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Abstract

Dependence among components of the multivariate extreme value distributions MvEV is charac-

terized by its spectrum measure S or by its exponent measure µ. In this paper, a dependence order

based on stable tail dependence function, related to µ, is introduced. The implication of the order in

the risk theory is discussed.

Introduction

Let (X1n, . . . ,Xdn)
∞
n=1 be a sequence of i.i.d. multivariate random variables with d.f. F (x), x ∈ Rd.

Its componentwise maximum

Mn =

Ã
n_
i=1

X1i, . . . ,
n_
i=1

Xdi

!

has the d.f. Fn(x). Assume that there exist sequences of normalizing Rd-sequences (an)n, an > 0,

and (bn)n, and a d.f. G(x) with nondegenerate margins such that (in componentwise algebraic

notations)

P {(Mn − bn)/an ≤ y} = Fn(any + bn)
D−→ G(y), n→∞. (1)

The d.f. G is then called a multivariate extreme value distribution (MvEV), F is said to belong the

domain of attraction.

From (1), all the marginal distributions of a MvEV are, if not degenerated, again MvEV of lower

dimensions, and univariate margins are generalized extreme value distributions, GEV(η, ζ; γ), with d.f.

defined by

G0(y; η, ζ, γ) = exp

Ã
−
µ
1 + γ

y − η
ζ

¶−1/γ

+

!
, y ∈ R;

ζ ∈ R+, η ∈ R, γ ∈ R; (z)+ =

 z, if z > 0,

0, otherwise.
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To obtain a standard expression, transform all the marginal GEV’s to the standard Fréchet distribu-

tion, GEV(1, 1, 1) or the standard reciprocal exponential distribution, and

G(y) = exp

Ã
−
Z
S

d_
j=1

wj
yj

dS(w)

!
, y ∈ E, (2)

with Z
S
wj dS(w) = 1, 1 ≤ j ≤ d, (3)

where

S = {y ∈ E : ||y|| = 1} , E = [0,∞]d \ {0},

|| · || is a norm on Rd and S is a finite measure on S, called spectrum measure of G. In the following

|| · || is 1-norm and S is the unit simplex. The condition (3) is necessary since, for example,

G(y1,∞, . . . ,∞) = exp
µ
−
Z
S
(w1/y1) dS(w)

¶
= exp(−1/y1).

The spectrum measure S is related to another measure µ defined by Borel sets in E;

µ

µ
y ∈ E : ||y|| > r, y

||y|| ∈ A
¶
=
S(A)

r
, A ∈ S, (4)

and

G(y) = exp(−µ((0,y]c)). (5)

µ is called the exponent measure. The expression (5) implies that there exists a nonhomogeneous

Poisson process (Tk,Qk)k on [0,∞)× E with intensity measure Λ, such that, for a Borel set B ⊂ E,

Λ([0, t]×B) = tµ(B), and G(y) = P

 _
Tk≤1

Qk ≤ y

 .
The exponent measure satisfies further, by (4), for any Borel set B ⊂ E

µ(t · B) = t−1µ(B). (6)

MvEV is discussed by Joe (1997), Fougères (2004) and Beirlant, Goegebeur, Segers and Teugels

(2004) among many others.

Independence and dependence

If MvEV is independent, its d.f. is

G(y) = exp

Ã
−

dX
j=1

1

yj

!
, y ∈ E,

and the spectrum measure S has unit point mass at the vertices e1, . . . ,ed. This is true for any

marginals with 2 or more variates. Hence, it has a peculiar property:
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Proposition 1. If a MvEV is pairwise independent, it is independent. Further, if there exists y ∈ Rd

with 0 < Gj(yj) < 1, j = 1, . . . , d, for the marginal distributions Gj of G, such that

Gij(yi, yj) = Gi(yi)Gj(yj), 1 ≤ i < j ≤ d,

for the bivariate marginal distributions Gij of G, G is independent.

