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Tuning Parameters

Certain parameters in learning algorithms and statistical models

Typically, as parameter increases or decreases, the fit gets closer to data

Parameter might be “in” or “out” to indicate whether a term of a model is
included or not

One example
• y = polynomial(x, coefficients, degree) + noise
• tuning parameter = polynomial degree
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Tuning Parameter Selection: The Current Practice

A Machine Optimization

A “model selection criterion”
• cross-validation sum of squares
• Mallows Cp

• AIC and BIC
• minimize criterion

Return just the parameters that
optimize the criterion

Widely practiced in statistics and
machine learning
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Different Approach to Tuning Parameter Selection

Use Experimental Methods:

(1) Experimental Design (2) Response Surface Analysis

Evaluate model selection criterion
(response) over space of tuning
parameters (factors)

Treat these meta-data as we would
data from a designed experiment

Add a measure of model complexity
and an estimate of the noise variance

Three responses
• model selection criterion
• model complexity
• the estimate of the noise variance

The design space
• evaluate three responses for set of

points in the space of tuning
parameters

Analyze the meta-data using response
surface methods
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Why Experimental Methods?

Much more effective tuning parameter
selection for the data at hand
• all models are wrong
• balance model prediction bias and

variance
• a complex matter

Build up a knowledge base across
experiments about the effects and
properties of the tuning parameters

Expand the scope of the model
selection
• greater numbers of tuning

parameters
• success where optimizer would

get lost

Leads naturally to an effective
separation of estimating the noise
variance and selecting the tuning
parameters
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Design and Response Surfaces

Response Surface Methods

Extensive data visualization

Transformations of the factors to
simplify the surfaces

Fitting equations to surfaces

Characterization of statistical variability
of surfaces

Methods of Experimental Design

Guide choice of design space

Often full factorial

When each run costly, fractionated
designs

The evolutionary operation methods of
Box
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Illustrate with Locally-Weighted Regression (Loess)

Fit response yi to p explanatory
variables xi1, . . . , xip, i = 1 to n

Loess smooths yi as a function of the
xi1, . . . , xip by local fitting of
polynomial family

Result is ĝ(xi1, . . . , xip), which
describes mean of response given
explanatory variables

Assumptions
• yi = g(xi) + εi

• εi are i.i.d. with mean 0 and
variance σ2

• g is a smooth function of the
explanatory variables

5 6 7 8 9 10

3.8

4.8

5.8

x

y

Assumption
• for method of fitting to come, εi not
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Neighborhood and Weight Function

Example: two explanatory variables

Steps to get a value of loess fit at “+”
• 1. Divide each explanatory

variable by a measure of scale
• 2. Choose polynomial degree
• 3. Choose neighborhood by

number of nearest neighbors
• 4. Compute weight function at

each point
• 5. Fit polynomial by weighted least

squares
• 6. Evaluate fitted polynomial at “+”
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Camel

We will use the camel function of Larry Brown

One independent variable

1028 observations

Noise is normal with mean 0 and standard deviation 0.1

In the next slide the loess fit has 256 points per neighborhood and local cubic
fitting. The small insert plot will be explained latter.
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Camel Loess Fit (Black) and Actual (Red)
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Computational Method

A loess computation at the at all xi1, . . . , xip is order n2, too costly for large
data sets

Build a k-d tree in the space of the explanatory variables

Do full loess computation at the vertices of the tree and interpolate elsewhere

Number of cells, or leaf nodes, of the tree is a power of 2
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Loess Tuning Parameters (An Aggressive Agenda)

Polynomial degree
• λ
• 0, 1, 2, 3
• alternative is τ = number of

monomial fitting variables

Bandwidth
• α
• fraction of points in each

neighborhood

Number of leaf cells of k-d tree
• n` = 2v

Other tuning parameters in the future
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Camel Fit:λ = 3, α = 0.25, n` = 8
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Loess: Residuals, Fitted Values, and Hat Matrix

i = 1 to n observations

yi is the response at xi1, . . . , xip

ŷi is the loess fit at xi1, . . . , xip

ε̂i = yi − ŷi is the residual

y, ŷ, and ε̂ are the vectors of values

ŷ = Ly

L is loess hat matrix

L depends on xi1, . . . , xip, α,
polynomial degree, and number of leaf
cells

Least squares hat matrix is a
projection operator but not L
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Two Response Variables

Model Complexity

µ = trLL′

∑n

i=1
Var(ŷi) = σ2µ

Linear least squares: µ = number of
parameters

Loess: µ = equivalent number of
parameters

Estimate of Noise Variance

Let I be n × n identity matrix

Estimate of σ2

σ̂2 =

∑n

i=1
ε̂2

i

tr(I − L)(I − L)′

ŷi: fitted values ε̂i: residuals L: loess hat matrix
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Third Response Variable: Mallows Cp = M

Estimate of mean-square error of prediction divided by σ2

M̂ =

∑n

i=1
ε̂2

i

σ̃2
− tr(I − L)′(I − L)+µ

= bias + variance

σ̃2 from studying stabilization of σ̂2 as a function of µ

µ: complexity ε̂i: residuals L: n × n hat matrix
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Transformation: α and λ

Find transformations of tuning parameters: simplify dependence of µ on them

Guidance from µ ≈ 1.2 (number of monomial fitting variables)/α

µ and α
• log

2
(µ) and log

2
(1/α)

Two treatments of λ
• discrete variable
• τ = log

2
(number of monomial fitting variables)

α: fraction of n points in
neighborhood

λ: degree of polynomial µ: complexity
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Transformation: n`

n`, a power of 2
• log

2
(n`)

An intrinsic, strong interaction between log
2
(1/α) and log

2
(n`)

• need more leaf cells as the neighborhood size decreases

Measure of number of leaf cells per neighborhood:

β = αn` =
n`/n

1/αn

log
2
(β): likely a reduced interaction with log

2
(1/α)

α: fraction of n points in neighborhood nl: number of leaf nodes
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Camel Fit:λ = 3, α = 0.25, n` = 8, β = 2
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The n` & α Starting Design Space
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The β & α Starting Design Space
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The Truncated β & α Design Space
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The Design Space: β, α, and λ W

Cross each pair of values of β & α
with all four values of λ = 0, 1, 2, 3

87 values of β & α, so design space
has 4 × 87 = 348 points
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α: fraction of n points in
neighborhood

λ: degree of polynomial β: number of leaf nodes
per neighborhood
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log
2
(µ) is approximately linear in log

2
(1/α) given β and λ
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log
2
(µ) stabilizes as a function of log

2
(β) in the range of about 2 to 3 leaf cells

per neighborhood
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σ̂ can be estimated from this plot by the stabilized minimum value, close to the

true value 0.1 in this case. This estimate is needed for M̂ .

log2(µ)

σ̂
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The M Plot

The next slide is the plot of M̂ vs. µ

The admissible boundary is the lower envelope of the points

The model that minimizes M̂ uses locally cubic fitting

The minimizer is not necessarily the best
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Fits Along Admissible Boundary of M Plot

In the next slides we move from lower to higher µ through the admissible
boundary for degree 3.

The insert shows the points of the admissible boundary and the red indicates
the point for the current fit
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Why Experimental Methods?

Much more effective tuning parameter
selection for the data at hand
• all models are wrong
• balance model prediction bias and

variance
• a complex matter

Build up a knowledge base across
experiments about the effects and
properties of the tuning parameters

Expand the scope of the model
selection
• greater numbers of tuning

parameters
• success where optimizer would

get lost

Leads naturally to an effective
separation of estimating the noise
variance and selecting the tuning
parameters


