Outline

A circular–circular regression model

Shogo Kato

School of Fundamental Science and Technology Keio University

March 27, 2006

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

1 Introduction

- 2 Circular–Circular Regression Model
- 3 Related Topics
- 4 Conclusion

Shogo Kato A circular–circular regression model

< ロ > < 回 > < 回 > < 回 > < 回 > <

Outline

Introduction 1

2 Circular–Circular Regression Model

Shogo Kato A circular-circular regression model

< ロ > < 回 > < 回 > < 回 > < 回 > <

- 2 Circular–Circular Regression Model
- **Related Topics** 3

・ロット (雪) (山) (山) (山)

- 2 Circular–Circular Regression Model
- **Related Topics** 3

4 Conclusion

Shogo Kato A circular-circular regression model

・ロット (雪) (山) (山) (山)

Introduction

Bivariate Circular Data

Bivariate circular data

Bivariate circular data is data which can be expressed as two angles $[0, 2\pi)^2$.

Example

Wind directions in Milwaukee at 6 a.m. and noon (Downs & Mardia, 2002).

Time of low tide and spawning time of certain fish (Lund, 1999).

・ロト ・同ト ・ヨト ・ヨト

Introduction

Bivariate Circular Data

Bivariate circular data

Bivariate circular data is data which can be expressed as two angles $[0, 2\pi)^2$.

Example

Wind directions in Milwaukee at 6 a.m. and noon (Downs & Mardia, 2002).

Time of low tide and spawning time of certain fish (Lund, 1999).

・ロト ・同ト ・ヨト ・ヨト

Introduction

Bivariate Circular Data

Bivariate circular data

Bivariate circular data is data which can be expressed as two angles $[0, 2\pi)^2$.

Example

- Wind directions in Milwaukee at 6 a.m. and noon (Downs & Mardia, 2002).
- Time of low tide and spawning time of certain fish (Lund, 1999).

イロン 不得 とくほ とくほ とう

Introduction

Bivariate Circular Data

Example

Time of low tide and spawning time of certain fish (Lund, 1999).

Question

How can one regress the spawning time on the time of low tide?

Introduction

Bivariate Circular Data

Example

Time of low tide and spawning time of certain fish (Lund, 1999).

Question

How can one regress the spawning time on the time of low tide?

Introduction

What is a Circular–Circular Regression Model?

Definition

A circular–circular regression model is a regression model in which both independent and dependent variables take values on the circle.

Existing models

- Rivest (1997)
- Downs & Mardia (2002)

ヘロト ヘアト ヘビト ヘビト

Introduction

Purpose of the Research

Our goal

It would be ideal to have a regression model with following properties:

- 1. flexible regression curve,
- 2. mathematical tractability
- 3. easy interpretation of parameters.

イロン 不得 とくほ とくほ とうほ

Introduction

Purpose of the Research

Our goal

It would be ideal to have a regression model with following properties:

- 1. flexible regression curve,
- mathematical tractability
- easy interpretation of parameters.

・ロット (日) (日) (日) (日)

Introduction

Purpose of the Research

Our goal

It would be ideal to have a regression model with following properties:

- 1. flexible regression curve,
- 2. mathematical tractability,
- 3. easy interpretation of parameters.

・ロット (雪) (山) (山) (山)

Introduction

Purpose of the Research

Our goal

It would be ideal to have a regression model with following properties:

- 1. flexible regression curve,
- 2. mathematical tractability,
- 3. easy interpretation of parameters.

・ロト ・同ト ・ヨト ・ヨト

Regression Curve Distribution for Angular Error Regression Model Statistical Inference

Regression Curve

Definition

Let

U : unit circle in the complex plane, $U = \{z \in \mathbb{C}; |z| = 1\}, u : U$ -valued independent variable.

The regression curve $v : U \rightarrow U$ of the proposed model is defined by

$$\nu(u) = \beta_0 \frac{u + \beta_1}{1 + \overline{\beta_1} u}, \quad u \in U,$$
(1)

where $\beta_0 \in U, \ \beta_1 \in \mathbb{C}$.

The mapping (1) is called a Möbius transformation.

