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Components of Credit Risk
• Arrival risk: Uncertainty whether a default will

occur or not. Measured by the probability of default,
within a given time horizon, usually one year.

• Timing risk: Uncertainty about the time of default.
• Exposure risk: Relatively clear for loans or bonds

(face value, market value), greater uncertainty in the
credit reinsurance business as primary insurers might
have successfully decreased credit lines in advance.

• Recovery risk: Uncertainty about the size of the loss
w.r.t. the exposure. Historical data show a large
variability of recovery rate, depending on collateral,
seniority of the bond, etc. Specified by conditional
distribution of recovery rate given default occurred.
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Components of Credit Risk (Cont.)

• Rating transition risk: Risk of changing market price
of a defaultable security due to a changed perception
of the market towards the timing or recovery risk
(without an actual default already happening).
It often happens together with an up- or down-rating
of the creditworthiness by a rating agency.

• Default correlation risk: Risk of several obligors
defaulting together; leads to substantial losses even
in well diversified portfolios. Defaults in investment-
grade rating classes are rare, hence it is hard to
collect data to estimate the dependence of defaults.
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Classification of Credit Risk Models

• Firm-value (or structural) models
Pioneered by Black & Scholes (1973), Merton (1974)
Industry models: Portfolio Manager (by KMV),

CreditMetrics (RiskMetrics Group)

• Intensity-based (or reduced-form) models
Jarrow & Turnbull (1995),
Jarrow, Lando & Turnbull (1997),
Lando (1996, 1998), Duffie & Singleton (1999)

• Actuarial models
Mixture models, CreditRisk+ (CS Financial Products)

• Macroeconomic models
Industry: CreditPortfolioView (McKinsey & Company)
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Discrete-Time Motivation for Intensity Models

Time
0 1 . . . t t + 1 t + 2 . . . T

Notation

X promised (but defaultable) payout at time T
ht conditional probability at time t

for default during the period [t, t + 1]
rt continuously compounded, default-free

interest rate for the period [t, t + 1]
ϕt+1 random recovery at t + 1 in case

of default during [t, t + 1]
EQ[ · |Ft] conditional expectation under Q

given all the information Ft up to time t
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Evolution of Market Value Vt

Time t Vt

ht

1 − ht

ϕt+1 (recovery)

Vt+1

Time t + 1

Recursion formula

Vt = ht e−rt EQ[ϕt+1|Ft] + (1 − ht) e−rt EQ[Vt+1|Ft]

with terminal value VT = X.
An explicit formula for V0 by backward induction is
available but complicated to evaluate.
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Different Assumptions for the Recovery

Recovery of face value: ϕt = 1 − Lt

The creditor receives a (possible random) fraction of
the face value 1 immediately upon default.

Recovery of treasury: ϕt = (1 − Lt)P (t, T )
The creditor receives a (possible random) fraction of
a corresponding default-free government bond.

Recovery of market value (RMV):
EQ[ϕt+1|Ft] = (1 − Lt) EQ[Vt+1|Ft]
The expected recovery is a (random) fraction of the
expected market value in case of no default.
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Transition to Hazard and Loss Rates

With recovery of market value

Vt = {(1 − ht) e−rt + ht e−rt(1 − Lt)}︸ ︷︷ ︸
=: e−Rt

EQ[Vt+1|Ft]

with e−Rt = (1 − htLt)e
−rt ≈ e−(rt+htLt), because

(
1 − ht

n
Lt

)n

→ e−htLt n → ∞.

n is the number of subdivisions per period. Hence

V0 = EQ

[
e−(R0+···+RT−1)X

]
.
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RiskLab Project: Intensity-Based Non-Parametric
Default Model for Residential Mortgage Portfolios

Swiss banks hold over 500 billion CHF in mortgages.
Data for 73 683 obligors of Credit Suisse used.

Default intensity tested for dependence on

– Regional unemployment rates,

– Fixed- or variable-rate mortgage product,

– Interest-rate changes,

– Divorce rates,

– Regional real estate price indices,

– Time-lags until default.

Reference: Paper (38 pages) by Enrico De Giorgi
http://www.risklab.ch/Papers.html#RMSRMMLP
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Introduction to CreditRisk+, Features

• Developed by Credit Suisse Financial Products.

• Actuarial model for the aggregation of credit risks.

• Based on the Poisson approximation of individual de-
faults and the divisibility of the Poisson distribution.

• Takes random exposures/recovery rates into account.

