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Dependence

Pairwise dependence of variates is a main issue in statistical analysis
and various measures have been proposed.

Measures of dependence

 Rank based measure ( Kendall’'s tau, Spearman’s rho)
+ Robustness, and close link to copula
+ Difficult to understand the exact meaning
e Second moment measure ( Pearson’s correlation coefficient )
+ Normalized inner product of two variates
- Mathematically simple, and easier to understand the meaning
+ Possible to be extended to measures of conditional dependence

_ Partial correlation, conditional correlation



Our Interest

For a random vector distributed the multivariate Normal, the
following two propositions hold true.

P1: Zero correlation between two variables is equivalent to their

independence.

- very restrictive to the Normal and its neighbors

P2: Partial correlation coefficient is equal to conditional correlation
coefficient.

-~ not restrictive to the Normal and its neighbors

1
Question:
Do these propositions hold true when we depart from the normal?



Outline of this presentation

81 Zero Correlation and Independence
About P1

g2 Partial Correlation and Conditional Correlation

* A necessary and sufficient condition for
equivalence of partial and conditional covariance

« A sufficient condition (Condition C) for P2.

83 Multiplicative Correlations
A key to Condition C



1. Zero Correlation and
Independence

There is a case where zero correlation of two variables is equivalent to
their independence other than the normal.

Theorem 1. If (X1, X5) has a bivariate nor-
mal distribution, then

p(V1(X1),%2(X2)) =0 <= ¥1(X1) 1 ¥o(X>)

for any monotone increasing (decreasing) trans-
forms 9 and .



Theorem 1 was directly proved in Baba, Shibata
and Sibuya (2004), but it is essentially known from
the following properties of a normal copula for
Increasing transformations:

A bivariate normal copula with correlation p is
equal to independent copula if and only if ©=0.

o A copula of (X, Y) is invariant under strictly
iIncreasing transformations of X and Y.

( see, for example, Nelsen, R. B., 1999 )

Example of Theorem 1. If (X1, X5) ~ Log-normal,
then p( X:i. X>)=0— X+ 1 X-.



2. Partial Correlation
and Conditional Correlation

When we think of conditional independence of variates, two typical
measures are proposed: Partial correlation and Conditional Correlation.

Notation and Dedinitions

X =(X1,...,Xp) (p=2)

: random vectors
Y =(1,....Y) (¢>1) }

X 2 > . .
V = XX XY ] . Partitioned variance-
([ Y D [ YyxX Xyy

covariance matrix of (X,Y).
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partial covariance matrix of X given Y:
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Conditional correlation

conditional covariance matrix of X given Y:

Wnere Tily = OV A, Aj| X )
= E((Xi— EXi|Y)) (X; —E(X;|Y))]Y)
conditional correlation matrix of X given Y
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Rxxyy = (pijy)ij=1,..p Where p;;y =




T henrearm 9 FAr aNnv rand
| AL W J I W) i i | < 1 /1 aatll I Al I\

i B4
following two conditions are

AMm o
il V ..
e d

quivalent.

~tnrc Aand V +hon
AN AW ) I | Cil I\ Az | % A\

4 N 11

(i) E(X|Y)=a+ BY for a vector a and a matrix B
(i) Zxxv =E (Zxxyy)-
1

Corollary 1. For any X and Y, the following two
conditions are equivalent.

(i) E(X]Y) =a+BY and Xyxxy isindependent of Y.

(II) ZXX~Y — ZXX|Y a.s.

Corollary 2. For any X and Y, if it holds true

E(X|Y)=a+ BY and Rxxy is independent of Y,‘

then Rxx.y = RXX y a.S. %(L
| Condition C



Example I. Elliptical Distribution

EC(u, >, o) is a family of distributions whose c.f. takes
the form

W(t) = exp (it'p) ¢ (¢'=t) with scalar function ¢.

If (X,Y)~EC(u,x, ), then
E(X|Y)=E(X)+ZxyZyy (Y — E(Y))
and
> xxy =s(Y)X7,

where s is a function and the matrix >* is independent
of Y.