Regression Curve Distribution for Angular Error Regression Model Statistical Inference

Properties of Regression Curve

$$v(u) = \beta_0 \frac{u + \beta_1}{1 + \overline{\beta_1} u}, \quad u \in U; \quad \beta_0 \in U, \ \beta_1 \in \mathbb{C}.$$
(1)

Properties

- For |β₁| ≠ 1, the regression curve (1) is a one-to-one mapping from U onto itself.
- For $|\beta_1| = 1$, (1) maps *U* onto a point $\beta_0\beta_1$, i.e. $v(u) = \beta_0\beta_1$ for any *u*.

Regression Curve Distribution for Angular Error Regression Model Statistical Inference

Interpretation of Parameters

$$v(u) = \beta_0 u, \quad u \in U; \quad \beta_0 \in U.$$

Interpretation of β_0

The parameter β_0 is a rotation parameter

- If $\beta_0 = 1$, v is an identity mapping, i.e. v(u) = u.
- If β₀ = −1, *u* is rotated by π (rad).

・ロト ・ 同ト ・ ヨト ・ ヨト

э.

Regression Curve Distribution for Angular Error Regression Model Statistical Inference

Interpretation of Parameters

$$v = \frac{u + \beta_1}{1 + \overline{\beta_1}u}, \quad u \in U; \ \beta_1 \in \mathbb{C}.$$

(i) $|\beta_1| < 1$

Following properties hold for the parameter β_1 :

1.
$$|\beta_1| \rightarrow 0 \implies v \rightarrow u$$
,

2.
$$|\beta_1| \to 1, \ u \neq -\beta_1/|\beta_1| \implies v \to \beta_1,$$

3.
$$v_j = (u + \beta_{1j})/(1 + \overline{\beta_{1j}}u), \ \beta_{1j} = r_j e^{i\theta}, \ j = 1, 2,$$

 $r_1 > r_2 \ge 0, \ 0 \le \theta < 2\pi$
 $\implies |\arg(v_1) - \theta| \le |\arg(v_2) - \theta|.$

Regression Curve Distribution for Angular Error Regression Model Statistical Inference

Interpretation of Parameters

$$v = \frac{u + \beta_1}{1 + \overline{\beta_1}u}, \quad u \in U; \ \beta_1 \in \mathbb{C}.$$

(i) $|\beta_1| < 1$

Following properties hold for the parameter β_1 :

4.
$$|\arg(u) - \arg(\beta_1)| \ge |\arg(v) - \arg(\beta_1)|$$
,

5.
$$u_1 = \beta_1/|\beta_1| \implies v(u_1) = \beta_1/|\beta_1|,$$

6.
$$u_2 = -\beta_1/|\beta_1|, \ |\beta_1| \neq 1 \implies v(u_2) = -\beta_1/|\beta_1|,$$

7.
$$u_1 = \theta \beta_1 / |\beta_1|, \ u_2 = \overline{\theta} \beta_1 / |\beta_1|, \ |\theta| = 1$$

 $\implies v(u_1)\overline{\theta} = \overline{v(u_2)}\theta.$

Regression Curve Distribution for Angular Error Regression Model Statistical Inference

Interpretation of Parameters

$$v(u) = \frac{u + \beta_1}{1 + \overline{\beta_1}u},$$

$$u = \exp(2\pi ki/12),$$

$$k = 1, \dots, 12,$$

$$\arg(\beta_1) = \pi/12,$$

- 1. $|\beta_1| = 0$ (above left),
- 2. $|\beta_1| = 0.3$ (above right),
- 3. $|\beta_1| = 0.6$ (below left),
- 4. $|\beta_1| = 0.9$ (below right).

イロン 不得 とくほ とくほとう ほ

Regression Curve Distribution for Angular Error Regression Model Statistical Inference

Interpretation of Parameters

$$v(u) = \frac{u + \beta_1}{1 + \overline{\beta_1}u}, \quad u \in U; \ \beta_1 \in \mathbb{C}.$$
(1)

(ii) $|\beta_1| = 1$

For $|\beta_1| = 1$, (1) maps *U* onto a point β_1 :

 $v(u) = \beta_1$ for any $u \in U$.

