HMM for precipitation

Pierre Ailliot

National Institute of Water and Atmospheric Research Victoria University of Wellington (New Zealand)

> Peter Thomson Statistics Research Associates Ltd

Outline

- Basic HMM
 - Model description
 - Limitations
- Extensions
 - HMM with truncated Gaussian distributions
- Conclusion and perspectives

Model description

- First proposed by Zucchini & Guttorp (1991)
 - Generalized to a nonhomogeneous HMM

Hughes et al. (1994)

- Observed process: $Y_t = (Y_t(1), \dots, Y_t(K))$
 - $Y_t(k) \in R^+$: rainfall during day t at location k
- Existence of "weather type"
 - □ High pressure systems, frontal systems, ...
 - ...Introduced as a <u>hidden process</u> $S_i \in \{1...Q\}$

Common to all locations

Model description

- Conditional independence assumptions
 - <u>Temporal structure</u> (HMM)
 - $P(S_t|Y_1,...,Y_{t-1},S_1,...,S_{t-1}) = P(S_t|S_{t-1})$
 - $P(Y_t|Y_1,...,Y_{t-1},S_1,...,S_t) = P(Y_t|S_t)$
 - > Dynamics induced only by $\{S_t\}$
 - Spatial structure (conditional independence)

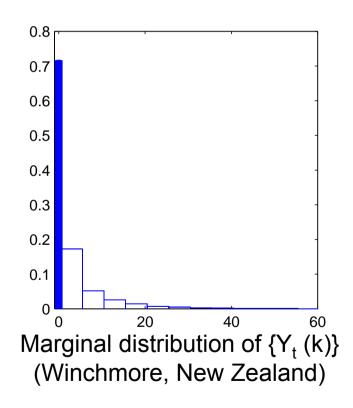
 $p(Y_t(1), Y_t(2), ..., Y_t(K)|S_t)$

- $= p(Y_t(1)|S_t) p(Y_t(2)|S_t) \dots p(Y_t(K)|S_t)$
- > Spatial dependence induced only by $\{S_t\}$

Model description

• Conditional distributions $p(Y_t(k)|S_t=s)$

- Two components
 - $Y_t(k) = 0$ if no rainfall occurs
 - $Y_t(k) > 0$ if a rainfall occurs
- Mixed discrete-continuous distribution



Model description

• Conditional distributions $p(Y_t(k)|S_t=s)$

$$P(Y_{t}(k) \in dy | S_{t} = s) = \begin{cases} 1 - p_{k}^{(s)} & \text{if } 0 \in dy \\ p_{k}^{(s)} f(y; \alpha_{k}^{(s)}, \beta_{k}^{(s)}) dy & \text{if } 0 \notin dy \end{cases}$$

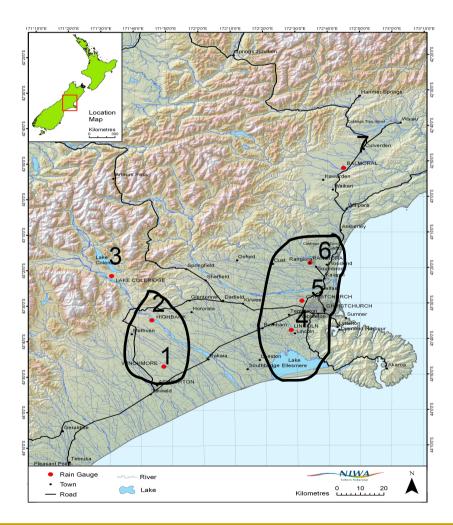
$$\square p_{k}^{(s)} \in [0,1], \quad \alpha_{k}^{(s)} > 0 \quad \beta_{k}^{(s)} > 0$$

$$\Box \quad f(y;\alpha,\beta) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} y^{\alpha-1} \exp(-\frac{y}{\beta})$$

■ *3KQ+Q(Q-1)* parameters

Basic HMM Data

- Rainfall data in New Zealand
 - Daily rainfall
 - o 7 locations
 - □ 26 years
 - Focus on April

