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Towards continuous simulation rainfall-runoff
modelling for flood risk assessment
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Goal: Flood management and assessment of risk, allowing
for impacts of changing climate and land use.

Tools: Rainfall-runoff models

- INputs: precipitation and evaporation data
- output: flows

But: Historical data lack length, temporal resolution and
spatial coverage

Need: Long continuous simulations of the input that
preserve

- extreme value properties

- spatial structure
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Overview

Stochastic (point process-based) models
e Within an event
 radar data, model-fitting and assessment
 the advection process
e Stationary continuous simulation

Statistical models (GLMs)
e model construction

Combination for nonstationary continuous
simulation

Conclusions and future directions
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To achieve continuous nonstationary simulation...

... combine

stochastic (point process-based) models
. In continuous space-time (aggregate as necessary for
fitting) enabling required space-time resolution

e parsimonious parameterisation
e parameters relate directly to physical phenomena

—> stationary simulation

statistical models (GLMs)

- In discrete space and time

« dependence on explanatory variables (eg season, orography)
enabling required space-time nonstationarities
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Radar data:

* used for fitting stochastic models

e indirect — reflected energy converted to rainfall intensity,
Chenies radar: data from 1990 onwards

e discretised intensities (0.03mm/hr min. non-zero value)

e Images at 5 minute intervals, assumed instantaneous

 spatially averaged rainfall intensities over a rectangular
grid of 2 x 2 km? pixels, over circular region, radius
76 km centred on radar

* model fitted to inscribed square of 52 x 52 pixels

 data calibrated on site to ground truth (using rain gauge
data)
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Chenies radar data - 2km resolution - calibrated on
site
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Rain gauge data:

o 122 tipping bucket gauges under Chenies radar

e pre-processed to 15 minute rainfall totals (0.2mm
resolution)

« (spatial) point data
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Stochastic point process-based rainfall models

Point process-based models with hierarchical structure:
rain cells cluster within storms within rain events....

Two stages: the within-event structure
the sequence of rain events (advection)

the within rain-event structure

All storms and cells within a rain event have a common
velocity v and characteristic elliptical ‘shape’ (e, 6)
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Poisson cluster processes

Bartlett-Lewis process
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A snapshot of one storm cluster.
A rain event is the superposition of lots of such clusters
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Figure 6.1 Schematic diagram of a storm in the space-time model for the interior of a rain event.
(a) Temporal structure: cell origins occur in a Poisson process during the lifetime of a storm,
with a cell at the storm origin. (b) Spatial structure: each cell is elliptical, and is displaced from
the (moving) storm centre according to a bivariate Gaussian distribution with the same elliptical

shape.



Cluster structure

e Storm origins occur in a Poisson process in space and time

e Each storm has a random (exponential) lifetime

* Within the storm lifetime,
- cells occur in a Poisson process in time
—> ho of cells has geometric distribution

- their spatial displacements relative to moving storm origin
are 1.1.d Gaussian variates with random scale
and elliptical contours

—
storm has Bartlett-Lewis structure in time and
Neyman-Scott structure in space
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Rain cells within clusters

» Cell origins form a Poisson cluster process N (w, 7)In
space and time

e Within a cluster, the cells are 1.1.d. with
- the same elliptical shape (e, 0)
- random cell scales
- exponential cell lifetimes
- random cell intensities X that are constant over a

cell’s spatial and temporal extent

Effectively each cell is a random elliptical cylinder
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A snhapshot of one storm cluster.