• Probability generating function φX of the credit
portfolio loss X is available in closed form.

• Distribution of X can be calculated from φX

with a numerically stable algorithm.
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Project CreditRisk+

• Background: 2. Basel Capital Accord of the Basel
Committee on Banking Supervision (“Basel II”)

• Research and development cooperation of
– Research Group Financial and Actuarial Mathematics
– Austrian Central Bank (OeNB)
– Austrian Financial Market Authority (FMA)

• Aim: Supervision of credit risk in the portfolio of all
(≥ 900) Austrian banks

• Large single credit risks are reported individually

• Efficient method and numerically stable algorithm to
calculate risk of credit portfolio

• Java implementation (Mag. Severin Resch)
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Time Series versus Default Modelling

Time series modelling (e.g. exchange rates)

• Collect data for a long time (e.g. CHF/US-$).
• Assume stationarity of stochastic behaviour,

fit a suitable model (random walk, GARCH, etc.)
and make predictions about the future.

Default modelling

• Observing a firm until today doesn’t give a default
observation (→ observation bias).

• Solution: Observe a group of firms,
draw conclusions for a specific firm.

• Problems: Relevance of data for the specific firm?
When are firms similar w.r.t. creditworthiness?
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Credit Ratings for Bonds

A credit rating is a current opinion of an obligor’s
overall financial capacity (its creditworthiness) to pay
its financial obligations.

Standard & Poor’s Investor Services

Investment grade: AAA, AA, A, BBB
Speculative: BB, B, CCC, CC, C (D = Default)
AA–B: + = above, −= below average in rating class

Moody’s Investor Services

Investment grade: Aaa, Aa, A
Speculative: Baa, Ba, B, Caa, Ca, C
Aa–B: 1 = above, 2 = at, 3 = below average in rating class
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Overview of Mixture Model and Calibration

• Form homogeneous groups characterized by their
credit rating (homogeneity/statistical significance).

• Given a group’s default probability, the individual
defaults of its members are independent Bernoulli.

• Use beta distributed random variables for the default
probabilities of each group.

• Preserve strict monotonicity of default probabilities
according to credit rating (hierarchical dependence
structure, Dirichlet distribution for default probab.).

• Calibrate to Standard & Poor’s data using the
expectation–maximization algorithm.
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Exchangeable Sequences

Definition: Random variables X1, . . . , Xn are called
exchangeable, if for every permutation π of 1, . . . , n

(X1, . . . , Xn)
dist.
= (Xπ(1), . . . , Xπ(n)).

{Xn}n∈N are called exchangeable, if X1, . . . , Xn are
exchangeable for every n ∈ N.

Remarks:

• i. i. d. =⇒ exchangeable =⇒ stationary
=⇒ identically distributed

• exchangeable /\=⇒ independent

Take Xn � Y for all n ∈ N with arbitrary Y or
(X1, X2) � (Y,−Y ) with symmetric Y .
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Exchangeability and Correlation

• Let X1, . . . , Xn ∈ L2 be exchangeable. We get with
σ2 = Var(Xi) and � = Corr(Xi, Xj) for i �= j

0 ≤ Var(X1 + · · · + Xn) = nσ2 + n(n − 1)�σ2

=⇒ � ≥ −1/(n − 1).

• Equality is possible with normally distributed
X1, . . . , Xn, for example.

• {Xn}n∈N ⊂ L2 exchangeable =⇒ Cov(Xi, Xj) ≥ 0
for i �= j.

• No restrictions on positive correlations.
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Structure of Exchangeable Sequences

De Finetti’s Theorem: Let {Xn}n∈N be exchange-
able. Then there is a σ-field conditional on which the
sequence is i. i. d.

Corollary: Let {Xn}n∈N be exchangeable, taking as
values the unit vectors e1, . . . , ek+1 in Rk+1. Then
there exists a random probability distribution P =
(P1, . . . , Pk+1) such that, for all l = (l1, . . . , lk+1) in
Nk+1

0 with l1 + · · · + lk+1 = n,

P(X1 + · · · + Xn = l |P1, P2, . . . , Pk+1)

a.s.
=

n!

l1! l2! . . . lk+1!
P l1

1 P l2
2 . . . P

lk+1

k+1 .
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Standard & Poor’s Data

