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Towards continuous simulation rainfall-runoff 
modelling for flood risk assessment
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Goal:  Flood management and assessment of risk, allowing 
for impacts of changing climate and land use.

Tools:  Rainfall-runoff models

- inputs: precipitation and evaporation data

- output: flows

But: Historical data lack length, temporal resolution and 
spatial coverage 

Need: Long continuous simulations of the input that 
preserve 

- extreme value properties
- spatial structure
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Stochastic (point process-based) models
• within an event
• radar data, model-fitting and assessment
• the advection process
• stationary continuous simulation

Statistical models (GLMs) 
• model construction

Combination for nonstationary continuous 
simulation
Conclusions and future directions

Overview



6VSI: Cherry Bud Workshop, Keio University, March 2006

To achieve continuous nonstationary simulation…
… combine

stochastic (point process-based) models
• in continuous space-time (aggregate as necessary for 

fitting) enabling required space-time resolution
• parsimonious parameterisation 
• parameters relate directly to physical phenomena

stationary simulation
statistical models (GLMs)
• in discrete space and time
• dependence on explanatory variables (eg season, orography) 

enabling required space-time nonstationarities
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Radar data:
• used for fitting stochastic models

• indirect – reflected energy converted to rainfall intensity, 
Chenies radar: data from 1990 onwards

• discretised intensities (0.03mm/hr min. non-zero value)

• images at 5 minute intervals, assumed instantaneous

• spatially averaged rainfall intensities over a rectangular 
grid of  2 x 2 km2 pixels, over circular region, radius 
76 km centred on radar 

• model fitted to inscribed square of 52 x 52 pixels 

• data calibrated on site to ground truth (using rain gauge 
data)
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Chenies radar data - 2km resolution - calibrated on 
site
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Rain gauge data:

• 122 tipping bucket gauges under Chenies radar
• pre-processed to 15 minute rainfall totals (0.2mm 

resolution) 
• (spatial) point data 
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Stochastic point process-based rainfall models

Point process-based models with hierarchical structure: 
rain cells cluster within storms within rain events….

Two stages:  the within-event structure
the sequence of rain events (advection)

First…..
the within rain-event structure

All storms and cells within a rain event have a common 
velocity and characteristic elliptical ‘shape’
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Poisson cluster processes

Cluster centre Event arrival

Neyman-Scott process

Bartlett-Lewis process

Independent and identically distributed intervals
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A snapshot of one storm cluster.
A rain event is the superposition of lots of such clusters



13VSI: Cherry Bud Workshop, Keio University, March 2006

Cluster structure
• Storm origins occur in a Poisson process in space and time

• Each storm has a random (exponential) lifetime

• Within the storm lifetime, 
- cells occur in a Poisson process in time           

no of cells has geometric distribution
- their spatial displacements relative to moving storm origin 

are i.i.d Gaussian variates with random scale
and elliptical contours 

storm has Bartlett-Lewis structure in time and 
Neyman-Scott structure in space 
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Rain cells within clusters
• Cell origins form a Poisson cluster process in 

space and time
• Within a cluster, the cells are i.i.d. with  

- the same elliptical shape 
- random cell scales
- exponential cell lifetimes
- random cell intensities that are constant over a 

cell’s spatial and temporal extent

Effectively each cell is a random elliptical cylinder
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A snapshot of one storm cluster.
A rain event is the superposition of lots of such clusters
All clusters have the same velocity, and same characteristic elliptical 
shape but different spatial scales.
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• Cells and storms can overlap.
• The model has 11 (or more) parameters

- the distribution of the cell intensity is not used in model 
fitting

- the storm and cell scales are each modelled using a 
gamma distribution with one parameter fixed

• The temporal structure of the process is Markov
availability of explicit expressions for 2nd order 

properties 
• The within-event model is spatially and temporally 

stationary
• The assumption of a constant cell intensity does not 

appear statistically important, but e.g. a multiplicative 
random noise could be applied 
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and we observe the average intensity over a pixel of side h

