1]. \end{aligned}$$

Lemmas

Lemma 2.1 : $A(\varphi)$ on $[1 - \Delta/\epsilon', 1 - \Delta\epsilon')$ As $\Delta \to 0$ and for $0 \le \lambda \le \Delta/\epsilon'$,

$$A(1-\lambda) = rac{(\lambda/\Delta)^{rac{1}{1-\Delta}}(1+eta+\lambda/\Delta)}{(1+eta+2\lambda/\Delta)^2}(1+o(\Delta\log(1/\Delta))).$$

Lemma 2.2 : $A(\varphi)$ on $[\varphi_0, \varphi_\Delta)$ and $[\varphi_\Delta, 1 - \Delta/\epsilon')$ As $\Delta \to 0$

$$egin{array}{rll} A(arphi_\Delta) &=& rac{1}{4} + rac{\pi^2}{16} \Delta^{1-2\epsilon} + o(\Delta), \ A'(arphi_\Delta) &=& -rac{\pi^2}{8} \Delta^{1/2-\epsilon} - rac{(1+eta)^2}{8} \Delta^{1/2+3\epsilon} + o(\Delta). \end{array}$$

Lemmas

Lemma 2.3: $A(\varphi)$ on $[\varphi_0, \varphi_{\Delta})$ As $\Delta \rightarrow 0$ and $\lambda \rightarrow 0$ for $arphi=1-\lambda < arphi_{\Delta}=1-\Delta^{1/2-\epsilon}$ $A(1-\lambda) = \frac{1}{4} + \frac{\pi^2}{16}\lambda^2 + o(\lambda^2),$ $A'(1-\lambda) = -rac{\pi^2}{8}\lambda - rac{\Delta^2(1-\lambda+eta)^2}{8\lambda^3} + o(\lambda^2),$ $A''(1-\lambda) = rac{\pi^2}{8} + rac{\pi^2}{8}\lambda^2 - rac{3}{8}rac{\Delta^2(1-\lambda+eta)^2}{\lambda^4}$ $+rac{3}{4}rac{\Delta^2(1-\lambda+eta)}{\lambda^3}\left(1-rac{\Delta(1-\lambda+eta)^2}{\lambda^2}
ight)$ $+ o(\lambda^2).$

Lemmas

Note since

 $0 \leq \varphi \leq \varphi_{\Delta} \Leftrightarrow \Delta/\epsilon \leq \Delta^{1/2-\epsilon} \leq \lambda \leq 1 \Rightarrow \Delta = o(\lambda^2),$ we have to consider terms like Δ^2/λ^4 or Δ^2/λ^3 in Lemma 2.3.

Lemma 2.4 :

If Δ is sufficiently small, $A(\varphi)$ is a monotonically decreasing function on $(-\varrho, 1)$ (integral range).

Lemma 2.1 $\Rightarrow A(\varphi_{\Delta}) > \frac{1}{4}$. Lemma 2.4 and $1 - \mu < \varphi_{\Delta}$ $\Rightarrow \exists \rho \in (0, 1)$ such that $\rho A(1 - \mu) > \frac{1}{4}$.

$$\begin{split} H_1 &= \frac{1}{z(1-\rho)} \int_{-\varrho^*}^{1-\mu} z(1-\rho) A(\varphi) \exp\{-z\rho A(\varphi) - z(1-\rho) A(\varphi)\} d\varphi \\ &\leq \frac{1}{z(1-\rho)} \exp(-z\rho A(1-\mu)) \\ &= O(\exp(-\gamma z)/z), \quad \text{for } \gamma > \frac{1}{4}. \end{split}$$

Lemma 4 \Rightarrow

$$egin{array}{rcl} H_2&=&\int_{1-\mu}^{arphi_0}A(arphi)\exp(-zA(arphi))darphi\ &=&\mu A(1-\mu)\exp(-zA(arphi_0))\ &=&O(\exp(-zA(arphi_0))). \end{array}$$

$$A(\varphi_0) = A(\varphi_\Delta) + A'(\varphi_\Delta)(\varphi_0 - \varphi_\Delta) + \frac{1}{2}A''(\xi)(\varphi_0 - \varphi_\Delta)^2,$$