Example I. Elliptical Distribution (2)

o If (X,Y)~EC(u,X,0), (X,Y) satisfies Condition
C, so it holds true

Rxxy = Rxx|y-

o Kelker (1970) showed that the multivariate No
Ib LIIB Ullly one UIbLlIUULIUII III VVIIILII IL IIUidS

> xxy = Zxx|y in the class of EC(u, X, ¢).

orm
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Lure

° Aqqump ’rha’r X ~ EC(IL-Z-¢)= X ~ N(p,>)



Example Il. Distribution generated
from generalized Pareto distribution

The generalized Pareto distribution GPrt(v,a) is defined
with the survival function
1 r/a)"17 if 0
F(xva)—!(+7/) 773,\ (a > 0)
| exp(—=x/a) if v=20
e Pareto (v O), exponential (v = 0) and uniform
(. 1\ A il ik ArA A A~
\’y—— ) diStriputioOns are memmoers.

e¢ The r-th moment is finite <— r <1/v.

e If the distribution GPrt(~,a) is left truncated at w,
the truncated distribution is GPrt(v, a + vu).



Example Il. Distribution generated
from generalized Pareto distribution (2)

Assume that Z = (71, ..., Zy4+4) IS @ random sample from

GPrt(v,a), and that (Z(1y,..., Z+4)) is the order statis-
tics of Z such that Z(l) > e Z(p) > Z(p_|_1) > Z(p_|_q) .

~

X Y
If X = (Z(1)7 ce ey Z(p)) and Y = (Z(p_|_1), ce ey Z(p_|_q)), then

(XY =y) = y1+ (1 +w1/a)X.

Thus it holds true

E(X|Y) =91+ (1 +yy1/a)E(X)
and

ZXX|Y = (1+ VQl/a)QV(X)‘



Example Il. Distribution generated
from generalized Pareto distribution (3)

o If Z ~ GPrt(v,a) with v < 1/2, then (X,Y ) which is
the order statistics of Z in decreasing order satisfies
Condition C, so it holds true

Rxxy = Rxx|y-
e Especially, if Z has an exponential distribution (v =
0), it holds true
2 XXY = ZxX|y-

e If Z has a geometric distribution (discrete distibu-

tion), it holds true
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Example Ill. Distributions in Fr
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Example lll. Distributions in 77 (2

dently distributed as Z; Fop € F(io = 1,..., D+ q).
Fr = {Fg, : 0 € ©PT1} is defined as the family of

(p 4+ q)-dimensional conditional distribution functions of
(Z1,...,Zy44) Qiven T = Zf;“f Z;.

Condition C, so it h idS true Rxx.y = RXX|Y
Table 1. Distributions in Fr
Zi e F (Z|T) e Fr
N(O;p, 0) N(t&, 6(diag(&) —&£))
Po(6;)\) Mn(t, €)
Bn(6;, p) Mng(t 0)

NgBn(6;,p) MvNgHg(t,0)
Ga(6;,1/a) Z/t|t ~ Dir(8)
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83. Multiplicative Correlations

The conditional covariance matrices of Z given T"'=1¢ in
Table 1 have a common form

-
1

V(Z|T =t) =adiag(a) —aa' a=1"a.

T a s aom o~ N -~ .-~

[ his type of covariance matrix is a key to Condition C.

T he following theorem gives us other induction into the
covariance form.



Theorem 4. Assume that X = (Xi1,...,X,) has a
covariance matrix which takes the form

V(X) = diag(b) — aa'.

Then, b = (3 _;a;)a if dnd only if > " | X; is almost
surely constant.

laldaa
| I I | lly [ | [ | Vv [ } | AN I B |
PN PR T
\/( X —diaag(h — nna'
v \‘;/ \/IIU:’\V/ LA A .
UINACth LIS covdriidricece 101111, corrcidiiolrt Ol \\A7.,Aj’) LARKCDO
the form
(X X.)— —_5:4. (7 =~ 1)
F\“*ty~<*7/ Ay \Y / J



Introduction II.
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Multiplicative Covariance

v s

Positive RT(8) : p(X) =diag(l —6%) + 86" (p(X;, X;) = 6;6;)
Negative R7(8) : p(X) =diag(l+6%) — 3" (p(X;, X;) = —8:5;)



Factorization of variables

Theorem 5. For X = (X41,...,X,) with E(X) =0,
X has a multiplicative covariance V(X) = diag(b) +aa’'
with b > 0 if and only if each element of X is written as

X, =a;Zo+\/biZi, i=1,...,n,

where
E(Z) = 0 +=0,1,...,n
var(Z;)) = 1 i=0,1,...,n
p(Zi,Zj> = 0 1= N
. 0 for ~T(a,b) .
o(Zo, Z;) = { _ai//b for ¥ (a,b) 1 =1,...,n.

