High Dimensional Data Visualisation: the Textile Plot

Natsuhiko KUMASAKA PhD Student School of Fundamental Science and Technology Keio University <u>kumasaka@stat.math.keio.ac.jp</u>

> Ritei SHIBATA Department of Mathematics shibata@math.keio.ac.jp

Building good models from data

- Exploring data through visualisation
 - Finding outliers
 - Clustering observations
 - Investigating relationships between variables

Parallel Coordinate Plots

(Inselberg 1985, Wegman 1990)

- Visualising a set of points in high dimensional space
 - Axes are placed in parallel (not right angle)
 - Coordinates of each point are connected by segments

Iris

Iris

One polygonal line indicates one observation

Difficult to understand any mechanism behind the data

The number of the intersections increases

Location and scale of each axis are independently chosen

All coordinate points fill up the range of the axis.

Choosing appropriate locations and scales and the order of the axes

Textile plot

(Kumasaka and Shibata, submitted)

- A parallel coordinate plot
 - Locations and scales are simultaneously chosen
 - All polygonal lines are aligned as horizontally as possible
 - Order of axes is carefully chosen
 - To provide a clear image of the data to the user
 - Any kind of data can be displayed
 - Numerical data
 - Unordered categorical data
 - Ordered categorical data
 - Missing values
- Named by analogy to a fabric
 - Warp and Weft

Data (p-dimensional n observations)

$$\left(\begin{array}{ccc} x_{11} & \cdots & x_{1p} \\ \vdots & & \vdots \\ x_{n1} & \cdots & x_{np} \end{array}\right) = (\boldsymbol{x}_1, \dots, \boldsymbol{x}_p)$$

• Data vector

$$x_j, \ j = 1, \dots, p$$

 $(\mathbf{1}^T x_j = 0, \ \|x_j\| = 1)$

$$\boldsymbol{y}_j = \alpha_j \boldsymbol{1} + \beta_j \boldsymbol{x}_j \ (j = 1, \dots, p)$$

Data (p-dimensional n observations)

$$\left(\begin{array}{ccc} x_{11} & \cdots & x_{1p} \\ \vdots & & \vdots \\ x_{n1} & \cdots & x_{np} \end{array}\right) = (\boldsymbol{x}_1, \dots, \boldsymbol{x}_p)$$

• Data vector

$$m{x}_{j}, \ j = 1, \dots, p$$

 $(\mathbf{1}^{T} m{x}_{j} = 0, \ \|m{x}_{j}\| = 1)$

$$\boldsymbol{y}_j = \alpha_j \boldsymbol{1} + \beta_j \boldsymbol{x}_j \ (j = 1, \dots, p)$$

Data (p-dimensional n observations)

$$\left(\begin{array}{ccc} x_{11} & \cdots & x_{1p} \\ \vdots & & \vdots \\ x_{n1} & \cdots & x_{np} \end{array}\right) = (\boldsymbol{x}_1, \dots, \boldsymbol{x}_p)$$

• Data vector

$$x_j, \ j = 1, \dots, p$$

 $(\mathbf{1}^T x_j = 0, \ ||x_j|| = 1)$

$$\boldsymbol{y}_j = \alpha_j \boldsymbol{1} + \beta_j \boldsymbol{x}_j \ (j = 1, \dots, p)$$

Data (p-dimensional n observations)

$$\left(\begin{array}{ccc} x_{11} & \cdots & x_{1p} \\ \vdots & & \vdots \\ x_{n1} & \cdots & x_{np} \end{array}\right) = (\boldsymbol{x}_1, \dots, \boldsymbol{x}_p)$$

• Data vector

$$x_j, \ j = 1, \dots, p$$

 $(\mathbf{1}^T x_j = 0, \ ||x_j|| = 1)$

$$\boldsymbol{y}_j = \alpha_j \boldsymbol{1} + \beta_j \boldsymbol{x}_j \ (j = 1, \dots, p)$$