Lemma 2.2, Lemma 2.3 and $\varphi_0 - \varphi_\Delta = -z^{-1/2+\tau} \Rightarrow$

$$H_2 = O\left(\exp\left(-rac{z}{4} - R_1(\Delta, z, \epsilon) - R_2(\Delta, z, \epsilon) - cz^{2 au}
ight)
ight),$$

 $R_1(\Delta,z,\epsilon)=O(z\Delta^{1-2\epsilon})>0, \quad R_2(\Delta,z,\epsilon)=O(\Delta^{1/2-\epsilon}z^{1/2+ au})>0.$

$$egin{aligned} H_3 &= & \exp(-zA(arphi_\Delta)) imes \ & & \int_{arphi_0}^{arphi_\Delta} A(arphi) \exp\left(-zA'(arphi_\Delta)(arphi-arphi_\Delta) - rac{z}{2}A''(\xi)(arphi-arphi_\Delta)^2
ight) darphi. \end{aligned}$$

Lemma 2.2 and Lemma 2.3 \Rightarrow

$$egin{aligned} A(arphi) &=& rac{1}{4} + O(\lambda^2), \ zA(arphi_\Delta) &=& rac{z}{4} + R_1(\Delta, z, \epsilon), \ zA'(arphi_\Delta)(arphi - arphi_\Delta) &=& R_3(\Delta, z, \epsilon), \quad 0 < R_3(\Delta, z, \epsilon) \leq R_2(\Delta, z, \epsilon), \ rac{z}{2}A''(\xi)(arphi - arphi_\Delta)^2 &=& rac{z}{2}rac{\pi^2}{8}(arphi - arphi_0)^2 + O(z^{-1+4 au}) + O(\Delta^{4\epsilon}z^{2 au}). \end{aligned}$$

$$H_3=R(\lambda,\Delta,z,\epsilon)rac{1}{4}\exp\left(-rac{z}{4}
ight)\int_{arphi_0}^{arphi_\Delta}\exp\left(-rac{z}{2}rac{\pi^2}{8}(arphi-arphi_\Delta)^2
ight)darphi,$$

 $R(\lambda,\Delta,z,\epsilon) = (1+o(1)) \exp\left(-R_1(\Delta,z,\epsilon) - R_3(\Delta,z,\epsilon)
ight).$

$$\begin{split} &\int_{\varphi_0}^{\varphi_{\Delta}} \exp\left(-\frac{z}{2}\frac{\pi^2}{8}(\varphi-\varphi_0)^2\right)d\varphi \\ &= \frac{1}{\sqrt{z}}\int_0^{\infty} \exp\left(-\frac{z}{2}\frac{\pi^2}{8}\varphi^2\right)d\varphi - \frac{1}{\sqrt{z}}\int_{z^{\tau}}^{\infty} \exp\left(-\frac{z}{2}\frac{\pi^2}{8}\varphi^2\right)d\varphi \\ &= \frac{2}{\sqrt{\pi z}} - O\left(\frac{1}{z^{1/2+\tau}}\exp\left(\frac{-z^{2\tau}}{2}\right)\right). \end{split}$$

$$H_3=rac{1}{2\sqrt{\pi z}}\exp\left(-rac{z}{4}-R_1(\Delta,z,\epsilon)-R_3(\Delta,z,\epsilon)
ight)(1+o(1)),$$

Lemma 2.4 \Rightarrow

$$egin{array}{ll} H_4 &\leq & \int_{arphi_\Delta}^{1-\Delta/\epsilon'} A(arphi_\Delta) \exp(-zA(1-\Delta/\epsilon')) darphi \ &\leq & \Delta^{1/2-\epsilon} A(arphi_\Delta) \exp(-zA(1-\Delta/\epsilon')). \end{array}$$

 $\lambda/\Delta \leq 1/\epsilon'$, Lemma 2.1 and 2.4 \Rightarrow

$$A(1-\Delta/\epsilon')=rac{1}{4}(1-w(\epsilon')), \hspace{1em} ext{as} \hspace{1em} \Delta o 0.$$

 \Rightarrow

$$H_4 \leq O\left(\Delta^{1/2-\epsilon} \exp\left(-rac{z}{4}(1-w(\epsilon'))
ight)
ight).$$