Regression Curve Distribution for Angular Error Regression Model Statistical Inference

Interpretation of Parameters

(iii) $|\beta_1| > 1$

For $|\beta_1| > 1$, regression curve can be expressed as

$$\mathbf{v} = \frac{\mathbf{u} + \beta_1}{1 + \overline{\beta_1}\mathbf{u}} = \frac{\mathbf{u}' + \beta_1'}{1 + \overline{\beta_1}'\mathbf{u}'},\tag{2}$$

where $u' = (\beta_1/|\beta_1|) (\beta_1 \overline{u}/|\beta_1|)$ and $\beta_1' = 1/\overline{\beta_1}$.

(2) shows that (1) consists of two types of transformations:

- 1. reflection with respect to $\overline{\beta_1}z \beta_1\overline{z} = 0$,
- **2.** Möbius transformation with β'_1 ($|\beta'_1| < 1$).

・ロト ・ 同ト ・ ヨト ・ ヨト

Regression Curve Distribution for Angular Error Regression Model Statistical Inference

Interpretation of Parameters

(iii) $|\beta_1| > 1$

For $|\beta_1| > 1$, regression curve can be expressed as

$$v = \frac{u + \beta_1}{1 + \overline{\beta_1}u} = \frac{u' + \beta_1'}{1 + \overline{\beta_1}'u'},\tag{2}$$

where $u' = (\beta_1/|\beta_1|) (\beta_1 \overline{u}/|\beta_1|)$ and $\beta_1' = 1/\overline{\beta_1}$.

(2) shows that (1) consists of two types of transformations:

- 1. reflection with respect to $\overline{\beta_1}z \beta_1\overline{z} = 0$,
- **2**. Möbius transformation with β'_1 ($|\beta'_1| < 1$).

Regression Curve Distribution for Angular Error Regression Model Statistical Inference

Distribution for Angular Error

Definition

The wrapped Cauchy (WC) distribution is defined by pdf

$$f(z) = \frac{1}{2\pi} \frac{|1 - |\phi|^2|}{|z - \phi|^2}, \quad z \in U,$$
(3)

where $\phi \in \mathbb{C} \setminus U$.

We write $Z \sim C^*(\phi)$ if random variable Z has the density (3).

イロン 不得 とくほ とくほ とうほ

Regression Curve Distribution for Angular Error Regression Model Statistical Inference

Properties of Wrapped Cauchy Distribution

$$f(z) = rac{1}{2\pi} rac{|1-|\phi|^2|}{|z-\phi|^2}, \quad u \in U; \quad \phi \in \mathbb{C} \setminus U.$$

Basic properties

The WC distribution has following properties:

- unimodality,
- Symmetry about $z = \phi/|\phi|$,
- mode at $z = \phi/|\phi|$, antimode at $z = -\phi/|\phi|$,
- mean direction: $\arg{E(Z)} = \arg(\phi)$,
- concentration: $|E(Z)| = |\phi|$.

・ロット (雪) (山) (山) (山)

ъ

Regression Curve Distribution for Angular Error Regression Model Statistical Inference

Properties of Wrapped Cauchy Distribution

$$f(z) = rac{1}{2\pi} rac{|1-|\phi|^2|}{|z-\phi|^2}, \quad u \in U; \quad \phi \in \mathbb{C} \setminus U.$$

Basic properties

The WC distribution has following properties:

- unimodality,
- Symmetry about $z = \phi/|\phi|$,
- mode at $z = \phi/|\phi|$, antimode at $z = -\phi/|\phi|$,
- mean direction: $\arg\{E(Z)\} = \arg(\phi)$,
- concentration: $|E(Z)| = |\phi|$.

・ロット (雪) (山) (山) (山)

ъ

Regression Curve Distribution for Angular Error Regression Model Statistical Inference

Properties of Wrapped Cauchy Distribution

$$f(z) = rac{1}{2\pi} rac{|1-|\phi|^2|}{|z-\phi|^2}, \quad u \in U; \quad \phi \in \mathbb{C} \setminus U.$$

Basic properties

The WC distribution has following properties:

- unimodality,
- Symmetry about $z = \phi/|\phi|$,
- mode at $z = \phi/|\phi|$, antimode at $z = -\phi/|\phi|$,
- mean direction: $\arg{E(Z)} = \arg(\phi)$,
- concentration: $|E(Z)| = |\phi|$.

・ロット (雪) (山) (山) (山)

э.