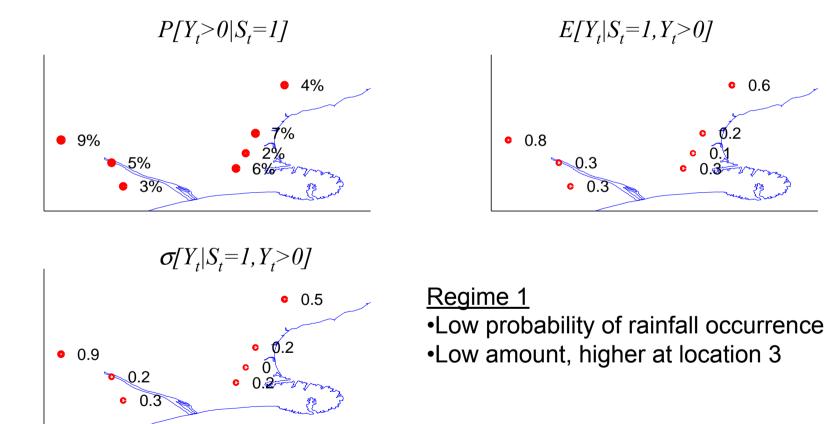


Parameter estimation

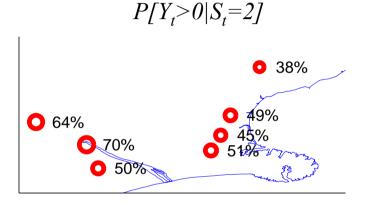
- EM algorithm
- Model selection
 - First selection with AIC and BIC

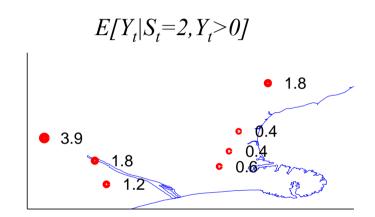
Q	1	2	3	4	5	6
AIC	17404	14317	13436	13213	13144	12990
BIC	17502	14523	13760	13663	13731	13722

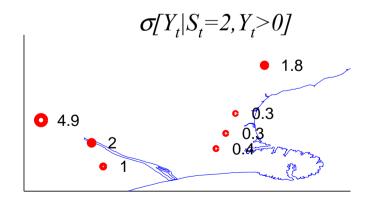
- Final selection according to
 - Meteorological interpretability
 - Ability to simulate realistic rainfalls
- □ Focus on the model with Q=4



• 0.6







Regime 2

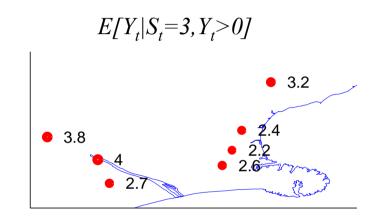
Moderate probability of rainfall occurrence, higher in the west part
Moderate amounts in the west part, low in

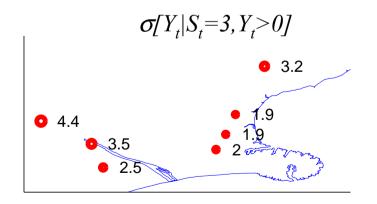
the south-east

• 73%

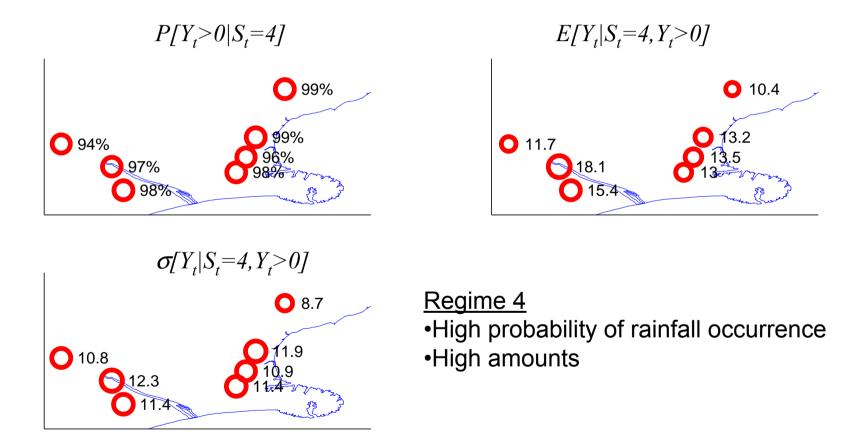
88%

88%





<u>Regime 3</u>
High probability of rainfall occurrence, higher in the south-east
Moderate amounts, lower in the south-east