From Lemma 1 for $\epsilon' \leq \lambda/\Delta \leq 1/\epsilon'$, $A(\varphi)$ is bounded. Then

$$egin{aligned} H_5 &= \int_{1-\Delta/\epsilon'}^{1-\Delta\epsilon'} A(arphi) \exp(-zA(arphi)) darphi \ &\leq & (\Delta/\epsilon'-\Delta\epsilon') \sup_{arphi\in(1-\Delta/\epsilon',1-\Delta\epsilon)} A(arphi) \exp(-zA(arphi)) \ &\leq & O(\Delta\exp(-cz)). \end{aligned}$$

Lemma 2.1 \Rightarrow for $\lambda/\Delta \leq \epsilon'$

$$A(arphi;lpha,eta) \;\;=\;\; rac{1+R_4(\Delta,\epsilon')}{1+eta}(\lambda/\Delta)^{1/(1-\Delta)},$$

 $egin{aligned} R_4(\Delta,\epsilon') &= O(\epsilon') + O(\Delta\log(1/\Delta)). \ arphi &= 1-\lambda o \lambda ext{ in } H_6 \end{aligned}$

$$H_6 = \left(rac{1+R_4}{1+eta}
ight) \int_0^{\Delta\epsilon'} (\lambda/\Delta)^{1/(1-\Delta)} \exp\left(-z\left(rac{1+R_4}{1+eta}
ight) (\lambda/\Delta)^{1/(1-\Delta)}
ight) d\lambda.$$

$$\lambda = \Delta \left(rac{1+eta}{1+R_4} rac{x}{z}
ight)^{1-\Delta}
ightarrow x, \quad g(z) = {\epsilon'}^{1/(1-\Delta)} \left(rac{1+R_4}{1+eta}
ight) z,$$

$$H_{6} = rac{\Delta(1+eta)^{1-\Delta}}{z^{2-\Delta}} \int_{0}^{g(z)} x \exp(-x) dx imes (1+o(1))$$

$$\int_{0}^{g(z)} x \exp(-x) dx = \left[-xe^{-x} - e^{-x} \right]_{0}^{g(z)}$$
$$= 1 + O\left(ge^{-g}\right),$$

 $g(z)
ightarrow \infty$ as $z
ightarrow \infty$. Therefore

$$H_6 = \Delta(1+\beta)z^{\Delta-2}(1+o(1)).$$

Review

$$f(x;lpha,eta)=rac{lpha(x-\zeta)^{1/(lpha-1)}}{2|lpha-1|} imes H.$$

$$H = \int_{-\varrho} A(\varphi; \alpha, \beta) \exp(-zA(\varphi; \alpha, \beta)) d\varphi,$$

$$H = \sum_{k=1}^{6} H_k$$

where each H_k corresponds to the integration of H for k-th intervals of

$$\begin{array}{ll} [-\varrho, 1-\mu), & [1-\mu, \varphi_0), & [\varphi_0, \varphi_\Delta) \\ \\ [\varphi_\Delta, 1-\Delta/\epsilon'), & [1-\Delta/\epsilon', 1-\Delta\epsilon'), & [1-\Delta\epsilon', 1] \end{array}$$

 \Rightarrow

$$\begin{split} H_1 &= O(\exp(-\gamma z)/z), \quad \text{for } \gamma > \frac{1}{4} \\ H_2 &= O\left(\exp\left(-\frac{z}{4} - R_1(\Delta, z, \epsilon) - R_2(\Delta, z, \epsilon) - cz^{2\tau}\right)\right) \\ H_3 &= \frac{1}{2\sqrt{\pi z}} \exp\left(-\frac{z}{4} - R_1(\Delta, z, \epsilon) - R_3(\Delta, z, \epsilon)\right) (1 + o(1)). \\ H_4 &\leq O\left(\Delta^{1/2 - \epsilon} \exp\left(-\frac{z}{4}(1 - w(\epsilon'))\right)\right) \\ H_5 &\leq O(\Delta \exp(-cz)) \\ H_6 &= \Delta(1 + \beta) z^{\Delta - 2}(1 + o(1)). \end{split}$$