A rain event is the superposition of lots of such clusters

All clusters have the same velocity, and same characteristic elliptical
shape but different spatial scales.
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 Cells and storms can overlap.
« The model has 11 (or more) parameters
- the distribution of the cell intensity is not used in model
fitting
- the storm and cell scales are each modelled using a
gamma distribution with one parameter fixed
 The temporal structure of the process is Markov

— availability of explicit expressions for 2" order
properties
 The within-event model is spatially and temporally
stationary
 The assumption of a constant cell intensity does not
appear statistically important, but e.g. a multiplicative

random noise could be applied
VSI: Cherry Bud Workshop, Keio University, March 2006 16



e

The total cell intensity at U at time 1 is the sum of the

intensities of all the cells covering U at t, which can be
written as

nt r
7

) . s y Y ! ) . $ Y , y Y

Jr=—00 JWEIR“
and we observe the average intensity over a pixel of side h

(B) "
v = /z_m /(] 1y ¥ s D duzduy

Explicit expressions for the mean intensity and second
order properties

PN ya) \
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Method of model fitting to event interiors

- essentially a method of moments fit using second order
properties at a range of spatial and temporal scales

- rain events must have a 15+% coverage, and be spatially
and temporally stationary, for at least an hour

Assessment of model fit
- visual appearance of images **

- comparison of the fitted properties (both explicit and
simulated) with empirical sample properties, including

* moments

* wet/dry pattern and coverage

* cumulative rainfall intensities

* effect of thresholding on the coverage and intensity

at a range of spatial and temporal scales
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Observed and fitted properties: event of 4 Dec. 2000

left: variance as a function of spatial scale
right: temporal correlation
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left: autocorrelation along estimated direction of event movement
right: spatial correlation
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Observed and fitted properties: event of 19 Nov. 1991

left: variance as a function of spatial scale
right: temporal correlation
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Threshold analysis for event of 4 Dec. 2000
coverage (lhs), mean (centre), mean over threshold (rhs)
upper: single images; lower: cumulative images over 75 mins
solid lines: data; dashed lines: individual simulations
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Calibration issues

Rai nIraT\‘ Hr)ﬁer?slty

Chenies radar data:
2km resolution
calibrated on site

Radar 14-9-1989 16:20

Calibration needs to be smooth in space and time
—> recalibration

Issue .... sensitivity of summary statistics used for model
fitting to calibration
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Modelling arrivals and departures of rain events
over catchment (advection)

e Identify start and end times of rain events by up - and
down-crossings of time series of window coverage
(proportions of pixels that are wet) across a threshold

 model sequences of durations of ‘dry’ and ‘wet’ intervals as
Independent i.i.d. sequences of Welbull variables
(tractable likelihood for censored observations)

* fit orientations of leading and trailing edges of events via
linear discriminant analysis
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Durations - in log(hours) - of successive wet and dry
period durations in July.
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Assessment of Weibull fit:

log-log plots of empirical (step) and theoretical (straight line) cumulative

hazard functions for wet and dry period durations in January. Dashed
lines indicate the envelopes from 10 simulations.

log(time) log(time)
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Leading edge for event of 4 Dec. 2000

Chenies 2km radar image, 4th December 2000, 04:45
(coverage = 57%)
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Continuous simulation of rainfall
Assemble

e library of parameter sets for large number of fitted events
Including orientations of leading and trailing edges of
each event

Generate - from fitted distributions (on month-by-month
basis to allow for seasonality)

e sequence of durations of rain events and inter-event dry
periods in alternating renewal process

 other event parameters (including velocity) sampled from
library of fitted sets for events with similar durations

e rain band wide enough to cover catchment for given event
duration, moving at given velocity

Simulate ‘within-event’ model within rain band
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Trailing Leading edge

edge

\ & Catchment @

Generation region

Dvirection ol
movement

Schematic of rain band moving across catchment.
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Summary statistics for simulated and empirical data

(hourly & 4 km?): unconditional and conditional means and standard
deviations
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Summary statistics for simulated and empirical data
(hourly & 4 km?): unconditional and conditional within image standard

deviations and proportion wet.
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Summary statistics for simulated and empirical data
(hourly & 4 km?): spatial autocorrelations, lags (1,0), (0,1), (1,1), (-1,1)
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Summary statistics for simulated and empirical data
(hourly & 4 km?): conditional spatial autocorrelations, lags (1,0), (0,1),
(1,1), (-1,1)
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Summary statistics for simulated and empirical data