Year 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
A-firms 470 464 445 456 497 576 523 517 578 604
defaults 0 2 0 0 0 1 0 0 0 0
B-firms 85 155 150 178 207 287 353 408 409 372
defaults 2 5 7 6 13 24 13 17 13 31
CCC-firms 15 17 19 21 21 17 64 57 52 47
defaults 0 4 0 3 2 3 5 11 15 15

Year 1991 1992 1993 1994 1995 1996 1997 1998 1999 . . .
A-firms 627 711 781 894 1101 1163 1172 1184 1207
defaults 0 0 0 1 0 0 0 0 1
B-firms 295 228 238 336 388 424 463 683 873
defaults 37 17 5 10 16 11 15 30 64
CCC-firms 61 54 48 26 28 28 27 31 79
defaults 19 15 6 5 7 1 3 11 24
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Dependence between Groups

General notation:
k homogeneous groups of n1, . . . , nk companies of
ratings r1 ≺ r2 ≺ · · · ≺ rk, where

ri ≺ rj ⇐⇒ rating ri better than rj

Problem:
Corresponding random default probabilities
P1, P2, . . . , Pk should satisfy P1 ≤ P2 ≤ · · · ≤ Pk.

Considered solutions:
• Multi-colour urn scheme for defaults
• Iterative urn scheme for defaults
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Pólya’s Multi-Colour Urn Scheme for Defaults

• Urn with originally b1, . . . , bk+1 balls
of colours 1, . . . , k + 1. Set b � b1 + · · · + bk+1.

• Draw balls randomly from urn and set
Xn = (Xn,1, . . . , Xn,k+1) � ej if the nth ball has
colour j. Here ej is the jth unit vector in Rk+1.

• After each draw return the ball with c others of the
same colour.

• If the nth company has rating rj , then it defaults if
and only if Xn ∈ {e1, . . . , ej}.
(Smaller colours represent bad luck, colour k + 1
means no default whatever the rating.)
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Multi-Colour Urn Scheme (cont.)

• Conditional probability for colour j in nth draw

Qn,j = P(Xn = ej |X1, . . . , Xn−1)

=
#{balls of colour j in urn after n − 1 draws}

#{balls in urn after n − 1 draws}

=
bj + c

∑n−1
i=1 Xi,j

b + (n − 1)c

• If c ≥ 0, then Qn = (Qn,1, . . . , Qn,k+1), n ∈ N,
is a measure-valued martingale with

P = (P1, . . . , Pk+1) � lim
n→∞Qn = lim

n→∞
1

n

n∑
i=1

Xi a.s.
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Exchangeability for Multi-Colour Urn Scheme

For n ∈ N and d1, . . . , dn ∈ {e1, . . . , ek+1} set

l = (l1, . . . , lk+1) �
∑n

i=1 di. Here lj is the number of
balls of colour j within the first n draws. Then

P(X1 = d1, . . . , Xn = dn)

=

∏k+1
j=1

∏lj−1
i=0 (bj + ic)

b(b + c)(b + 2c) . . . (b + (n − 1)c)
.

{Xn}n∈N is exchangeable. By de Finetti’s theorem,

P(X1 + · · · + Xn = l |P1, P2, . . . , Pk+1)

=
n!

l1! l2! . . . lk+1!
P l1

1 P l2
2 . . . P

lk+1

k+1 .
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Appearance of the Dirichlet Distribution

With αj � bj/c for c > 0 and α � α1 + · · · + αk+1

E[P l1
1 P l2

2 . . . P
lk+1

k+1 ] =
Γ(α)

Γ(α + n)

k+1∏
j=1

Γ(αj + lj)

Γ(αj)
,

where n � l1 + · · · + lk+1. For these moments,
P has to be Dirichlet distributed. The density of
Dk+1(α1, . . . , αk+1) is

fk+1(p1, . . . , pk+1) = Γ(α)
k+1∏
j=1

p
αj−1
j

Γ(αj)

with the constraint p1 + · · · + pk+1 = 1.
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Dirichlet Distribution: Interpretation & Simulation

(P1, . . . , Pk+1) ∼ Dk+1(α1, . . . , αk+1) gives
a random partition of the unit interval. Example:

0 P1 P2 P3 P4 P5 1

Sampling from the Dirichlet distribution
Take independent Y1, . . . , Yk+1 with Yj ∼ Gamma(αj),
i. e. fYj (y) = yαj−1e−y/Γ(αj) for y > 0, and set

Pj � Yj

Y1 + · · · + Yk+1
for j = 1, . . . , k + 1.