Meteorological interpretability

Transition matrix, stationary distribution, mean durations

0.70	0.15	0.09	0.05
0.49	0.18	0.20	0.12
0.35	0.31	0.17	0.16
0.21	0.29	0.25	0.25

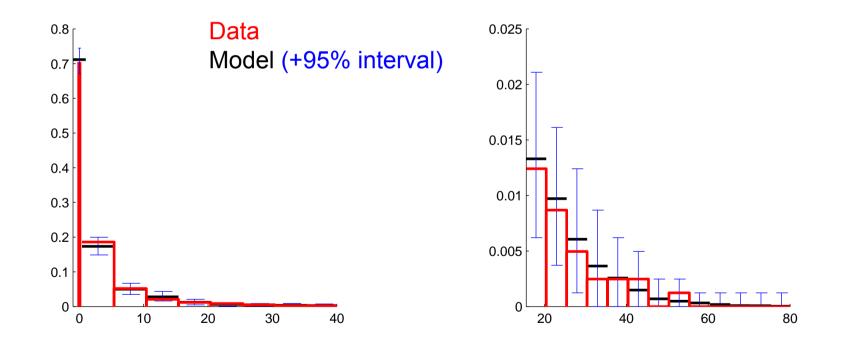
	-	
0.56		3.33
0.20		1.22
0.14		1.20
0.10		1.33

Summary:

- **Regime 1:** dry conditions, long persistence
- Regime 2 and 3: intermediate patterns, regional differences, higher rainfall in regime 3, short persistence
- Regime 4: heavy rainfall
- Similar meteorological interpretation for other datasets

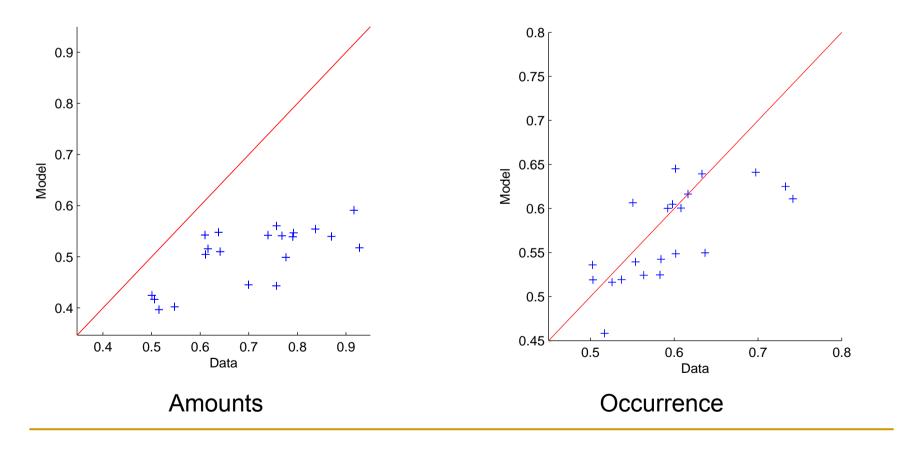
Realism of simulated sequences

Univariate marginal distributions (location 1, Winchmore)