(hourly & 4 km2): temporal autocorrelations, lags 1, 2, 3.
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Summary statistics for simulated and empirical data

(hourly & 4 km2): conditional temporal autocorrelations, lags 1, 2, 3.
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Raintall intensity
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Statistical rainfall models (GLMs)

 Model the temporal sequences (discrete time) at a set of
discrete spatial locations

* Incorporate spatial and temporal nonstationarities
- hydrologically significant even for small catchments

o Forecast the probability distribution for daily rainfall at each
site, conditionally upon predictors (fit using daily raingauge
data)

« Predictors can include the site location, time of year,
previous days’ rainfall, teleconnections (eg El Nino, NAO)
and temporal nonstationarities (eg climate change
scenarios)

« Allows interpolation at sites not used in fitting
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Model rainfall occurrences and amounts separately....

Occurrence model: logistic regression (/ Gl \l = x',3

\1 — Dst/
where P is the probability that site S is wet on day t

Amounts model: the intensity Y given that the site is wet,
has a gamma distribution with mean p  such that
N per = &Ly and constant variance/mean ratio

Predictors {xst, &4} include: location, elevation, seasonal
effects, rainfall autocorrelation and persistence,
teleconnections eg NAO, climate-change scenarios via
GCM/RCM output, and their interactions

Effects can be assessed formally (likelihood ratio tests) or
iInformally (residual analysis)
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Dependence Issues

Temporal: functions of past values at all sites incorporated
In predictors e.g. persistence

Spatial: fit models as if sites were spatially independent
given predictors and adjust afterwards for inter-site
dependence

esimultaneous dependence of occurrences is modelled by a
beta-binomial distribution for the number of sites
simultaneously wet (respecting proportions of wet
days at each site)

 simultaneous dependence of amounts (for simulation)
captured through correlation structure of Anscombe
residuals: for gamma d" (Yy;/pst)1/3 ~approx NOrmal
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Combination of stochastic and statistical
models for nonstationary continuous
simulation

ldea: use the point process model to provide the finescale
spatial and temporal resolution, and the GLM to drive spatial
and temporal nonstationarities.

 Use GLM to generate ensembles of multi-site daily
sequences at a grid of sites

—> properties of predictive distribution incorporating
spatial dependence (nonstationary in space and in
time)

e Condition continuous simulation of stochastic model to
respect these properties
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Simple multiplicative rescaling

Rescale images using smoothed monthly means (per
site per year) for GLM.

Incorporates spatial heterogeneity plus some temporal
effects into rainfall amounts, but does not change
wet/dry patterns.

Rescaling has effect of calibrating radar values to
ground truth (GLMs are fitted to raingauge data)
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Summary statistics for simulated and empirical data

(hourly & 4 km?): unconditional means and standard deviations,
(Ihs) stationary and (rhs) nonstationary simulation
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Temporal nonstationarity

1. Match GLM statistics to (temporal) sequences in
nistorical record. Statistics should include properties
such as means, proportions of dry days, cross
correlations, durations of dry intervals etc

Use parameters from fits to those data for simulation.

2. Fit stochastic model to statistics derived from GLM
simulation - downscaling daily statistics to subdaily
values using fitted relationships between time scales as

necessary.

NB Continuous simulation enables disaggregation of daily
totals to subdaily values.
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Conclusions and future directions

« Stochastic model for individual rain events is well-
developed for representation of fine-scale spatial-
temporal rainfall

e Continuous simulation over longer time periods
preserves main features of empirical data

e Combination of stochastic models with GLMs allows
Incorporation of topographical features and
temporal nonstationarities, and calibration to
ground truth

e Combination of GLMs with GCM/RCM output will allow
Incorporation of climate change scenarios.
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Further work

 Model extension to allow for light and spatially and/or
temporally intermittent rainfall — values below the threshold
contribute a minor proportion of the total intensity but may
have more significant effect on run-off

* Investigation of the effect on run-off of the sensitivity of
summary statistics used for model fitting to calibration
method

* Investigation of spatial extremes and the effect on run-off
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