 $\max(H_1, H_2, H_4, H_5) = o(\max(H_3, H_6)).$

For an arbitrarily small $\delta > 0$,

$$egin{aligned} H_6 &= o(H_3) & ext{if } z \leq (4-\delta) \log 1/\Delta, \ H_3 &= o(H_6) & ext{if } z \geq (4+\delta) \log 1/\Delta. \end{aligned}$$

 $\text{ If } z \leq (4-\delta) \log 1/\Delta, \, R_1(\Delta,z,\epsilon) \downarrow 0, R_3(\Delta,z,\epsilon) \downarrow 0, \\$

$$H_3=rac{1}{2\sqrt{\pi z}}\exp\left(-rac{z}{4}
ight)(1+o(1)).$$

$f_lpha(x;lpha,eta)$

Lemma 3.1:

As $\Delta = 2 - \alpha \rightarrow 0$, there exists x_0 and for all $|x| \geq x_0$,

$$\begin{split} f_{\alpha}(x;\alpha,\beta) &= \\ &-\frac{1}{|y|^{1+\alpha}} \left(1+\beta^{*} + \Delta(M_{1}+M_{2}\log|y|) + \frac{M_{3}}{|y|} + \frac{M_{4}+M_{5}\log|y|}{|y|^{\alpha}}\right) \\ &+ o\left(\frac{1}{|y|^{1+2\alpha}}\right), \end{split}$$

where $y = x - \zeta$ and $M'_i s$ are some constants.

Lemma 3.1 covers the case of $\alpha = 2$.

Information matrix

Theorem 4.1:

As $\Delta = 2 - \alpha \rightarrow 0$, Behavior of Fisher information matrix of general stable distributions when $\mu = 0$, $\sigma = 1$, $\beta \neq \pm 1$ is given as follows.

$$\begin{bmatrix} I_{\mu\mu} & I_{\mu\sigma} & I_{\mu\alpha} & I_{\mu\beta} \\ * & I_{\sigma\sigma} & I_{\sigma\alpha} & I_{\sigma\beta} \\ * & * & I_{\alpha\alpha} & I_{\alpha\beta} \\ * & * & * & I_{\beta\beta} \end{bmatrix} = \begin{bmatrix} 0.5 + o(1) & o(1) & o(1) & O(\Delta) \\ * & 2.0 + o(1) & -\frac{1}{2}\log\log 1/\Delta & o(\Delta\log\log 1/\Delta) \\ * & * & \frac{1}{4\Delta\log 1/\Delta} & o\left(\frac{1}{\log 1/\Delta}\right) \\ * & * & * & \frac{\Delta}{4(1-\beta^2)\log 1/\Delta} \end{bmatrix}$$

Information matrix

Table 1: Limit of information matrix at lpha=2

$I_{ heta heta}$	μ	σ	lpha	$oldsymbol{eta}$
μ	0.5	0	0	0
σ	0	2.0	$-\infty$	0
α	0	$-\infty$	∞	0
β	0	0	0	0

Visualization: Density and Score in Symmetric

Case

While $f(x; \alpha, 0)$ is exponential order as $x \to \infty$ at $\alpha = 2$, $f_{\alpha}(x; \alpha, 0)$ is polynomial order as $x \to \infty$ at $\alpha = 2$. Therefore Fisher information $I_{\alpha\alpha} \uparrow \infty$.

Numerical work

- Numerical work -
 - Maximum likelihood estimation.
 - Observed Fisher information matrix.
 - Numerical confirmation of $I_{\alpha\alpha}$ as $\alpha \rightarrow 2$.

All numerical works are done in symmetric case.

Maximum Likelihood Estimation (Symmetric Case)