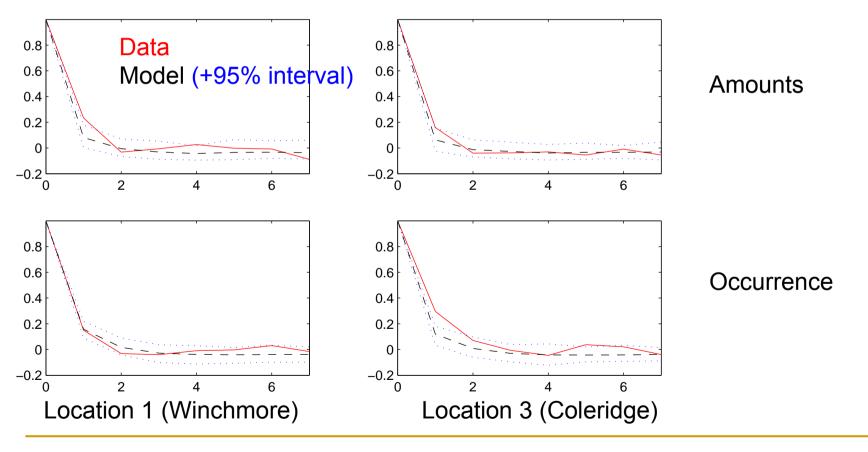
Realism of simulated sequences

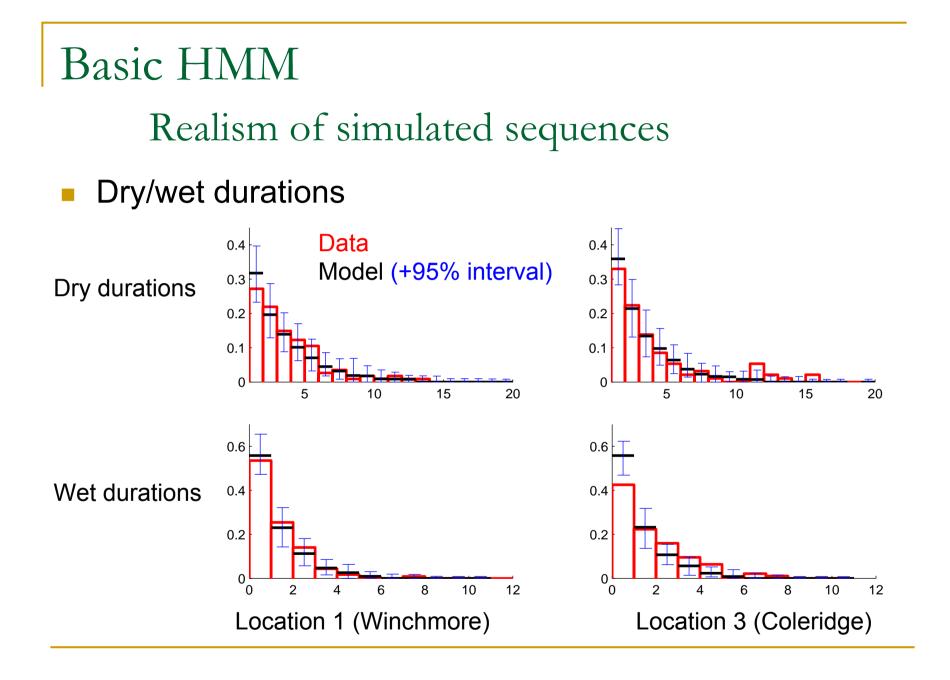
Spatial pair-wise correlations



Realism of simulated sequences

Autocorrelation functions





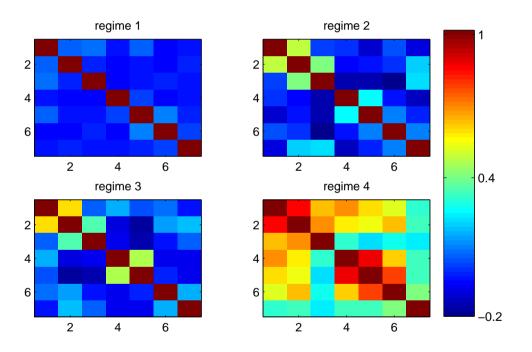
Basic HMM Conclusion

- Output Meteorological interpretation
- © Reproduces marginal distribution
- Se Fails to reproduce...
 - Spatial structure
 - Dynamics at some locations
- Meed for a more sophisticated model
 - Focus on spatial aspects in the next part

Extensions

Conditional independence assumption unrealistic

Empirical correlation matrices in the different weather types (identified via the Viterbi algo.)



Residual spatial structure within the weather types

Extensions

- Add spatial structure in the emission probabilities
 - Need model for multivariate mixed discrete-continuous data

Markov random fields

- For the binary occurrence/non-occurrence process
 - Autologistic model (Hughes et al. (1999))
 - □ Chow-Liu trees (Kirshner (2005))
- Generalization to include positive amounts?
- Introducing a "local" weather type to relate regional patterns to local rainfall
 - Thompson et al. (2005)

Truncated Gaussian random fields

Allcroft et al. (2003) (without Markov switching)