If MvEV is completely dependent, it is degenerated on the line {x ∈ Rd : x1 = · · · = xd},

G(y) = exp

Ã
−

d̂

j=1

1

yj

!
, y ∈ E,

and spectrum measure S is degenerated to the center y = (1/d, . . . , 1/d).

A wide class of distributions on the unit simplex has negative dependence. For example, the

uniform density on d− 1 dimensional unit simplex has partial correlations −1/d. The uniform mass

at vertexes has partial correlations −1/(d − 1). G(y) is positively independent nevertheless: the
dependence of spectrum measure S and that of G is closely related but different one.

Dependence order

Let the exponent measure be denoted in another form

G(y) = exp(−V (y)), V (y) = µ((0,y]c),

and define stable tail dependence function ϕ by

ϕ(v) = V (1/v1, . . . , 1/vd) = − logG(1/v1, . . . , 1/vd), v ∈ [0,∞].

This function has the following properties

1. ϕ(tv) = tϕ(v), 0 < t <∞,

2. ϕ(ej) = 1, j = 1, . . . , d, where ej is the j-th unit vector in Rd.

3.

d_
j=1

vj ≤ ϕ(vj) ≤
dX
j=1

vj ,

and the upper bound is attained if G is independent, and the lower bound if G is completely

dependent. See, Fig. 1.

4. ϕ(v) is convex.

Definition

Suppose G1(y) and G2(y) be MvEV of d-dimension, defined by (2) and (3), and let ϕ1(v) and

ϕ2(v) denote their stable tail dependence function, respectively.

If ϕ1(v) ≤ ϕ2(v), G1 is more extreme dependent than G2, and the relation is written as

G1 Â G2 (extDep)
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Figure 1: Contours of upper bound (solid line) and lower bound (broken line). The level of contours

are equal to the coordinate values of their end points at axes. Those for ϕ(v) are concave lines between

them.

This is a partial order among MvEV’s with a fixed marginal distributions, representing the de-

pendence among components. Note that the order applies to all the marginals of bivariate or more

variate.

A way to understand the definition is to compare copulas of G1 and G2. The quantile function of

the marginals of MvEV is y = −1/ log u, 0 < u < 1, and copula C(u) of MvEV G(y) is obtained by

replacing yj = −1/ log uj , j = 1, . . . , d.

Proposition 2. Let Ck(u), u ∈ [0, 1], denote the copula of MvEV Gk(y), k = 1, 2,

C1(u) ≥ C2(u) iff G1 Â G2 (extDep).

Proof. Using componentwise algebraic symbolism

Ck(u) = Gk(−1/ logu) = exp(−Vk(−1/ logu))

= exp(−ϕk(− logu)),
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and C1(u) ≥ C2(u) if ϕ1(v) ≤ ϕ2(v).

Note that for positively dependent copula

dY
i=1

ui ≤ C(u) ≤
d̂

i=1

ui,

and the upper bound is attained if C(u) is completely dependent and the lower bound is attained if

C(u) is independent.

In general, C1(u) ≥ C2(u) defines concordance order and its properties are somehow known.

Especially in bivariate case it is a rather strong order. See, for example, Müller and Stoyan (2002)

and Embrechts, McNeil and Straumann (2002). In the univariate case larger d.f. means stochastically

copulas in general, since univariate marginals are fixed, the order compares concordance, that is, a

sort of dependence.

If a copula satisfies

C(u1, . . . , ud) ≥
dY
j=1

uj , 0 ≤ uj ≤ 1, j = 1, . . . , d.

C is said concordant (otherwise disconcordant). MvEV distributions are all concordant unless they are

independent, and concordance is Â (extDep) than independence. Hence, the study on the difference

between concordance and independence can be extended to that on the effect of order.

Proposition 3. Suppose G1 and G2 be MvEV such that

G1 Â G2 (extDep),

and define

G0 = G
α1
1 Gα2

2 , α1 > 0, α2 > 0, α1 + α2 = 1.

G0 is also MvEV and

G1 Â G0 Â G2 (extDep)

Proof. Check that stable tail dependence function ϕ0 of G0 satisfies ϕ0 = α1ϕ1 + α2ϕ2. Actually

spectral measure of G0 is a mixture of those of G1 and G2.