Regression Curve Distribution for Angular Error Regression Model Statistical Inference

Properties of Wrapped Cauchy Distribution

$$f(z) = rac{1}{2\pi} rac{|1-|\phi|^2|}{|z-\phi|^2}, \quad u \in U; \quad \phi \in \mathbb{C} \setminus U.$$

Basic properties

The WC distribution has following properties:

- unimodality,
- Symmetry about $z = \phi/|\phi|$,
- mode at $z = \phi/|\phi|$, antimode at $z = -\phi/|\phi|$,
- mean direction: $\arg{E(Z)} = \arg(\phi)$,
- concentration: $|E(Z)| = |\phi|$.

・ロット (日) (日) (日) (日)

э.

Regression Curve Distribution for Angular Error Regression Model Statistical Inference

Properties of Wrapped Cauchy Distribution

$$f(z) = rac{1}{2\pi} rac{|1-|\phi|^2|}{|z-\phi|^2}, \quad u \in U; \quad \phi \in \mathbb{C} \setminus U.$$

Basic properties

The WC distribution has following properties:

- unimodality,
- Symmetry about $z = \phi/|\phi|$,
- mode at $z = \phi/|\phi|$, antimode at $z = -\phi/|\phi|$,
- mean direction: $\arg{E(Z)} = \arg(\phi)$,

• concentration: $|E(Z)| = |\phi|$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Regression Curve Distribution for Angular Error Regression Model Statistical Inference

Properties of Wrapped Cauchy Distribution

$$f(z) = rac{1}{2\pi} rac{\left|1 - |\phi|^2\right|}{\left|z - \phi
ight|^2}, \quad u \in U; \quad \phi \in \mathbb{C} \setminus U.$$

Basic properties

The WC distribution has following properties:

- unimodality,
- Symmetry about $z = \phi/|\phi|$,
- mode at $z = \phi/|\phi|$, antimode at $z = -\phi/|\phi|$,
- mean direction: $\arg{E(Z)} = \arg(\phi)$,
- concentration: $|E(Z)| = |\phi|$.

◆□ ▶ ◆圖 ▶ ◆ 臣 ▶ ◆ 臣 ▶

3

Regression Curve Distribution for Angular Error Regression Model Statistical Inference

Wrapped Cauchy Distribution

Wrapped Cauchy Density

Wrapped Cauchy density

$$f(z) = \frac{1}{2\pi} \frac{|1 - |\phi|^2|}{|z - \phi|^2}, \ u \in U,$$

arg(\phi) = \pi/4,
1. \leftarrow |\phi| = 0.3,
2. \leftarrow ---- |\phi| = 0.6,
3. \leftarrow ----- |\phi| = 0.8.

・ロト ・ 同ト ・ ヨト ・ ヨト

Regression Curve Distribution for Angular Error Regression Model Statistical Inference

Properties of Wrapped Cauchy Distribution

Properties

Following properties hold for WC distribution:

closed under rotation,

$$Z\sim \mathcal{C}^*(\phi)\implies eta_0 Z\sim \mathcal{C}^*(eta_0\phi), \quad eta_0\in U,$$

additive property

 $Z_1 \sim C^*(\phi_1), \ Z_2 \sim C^*(\phi_2), \ Z_1 \perp Z_2 \implies Z_1 Z_2 \sim C^*(\phi_1 \phi_2),$

closed under Möbius transformation,

$$Z \sim C^*(\phi) \implies rac{Z+eta_1}{1+\overline{eta_1}Z} \sim C^*\left(rac{\phi+eta_1}{1+\overline{eta_1}\phi}
ight), \quad eta_1 \notin U.$$

・ロト ・同ト ・ヨト ・ヨト

Regression Curve Distribution for Angular Error Regression Model Statistical Inference

Properties of Wrapped Cauchy Distribution

Properties

Following properties hold for WC distribution:

closed under rotation,

$$Z\sim \mathcal{C}^*(\phi)\implies eta_0Z\sim \mathcal{C}^*(eta_0\phi), \quad eta_0\in U,$$

additive property,

 $Z_1 \sim C^*(\phi_1), \ Z_2 \sim C^*(\phi_2), \ Z_1 \perp Z_2 \implies Z_1 Z_2 \sim C^*(\phi_1 \phi_2),$

closed under Möbius transformation,

$$Z \sim C^*(\phi) \implies \frac{Z + \beta_1}{1 + \overline{\beta_1}Z} \sim C^*\left(\frac{\phi + \beta_1}{1 + \overline{\beta_1}\phi}\right), \quad \beta_1 \notin U.$$