n	$\hat{oldsymbol{\mu}}$	$\hat{\sigma}$	\hat{lpha}	$\hat{I}_{\mu\mu}$	$\hat{I}_{\sigma\sigma}$	$\hat{I}_{lpha lpha}$
	0	1.0	2.0	0.5	2.0	∞
50	0.00014	0.977	1.976	0.607	1.875	5.647
100	0.00017	0.975	1.990	0.868	1.402	9.445
200	0.00094	0.977	1.994	0.784	1.239	12.77
	0	1.0	1.8	0.4552	1.3898	0.5937
50	0.0012	0.991	1.818	0.487	1.231	0.676
100	0.0033	1.002	1.822	0.482	1.356	0.584
200	-0.0000	1.000	1.810	0.450	1.399	0.603
	0	1.0	1.5	0.4281	0.9556	0.4737
50	-0.0022	1.012	1.548	0.3161	0.5796	0.4252
100	-0.0000	1.000	1.524	0.3914	0.9138	0.4278
200	-0.0003	1.000	1.510	0.4028	0.9474	0.4683
	0	1.0	1.0	0.5	0.5	0.8590
50	-0.0029	0.996	1.026	0.4243	0.4877	0.670
100	-0.0041	0.988	1.001	0.4438	0.4205	0.746
200	-0.0039	1.001	1.006	0.4929	0.5013	0.845
	0	1.0	0.8	0.6800	0.3586	1.3928
50	-0.0016	1.005	0.815	0.5434	0.3243	1.111
100	-0.0001	1.003	0.811	0.6015	0.3459	1.171
200	-0.0009	1.000	0.805	0.6232	0.3708	1.303

The behavior of the general stable distributions and their Fisher information matrix near the normal distribution - p.34/46

Observed Fisher information

Observed Fisher information w.r.t. α

$$egin{array}{lll} \hat{I}_{lphalpha}(x_1,\ldots,x_n) &=& -rac{1}{n}\sum\limits_{i=1}^n rac{\partial^2\log f(x_i;\hat{lpha})}{\partial lpha^2} \ &=& rac{1}{n}\sum\limits_{i=1}^n \left(rac{f_lpha(x_i;\hat{lpha})}{f(x_i;\hat{lpha})}
ight)^2 - rac{1}{n}\sum\limits_{i=1}^n rac{f_{lphalpha}(x_i;\hat{lpha})}{f(x_i;\hat{lpha})} \end{array}$$

We define this as $\hat{I}_{\alpha\alpha}(2)$. Observed Fisher information only use the first derivatives

$$\hat{I}_{lphalpha}(1) = rac{1}{n}\sum_{i=1}^n \left(rac{f_lpha(x_i;\hat{lpha})}{f(x_i;\hat{lpha})}
ight)^2$$

Observed Fisher information

Simulated observed Fisher information (Sample size n = 50, 1000 iterations)

In table, $\hat{I}_{\alpha\alpha}(i)$, i = 1, 2 are means of 1000 iterations. and the variances of $\hat{I}_{\alpha\alpha}(i)$, i = 1, 2 are in ().

α	$ar{m lpha}$	$\hat{I}_{lpha lpha}(1)$		$\hat{I}_{lpha lpha}(2)$		$I_{lpha lpha}$
1.5	1.531	0.4863	(0.033)	0.5145	(0.018)	0.4737
1.0	1.025	0.8541	(0.157)	0.9001	(0.099)	0.8590
0.5	0.509	4.2819	(3.517)	4.4660	(2.755)	4.2748

 $\hat{I}_{\alpha\alpha}(1)$: small bias and large variance. $\hat{I}_{\alpha\alpha}(2)$: small variance and large bias. Sometimes $\hat{I}_{\alpha\alpha}(1)$ (only use the first derivatives) is useful.

Numerical confirmation of $I_{lpha lpha}$ as lpha ightarrow 2

In symmetric case we numerically examine Nagaev and Shkol'nik (1988) results.

<i>I</i> –	$\frac{1}{(1 + o(1))}$	$\Lambda - 2 - \alpha$
$\alpha \alpha -$	$4\Delta \log(1/\Delta)^{(1+O(1))},$	$\Delta = 2 \mathrm{u}.$

α	$I_{lpha lpha}(1)$	$I_{lpha lpha}(2)$	N&S	$I_{\sigma lpha}(1)$	$I_{\sigmalpha}(2)$
$2.0 - 10^{-10}$	106860414	92384764	108573620	-1.3482	-1.3427
$2.0 - 10^{-9}$	10810787	10167389	12063736	-1.3482	-1.3395
$2.0 - 10^{-8}$	1144778	1131645	1357170	-1.3482	-1.3123
$2.0 - 10^{-7}$	127953	127802	155105.2	-1.3478	-1.2553
$2.0 - 10^{-6}$	14724	14722	18095.60	-1.2094	-1.1923
1.99999	1750	1750	2171.472	-1.1100	-1.1100
1.9999	217	217	271.4341	-1.0069	-1.0069

 $I_{\alpha\alpha}(1)$ near $x \to \infty$ Taylor expansion at $\alpha = 2$ w.r.t. α . $I_{\alpha\alpha}(2)$ near $x \to \infty$ use asymptotic expansion.