HMM with truncated Gaussian fields Model description

• If $S_t = s$ then

$$Y_{t}(k) = \max(Z_{t}(k), 0)$$

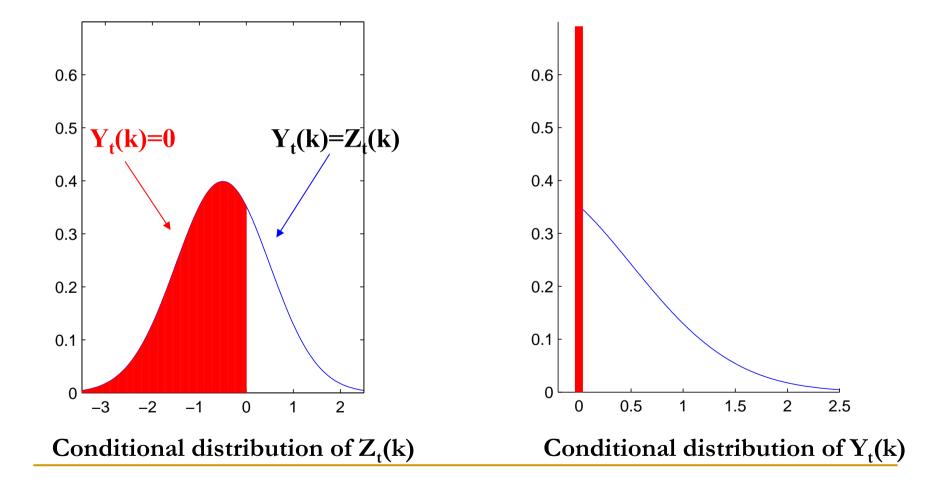
with

$$Z_{t} = (Z_{t}(1), ..., Z_{t}(K))' = \mu^{(s)} + S^{(s)}E_{t}$$

$$\mu^{(s)} \in R^{K} , \Sigma^{(s)} = S^{(s)}S^{(s)}' \in R^{K*K}$$

$$E_{t} \sim N(0, I_{K}) i.i.d$$

HMM with truncated Gaussian fields Model description



HMM with truncated Gaussian fields Model description

Assumptions on the covariance matrices

$$\Sigma^{(s)} = diag((\sigma_1^{(s)})^2, \dots, (\sigma_K^{(s)})^2)$$
 (HMMCI)

$$\Sigma^{(s)}(i,j) = \sigma_i^{(s)} \sigma_j^{(s)} \exp(-\lambda^{(s)} \operatorname{dist}(x_i,x_j)) \quad (\mathsf{HMMdist})$$

 $\Sigma^{(s)}(i,j) = \sigma_i^{(s)} \sigma_j^{(s)} \exp(-\lambda_i^{(s)} \lambda_j^{(s)} \operatorname{dist}(x_i, x_j)) \quad (\mathsf{HMMloc})$

HMM with truncated Gaussian fields Parameter estimation

 S_{t-1}

 Z_{t-1}

 Y_{t-1}

S_{t+1}

 Z_{t+1}

 \mathbf{Y}_{t+1}

 S_{t}

 Z_{t}

 \mathbf{Y}_{t}

Weather type •Not observed •Finite values

Conditionally Gaussian •Partially observed •Continuous values

Precipitation

Observed

Mixed continuous-discrete

HMM with truncated Gaussian fields Parameter estimation

E-step (Forward-Backward algorithm)

- Computation of $p(Y_t = y_t | S_t = s; \Theta)$
- □ If $y_t = (0, ..., 0, y_t(k+1), ..., y_t(K))$ with $y_t(k+1) > 0, ..., y_t(K) > 0$

$$p(Y_{t} = y | S_{t} = s; \Theta)$$

= $\int_{J_{-\infty,0}^{k}} f(z_{1},...,z_{k}, y_{t}(k+1),...,y_{t}(K); \mu^{(s)}, \Sigma^{(s)}) dz_{1}...dz_{k}$

M-step

- Computation of $E[Z_t|Y_t=y_t, S_t=s; \Theta]$ and $cov(Z_t|Y_t=y_t, S_t=s; \Theta)$
- □ ...integral expression

HMM with truncated Gaussian fields Parameter estimation

Monte Carlo integration

• If $y_t = (0, ..., 0, y_t(k+1), ..., y_t(K))$, then

 Simulate N samples from the multivariate Gaussian distribution

 $P(Z(1),...,Z(k)|Z(k+1)=y_t(k+1),...,Z(K)=y_t(K);\mu^{(s)},\Sigma^{(s)})$

Deduce approximate values for the integrals. For ex.:

$$p(Y_t = y \mid S_t = s; \Theta)$$

 $\approx \frac{Nb \, of \, samp. \, with \, all \, comp. \leq 0}{N} \times p(y_t(k+1), \dots, y_t(K); \mu^{(s)}, \Sigma^{(s)})$

MCEM algorithm

HMM with truncated Gaussian fields

	HMMCI	HMMdist	HMMloc	HMMfull	
	(4 states)	(4 states)	(4 states)	(4 states)	
loglik	-6837	-6441	-6383	-6311	
numpar	68	72	96	152	
AIC	13811	13029	12959	12928	
BIC	14130	13367	13409	13641	
$\Sigma^{(s)} = diag((\sigma_1^{(s)})^2,, (\sigma_K^{(s)})^2)$					
$\Sigma^{(s)}(i,j) = \sigma_i^{(s)} \sigma_j^{(s)} \exp(-\lambda^{(s)} \operatorname{dist}(x_i,x_j))$					
$\Sigma^{(s)}(i,j) = \boldsymbol{\sigma}_{i}^{(s)} \boldsymbol{\sigma}_{j}^{(s)} \exp(-\lambda_{i}^{(s)} \lambda_{j}^{(s)} \operatorname{dist}(x_{i},x_{j}))$					