ヘロト ヘアト ヘビト ヘビト

Regression Curve Distribution for Angular Error Regression Model Statistical Inference

Properties of Wrapped Cauchy Distribution

Properties

Following properties hold for WC distribution:

closed under rotation,

$$Z\sim \mathcal{C}^*(\phi)\implies eta_0Z\sim \mathcal{C}^*(eta_0\phi), \quad eta_0\in U,$$

additive property,

 $Z_1 \sim C^*(\phi_1), \ Z_2 \sim C^*(\phi_2), \ Z_1 \perp Z_2 \implies Z_1 Z_2 \sim C^*(\phi_1 \phi_2),$

closed under Möbius transformation,

$$Z \sim C^*(\phi) \implies rac{Z+eta_1}{1+\overline{eta_1}Z} \sim C^*\left(rac{\phi+eta_1}{1+\overline{eta_1}\phi}
ight), \quad eta_1 \notin U.$$

ヘロト ヘアト ヘビト ヘビト

Regression Curve Distribution for Angular Error Regression Model Statistical Inference

Derivation of Wrapped Cauchy Distribution

Derivation Let $X \sim$ Cauchy distribution on the real line $C(\mu, \sigma^2)$. Then has WC distribution $C^* \{ \exp(-\sigma^2 + i\mu) \},\$ 1. $Z_1 = \exp(iX)$

イロン 不得 とくほ とくほ とうほ

Regression Curve Distribution for Angular Error Regression Model Statistical Inference

Derivation of Wrapped Cauchy Distribution

Derivation

Let

$$X \sim$$
 Cauchy distribution on the real line $C(\mu, \sigma^2)$.

Then

1.
$$Z_1 = \exp(iX)$$
 has WC distribution $C^* \{\exp(-\sigma^2 + i\mu)\},\$

2.
$$Z_2 = \frac{1 + iX}{1 - iX}$$
 has WC distribution $C^*\left(\frac{1 + i\theta}{1 - i\theta}\right)$,
where $\theta = \mu + i\sigma$.

◆□▶ ◆□▶ ◆□▶ ◆□▶

ъ

Regression Curve Distribution for Angular Error Regression Model Statistical Inference

Circular–Circular Regression Model

Definition

Let

- Y: U-valued dependent variable,
- x: U-valued independent variable.

We propose a circular-circular regression model defined by

$$Y = \beta_0 \frac{x + \beta_1}{1 + \overline{\beta_1} x} \varepsilon, \quad x \in U,$$
(4)

・ロット (雪) (山) (山) (山)

э

 $\text{ where } \quad \varepsilon \sim {\pmb{C}}^*(\varphi), \ {\pmb{0}} \leq \varphi < {\pmb{1}}, \ \beta_{\pmb{0}} \in {\pmb{U}}, \ \beta_{\pmb{1}} \in \mathbb{C}.$

Regression Curve Distribution for Angular Error Regression Model Statistical Inference

Properties of Proposed Model

$$Y \mid x \sim C^* \left(\beta_0 \frac{x + \beta_1}{1 + \overline{\beta_1} x} \varphi \right), \ x \in U, \ \beta_0 \in U, \ \beta_1 \in \mathbb{C}, \ 0 \leq \varphi < 1.$$

Properties

The k th trigonometric moment of $Y \mid x$

$$E\left(Y^{k} \mid x\right) = \left(\beta_{0} \frac{x + \beta_{1}}{1 + \overline{\beta_{1}} x} \varphi\right)^{k}.$$

イロト イポト イヨト イヨト

э.

