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Basic General Insurance Risk Model

where
e S represents the aggregate amount of claims in a fixed period, e.g. one year
e N is a counting variable representing the number of claims
e X, = amount of the i-th claim

o {X;}2 is a sequence of i.i.d. random variables



Standard Problem - find the distribution function of S

Reasons

e Premium setting

e Setting appropriate levels of reinsurance

e Solvency, e.g. for a given premium P, find the capital u such that

Pr(u+ P > S) =0.99



How to fit our model for aggregate claims?

e Model for the number of claims, e.g. Poisson, negative binomial, or zero-
modified versions

e Model for claim amounts, e.g. lognormal, Pareto

e Parameter estimation by maximum likelihood, standard goodness of fit tests

Excellent reference: “Loss Models - from Data to Decisions” by Klugman, Panjer
& Willmot



Computational Issues

e Distribution function of S is

Pr(S <z)= iO: Pr(N = n)F™(x)

n=0

where F'(x) = Pr(X; < x), and F™" is the n-fold convolution

e Exact computation is difficult

e Approximations are often used - especially moment based approximations -
but estimation of counting and claim amount distributions is important



Insurer’s surplus process before reinsurance

N(t)

Ut)=u+ct— Y X;
1=1
u = initial surplus,

c = rate of premium income per unit time (year),
N(t) = number of claims in [0,t], N(t) ~ Poisson(At),

X; = amount of the z-th claim.






Let & denote a general reinsurance arrangement.

Then the insurer’s surplus process after reinsurance is

Up(t) = u + cot — Sp(1)

where

Uy(t) = insurer’s surplus at time ¢,

cgp = rate of premium income to the insurer net of reinsurance,
Sp(t) = net aggregate claims for the insurer in [0, ¢],

Sp(t) has cdf Gy(z;t) and pdf gy(x;t) for x > 0.



snjding

Time



Probability of ruin - definitions

Discrete time:

Wo(u,t) = Pr[Uy(s) < 0 for some s, s =1,2,...,1]

Continuous time:

Yo(u,t) = Pr[Uy(s) < 0 for some s, s € (0, t]]






I'he problem: Determine:
J t) = inf , 1

where:

e O is a set of admissible reinsurance arrangements.
In our study, admissible means:

— either proportional or excess of loss reinsurance throughout the period,

— the insurer’s annual net income exceeds net expected claims.
e O can be changed at the start of each year.

e Ruin can be in discrete or continuous time.



Proportional reinsurance

Let X; denote the amount of the i-th individual claim. Under a proportional
reinsurance arrangement with proportion retained a,

the insurer pays aX;

the reinsurer pays (1 — a)Xj;.



Excess of Loss Reinsurance

Let X, denote the amount of the i-th individual claim. Under an excess of loss
reinsurance arrangement with retention level M,

the insurer pays min(X;, M)

the reinsurer pays max(0, X; — M).



Discrete time — formulae

b(u,1) = Qigg(l — Gg(u +cg; 1))

¢9(u7 TL) — ¢9(u71)
u-tcy ~
—|—/O go(u +cog —x; V) Y(x,n — 1)dx
—I—e_)‘{b(u +cp,m — 1)

b(u,n) = inf vy(u,n)

(Bellman Principle)



Calculating ruin probabilities

Translated gamma distribution: For each 0 calculate oy, B¢, kg such that:
E[(Yy + r9)'] = E[(Sp(1))] i=1,2,3
where Yy ~ (g, By) with cdf Tg(x; ag, Bg) and pdf ~vy(x; g, Bg).

Then for x > 0

Q

Go(x; 1) Pr[Yy + kg < ]

Co(x — Kkg; g, By)-

In particular,

Gg(0;1) = e = Pr[Yy + kg < 0] = [y(—rg; g, Bo)-

The pdf approximation is gg(x; 1) =~ vg(x — Kg; g, By)-



Translated gamma distribution approximation to y(u, n)

1. Original (compound Poisson) process:
Yo(u,1)
u+cp ~
+ [ golut g — i) e n—1)do
+e Mp(u + cp,m — 1)

2. Translated gamma distribution approximation:
1 —Tg(u + cy — Kg; g, Bo)
u+cp ~
+ [ gt cg — kg — i g, Bg) bla,n — 1) da
+Tg(—rg; ag, Bg)(u+ cp,n — 1)



Computational Issues
Need to use numerical integration.

Can reduce the amount of calculation required by introducing a truncation pro-
cedure - essentially we set very small ruin probabilities to zero.

A grid search is required for the optimal retention level - we limit our set of
possible retention levels, e.g. 0.01,0.02,...,0.99,1 for proportional reinsurance.

Computations for discrete time ruin are considerably faster than for continuous
time - factor may depend on programming language.

It does not appear possible to find explicit solutions!



Questions to be answered
To what extent is a dynamic reinsurance policy better than a static policy?
To what extent does the time horizon affect the optimal reinsurance strategy?

Is minimising the probability of ruin (in finite time) a sensible optimisation cri-

terion?