Criterion

Coordinate vector

 $\boldsymbol{y}_j = \alpha_j \boldsymbol{1} + \beta_j \boldsymbol{x}_j \ (j = 1, \dots, p)$

- Location parameter vector $\boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_p)^T$
- Scale parameter vector

$$\boldsymbol{\beta} = (\beta_1, \dots, \beta_p)^T$$

Ideal coordinate vector

$$\boldsymbol{\xi} = (\xi_1, \dots, \xi_n)^T$$

• The sum of squared deviations is minimised

$$S^{2}(\boldsymbol{lpha}, \boldsymbol{eta}, \boldsymbol{\xi}) = \sum_{j=1}^{p} \left\| \boldsymbol{y}_{j} - \boldsymbol{\xi} \right\|^{2} o \min$$

Solution of the ideal coordinate vector

By introducing the mean vector

$$\boldsymbol{m} = \frac{1}{p} \sum_{j=1}^{p} \boldsymbol{y}_j,$$

we can decompose S^2 into

$$S^{2}(\boldsymbol{\alpha},\boldsymbol{\beta},\boldsymbol{\xi}) = \sum_{j=1}^{p} \|\boldsymbol{y}_{j} - \boldsymbol{\xi}\|^{2}$$
$$= \sum_{j=1}^{p} \|\boldsymbol{y}_{j} - \boldsymbol{m}\|^{2} + p\|\boldsymbol{m} - \boldsymbol{\xi}\|^{2}.$$
$$\hat{\boldsymbol{\xi}} = \boldsymbol{m}$$

Constraint

We need a constraint for α and β to avoid trivial solutions like

$$\boldsymbol{\alpha} = \boldsymbol{\beta} = \mathbf{0} \quad \Rightarrow \quad S^2(\mathbf{0}, \mathbf{0}, \mathbf{0}) = 0.$$

The constraint would be that

$$\sum_{j=1}^{p} \|\boldsymbol{y}_{j} - \bar{y}_{j} \mathbf{1}\|^{2} = \|\boldsymbol{\beta}\|^{2} = np,$$

where $\bar{y}_{.j} = \sum_{i=1}^{n} y_{ij}/n$.

Solution of location parameter

By introducing the mean $\bar{y}_{..} = \sum_{i,j} y_{ij}/np$, we can decompose

$$S^{2}(\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{m}) = \sum_{j=1}^{p} \|\boldsymbol{y}_{j} - \boldsymbol{m}\|^{2}$$
$$= \sum_{j=1}^{p} \|\boldsymbol{y}_{j} - \bar{\boldsymbol{y}}_{\boldsymbol{\cdot} j} \mathbf{1}\|^{2} - p \|\boldsymbol{m} - \bar{\boldsymbol{y}}_{\boldsymbol{\cdot} \boldsymbol{\cdot} 1}\|^{2} + \sum_{j=1}^{p} \|\bar{\boldsymbol{y}}_{\boldsymbol{\cdot} j} \mathbf{1} - \bar{\boldsymbol{y}}_{\boldsymbol{\cdot} \boldsymbol{\cdot} 1}\|^{2}$$

Since the first two terms on the right hand side of the equation are independent of α , minimisation with respect to α yields the solution $\hat{\alpha}$, such that

$$\hat{\alpha}_j = \alpha_0, \ j = 1, \dots, p,$$

for an arbitrary constant α_0 .

we can assume $\alpha_0 = 0$

Solution of scale parameter

 $S^{2}(\hat{\boldsymbol{\alpha}},\boldsymbol{\beta},\boldsymbol{m}) = \sum_{i=1}^{p} \|\boldsymbol{y}_{j} - \bar{\boldsymbol{y}}_{i} \mathbf{1}\|^{2} - p \|\boldsymbol{m} - \bar{\boldsymbol{y}}_{i} \mathbf{1}\|^{2}$ $= \|oldsymbol{eta}\|^2 - rac{1}{n}oldsymbol{eta}^T \mathbf{R}oldsymbol{eta}$ (**R**: sample correlation matrix of the x_i) maximise $\boldsymbol{\beta}^T \mathbf{R} \boldsymbol{\beta}$ subject to $\|\boldsymbol{\beta}\|^2 = np$

The solution $\hat{\beta}$ is the eignevector of **R** with the largest eigenvalue, such that $\|\hat{\beta}\|^2 = np$.