The total cell intensity at u at time t is the sum of the 
intensities of all the cells covering  u at t , which can be 
written as

Explicit expressions for the mean intensity and second 
order properties
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Method of model fitting to event interiors
- essentially a method of moments fit using second order 

properties at a range of spatial and temporal scales 
- rain events must have a 15+% coverage, and be spatially 

and temporally stationary, for at least an hour 

Assessment of model fit
- visual appearance of images **
- comparison of the fitted properties (both explicit and 

simulated) with empirical sample properties, including
* moments
* wet/dry pattern and coverage
* cumulative rainfall intensities
* effect of thresholding on the coverage and intensity 

at a range of spatial and temporal scales
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Event of 4 Dec. 
2000

top: 75 min 
sequence of radar
images;

bottom: 75 min 
sequence of 
simulated images
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Observed and fitted properties: event of 4 Dec. 2000
left: variance as a function of spatial scale
right: temporal correlation

left: autocorrelation along estimated direction of event movement
right: spatial correlation
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Observed and fitted properties: event of 19 Nov. 1991
left: variance as a function of spatial scale
right: temporal correlation

left: autocorrelation along estimated direction of event movement
right: spatial correlation
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Threshold analysis for event of 4 Dec. 2000
coverage (lhs), mean (centre), mean over threshold (rhs)
upper: single images; lower: cumulative images over 75 mins
solid lines: data; dashed lines: individual simulations 
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Calibration issues

Calibration needs to be smooth in space and time 
recalibration

Issue …. sensitivity of summary statistics used for model 
fitting to calibration

Chenies radar data:          
2km resolution 
calibrated on site
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Modelling arrivals and departures of rain events 
over catchment (advection)

• identify start and end times of rain events by up - and 
down-crossings of time series of window coverage
(proportions of pixels that are wet) across a threshold

• model sequences of durations of ‘dry’ and ‘wet’ intervals as 
independent i.i.d. sequences of Weibull variables 
(tractable likelihood for censored observations) 

• fit orientations of leading and trailing edges of events via 
linear discriminant analysis
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Durations - in log(hours) - of successive wet and dry 
period durations in July.
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Assessment of Weibull fit: 
log-log plots of empirical (step) and theoretical (straight line) cumulative 
hazard functions for wet and dry period durations in January. Dashed 
lines indicate the envelopes from 10 simulations.
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Leading edge for event of 4 Dec. 2000
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Continuous simulation of rainfall
Assemble 
• library of parameter sets for large number of fitted events 

including orientations of leading and trailing edges of 
each event 

Generate - from fitted distributions (on month-by-month 
basis to allow for seasonality)

• sequence of durations of rain events and inter-event dry 
periods in alternating renewal process 

• other event parameters (including velocity) sampled from  
library of fitted sets for events with similar durations

• rain band wide enough to cover catchment for given event 
duration, moving at given velocity

Simulate ‘within-event’ model within rain band
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Schematic of rain band moving across catchment.
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Summary statistics for simulated and empirical data
(hourly & 4 km2): unconditional and conditional means and standard 
deviations
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Summary statistics for simulated and empirical data
(hourly & 4 km2): unconditional and conditional within image standard 
deviations and proportion wet.
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Summary statistics for simulated and empirical data
(hourly & 4 km2): spatial autocorrelations, lags (1,0), (0,1), (1,1), (-1,1)
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Summary statistics for simulated and empirical data
(hourly & 4 km2): conditional spatial autocorrelations, lags (1,0), (0,1), 
(1,1), (-1,1)
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Summary statistics for simulated and empirical data
(hourly & 4 km2): temporal autocorrelations, lags 1, 2, 3.
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Summary statistics for simulated and empirical data
(hourly & 4 km2): conditional temporal autocorrelations, lags 1, 2, 3.
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Data - winter
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Simulation - winter
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Data - summer
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Simulation - summer
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Statistical rainfall models (GLMs)

