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1. Background

The security of New Zealand’s electricity sup-

ply is largely dependent on future annual pat-

terns of water inflows into New Zealand’s ma-

jor hydro catchments.

The NZ Electricity Commission oversees New

Zealand’s electricity industry and markets. It

needs to estimate the risk of extreme annual

sequences of weekly inflows so that it can take

steps to mitigate the effect of dry years.

In particular, the Commission is responsible for

managing the electricity sector so that demand

can be met in a 1-in-60 dry year without the

need for emergency conservation campaigns.



The Commission contracted SRA to evaluate

the feasibility of building a predictive model for

weekly catchment inflows that

• captures the stochastic properties of his-

toric inflow sequences sufficiently accurately

to be suitable for

• risk forecasting, particular of extremes;

• simulating realistic forward sample paths;

over seasonal to multi-year timescales.



Risk forecasting rather than point forecasting

implies that

• construction of predictive distributions im-

portant since these provide the required

probability estimates of risk

and so need to

• accurately specify suitable (marginal) in-

flow distributions; heavy–tails important to

model if present; [Statics]

• build in sufficient persistence or clustering

of inflows to generate suitable extremes

within phases of seasonal and longer term

cycles. [Dynamics]

The dynamic specification also needs to ad-

dress the issues of timescale.



2. Data

• Weekly inflows (cumecs) and their equiv-
alent power generation potential (GWh)
from 1931 to 1995.

• Lakes considered were Arapuni, Benmore,
Cobb, Coleridge, Hawea, Karapiro, Man-
apouri, Mangahao, Matahina, Ohau, Pukaki,
Rangipo, Taupo, TeAnau, Tekapo, Tokaanu
and Waikaremoana.

• Flow rates calculated assuming present elec-
tricity generation system (with its dams,
canals, etc) has been in place since 1931.

• Caveats on data quality; data anomalies
and competing data sources led to recom-
mendation that data construction, collec-
tion and measurement be reviewed.

• Seasonality a general feature with different
patterns between North and South Islands,
and within the South Island.
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3. Review of streamflow models

Many attempts to model streamflows with mixed

results.

• Extensive literature; see Hipel and McLeod

(1994), Salas (1993) and a more recent

summary in Srinivas and Srinivasan (2004).

• Two major strands: time series (simula-

tion) models and application of statistical

theory of extremes. The latter is not con-

sidered since it doesn’t deal with sequences

of inflows, a key requirement.

• No single candidate model clearly domi-

nates. Perhaps to be expected; stream-

flow models for large continental rivers may

well be quite different from those for New

Zealand’s rivers and more frequent rainfall.



• The requirement to model higher frequency

weekly inflows is an important considera-

tion. Most of the published analyses of

streamflows are for monthly flows.

• Stochastic streamflow model adopted should

ideally be posited within a sound statisti-

cal framework. Some simulation models

are difficult to calibrate.



Modelling considerations

Streamflow time series typically exhibit:

• seasonal variation in mean levels, standard

deviations and autocorrelation structure.

• highly skewed distributions that can vary

with season (data often transformed to Gaus-

sianity using shifted log transform

log(Yt − θt)

where θt = θt−52 or θt = θ or θt = 0);

• longer term variation, often associated with

climate forcing variables such as El Niño

(ENSO) and the interdecadal Pacific oscil-

lation (IPO) etc.

All are present in the NZ data, as we shall see.



3.1 Parametric linear models

Linear Gaussian time series models have been

adapted for use in streamflow modelling, in al-

most all cases to transformed data.

Periodic autoregressive (PAR) models and more

general PARMA models are often used to model

hydrological time series. For example, a weekly

time series Yt follows a PAR(1) model if

Yt = µt + ρt(Yt−1 − µt−1) + σtεt

where µt, σt, ρt are periodic with

µt = µt−52, σt = σt−52, ρt = ρt−52

and εt is white noise. PAR(p) and PARMA(p,q)

models are defined analogously.