Regression Curve Distribution for Angular Error Regression Model Statistical Inference

Properties of Proposed Model

$$Y | x \sim C^* \left(\beta_0 \frac{x + \beta_1}{1 + \overline{\beta_1} x} \varphi \right), \ x \in U, \ \beta_0 \in U, \ \beta_1 \in \mathbb{C}, \ 0 \leq \varphi < 1.$$

Properties

Mean direction

$$\arg \{ E(Y | x) \} = \arg \left(\beta_0 \frac{x + \beta_1}{1 + \overline{\beta_1} x} \right)$$

Concentration

 $|E(Y|x)| = \varphi.$

Regression Curve Distribution for Angular Error Regression Model Statistical Inference

Properties of Proposed Model

$$Y | x \sim C^* \left(\beta_0 \frac{x + \beta_1}{1 + \overline{\beta_1} x} \varphi \right), \ x \in U, \ \beta_0 \in U, \ \beta_1 \in \mathbb{C}, \ 0 \leq \varphi < 1.$$

Properties

Closed under Möbius transformation:

$$\gamma_0 rac{Y + \gamma_1}{1 + \overline{\gamma_1}Y} \bigg| x \sim C^* \left(rac{ax + b}{cx + d}\right),$$

where $\gamma_0 \in U$, $\gamma_1 \in \mathbb{C}$, $a = \gamma_0(\beta_0 \varphi + \gamma_1 \overline{\beta_1})$, $b = \gamma_0(\gamma_1 + \beta_0 \beta_1 \varphi)$, $c = \overline{\beta_1} + \overline{\gamma_1} \beta_0 \varphi$, $d = 1 + \overline{\gamma_1} \beta_0 \beta_1 \varphi$.

Regression Curve Distribution for Angular Error Regression Model Statistical Inference

$$Y \,|\, \boldsymbol{x} \sim \boldsymbol{C}^* \left(\beta_0 \frac{\boldsymbol{x} + \beta_1}{1 + \overline{\beta_1} \boldsymbol{x}} \,\varphi \right), \, \boldsymbol{x} \in \boldsymbol{U}, \, \beta_0 \in \boldsymbol{U}, \, \beta_1 \in \mathbb{C}, \, \boldsymbol{0} \leq \varphi < \boldsymbol{1}.$$

Properties

Closed under Möbius transformation:

$$Y\left|\frac{\gamma_{00}x+\gamma_{01}}{\gamma_{10}x+\gamma_{11}}\sim C^*\left(\frac{ax+b}{cx+d}\right)\right|$$

where $\gamma_{jk} \in \mathbb{C}$, j, k = 0, 1, $a = \beta_0(\gamma_{00} + \beta_1 \gamma_{10} \varphi)$, $b = \beta_0(\gamma_{01} + \beta_1 \gamma_{11})\varphi$, $c = \gamma_{10} + \overline{\beta_1}\gamma_{00}$, $d = \gamma_{11} + \overline{\beta_1}\gamma_{01}$.

・ロット (雪) (山) (山) (山)

э.

Regression Curve Distribution for Angular Error Regression Model Statistical Inference

Properties of Proposed Model

Properties

Let

f(s, t): a continuous real function on the closed unit disc satisfying

$$\Delta f = \frac{\partial^2 f}{\partial s^2} + \frac{\partial^2 f}{\partial t^2} = \mathbf{0},$$

for all y = s + it in the open disc. Then

$$Y | x \sim C^* \left(\beta_0 \frac{x + \beta_1}{1 + \overline{\beta_1} x} \varphi \right) \Longrightarrow E \left\{ f(Y) | x \right\} = f \left(\beta_0 \frac{x + \beta_1}{1 + \overline{\beta_1} x} \varphi \right).$$

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

э.

Regression Curve Distribution for Angular Error Regression Model Statistical Inference

Existing Models

Planar–linear regression model (McCullagh, 1996)

- Y: \mathbb{R} -valued dependent variable,
- *z*: \mathbb{C} -valued independent variable.

The regression model of McCullagh (1996) is defined by

$$Y \,|\, z \sim C\left(\frac{\beta_{00}z + \beta_{01}}{\beta_{10}z + \beta_{11}}\right),$$

where $C(\theta)$ is real Cauchy distribution with median $\text{Re}(\theta)$ and scale parameter $\text{Im}(\theta)$, and

$$\left(egin{array}{cc} eta_{00} & eta_{01} \\ eta_{10} & eta_{11} \end{array}
ight) \in \mathsf{SL}(2,\mathbb{R}).$$

Regression Curve Distribution for Angular Error Regression Model Statistical Inference

Existing Models

Circular-circular regression model (Downs & Mardia, 2002)

Y : $[0, 2\pi)$ -valued dependent variable, *x* : $[0, 2\pi)$ -valued independent variable.