• Model the temporal sequences (discrete time) at a set of 
discrete spatial locations

• Incorporate spatial and temporal nonstationarities
- hydrologically significant even for small catchments 

• Forecast the probability distribution for daily rainfall at each 
site, conditionally upon predictors (fit using daily raingauge
data)

• Predictors can include the site location, time of year, 
previous days’ rainfall, teleconnections (eg El Nino, NAO) 
and temporal nonstationarities (eg climate change 
scenarios)

• Allows interpolation at sites not used in fitting
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Model rainfall occurrences and amounts separately….

Occurrence model:  logistic regression

where pst is the probability that site s is wet on day t
Amounts model: the intensity Yst given that the site is wet,       

has a gamma distribution with mean    st such that
and constant variance/mean ratio

Predictors include: location, elevation, seasonal         
effects, rainfall autocorrelation and persistence, 
teleconnections eg NAO, climate-change scenarios via 
GCM/RCM output, and their interactions

Effects can be assessed formally (likelihood ratio tests) or 
informally (residual analysis)
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Dependence issues
Temporal: functions of past values at all sites incorporated 

in predictors e.g. persistence
Spatial: fit models as if sites were spatially independent 

given predictors and adjust afterwards for inter-site 
dependence 

•simultaneous dependence of occurrences is modelled by a 
beta-binomial distribution for the number of sites 
simultaneously wet (respecting proportions of wet 
days at each site)

• simultaneous dependence of amounts (for simulation) 
captured through correlation structure of Anscombe
residuals: for gamma dn ~approx Normal
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Combination of stochastic and statistical 
models for nonstationary continuous 
simulation
Idea: use the point process model to provide the finescale
spatial and temporal resolution, and the GLM to drive spatial 
and temporal nonstationarities.
• Use GLM to generate ensembles of multi-site daily

sequences at a grid of sites 
properties of predictive distribution incorporating 
spatial dependence (nonstationary in space and in 
time) 

• Condition continuous simulation of stochastic model to 
respect these properties 
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Simple multiplicative rescaling

Rescale images using smoothed monthly means (per 
site per year) for GLM.   

Incorporates spatial heterogeneity plus some temporal 
effects into rainfall amounts, but does not change 
wet/dry patterns.

Rescaling has effect of calibrating radar values to 
ground truth (GLMs are fitted to raingauge data)
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Summary statistics for simulated and empirical data
(hourly & 4 km2): unconditional means and standard deviations, 
(lhs) stationary and (rhs) nonstationary simulation



46VSI: Cherry Bud Workshop, Keio University, March 2006

Temporal nonstationarity
1. Match GLM statistics to (temporal) sequences in 

historical record. Statistics should include properties 
such as  means, proportions of dry days, cross 
correlations, durations of dry intervals etc

Use parameters from fits to those data for simulation.

2. Fit stochastic model to statistics derived from GLM 
simulation - downscaling daily statistics to subdaily
values using fitted relationships between time scales as 
necessary.

NB Continuous simulation enables disaggregation of daily 
totals to subdaily values.    
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Conclusions and future directions
• Stochastic model for individual rain events is well-

developed for representation of fine-scale spatial-
temporal rainfall 

• Continuous simulation over longer time periods 
preserves main features of empirical data

• Combination of stochastic models with GLMs allows  
incorporation of topographical features and 
temporal nonstationarities, and calibration to 
ground truth

• Combination of GLMs with GCM/RCM output will allow 
incorporation of climate change scenarios.  
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Further work

• Model extension to allow for light and spatially and/or           
temporally intermittent rainfall – values below the threshold 
contribute a minor proportion of the total intensity but may 
have more significant effect on run-off

• Investigation of the effect on run-off of the sensitivity of 
summary statistics used for model fitting to calibration
method  

• Investigation of spatial extremes and the effect on run-off 
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