Optimal choice of locations and scales

Order of axes

- According to the squared distance $\| \boldsymbol{y}_j \boldsymbol{m} \|^2$
 - The further left axis is closer to the mean vector

$$S^{2}(\hat{\boldsymbol{\alpha}}, \hat{\boldsymbol{\beta}}, \boldsymbol{m}) = \sum_{j=1}^{p} \|\boldsymbol{y}_{j} - \boldsymbol{m}\|^{2} \qquad \qquad \begin{array}{c} \text{Petal Length} \quad \text{Petal Width} \quad \text{Sepal Length} \quad \text{Sepal Width} \\ \hline \|\boldsymbol{y}_{j} - \boldsymbol{m}\|^{2} \quad 16.62 \quad 21.53 \quad 34.63 \quad 89.45 \end{array}$$

Categorical data vector

- To determine a coordinate of each level
 - Encoding the categorical data vector x by a set of contrasts

columns of \mathbf{X} are linearly independent to $\mathbf{1}$

Choice of locations and scales for numerical and categorical data

- Data Matrix $\mathbf{X}_j \in \mathbb{R}^{n \times (q_j 1)}$ $(j = 1, \dots, p)$
 - Encoded matrix for a categorical data vector x_j with q_j levels
 - Original data vector x_j for a numerical data vector $(q_j = 2)$
- Coordinate vector

 $\boldsymbol{y}_j = \alpha_j \mathbf{1} + \mathbf{X}_j \boldsymbol{\beta}_j \quad (j = 1, \dots, p)$

Location parameter vector

$$\boldsymbol{\alpha} = (\alpha_1, \dots, \alpha_p)^T$$

- Scale parameter vector $\boldsymbol{\beta} = (\boldsymbol{\beta}_1^T, \dots, \boldsymbol{\beta}_p^T)^T \quad (\boldsymbol{\beta}_j \in \mathbb{R}^{q_j - 1})$
- Sum of squared deviations is minimised

$$S^2(oldsymbol{lpha},oldsymbol{eta},oldsymbol{\xi}) = \sum_{j=1}^p \left\|oldsymbol{y}_j - oldsymbol{\xi}
ight\|^2 o \min \left(ext{under } \sum_{j=1}^p \|oldsymbol{y}_j - oldsymbol{ar{y}}_{.j} \mathbf{1}\|^2 = np
ight)$$

Solution of location and scale

By introducing the following matrix notations

$$\mathbf{A} = \frac{1}{p} \left(\mathbf{X}_j^T \mathbf{X}_k - \frac{1}{n} \mathbf{X}_j^T \mathbf{1} \mathbf{1}^T \mathbf{X}_k; \ 1 \le j, k \le p \right)$$
$$\mathbf{B} = \operatorname{diag} \left(\mathbf{X}_j^T \mathbf{X}_j^T - \frac{1}{n} \mathbf{X}_j^T \mathbf{1} \mathbf{1}^T \mathbf{X}_j; \ 1 \le j \le p \right)$$

The optimal choice for the locations is given by

$$\hat{\alpha}_j = \alpha_0 - \bar{\boldsymbol{x}}_{\boldsymbol{\cdot}j}^T \hat{\boldsymbol{\beta}}_j, \ j = 1, \dots, p$$

for an arbitrary constant α_0 , where $\bar{x}_{j}^T = \mathbf{1}^T \mathbf{X}_j / n$. That of the scales is given by $\hat{\beta}$ which is the eigenvector of \mathbf{A} with respect to \mathbf{B} with the largest eigenvalue, such that $\hat{\beta}^T \mathbf{B} \hat{\beta} = np$.