Future work

- What can do ? with stable
 - Very heavy tail model.
 - Distributions with finite order moments.

Future work

- Tail is not so heavy (have second moment)
- Non i.i.d. dependent data.
- Multivariate data.

Copulas ? Resampling method?

important = why, for what purpose, how you use this model.

References

- Brorsen, B. W. and Yang, S. R. (1990). Maximum likelihood estimates of symmetric stable distribution parameters, *Comm. Statist. Simula. Comput.*, **19**, 1459–1464.
- DuMouchel, W. H. (1973). On the asymptotic normality of the maximum likelihood estimate when sampling from a stable distribution, *Ann. Statist.*, 1, 948–957.
- DuMouchel, W. H. (1975). Stable distributions in statistical inference 2: Information from stably distributed samples, *J. Amer. Statist. Assoc.*, **70**, 386–393.
- DuMouchel, W. H. (1983). Estimating the stable index α in order to measure tail thickness: a critique, *Ann. Statist.*, **11**, 1019–1031.
- Feuerverger, A. and McDunnough, P. (1981). On the efficiency of empirical characteristic function procedures, *J. R. Stat. Soc. Ser. B stat. Methodol.*, 43, 20–27.
- Matsui, M. (2005). Fisher information matrix of genaral stable distributions close to the normal distribution, *Math. Methods Statist.*, **14**, 224–251.
- Matsui, M. and Takemura, A. (2004). Some improvements in numerical evaluation of symmetric stable density and its derivatives, to appear in *Comm. Statist. Theory Meth.*

References

- Nagaev, A. V. and Shkol'nik, S. M. (1988). Some properties of symmetric stable distributions close to the normal distribution, *Theory of Probability and its Applications*, **33**, 139–144.
- Nolan, J. P. (1997). Numerical computation of stable densities and distributions, Comm. Statist. Stochastic Models, 13, 759–774.
- Nolan, J. P. (2001). Maximum likelihood estimation and diagnostics for stable distributions, *Lévy Processes: Theory and Applications* (Barndorff-Nielsen, O. E., Mikosch, T. and Resnick, S. I. eds.), Birkhauser, Boston, 379–400.
- Uchaikin V. V. and Zolotarev, V. M. (1999) Chance and Stability, Stable Distributions and their Applications, Modern Probability and Statistics, Monographs, VSP BV, Utrecht, The Netherlands.
- Zolotarev, V. M. (1986). One-Dimensional Stable Distributions, Transl. of Math. Monographs, 65, Amer. Math. Soc., Providence, RI.

We divide integral of Fisher information matrix into tree parts.

$$\begin{split} I_{\alpha\alpha} &= \int_0^\infty \frac{\{f_\alpha(x+\zeta;\alpha,\beta)\}^2}{f(x+\zeta;\alpha,\beta)} dx + \int_0^\infty \frac{\{f_\alpha(x+\zeta;\alpha,-\beta)\}^2}{f(x+\zeta;\alpha,-\beta)} dx \\ &+ \int_{-\zeta}^{\zeta} \frac{\{f_\alpha(x;\alpha,\beta)\}}{f(x;\alpha,\beta)} dx \\ &= I_{\alpha\alpha}^1 + I_{\alpha\alpha}^2 + I_{\alpha\alpha}^3. \end{split}$$

This is obtained by the relation $f(x; \alpha, \beta) = f(-x; \alpha, -\beta)$ for $x - \zeta < 0$.