Then (P1, . . . , Pk+1) ∼ Dk+1(α1, . . . , αk+1).
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Amalgamation Property of the Dirichlet Distribution

α∗
1 � α1 + α2 α∗

2 � α3 + α4 + α5

0 S1 � P1 + P2 S2 � P3 + P4 + P5 1↑ S = (S1, S2)

α1 α2 α3 α4 α5

0 P1 P2 P3 P4 P5 1

Q(1) ↓ ↓ Q(2)

α1 α2 α3 α4 α5

0 P1

S1

P2

S1

1 0 P3

S2

P4

S2

P5

S2

1
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Joint Default Probabilities in MC Urn Scheme

Consider li defaults within ni firms of credit rating ri

and define Pi � P1 + · · · + Pi as the corresponding
random default probability for i ∈ {1, . . . , k}. Then

P(N1(n1) = l1, . . . , Nk(nk) = lk)

= E

[ k∏
i=1

(
ni

li

)
P li

i (1 − Pi)
ni−li

]
.

Inserting the Dirichlet distribution for (P1, . . . , Pk+1)
and using the binomial formula, this expectation can
be expressed in terms of k − 1 sums involving binomial
numbers and the Gamma function.
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Joint Default Probabilities (cont.)

=
(n1

l1

)
· · ·

(nk

lk

)Γ(
∑k+1

j=1 αj)∏k+1
j=1 Γ(αj)

lk∑
j1=0

(lk

j1

)
B(αk + j1, αk+1 + nk − lk)

×
lk−1+lk−j1∑

j2=0

(lk−1 + lk − j1

j2

)
B(αk−1 + j2, αk + αk+1 + nk−1

+ nk − lk−1 − lk + j1)

· · · ×
l2+···+lk−j1−···−jk−2∑

jk−1=0

(l2 + · · · + lk − j1 − · · · − jk−2

jk−1

)

× B(α2 + jk−1, α3 + · · · + αk+1 + n2 + · · · + nk − l2 − · · · − lk

+ j1 + · · · + jk−2)

× B(α1 + l1 + · · · + lk − j1 − · · · − jk−1, α2 + · · · + αk+1

+ n1 + · · · + nk − l1 − · · · − lk + j1 + · · · + jk−1).

with B(x, y) = Γ(x)Γ(y)/Γ(x + y).
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Calibration of Credit Risk Mixture Model
with the Expectation–Maximization Algorithm

Strategy: View default data as incomplete and use
EM-algorithm to compute maximum-likelihood estima-
tors from Standard & Poor’s 2003 yearly default data,
assuming independence of the m = 22 years.

Set-up: Consider π : X = ([0, 1]k × Nk
0 )m → Nkm

0 ,
mapping complete data x = (x1, . . . , xm) with i-th in-
dependent realization xi = (pi,1, . . . , pi,k, li,1, . . . , li,k)
of default probabilities (P1, . . . , Pk) and default num-
bers (N1(ni,1), . . . , Nk(ni,k)) to y = (y1, . . . , ym) with
observed defaults yi = (li,1, . . . , li,k) in year i.
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EM-Algorithm, Structure of Likelihood

The likelihood f(x |α) of the complete data x given
parameters α = (α1, . . . , αk+1) in (0,∞)k+1 can be
written as

f(x |α) = b(x) exp(〈α, t(x)〉)/a(α)

with statistics t(x) = (t1(x), . . . , tk+1(x)), where

tj(x) =
m∑

i=1

log pi,j for j = 1, . . . , k

and

tk+1(x) =
m∑

i=1

log(1 − pi,1 − · · · − pi,k).

c©Feb. 2005, U. Schmock, FAM, TU Vienna 32



Computations for EM-Algorithm

Maximize likelihood of observed (incomplete) data y

g(y |α) =

∫
π−1(y)

f(x |α) dx,

obtained by integrating over the set π−1(y) ⊂ X of all
possible but unobserved default probabilities as follows:

• Start with moment estimator α(0).

Iterate for p = 0, 1, 2, . . .

• Expectation step: Compute

t(p) = Eα(p) [t(x) |y ]

with explicit but long formula.
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Computations for EM-Algorithm (cont.)

• Maximization step: Find solution α(p+1) of system

Eα(p+1) [t(x)] = t(p)

with k + 1 equations and unknowns. Note that

Eα(p+1) [tj(x)] = mD(α
(p+1)
j , α

(p+1)
Σ − α

(p+1)
j )

for j = 1, . . . , k + 1, where

D(x, y) =
Γ′(x)

Γ(x)
− Γ′(x + y)

Γ(x + y)
, α

(p+1)
Σ =

k+1∑
j=1

α
(p+1)
j .