Numerical example

e Individual claim amount distribution is Exponential(1)

e Premium loading factors: 0.1 (insurer) & 0.2 (reinsurer)

e Poisson parameter: A = 100

e Initial surplus is u = 23 in graphical illustration



Surplus,

Remaining term, t

U 9 3 I 6 5 4 3 2 1
10 M 2.1 2.1 2.1 2.0 2.0 1.8 1.7 1.3 0.7
@Ab(u, t) | 0.128 0.126 0.124 0.121 0.116 0.110 0.099 0.081 0.039
20 M 1.4 1.4 1.4 1.3 1.3 1.1 1.0 0.7 0.7
@(u, t) | 0.037 0.036 0.034 0.031 0.028 0.023 0.016 0.006 0.000
30 M 1.4 1.4 1.3 1.2 1.1 0.9 0.7 0.7 0.7
@(u, t) | 0.010 0.009 0.008 0.007 0.005 0.003 0.001 0.000 0.000
40 M 1.3 1.2 1.2 1.0 0.8 0.7 0.7 0.7 0.7
@Ab(u, t) | 0.002 0.002 0.002 0.001 0.001 0.000 0.000 0.000 0.000

Optimal strategy: Exponential claims, loadings 10%/20%, excess loss, discrete

time ruin, distributional approximation.



Ruin probability

0.05 -

0.04 +

0.03 +

0.02 +

0.01 -

0.00

—e— No reinsurance
—— Static ppn
—a— Dynamic ppn
—»%— Static XL

—X%— Dynamic XL




Questions to be answered

To what extent is a dynamic reinsurance policy better than a static policy?

— Significantly.

To what extent does the time horizon affect the optimal reinsurance strategy?
— Significantly.

Is minimising the probability of ruin (in finite time) a sensible optimisation cri-
terion?

— Answered later!



Continuous time — formulae

Let dg(u,t) =1 — Yy(u,t) be the survival probability to time ¢ (years).

Prahbu’'s formula is
1
59(“’7 1) — GQ(U’ + Cp, 1) - CH/O 59(07 1-— S)QQ(U’ + Cps, S) ds
with

1 [cot
50(0,75):@ , Goly.t)dy.



Then for n > 1 we have
b(u, n) = inf y(u,n),

where, for a given value of 0,

wo(u,n) = Po(u,1) + e d(u+cgn —1) + /OCQ So(u, 1,y) ¥(y,n — 1) dy

u+cp ~
[ gpluteg— 9, 1) bly.n — 1) dy
0
and
1—y/cy
og(u,1,y) = gg(u +cp —y,1) — 60/0 go(u + cgs, s)09(0,1 — s, y)ds
with

Y
59(07 ¢ y) — @ gQ(CQt - Y t)'



Translated gamma distribution approximation
This can be applied with ease

Formulae are relatively straightforward.

Numerical example
e Initial surplus is u© = 49

e Individual claim amount distribution is Pareto(4,3) (mean is 1)

e Premium loading factors: 0.1 (insurer) & 0.2 or 0.3 (reinsurer)

e Poisson parameter: A\ = 100



Ruin probability

0.05 -

0.04 +

0.03 +

0.02 +

0.01 -

0.00 -

—o— No reinsurance

—&— Dynamic ppn

—a— Static ppn

—aA— Dynamic XL (10%/20%)
—6e— Static XL (10%/20%)
—X%— Dynamic XL (10%/30%)
—>— Static XL (10%/30%)




Questions to be answered

To what extent is a dynamic reinsurance policy better than a static policy?

— Clearly better for proportional reinsurance, but only at the longer time horizons.
— Marginally better for excess loss reinsurance for both reinsurance loadings.
To what extent does the time horizon affect the optimal reinsurance strategy?

— Significantly: for example, with excess of loss reinsurance and a 30% reinsur-
ance loading factor we get the following values of M for the first year:

Term | 10 8 6 4 2
Dynamic | 3.0 2.8 24 17 1.4
Static |29 26 23 15 1.3




Questions to be answered

Is minimising the probability of ruin (in finite time) a sensible optimisation cri-
terion?

— Yes, but it can lead to strategies that might not appear sensible.

For example, in the previous table, with ©w = 49 and a remaining term of 1 year,
why should the insurer cede so much risk?

Alternative criteria, e.g. minimise the ruin probability over a fixed but rolling
time horizon?

— Cannot reduce the ruin probability over the original time horizon.



Concluding Remarks

A dynamic strategy appears to have a greater effect if we consider discrete time

ruin.

If we consider discrete time only, the translated gamma approximation still ap-
plies for other models, e.g. in the case of a compound negative binomial distri-
bution for claim numbers.

It is computationally much faster to compute the optimal static strategy, espe-
cially in continuous time. Ruin probabilities under a static strategy bound those
under a dynamic strategy.



Our study contained a second approach to calculation using translated gamma
processes. Results were virtually identical - confidence in robustness of ap-
proaches.
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