 $I_{\alpha\alpha}^1$ into five subintegrals,

$$I^1_{lpha lpha} = \sum_{k=1}^5 I_{lpha lpha}(k)$$

where each $I_{\alpha\alpha}(k)$ corresponds to the *k*-th intervals of [0, T), $[T, x_1(\Delta)), [x_1(\Delta), x_2(\Delta)), [x_2(\Delta), x_3(\Delta)), [x_3(\Delta), \infty).$

 $egin{aligned} x_1(\Delta) &= (2-\delta)(\log 1/\Delta)^{1/2}, & x_2(\Delta) &= (2+\delta)(\log 1/\Delta)^{1/2}, \ x_3(\Delta) &= \exp(\Delta^{-1/2}). \end{aligned}$

Theorem 2.1 and Lemma 3.1

$$I_{\alpha\alpha}(1) < \infty.$$

For $I_{lpha lpha}(2)$,

$$\begin{split} f(x+\zeta;\alpha,\beta) &= f(x;2)(1+o(1)), \quad f_{\alpha}(x+\zeta;\alpha,\beta) = \mathrm{const} \times x^{\Delta-3}.\\ I_{\alpha\alpha}(2) &= \mathrm{const} \times \int_{T}^{x_{1}(\Delta)} x^{2\Delta-6} \exp\left(\frac{x^{2}}{4}\right) dx\\ &= \mathrm{const} \times \frac{1}{\Delta^{1-\delta} (\log 1/\Delta)^{5/2-\Delta}}. \end{split}$$

For $I_{\alpha\alpha}(3)$,

$$\begin{split} f(x+\zeta;\beta,\alpha) &= \operatorname{const} \times \Delta x^{\Delta-3}, \quad f_{\alpha}(x+\zeta;\alpha,\beta) = \operatorname{const} \times x^{\Delta-3}. \\ I_{\alpha\alpha}(3) &= \operatorname{const} \times \frac{1}{\Delta} \int_{x_1(\Delta)}^{x_2(\Delta)} x^{\Delta-3} dx \\ &= \operatorname{const} \times \frac{\delta}{\Delta \log 1/\Delta}. \end{split}$$

The behavior of the general stable distributions and their Fisher information matrix near the normal distribution -p.43/46

For $I_{lpha lpha}(4)$,

$$\begin{split} f(x+\zeta;\alpha,\beta) &= (1+\beta)\Delta x^{\Delta-3}(1+o(1)),\\ f(x+\zeta;\alpha,\beta) &= -(1+\beta)x^{\Delta-3}(1+o(1)).\\ I_{\alpha\alpha}(4) &= \frac{1+\beta}{\Delta}(1+o(1))\int_{x_2(\Delta)}^{x_3(\Delta)} x^{\Delta-3}dx\\ &= \frac{1+\beta}{8\Delta\log 1/\Delta}(1+o(1)). \end{split}$$

For $I_{lpha lpha}(5)$,

$$egin{array}{rll} f(x+\zeta;lpha,eta)&=&(1+eta)\Delta x^{\Delta-3}(1+o(1)),\ f_lpha(x+\zeta;lpha,eta)&=&-(1+eta+\Delta\log x)x^{\Delta-3}(1+o(1)). \end{array}$$

$$\begin{split} I_{\alpha\alpha}(5) &= \operatorname{const} \times \frac{1}{\Delta} \int_{x_3(\Delta)}^{\infty} x^{\Delta-3} \{ \max(1+\beta, \Delta \log x) \}^2 dx \\ &\leq \operatorname{const} \times \Delta \int_{x_3(\Delta)}^{e^{(1+\beta)/\Delta}} x^{\Delta-3} (\log x)^2 dx \\ &+ \operatorname{const} \times \frac{1}{\Delta} \int_{e^{(1+\beta)/\Delta}}^{\infty} x^{\Delta-3} dx \\ &\leq \operatorname{const} \times \frac{1}{\Delta} \int_{x_3(\Delta)}^{\infty} x^{\Delta-3} dx \\ &= O(e^{-2/\Delta^{1/2}}/\Delta) \to 0, \text{ as } \Delta \to 0. \end{split}$$

$$I_{lphalpha}^1 = rac{1+eta}{8\Delta\log 1/\Delta}(1+o(1)).$$

Setting $\beta \to -\beta$ in $I^1_{\alpha\alpha}$, we obtain $I^2_{\alpha\alpha}$. By $\zeta = O(\Delta)$ and finiteness of the integrand of $I^3_{\alpha\alpha}$, $I^3_{\alpha\alpha} = O(\Delta)$.