An alternative dependence function

For bivariate MvEV distributions, stable tail dependence function can be expressed as

ϕ(v1, v2) = − logG(1/v1, 1/v2) = (v1 + v2)A

µ
v2

v1 + v2

¶
,

The function A, called Pickands dependence function, has the following properties
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1. (1− t)W t ≤ A(t) ≤ 1, t ∈ [0, 1],
The lower bound is attained if G is completely dependent, and the upper bound if G is inde-

pendent.

2. A is convex.

Hence, as the definition of A shows, the order in terms of A is equivalent to that by ϕ.

Proposition 4. Suppose G1 and G2 be bivariate MvEV distribution functions, and let A1 and A2 be

their Pickands dependence function.

G1 Â G2 (extDep) iff A1(t) ≤ A2(t), t ∈ [0, 1].

A use of dependence order

Definition of extreme dependence order is to compare MvEV distributions. However, it compares

also dependence among components, especially dependence of pairs of components, (Yi1, Yi2) and

(Yj1, Yj2). All four components are different, or one of first and second pairs can be common.

For applications, a measure (index) for dependence, or linear ordering, is required, and a popular one

is defined by

λ = lim
u→1

C(u, u)

1− u = 2− lim
u→1

logC(u, u)

log u
,

where C is the survival copula. The measure satisfies 0 ≤ λ ≤ 1 and λ = 0 means independence and
λ = 1 complete dependence. Our partial order implies this total order.

Another measure for dependence in bivariate MvEV is defined using Pickands dependence function

as θ = 2A(1/2). Actually θ = 2 − λ. It satisfies 1 ≤ θ ≤ 2, and θ = 2 corresponds to independence
and θ = 1 to complete dependence.

A parametric family

A popular parametric subfamily of MvEV distributions is asymmetric logistic distributions introduced

by Coles and Tawn (1991). It is popular since it has explicit formulas of d.f. and marginals for any

dimension, as well as the densities of spectral measure. For d = 3 its exponent measure is as follows:

V (x) = − logG(x) = θ11

x1
+
θ12

x2
+
θ13

x3
+

µµ
θ(21)1

x1

¶r2

+

µ
θ(12)2

x2

¶r2
¶1/r2

+

µµ
θ(31)1

x1

¶r2

+

µ
θ(13)3

x3

¶r2
¶1/r2

+

µµ
θ(32)2

x2

¶r2

+

µ
θ(23)3

x3

¶r2
¶1/r2

+

µµ
θ31

x1

¶r3

+

µ
θ32

x2

¶r3

+

µ
θ33

x3

¶r3
¶1/r3

, x ∈ R3
+, r2 ≥ 1, r3 ≥ 1, θ. ≥ 0,

θ11 + θ(21)1 + θ(31)1 + θ31 = 1, θ12 + θ(12)2 + θ(32)2 + θ32 = 1,

and θ13 + θ(13)3 + θ(23)3 + θ33 = 1.
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There are 11 parameters. If r2 = r3 = 1 G(x) is independent. If r2 or r3 is increased with other

parameters are fixed, G(x) becomes more dependent.

For the marginals, for example

V (x1, x2,∞) = − logG(x1, x2,∞)

=
θ11 + θ(31)1

x1
+
θ12 + θ(32)2

x2

+

µµ
θ(21)1

x1

¶r2

+

µ
θ(12)2

x2

¶r2
¶1/r2

+

µµ
θ31

x1

¶r3

+

µ
θ32

x2

¶r3
¶1/r3

Further comparison can be made computing ϕ(v) = V (1/v).

Discussion on risks

Risks are related to extremes and dependence. Disasters happen from extreme value of loss, and

they worsen when loss values are positively dependent. Hence dependence among extreme values are

important in many situations.

For applications, asymptotic dependence among larger components of multivariate random vari-

ables will be realistic. The approach in this paper focuses on one aspect of problems, but the result

is clear so far as MvEV distributions are used.

Data analysis in real situations will follow.
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