Categorical data on parallel coordinate plot

Ordered categorical data

$$\mathbf{C} = \begin{pmatrix} 0 & \cdots & 0 \\ 1 & \ddots & \vdots \\ \vdots & \ddots & 0 \\ 1 & \cdots & 1 \end{pmatrix}$$

Additional constraints

$$oldsymbol{eta}_j \geq \mathbf{0} ~~\mathrm{or}~~oldsymbol{eta}_j \leq \mathbf{0}$$

Example

$$\boldsymbol{x} = \begin{pmatrix} Small \\ Small \\ Medium \\ Large \\ Large \end{pmatrix} \rightarrow \boldsymbol{y} = \alpha \mathbf{1} + \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 1 & 0 \\ 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix} = \begin{pmatrix} \alpha & \lambda \\ \alpha \\ \alpha + \beta_1 \\ \alpha + \beta_1 + \beta_2 \\ \alpha + \beta_1 + \beta_2 \end{pmatrix}$$

The order of levels is retained if $\beta_1, \beta_2 \ge 0$ or $\beta_1, \beta_2 \le 0$

Missing values

Indicator matrix reflecting missing information

$$\left(egin{array}{cccc} w_{11} & \cdots & w_{1p} \ dots & & dots \ dots & & dots \ & & dots \ & & w_{n1} & \cdots & w_{np} \end{array}
ight) = (oldsymbol{w}_1, \dots, oldsymbol{w}_p)$$

where $w_{ij} = \begin{cases} 0 & \text{if } x_{ij} \text{ is missing,} \\ 1 & \text{otherwise.} \end{cases}$

• Sum of squared deviations

$$S^2(oldsymbol{lpha},oldsymbol{eta},oldsymbol{\xi}) = \sum_{j=1}^p \left\|oldsymbol{y}_j - oldsymbol{\xi}
ight\|_{oldsymbol{w}_j}^2$$

• Constraint

$$\sum_{j=1}^{p} \left\| \boldsymbol{y}_{j} - \bar{\boldsymbol{y}}_{j} \right\|_{\boldsymbol{w}_{j}}^{2} = \sum_{i,j} w_{ij}$$

$$\left(\| \boldsymbol{x} \|_{\boldsymbol{v}}^2 = \sum_{i=1}^n v_i x_i^2 : \text{ weighted norm} \right)$$

Design of display

• Textile plot

- Understanding various aspect of data
- Points displayed on a axis are carefully chosen
- Further classification of data types

Way of displaying points on a axis

- Numerical data
 - Continuous data
 - Continuous line
 - Discrete data
 - Tick marks
 - Arrow head to show the orientation
 - Possible minimum and maximum
- Non-numerical data
 - Possible levels
 - Ordered categorical data
 - Arrows
 - Logical
 - Coloured
- All data
 - Multiplicity on the coordinate is represented by the area of the circle
 - Missing value
 - Label (with unit or numeral)

Textile plot of Iris data

TOPIX (Tokyo Stock Price Index) from Jan 1991 to Oct 2002

TOPIX = (Today's whole price / the whole price on the 4th of Jan 1968) \times 100

TOPIX (Tokyo Stock Price Index) from Jan 1991 to Oct 2002

TOPIX = (Today's whole price / the whole price on the 4th of Jan 1968) \times 100

Two significant features

• Knot

- A point on a axis, where all polygonal lines are pass through
- Isolated data vector

• Parallel wefts

- Segments horizontally aligned between two axes
- Perfect linear relationship or mapping between two data vectors

Preparation

• Assumption

- No missing values and no ordered categorical data
- Normalisation

$$\mathbf{1}^T \mathbf{X}_j = \mathbf{0}$$
 and $\mathbf{X}_j^T \mathbf{X}_j = \mathbf{I}, \quad j = 1, \dots, p$