HMM with truncated Gaussian fields Meteorological interpretability (HMMloc) $P/Y_{t} > 0 | S_{t} = 1$ $E[Y_t|S_t=1]$ $\sigma[Y_t|S_t=1]$ • 8% • 0.1 • 0.3 3% • 0.1 • 5% • 0.4 14% 0.4 1.311% • 0.2 0 0 8 $Corr(Y_t|S_t=1)$ Regime 1 •Low probability of rainfall Low amount •High spatial correlation 0.5 0

HMM with truncated Gaussian fields Meteorological interpretability (HMMloc) $P[Y_{t} > 0 | S_{t} = 2]$ $E[Y_t|S_t=2]$ $\sigma[Y_t|S_t=2]$ • 25% • 0.5 • 1.1 **4**9% • 1.1 • 1.6 0.39% o 0.4 0.7 **O** 32% 0 0 2 $Corr(Y_t|S_t=2)$ Regime 2 •Moderate probability of rainfall occurrence, higher at location 3 •Low amounts, higher at location 3 0.5 •Moderate spatial correlation, low correlation

0

between locations 3 and 7 and other locations

HMM with truncated Gaussian fields Meteorological interpretability (HMMloc) $P[Y_{t} > 0 | S_{t} = 3]$ $E[Y_t|S_t=3]$ $\sigma[Y_t|S_t=3]$ **0**67% • 4.2 **4**.5 6.5 **0**5.9 77% 81% 6.9 0.5.9 **0**73% 0 5.2 05.2 $Corr(Y_t|S_t=3)$ Regime 3 Moderate probability of rainfall occurrence •Moderate amounts, higher in the west

0.5

0

•Moderate spatial correlation, low correlation between location 3 and other locations HMM with truncated Gaussian fields Meteorological interpretability (HMMloc) $P[Y_{t}>0|S_{t}=4]$ $E[Y_t|S_t=4]$ $\sigma[Y_t|S_t=4]$ 12.7 015.3 082% 86% 82% 15.7 88% 86% $Corr(Y_t|S_t=4)$ Regime 4 •High probability of rainfall occurrence •High amount

0.5

0

•High spatial correlation, except between

location 7 and other locations

location 3 and locations in the east

HMM with truncated Gaussian fields Meteorological interpretability (HMMloc)

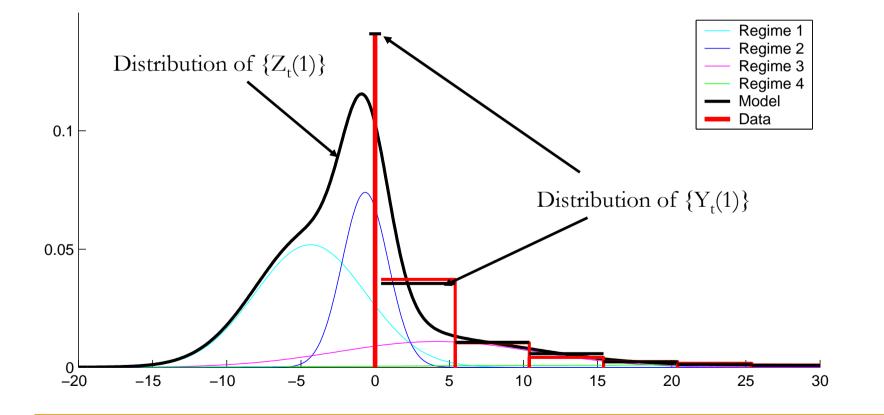
Transition matrix, stationary distribution, mean durations