Downs & Mardia (2002) proposed a regression model as follows:

 $Y \mid \mathbf{x} \sim VM \{\mu(\mathbf{x}), \kappa\},\$

where $\kappa \ge 0$, $\tan [\{\mu(x) - \nu\}/2] = \omega \tan \{(x - \eta)/2\},$ $0 \le \nu, \eta < 2\pi, -1 \le \omega \le 1.$

イロン 不得 とくほ とくほ とうほ

Regression Curve Distribution for Angular Error Regression Model Statistical Inference

Existing Models

$$Y \mid x \sim VM \left\{ \mu(x), \kappa \right\},$$
$$\tan\left\{\frac{\mu(x) - \nu}{2}\right\} = \omega \tan\left(\frac{x - \eta}{2}\right).$$

Von Mises distribution

The von Mises distribution $VM(\mu, \kappa)$ has the density

$$f(heta) = rac{1}{2\pi I_0(\kappa)} \exp\left\{\kappa\cos(heta-\mu)
ight\}, \quad 0 \le heta < 2\pi,$$

where

 $0 \le \mu < 2\pi, \quad \kappa \ge 0,$ I_0 : Bessel function of the first kind and order 0.

ロトメロドメモトメモト

Regression Curve Distribution for Angular Error Regression Model Statistical Inference

Parameter Estimation

Maximum likelihood estimation

$$Y_j | x_j \sim C^* \left(\beta_0 \frac{x_j + \beta_1}{1 + \overline{\beta_1} x_j} \varphi \right), \quad j = 1, \dots, n.$$
$$Y_i | x_i \perp Y_j | x_j, \quad i \neq j.$$

The log-likelihood function is given by

$$\log L = C + \sum_{j=1}^{n} \left\{ \log \left| 1 - \varphi^2 \right| - 2 \log \left| y_j - \beta_0 \frac{x_j + \beta_1}{1 + \overline{\beta_1} x_j} \varphi \right| \right\}.$$

If β_1 is known, the algorithm by Kent & Tyler (1988) is available to estimate the parameters.

Regression Curve Distribution for Angular Error Regression Model Statistical Inference

Parameter Estimation

Method of moments estimation

$$Y_j | x_j \sim i.i.d. \ C^* \left(\beta_0 \frac{x_j + \beta_1}{1 + \overline{\beta_1} x_j} \varphi \right), \quad j = 1, \dots, n.$$
$$Y_i | x_i \perp Y_j | x_j, \quad i \neq j.$$

If β_1 is known, the moment estimates are

$$\hat{\beta}_{0} = \sum_{j=1}^{n} y_{j} \frac{\overline{x_{j}} + \overline{\beta_{1}}}{1 + \beta_{1} \overline{x_{j}}} / \left| \sum_{j=1}^{n} y_{j} \frac{\overline{x_{j}} + \overline{\beta_{1}}}{1 + \beta_{1} \overline{x_{j}}} \right|,$$
$$\hat{\varphi} = \frac{1}{n} \left| \sum_{j=1}^{n} y_{j} \frac{\overline{x_{j}} + \overline{\beta_{1}}}{1 + \beta_{1} \overline{x_{j}}} \right|.$$

Shogo Kato A circular-c

A circular–circular regression model

Regression Curve Distribution for Angular Error Regression Model Statistical Inference

A test of independence

A test of independence

$$H_0: |\beta_1| = 1$$
 v.s. $H_1: |\beta_1| \neq 1$.

The likelihood ratio test gives the test statistic as

$$T=-2\log\frac{\max L_0}{\max L_1},$$

where L_i is the likelihood function under H_i , i = 0, 1.

max L_0 is obtained using the algorithm by Kent & Tyler (1988).