Thomas and Fiering (1962) among the first to

use a PAR(1) model within hydrology. How-

ever model dates back further to Hannan (1955)

who used it to model Sydney rainfall.



PARMA models:

• have a fixed mean seasonal pattern plus

noise where the latter has fixed seasonal

standard deviations and short–memory sea-

sonal periodic autocorrelation;

• are not stationary although annual vectors

of weekly streamflows are (VARMA);

• are reasonably well understood, although

stochastic properties and estimation remain

active research topics;

• potentially involve a large number of pa-

rameters, especially the higher frequency

weekly inflows, leading to constrained PPAR

and PPARMA models;

• include ARMA models as a special case.



Multisite parametric linear models

PARMA models readily generalise to multisite
applications, but number of parameters increases
dramatically.

Leads to restricted contemporaneous vector
PARMA models (Salas, 1993; Hipel and McLeod,
1994) which are single site models driven by
contemporaneously correlated white noise.

Other multisite models include:

• parametric covariance model (Koutsoyian-
nis, 2000) which can model major short
and long–memory autocorrelation structure;

• disaggregation models which preserve second–
order properties of multisite streamflows
over short and long timescales

Note the need for models that can properly ac-
count for annual as well as weekly time scales.



3.2 Nonlinear and nonparametric models

Parametric linear models have met with mixed

success, partly because they cannot easily re-

produce any nonlinear behaviour in streamflows.

This has led to a number of nonlinear and non-

parametric models including:

• Srinivas and Srinivasan (2004) who fit PAR(1)

models at each site, randomly resample

blocks of PAR(1) residuals (block boot-

strap) and then reconstitute synthetic se-

quences of streamflows;

• Lewis and Ray (2002) who extend the PAR(p)

models to incorporate nonlinear behaviour

using thresholds.



An example of the latter is the regime switch-

ing threshold autoregressive (TAR) model

Yt =

{
µt + ρt(Yt−1 − µt−1) + σtεt (Yt−1 > αt)
µ̃t + ρ̃t(Yt−1 − µ̃t−1) + σ̃εt (Yt−1 ≤ αt)

where µt, µ̃t, ρt, ρ̃t, σt, σ̃t and αt are periodic.

Such nonlinear models typically provide more

realistic inflow sequences than linear models.

However, like the linear models, most of the

nonlinear models proposed have strictly peri-

odic means and standard deviations. As a

consequence, they model departures from fixed

seasonal patterns.

Point process models have also been proposed

for streamflows. These are reviewed in Salas

(1993) with an example of more recent work

given in Abi–Zeid, Parent and Bobée (2004).



Hidden Markov models (HMM) have been widely

used to model rainfall. They are nonlinear

regime switching models which can handle hi-

erarchical timescales (Sansom and Thomson,

2001) and can be conditioned to climate vari-

ables (Bellone, Hughes and Guttorp, 2000).

Despite their simple structure and utility, para-

metric nonlinear HMM models do not yet ap-

pear to be widely used for streamflow mod-

elling.



4. Exploratory data analysis

Benmore considered since its inflows exemplify

other NZ inflow series.

Weekly data available from 1931 to 1995, a

total of 65 years.

A first look at the data

Benmore inflows:

• are episodic in nature

• with an evolving seasonal pattern that

• appears to switch abruptly between lev-

els at times which are earlier or later than

those of the fixed mean seasonal pattern.
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Benmore inflows over the 5 year period starting in the

first week of 1981 with the mean seasonal pattern su-

perimposed (blue).

The solid vertical grey lines mark calendar years and the

dotted vertical lines mark nominal seasons.



Data transformation
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Boxplots of Benmore inflows (left panel) and logs of

inflows (right panel) by week of the year with median

seasonal patterns superimposed (blue).



80 100 140 180

20
40

60
80

10
0

Mean

S
ta

nd
ar

d 
de

vi
at

io
n

Cumecs/1000

11.0 11.2 11.4 11.6 11.8 12.0
0.

4
0.

5
0.