Remark. For 27 (a,b), Zg is orthogonal to X;s.



e For X*(a,b), the result is known in factor analysis.

e For RT(4§) of the mv. normal distribution, Gupta
(1963) or Six (1981) showed the factorization.

e Kelderman (2004) shows that if X has a mv. nor-
mal distribution,

V(X) = diag(b) + aa’ with a>0 and b>0
)

for any partition Y = (Y, Y ) and any y3,. which
IS permutation of the values y,,.,

FymlY s = yue) = FyplY me = Yige)

where Y = a + diag(B8)X (B8 > 0).
(measurement exchangeability)



Proposition 1. The following inequality holds true for
the eigenvalues A1 < Ao < --- <\, of RT(4).
1—6 =M= =X 1<, <1—6f =Apy1="""
— >\n1—|—n2—1 < >\n1+n2 <
- < )\n—nm <1- 5]3771 — An—nm—l—l == A1 < Ap,

where 5,31 > 62 > --- > 67 are m distinct values in
Y2, ..., 62 and nl,...,nm (Z:”_l n; = n) are the multiplic-
ities of 52 e 52 respectively.

This proposition shows that RT(4) allows only one

eigen value iarger than 1, so that it is useful to check
if the observed correlation matrlx is RT(9).



Invariance Properties

Theorem 6. Let (X,T) be a random vector and as-
sume that

V(X| T =t) =o(t) (diag(b) £ aa')
for a o(t) > 0. If
E(X|T=t)=ult)a+c

for a constant vector ¢, then the unconditional covari-
ance is again multiplicative,

V(X) = E (o(T)) diag(b) + {var(u(T)) £ E(¢(T))} aa'.



Invariance Properties (2

Theorem 7. Assumethat X = (X1, X>) hasa X*(a,b).
If V(X 5) is non-singular and all elements of b, are pos-
itive, then the partial covariance of X; given X, is
also multiplicative and

diag(by) + a1al /{1 + aldiag(bs) ‘as}.

This theorem means that if X has a ~*(a,b), zero
correlation is equivalent to zero partial correlation.



Multivariate Distributions with
Multiplicative Correlations

Discrete Multivariate Distributions in Johnson et al. (1997).

Family Subfamily Positive or Negative
35 Multinomial Negative

36 Negative multinomial Positive

37 Poisson Positive

38 Power series Logarithmic series Positive

39 Hypergeometric Negative

40 Polya-Eggenberger Negative

41 Ewens — —

42 Distributions of Negative binomial of order s Positive

order s LLogarithmic distr. of order s Negative




Continuous Multivariate Distributions in Kotz et al. (2000).

Multivariate Distributions with
Multiplicative Correlations (2)

Family Subfamily Positive or Negative

45 Normal Multiplicatively correlated normal Both

47 Exponential Moran and Downton’s Positive

48 Gamma Cheriyan and Ramabhadran’s Positive

49 Dirichlet Positive

49 Inverted Dirichlet Negative

50 Liouvill Both

51 Logistic Gumbel-Malik-Abraham Positive
Farlie-Gumbel-Morgenstern Negative

52 Pareto The first kind Positive

53

Extreme value




Condition C

/ Generated from GPN

Elliptical

I?Iormal \

Polya-
NgMn Eggenberger

Mv.Be2

\_ P -
Po, Ex, Ga, Logarithmic series A /
\ Positive Multiplicative Negative Multiplicative




Concluding Remarks

T he distributions for which zero correlation is equal
to independence are very restrictive to the Normal

and its neighbors.

Other than the Normal, there are rarely cases in

whoarvrn 1+ hald +friin S o« < S Nnd C AnnAditinn
VWIICIT 1L 11OUIU LTUuT X X. Y — 24X XI|Y ang conaition

C is satisfied for several distributions (elliptical, gen-
erated form GPrt, Fr).

The studies for Multiplicative Correlations which is
A leanns A € AnAitinn € ~rAnNnnNnact
a T\C_y LU N VUVITUTLIVITL N CUVddTTIC U L

P 1; Ch@rk If the observed correlation matrices are
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