0.73	0.18	0.06	0.01
0.29	0.42	0.27	0.03
0.23	0.32	0.36	0.08
0.06	0.42	0.23	0.28

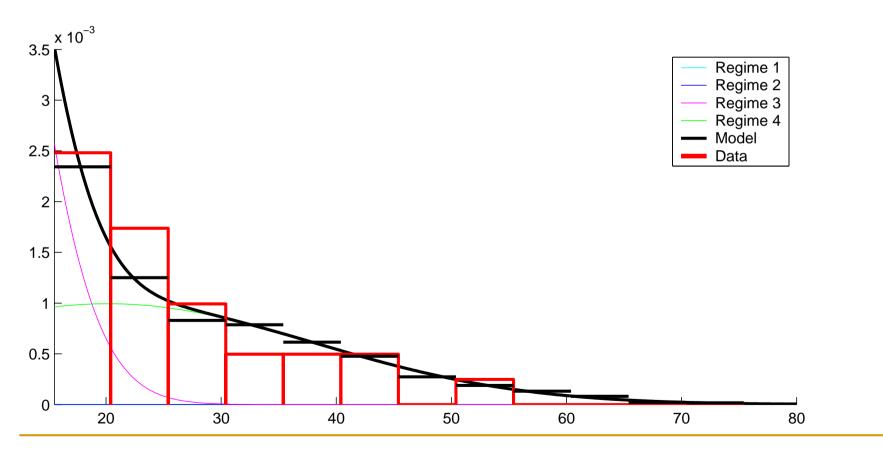
0.48	3.78
0.29	1.71
0.18	1.55
0.05	1.40

- Summary:
 - **Regime 1:** low rainfall
 - **Regime 2 and 3:** intermediate patterns, regional differences, higher rainfall in regime 3, short persistence
 - **Regime 4:** high rainfall
 - Location 3 and 7 have specific behaviors

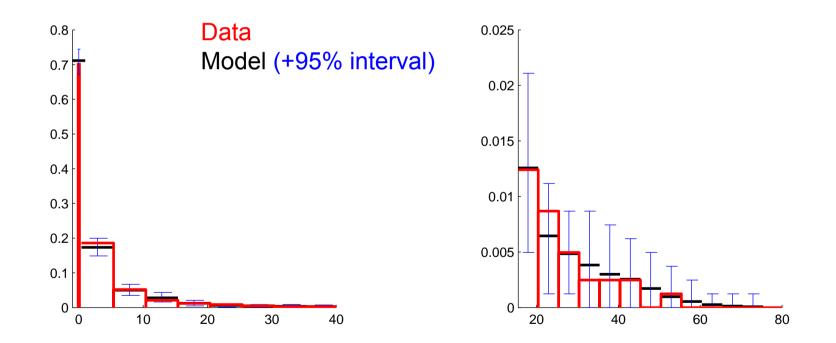
Marginal distribution (location 1, Winchmore)



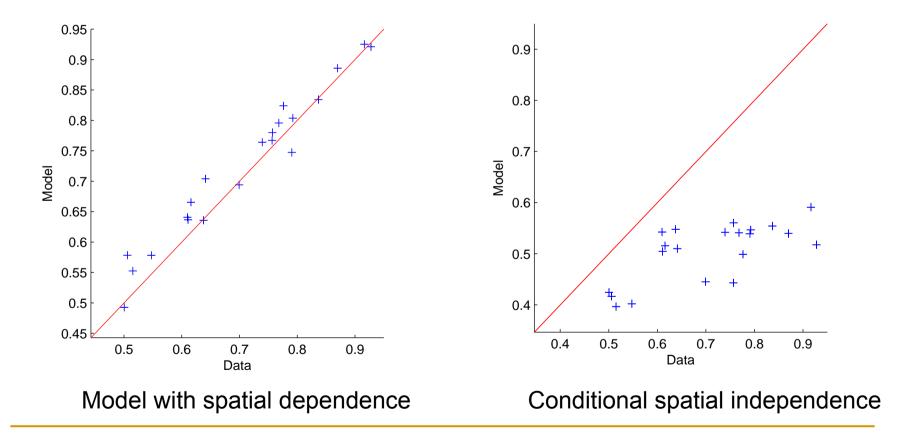
Marginal distribution (location 1, Winchmore)



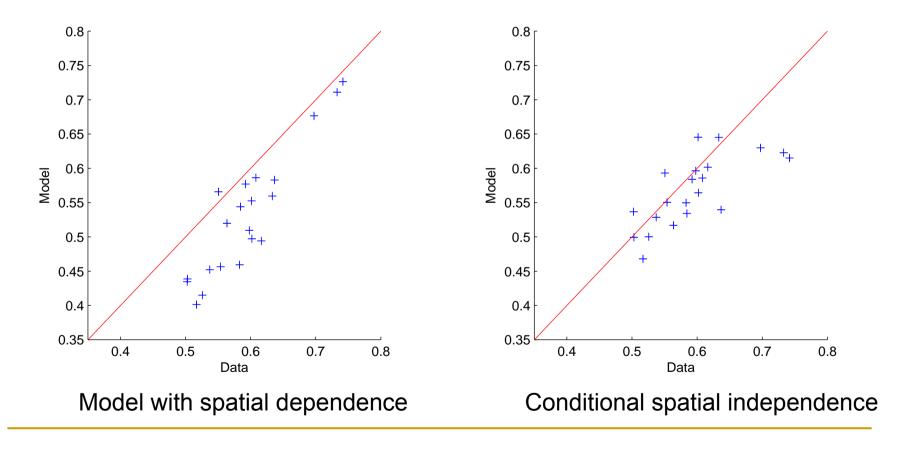
Marginal distribution (location 1, Winchmore)