・ロット (雪) (日) (日)

Related Bivariate Circular Distribution Multiple Circular Regression

Related Bivariate Circular Distribution

Definition

We propose a bivariate circular distribution with pdf

$$f(x,y) = \frac{1}{(2\pi)^2} \frac{\left|1 - \varphi^2\right|}{\left|y - \beta_0(x + \beta_1)\varphi/(1 + \overline{\beta_1}x)\right|^2} \frac{\left|1 - |\phi|^2\right|}{\left|x - \phi\right|^2},$$
$$|x| = |y| = 1; \ \beta_0 \in U, \ \beta_1 \in \mathbb{C}, \ \phi \in \mathbb{C} \setminus U, \ 0 \le \varphi < 1.$$

Property

Conditional distribution

$$Y \mid x \sim C^* \left(\beta_0 \frac{x + \beta_1}{1 + \overline{\beta_1} x} \varphi \right).$$

Related Bivariate Circular Distribution Multiple Circular Regression

Properties of Bivariate Circular Distribution

$$f(x,y) = \frac{1}{(2\pi)^2} \frac{\left|1-\varphi^2\right|}{\left|y-\beta_0(x+\beta_1)\varphi/(1+\overline{\beta_1}x)\right|^2} \frac{\left|1-|\phi|^2\right|}{|x-\phi|^2}$$

Properties

The model has following properties:

$$\begin{array}{l} \bullet X \sim C^*(\phi), \\ \bullet Y \sim C^*\left(\beta_0 \frac{\phi + \beta_1}{1 + \overline{\beta_1}\phi}\varphi\right), \\ \bullet |\beta_1| = 1 \implies X \sim C^*(\phi), \ Y \sim C^*(\beta_0\beta_1\varphi), \ X \bot Y, \\ \bullet \varphi = 0 \implies X \sim C^*(\phi), \ Y \sim C^*(0), \ X \bot Y. \end{array}$$

・ロト ・同ト ・ヨト ・ヨト

ъ

Related Bivariate Circular Distribution Multiple Circular Regression

Multiple Circular Regression

Definition

Let

- Y: U-valued dependent variable,
- x_1, \ldots, x_p : *U*-valued independent variables.

We propose a multiple circular regression model defined by

$$Y = \beta_0 \prod_{j=1}^{p} \frac{x_j + \beta_j}{1 + \overline{\beta_j} x_j} \varepsilon, \quad x_j \in U,$$

where $\varepsilon \sim C^*(\varphi), \ 0 \leq \varphi < 1, \ \beta_0 \in U, \ \beta_j \in \mathbb{C}, \ j = 1, \dots, p.$

・ロト ・ 同ト ・ ヨト ・ ヨト

Conclusion

Conclusion

Conclusion

- We proposed a circular–circular regression model with flexible regression curve and easy interpretation of the parameters.
- Some properties of the model are obtained using the theory of Möbius transformation and wrapped Cauchy distribution.
- As related topics, a bivariate circular distribution and a multiple circular regression model are introduced.

・ロト ・ 同ト ・ ヨト ・ ヨト

Conclusion

Conclusion

Conclusion

- We proposed a circular–circular regression model with flexible regression curve and easy interpretation of the parameters.
- Some properties of the model are obtained using the theory of Möbius transformation and wrapped Cauchy distribution.
- As related topics, a bivariate circular distribution and a multiple circular regression model are introduced.

・ロット (雪) (日) (日)

Conclusion

Conclusion

Conclusion

- We proposed a circular–circular regression model with flexible regression curve and easy interpretation of the parameters.
- Some properties of the model are obtained using the theory of Möbius transformation and wrapped Cauchy distribution.
- As related topics, a bivariate circular distribution and a multiple circular regression model are introduced.

・ロット (雪) (日) (日)

Conclusion

Conclusion

Conclusion

- We proposed a circular–circular regression model with flexible regression curve and easy interpretation of the parameters.
- Some properties of the model are obtained using the theory of Möbius transformation and wrapped Cauchy distribution.
- As related topics, a bivariate circular distribution and a multiple circular regression model are introduced.

・ロット (雪) (山) (山) (山)

Conclusion

References

DOWNS, T. D. & MARDIA, K. V. (2002). Circular regression. *Biometrika* **89**, 683–97.

KENT, J. T. & TYLER, D. E. (1988). Maximum likelihood estimation for the wrapped Cauchy distribution. *J. Appl. Statist.* **15**, 247–54.

LUND, U. J. (1999). Least circular distance regression for directional data. *J. Appl. Statist.* **26**, 723–33.

McCullagh, P. (1996). Möbius transformation and Cauchy parameter estimation. *Ann. Statist.* **24**, 787–808.

RIVEST, L.-P. (1997). A decentred predictor for circular–circular regression. *Biometrika* **84**, 717–26.