6

Mean

S
ta

nd
ar

d 
de

vi
at

io
n

Log cumecs

Plots of standard deviations against means for each of

the 52 series of Benmore inflows (left panel) and logs

of inflows (right panel) by week of the year.

Robust loess smooths (red) and least–squares regression

lines (blue) are superimposed.



Week

0 10 20 30 40 50

50
10

0
15

0
Cumecs/1000

Week

0 10 20 30 40 50

0
2

4
6

8
10

12

Log cumecs

Plots of the means, standard deviations, medians and

MADs for each of the 52 series of Benmore inflows (left

panel) and logs of inflows (right panel) by week of the

year.

The top two lines in each panel are the weekly means

(black) and medians (blue); the bottom two lines are the

weekly standard deviations (black) and MADs (blue).

Marginal distribution of Benmore inflows by

week of the year appears to follow a three–

parameter lognormal distribution and so an ap-

propriate data transformation is the shifted log

transformation.



Dynamics

Annual timescale
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Annual means of the logs of Benmore inflows. The

horizontal line is the overall mean and a robust loess

smooth (blue) has been superimposed (using a span of

11 years).

Evidence of long–term variability in level, pos-

sibly associated with ENSO or IPO (McKer-

char et al 1998, 2003).
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Correlations between the annual series for each week

of the year and the series for the preceeding week for

the logs of Benmore inflows. The horizontal line is the

overall mean correlation and a robust smooth (blue) has

been superimposed.

Supports PAR and PARMA framework and pe-

riodic correlation more generally.

Transition periods (autumn or spring) some-

times show a “bent stick” rather than linear

relationship. Due to variable length seasons?



Weekly timescale

Now focus on the evolution of the log weekly

inflows Yt over weekly timescales and model Yt

as

Yt = Tt + St + εt

where Tt denotes an evolving trend or level, St

denotes an evolving seasonal, and εt denotes

the non–systematic irregular component.

One view of Tt and St is given by the STL

decomposition of Yt calculated using a moving

trend window of 103 weeks (essentially 2 years)

and a seasonal window of 7 years.
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STL decomposition of the logs of Benmore inflows into

trend, seasonal and irregular.

Plot too dense to see week to week movements
and quality of estimated seasonal.
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Logs of Benmore inflows (black) are plotted in the up-

per panel with the mean seasonal pattern (blue) and

evolving seasonal systematic component Tt + St (red)

superimposed. The irregular (black) is plotted in the

lower panel with a horizontal zero reference line super-

imposed.

Evolving seasonal systematic component bet-
ter than fixed seasonal, but still not adaptive
enough.
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Autocorrelation functions and histograms of the resid-

uals of the logs of Benmore inflows after fitting a fixed

mean seasonal pattern (left panels) and evolving sea-

sonal systematic component (right panels). A best fit-

ting Gaussian distribution has been superimposed on the

histograms.

The longer memory of residuals from fixed sea-
sonal due mainly to evolving seasonal system-
atic component.



5. Evaluation

Key factors that any New Zealand model will
need to take into account include:

• intra–annual weekly dynamics that are dom-
inated by evolving seasonal patterns that
are episodic in nature and which can switch
abruptly between regimes at times that can
be earlier or later than expected;

• inter–annual variability that may well be as-
sociated with climate forcing variables such
as ENSO and IPO;

• highly skewed marginal distributions that
vary according to season and which would
appear to be well–modelled by the three–
parameter lognormal distribution;

• joint distributions that exhibit periodic sea-
sonal correlation.



SRA has recommended that:

• the linear parametric PARMA model and

the nonparametric model of Srinivas and

Srinivasan (2004) be fitted and their per-

formance assessed; [Benchmark]

• a nonlinear HMM model with stochastically

switching seasons be developed that ex-

tends the basic PARMA structure. Its sam-

ple path and risk forecasting performance

should be evaluated against suitable bench-

marks. [New research]

Comments and suggestions welcomed!

References and pdf version of review available

from Peter Thomson (peter@statsresearch.co.nz).