If the EM-algorithm converges to an α∗, then the
derivative of the likelihood function vanishes at α∗.
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Iterative Urn Scheme for Defaults

• Urns Ui with originally bi black and ri red balls for
i = 1, . . . , k.

• Draw balls from the urns U1, . . . , Uk and set

Xi,n �
{

0 if nth ball from urn Ui is black,

1 if nth ball from urn Ui is red.

• After each draw from urn Ui return the ball with ci

others of the same colour.

• If the nth company has credit rating ri, then it
defaults if and only if

X1,n + · · · + Xi,n ≥ 1.
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Every group has 2 expectated defaults.

c©Feb. 2005, U. Schmock, FAM, TU Vienna 36



Probability

Defaults

0 50 100 150
0

0.2

0.4

0.6

0.8

1

Independent

Iterative urn scheme

Multi-colour urn scheme

Scaled empirical

Cumulative distribution function of the total number of defaults

of 1207 A-, 873 B- and 79 CCC-rated firms (1999 portfolio)

c©Feb. 2005, U. Schmock, FAM, TU Vienna 37

Probability

Defaults

Independent

Iterative urn scheme

Multi-colour urn scheme

Scaled empirical

0

0.2

0.4

0.6

0.8

1

0 25 50 75 100 125 150
Cumulative distribution function of the total number of defaults

of 773 BB-, 873 B- and 79 CCC-rated firms (1999 portfolio)

c©Feb. 2005, U. Schmock, FAM, TU Vienna 38

0

0.2

0.4

0.6

0.8

1

Defaults

Independent

Iterative urn scheme

Multi-colour urn scheme

Scaled empirical

Probability

0 50 7525 100 125 150

Cumulative distribution function of the total number of defaults
of 1049 BBB-, 773 BB- and 873 B-rated firms (1999 portfolio)

c©Feb. 2005, U. Schmock, FAM, TU Vienna 39

0

0.2

0.4

0.6

0.8

1

Independent

Iterative urn scheme

Multi-colour urn scheme

Scaled empirical

Probability

Defaults

0 10 3020 40
Cumulative distribution function of the total number of defaults
of 1207 A-, 1049 BBB- and 773 BB-rated firms (1999 portfolio)

c©Feb. 2005, U. Schmock, FAM, TU Vienna 40



0

0.2

0.4

0.6

0.8

1

0 5 10 15

Independent

Iterative urn scheme

Multi-colour urn scheme

Scaled empirical

Probability

Defaults

Cumulative distribution function of the total number of defaults

of 628 AA-, 1207 A- and 1049 BBB-rated firms (1999 portfolio)

c©Feb. 2005, U. Schmock, FAM, TU Vienna 41

Modelling Random Rating Transitions

The random transition matrix

P =

⎛
⎜⎜⎜⎜⎝

P1,1 P1,2 · · · P1,k P1,k+1

P2,1 P2,2 · · · P2,k P2,k+1

...
...

...
...

Pk,1 Pk,2 · · · Pk,k Pk,k+1

0 0 · · · 0 1

⎞
⎟⎟⎟⎟⎠

should satisfy Pi,j + · · · + Pi,k+1 ≤ Pi′,j + · · · + Pi′,k+1

for all j = 1, . . . , k + 1 and 1 ≤ i ≤ i′ ≤ k, because a
firm with the better rating ri ≺ ri′ should have a lower
probability to change to a worse ratings j, . . . , k + 1.
=⇒ complicated dependence structure
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Using Dependent Dirichlet Distributions for Ran-
dom Rating Transitions

Pi,1 Pi,2 · · · Pi,k Pi,k+1

Qi,1 Qi,2 · · · Qi,k

Pi+1,1 Pi+1,2 · · · Pi+1,k Pi+1,k+1
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Properties of the Urn Models and Conclusions
Advantages:

• Theoretical justification (exchangeability).
• Limit theorems for the chosen distributions.
• Easy to implement analytical solutions for fitting the

model, even with dependence between groups.
• Numerical efficiency and stability.
• Different dependence structures possible.
• Extension to random rating transitions possible.

Problems:

• Fitting the model simultaneously for many rating
classes is computationally demanding.

• Exposures and recoverables are not included.
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