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01 Theoretical Frameworks of EVA

1) Stationary Random Process (Sequence)
- Distribution Ergodicity
- (In)dependent and Identically Distributed
random variables (I.I.D. assumption)

→ strict stationarity
* Conventional approach

2) Non-stationary Random Process (Sequence)
- (In)dependent but non-identically Distributed
random variables (non-I.I.D. assumption)
→ weak stationarity, non-stationarity

3) Ultimate (Asymptotic) and penultimate forms



 

 

1) I.I.D. random variable Approach

Ultimate form : Fisher-Tippett theorem (1928)
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R.A. Fisher & L.H.C. Tippett (1928), Limiting forms of the frequency distribution of the largest or smallest 
member of a sample, Proc. Cambridge Philosophical Society, Vol 24, p180~190
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2) non-I.I.D. random variable Approach
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* Falk et al., Laws of Small Numbers: Extremes and Rare Events, Birkhäuser, 1994

The class of EVD for non-i.i.d. case is much larger.



 

 

3) Ultimate / penultimate form and
finite epoch T in engineering practice

In engineering practice, the epoch of interest, T is finite.
e.g. annual maximum value, monthly maximum value and

maximum/minimum pressure coefficients in 10min etc.

As such, the number of independent random variables m
in the epoch T becomes a finite integer, i.e. m<∞, and 
consequently, the theoretical framework for ultimate form
is no longer available regardless i.i.d. or non-i.i.d.case.

Following discussions are restricted on the penultimate d.f.
for the extremes of non-stationary random process 
in a finite epoch T. 



 

 

02 Statement of the Problem

( ), : [0, )x t t +∈ = ∞｡Let be the continuous observation record of
a non-stationary continuous stochastic process X(t) and assume
that X(t) is a mean square differentiable process and hold the
following condition. 

[ ]( , ) : ( ) ( ) ( , ) log 0 asr t E X t X t r t Tτ τ τ τ τ= + ⇒ → →

As such, how to estimate the extreme value distribution of X(t) 
in an epoch T<∞ from the continuous observation record x(t)?



 

 

03 Assumptions and Formulation

According to the conventional approach in wind engineering, let 
assume the non-stationary process X(t) can be partitioned with 
a finite epoch T, in which the partitioned process Xi(t),(i-1)T≦
t < iT, can be assumed as an independent stationary random 
process, and define the d.f. FZ(x) as follows.  

( ) ( ; : sup ( ), [0, ))ZF x P Z x Z X t t T= ≤ = ∈ < ∞

Then, by the Glivenko-Cantelli theorem and the block maxima
approach
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04 i.i.d. random sequence (EQRS)             
approach of ( )iP Z x≤

By partitioning the interval [(i-1)T,iT) into finite subpartitions
[( 1) , ), 1 [ / ] ij h jh j T h m− ≤ ≤ = in the manner of that
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the required d.f. FZ(x) can be defined as follows. 
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05 lower bound of FZ(x)

From the inequality (geometric mean)<(arithmetic mean), a lower
bound of FZ(x) can be defined as follows:
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06 alternative definition of FZ(x)
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This definition can be found easily in engineering applications and
may be reasonable for the case of 

1 nZ ZF F; L ; .



 

 

07 Inequality of quantile functions 
Let define quantile functions of each definition as follows.

1 1 1ˆ ˆ( ) : ( ), ( ) : ( ), ( ) : ( )Z Z ZQ F Q F Q Fα α α α α α− − −= = =% %

Then, by the inequality for the means and the comparison of the 
distribution of order statistics, i.e. Zn:n and Z1:n,
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Therefore, the alternative definition results in smaller variance of
extremes.