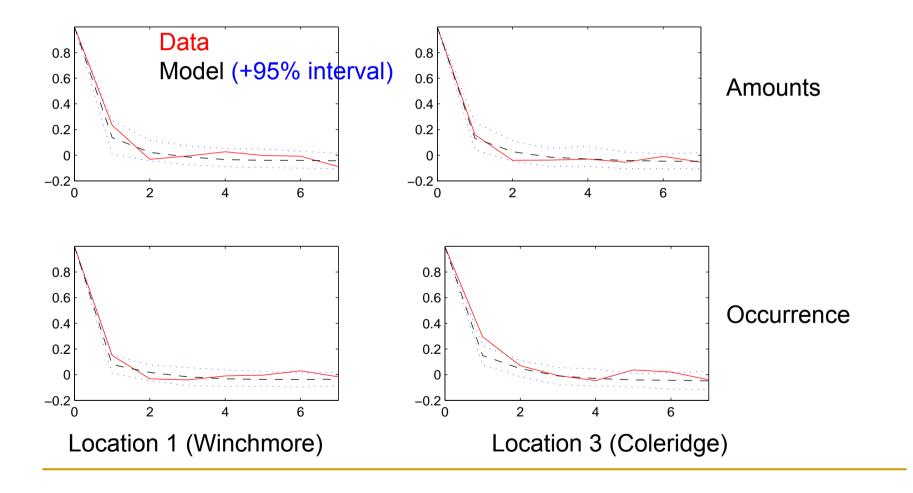


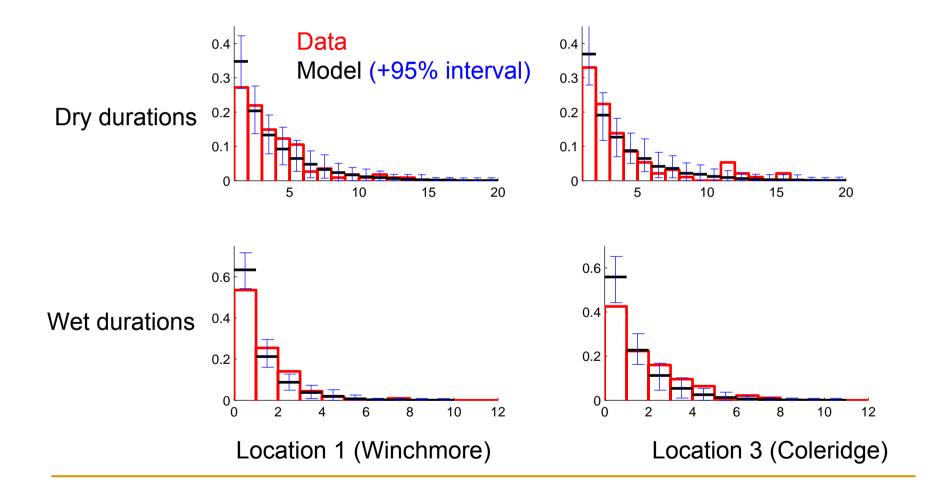
Pair-wise spatial correlations (amounts)



Pair-wise spatial correlations (occurrence)







Conclusion & perspectives

- HMM with conditional spatial independence assumption cannot reproduce the spatial structure
- HMM with truncated correlated Gaussian distribution better reproduces the spatial structure
- Dynamics still not well reproduced
 - Add an autoregressive part?
- Explore other possibilities
 - Markov random fields, local weather types,...
- Seasonality, inter-annual variability....

References

- Allcroft D.J. and Glasbey C.A. (2003). A latent Gaussian Markov random-field model for spatiotemporal rainfall disaggregation. Journal of the Royal Statistical Society C, 52, 487--498.
- Hughes JP, Guttorp P. (1994). A class of stochastic models for relating synoptic atmospheric patterns to local hydrologic phenomenon. Water Resources Research, 30, 1535-1546
- Hughes J.P., Guttorp P., Charles S. (1999). A nonhomogeneous. hidden Markov model for precipitation occurrence. Journal of the Royal Statistical Society C, 48,15–30.
- Kirshner S. (2005). Modeling of multivariate time series using hidden Markov models. PhD thesis, University of California.
- Thompson, C.S., Thomson, P.J. and Zheng, X. (2005). A multisite rainfall generation model applied to New Zealand data. NIWA Technical Report 128,National Institute of Water and Atmospheric Research, New Zealand.
- Zucchini W., Guttorp P. (1991). A hidden Markov model for space-time precipitation. Water Resources Research, 27, 1917–1923.