Matrix notations

$$\begin{aligned} \mathbf{X}_{-j} &= (\mathbf{X}_1, \dots, \mathbf{X}_{j-1}, \mathbf{X}_{j+1}, \dots, \mathbf{X}_p) \quad (\in \mathbb{R}^{n \times q}) \\ &= \mathbf{U} \mathbf{D} \mathbf{V}^T \\ &= (\boldsymbol{u}_1, \dots, \boldsymbol{u}_q) \mathrm{diag}(d_1, \dots, d_q) \mathbf{V}^T \\ &\quad (\text{where } d_1 > d_2 \ge \dots \ge d_q \ge 0) \end{aligned}$$

Knot

A knot is produced on the *j*th axis when the selected scale parameter is zero, that is, $\hat{\beta}_j = 0$.

Theorem A necessary and sufficient condition for a knot to occur on the jth axis is that

$$\mathbf{X}_j^T oldsymbol{u}_1 = \mathbf{0}$$

and all eigenvalues of $\mathbf{X}_{j}^{T} \mathbf{U} \Delta \mathbf{U}^{T} \mathbf{X}_{j}$ are less than $d_{1}^{2} - 1$, where

$$\mathbf{\Delta} = \operatorname{diag}\left(0, \frac{d_2^2}{d_1^2 - d_2^2}, \dots, \frac{d_q^2}{d_1^2 - d_q^2}\right).$$

Simplified condition for a knot to occur

Corollary If $\mathbf{X}_{j}^{T}\mathbf{X}_{-j} = \mathbf{O}$, a knot is always produced on the *j*th axis.

Parallel wefts

Parallel wefts between the *j*th and the j + 1th axes occur when the coordinate vectors y_j and y_{j+1} are identical.

Theorem A necessary and sufficient condition for $y_j = y_k$ is given by

$$\operatorname{Proj}_{\mathbf{X}_{j}}(\boldsymbol{m}) = \operatorname{Proj}_{\mathbf{X}_{k}}(\boldsymbol{m}),$$

where $\operatorname{Proj}_{\mathbf{M}}(\boldsymbol{v})$ is the projection of \boldsymbol{v} on the range space of a matrix \mathbf{M} and $\boldsymbol{m} = \sum_{j=1}^{p} \boldsymbol{y}_j/p$.

Example Parallel wefts occur when there exist two numerical data vectors $\boldsymbol{x}_j = (1, 2, 3, 4, 5)^T$ and $\boldsymbol{x}_k = (10, 8, 6, 4, 2)^T$, or two categorical data vectors $\boldsymbol{x}_j = (A, A, B, C, C)^T$ and $\boldsymbol{x}_k = (b, b, c, a, a)^T$ in the given data.

TOPIX (Tokyo Stock Price Index) from Jan 1991 to Oct 2002

Textile plot

- Visualisation for understanding data
 - Polygonal lines are aligned as horizontally as possible
 - Any kind of data can be displayed
 - Symbols for points displayed are carefully chosen
 - Knot and Parallel wefts
- Implemented on R
 - DandDR (<u>http://www.stat.math.keio.ac.jp/DandDIV/</u>)
 - Add-on package for R
 - Interface between DandD and R
 - Receiving data and necessary information
 - Creating a dad object on R
 - List object which consists of data and attributes
 - Own plot method producing the textile plot

Further developments

- Non-linear transformations
- Design enhancements
 - Using colour
 - Line width and thickness
- Dynamic or interactive display
 - Improving user interface
 - Java Language

Thank you for your attention.

Reference

- A. Inselberg, The plane with parallel coordinates, *The Visual Computer* 1 (1985) 69-91.
- E. Wegman, Hyperdimensional data analysis using parallel coordinates. *Journal of The American Statistical Association* **85** (1990) 664--675.