 

 

Complement for the inequalities of quantile functions 
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08 Numerical example ( ) (0,1)F x N=
( m=10,000, n=5,000, iteration=100 )

( )Q α%

( )Q α

ˆ ( )Q α

~ (0, ), ~ (1,0.05)i i iX N Nσ σ

~ (0, ), ~ (1,0.1)i i iX N Nσ σ ~ (0, ), ~ (1,0.2)i i iX N Nσ σ

~ (0,1)iX N



 

 

09 practical application:
Annual maximum wind speed in Japan

1) Observation records and Historical annual maximum 
wind speeds at 155 sites in Japan
Observation Records: JMA records (CSV format)

1961~1990 : 10 min average wind speed per 3 hours
1991~2002 : 10 min average wind speed per hour

Historical annual maximum wind speeds record:
1929~1999 : A historical annual max. wind speed data set

compiled by Ishihara et al.(2002)
2000~2002 : extracted from JMA records (CSV format) 

T. Ishihara et al. (2002), A database of annual maximum wind speed and corrections for anemometers in Japan,
Wind Engineers, JAWE, No.92, p5~54 (in Japanese)



 

 

09 practical application:
Annual maximum wind speed in Japan

2) The effect of different observation recording format on 
the basic statistics

Base on the recently opened continuous 1 min average wind 
speed records (1997. 3~2002. 2), calculating every 10 min 
average wind speeds, 10 min average per hour and 3 hours, 
and comparing the basic statistics for each recording format, 
then the effect of different recording format becomes to be 
clear. 



 

 

µ σ

1 1γ β= 2 2 3γ β= −



 

 

3) Examples of non-stationarity : 
the basic statistics (1961~2002)           

Coefficient of Variations (C.O.V)
Site

Abashiri 5.1% 5.0% 11.7% 14.4%

Katsuura 5.81% 8.87% 24.06% 26.71%

Kobe 5.71% 8.25% 12.55% 16.31%

Kumamoto 7.62% 5.93% 14.19% 32.36%

Makurazaki 4.60% 6.07% 25.97% 47.98%

Morioka 6.99% 4.43% 12.09% 11.55%

Oita 3.42% 8.41% 16.49% 27.41%

Shionomisaki 4.34% 4.07% 19.36% 30.10%

Tokyo 5.90% 8.06% 18.90% 17.88%

Minimum 3.42% 4.07% 11.72% 11.55%

Maximum 7.62% 8.87% 25.97% 47.98%

µ σ 1γ 2γ
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Morioka (1961~2002)

µ σ

1 1γ β= 2 2 3γ β= −



 

 

Kobe (1961~2002)



 

 

Shionomisaki (1961~2002)



 

 

Makurazaki (1961~2002)



 

 

Naha (1964~2002)



 

 

09 practical application:
Annual maximum wind speed in Japan

4) Approximation of the annual wind speed distribution
Based on the probability integral transformation,
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The coefficients a,b,c and d can be estimated from the given
basic statistics of annual wind speed, i.e. mean, standard 
deviation, skewness and kurtosis (Choi & Kanda 2003).

H. Choi and J. Kanda (2003), Translation Method: a historical review and its application to simulation on non-Gaussian
stationary processes, Wind and Struct., 6(5), p357~386



 

 

5) Estimation by Monte Carlo Simulation (MCS)

5.1) Simulation methods

① Based on the Spectral representation theorem for 
stationary stochastic process
→Using a given spectral density function, discrete 

stationary stochastic process is simulated.
→time consuming method

② Based on equivalent i.i.d. random sequence (EQRS)
→A stochastic process, which can be approximated 

by Poisson process, is modeled as an i.i.d. random 
sequence having same quantile function.
→time effective method



 

 

5.2) Required information for MCS based on EQRS

① m : the number of Independent rv
→ approximated by mean zero crossing rate
(Normal process)
From Rice theorem and Poisson approximation, normal 
quantile function is given as follows:

{ }02 log Tz T yα µ= +

0 : mean zero crossinin whcih g rate, log( log )Tyµ α= − −

From ( )m zαΦ ,

( ){ }2 log / 4 Tz m yα π +;

By comparison,
04m Tπµ;

* Choi & Kanda (2004), A new method of the extreme value distributions based on the translation method, Summaries 
of Tech. Papers of Ann. Meet. of AIJ, Vol. B1, p23~24 (in Japanese)

*



 

 

{ }2 log(1/ 4 )z yπ= +



 

 

{ }2 log( / 4 ) 0.57722z mµ π +;



(non-Normal process)

 

 To Rice formula for the expected number of crossings, i.e.
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applying translation function g(z)

From Poisson approximation

{ }( )0( ) 2 log( ) Tx g z g T yα α ν= = +

With the same manner
04m Tπν;

* The distribution of dx/dt is assumed as normal distribution and the assumption is reasonable.
e.g. H. Choi (1988), Characteristics of natural wind for wind load estimation, Master Thesis, Univ. of 
Tokyo (in Japanese)

*



 

 

Practical example (T=1 year)

• estimated from long term observation records in 
Tokyo (1985~1987, Choi 1988)

0Tν

2384311525863124

187937963Height
(m)

23072739254526652883

5848464545Height
(m)

0Tν

0Tν

04 4 (2300 ~ 3000) 30,000m Tπν π= = ⋅ →



 

 

5.2) Required information for MCS based on EQRS

② parent distribution function for each year
→Generalized bootstrap method＋

Translation method (Probability Integral Transform)

For the year i,
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Example : Tokyo (1961~2002)

µ σ

1γ 2γ

Estimated from historical records Monte Carlo Simulation



 

 

Correlation between the basic statistics (Tokyo)

1.0000.9460.433-0.315
0.9461.0000.541-0.372
0.4330.5411.0000.242
-0.315-0.3720.2421.000

µ σ 1γ 2γ
µ
σ

1γ
2γ

Such correlation characteristics between the basic statistics are regenerated
by Cholesky decomposition of correlation matrix.



 

 

Regeneration of correlation characteristics

correlation coefficients of simulated ones and given values 

1.0000.958
(0.946)

0.476
(0.433)

-0.343
(-0.315)

0.958
(0.946)

1.0000.565
(0.541)

-0.389
(-0.372)

0.476
(0.433)

0.565
(0.541)

1.0000.242
(0.242)

-0.343
(-0.315)

-0.389
(-0.372)

0.242
(0.242)

1.000

(・): given correlation coefficient

µ σ 1γ 2γ

µ

σ

1γ

2γ



 

 

No. of Simulation：n=100 year x 1000 times

○：annual mean and standard dev. from historical records



 

 

No. of Simulation：n=100 years x 1000 times

○：skewness and kurtosis from historical records
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6) Comparison of  the quantile functions from MCS 
and historical records in normalized form

, ,( ) /n m n m nZ a b−

Aomori
95% confidence intervals

Mean of 1000 samples

○：before 1961  ●：after 1962

(Z-am,n)/bm,n
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7) Comparison of the quantile functions from MCS 
and historical records in full scale
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8) Comparison of the attraction coefficients from 
MCS and the historical records

○：n>50 (136 sites), ■：n≦50 (19 sites)
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9) Defect of the alternative definition  ˆ ( ) ( )m
ZF x F x=

Mean of 1000 MCS
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10) Comparison of the attraction coefficients 
from the alternative definition and the 

historical records
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10 The cult of isolated statistics and 
The law of large number

How many extreme values should be used to 
estimate an extreme value distribution?

( case study for max/min pressure coefficients)*

* Choi & Kanda (2004), Stability of extreme quantile function estimation from relatively short records 
having different parent distributions, Proc. 18th Natl. Symp. Wind Engr., p455~460 (in Japanese)



 

 

B/5, B/5, B/10
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B=100mm
B/2

H/10
H/10

H/10
H/10

H/20

H/20

B=100mm
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D/2

D/10, D/5, D/5, D/5, D/5, D/10

1   2    3 4    5    6   7   8

wind

9
10

wind

Windward face Side and Leeward faces

Tap #11 Tap #15 Tap #17



 

 

Which one is the best estimation?

2

( )( )
1/ 2

s
p

H

p t pC t
Uρ
−

= ( ) : instant total pressure, : static pressure
: air density, : wind velocity at model height

s

H

p t p
Uρ

* 50 blocks contain about 480,000 discrete data



 

 

Which one is the best estimation?



 

 

10 The cult of isolated statistics and 
The law of large number

We never be free from the law of large number.

The statistician and the scientists/technologist need to understand 
that models are necessarily simplifications of the system being 
modelled; that they are , an absolute sense, wrong; that they are 
certainly provisional, but nonetheless are useful and necessary 
for successful quantitative thinking.

from J.A. Nelder (1986), Statistics, Science and Technology – The address of the president, delivered to the
Royal Statistical Society on Wednesday, April 16th, 1986, J. R. Statist. Soc. A 149(2), p109~121
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