Research Report

KSTS/RR-19/003
December 26, 2019

Linguistic Copenhagen interpretation of quantum
mechanics: Quantum Language [Ver. 5]

by

Shiro Ishikawa

Shiro Ishikawa
Department of Mathematics
Keio University

Department of Mathematics
Faculty of Science and Technology
Keio University

(©2019 KSTS
3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522 Japan



KSTS/RR-19/003
December 26, 2019

Linguistic Copenhagen interpretation
of quantum mechanics: Quantum
Language [Ver. 5]

Shiro ISHIKAWA  (ishikawa@math keio.ac.jp) [December, 2019]

Department of mathematics, Faculty of science and Technology, Keio University, 3-14-1, Hiyoshi,
Kouhokuku, in Yokohama, 223-8522, Japan

Abstract Recently we proposed “quantum language” (or, “ the linguistic Copenhagen
interpretation of quantum mechanics”), which was not only characterized as the metaphysical
and linguistic turn of quantum mechanics but also the linguistic turn of Descartes=Kant epis-
temology. Namely, quantum language is the scientific final goal of dualistic idealism. It has a
great power to describe classical systems as well as quantum systems. Thus, We believe that
quantum language is the language in which science is written. The purpose of this preprint is to
examine and assert our belief (i.e., “proposition in quantum language” ¢ “ scientific proposition
(i.e., proposition which can be tested by experiment )”).

Preface; What is science?

This is the lecture note for graduate students. This lecture has been continued, with
gradually improvement, for about 15 years in the faculty of science and technology of Keio
university .

In this lecture, I explain “quantum language” (= “measurement theory”=“linguistic Copen-
hagen interpretation of quantum mechanics”), which was proposed as

L This preprint is the 4th version of Refs. [56, 57, 58]: S. Ishikawa, Linguistic interpretation of quantum
mechanics; Quantum Language, Research Report, Dept. Math. Keio University, (http://www.math.keio.ac.
jp/en/academic/research.htmll)

[BO] : [Ver.l]; KSTS/RR-15/001 (2015); 416 p (http://www.math.keio.ac.jp/academic/research_pdf/
report/2015/15001 . pdf))

57 : [Ver.2]; KSTS/RR-16/001 (2016); 426 p (http://www.math.keio.ac.jp/academic/research_pdf/
report/2016/16001 . pdf])

58] : [Ver.3]; KSTS/RR-17/007 (2017); 434 p (http://www.math.keio.ac.jp/academic/research_pdf/
report/2017/17007 . pdf))

B8] : [Ver.d]; KSTS/RR-18/002 (2018); 449 p (http://www.math.keio.ac.jp/academic/research_pdf/
report/2018/18002. pdf))

Roughly speaking, we say that

[Ver. 2]=%“[Ver.1]4 Sec[I1.2( Wave function collapse)”,

[Ver. 3]="“[Ver.2]+ Sec/d.5| Bell’s inequality)”,

[Ver. 4]=“[Ver.3]+ Sec[l0.8 (Brain in a Vat, Five-minute hypothesis, etc.)”.

[Ver. 5|=“[Ver.4]+ Chapter 20 Mathematical foundations of of science”.

Also, for my recent results, see my homepage (http://www.math.keio.ac.jp/~ishikawa/indexKSTS-Hempel.
htmIl)
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the language in which science is written

by myself. Quantum language is a language that is inspired by the Copenhagen interpretation

of quantum mechanics, but it has a great power to describe classical systems as well as quantum

systems. In this lecture, I assert that quantum language, roughly speaking, has the three aspects

as follows.

a The three aspects of quantum language ~
@D: the standard interpretation of quantum mechanics

(i.e., the true colors of the Copenhagen interpretation)
thus, in this paper we consider that
"the linguistic Copenhagen interpretation”= "the linguistic interpretation”
="the Copenhagen interpretation”
@: the final goal of the dualistic idealism (Descartes=Kant philosophy)

\@: theoretical statistics of the future

. )
And therefore, I think that

“D:quantum information theory” U “2):dualistic idealism” U “(3):statistics”
C “quantum language”

Thus I conclude
s The main assertion of this lecture ~

Quantum language is the language in which science is written
That is, the following (i) and (ii) are equivalent:
(i) proposition in quantum language

(ii) scientific proposition (i.e., proposition which can be tested by experiment )

The purpose of this lecture is to examine and explain these assertions
/

I believe that making such a language is exactly the true purpose of the philosophy of science.

Philosophy of science: What is science?

Our original motivation is to answer the question ”What is science?”. It is well known that
the famous answer ”falsifiability” is due to Popper (cf. [79]). However his answer was too
literature-like. And thus, most scientists did not show much interest in ”falsifiability”. Hence,
some may, from the scientific point of view, prefer the following answer(A):

(A) Science is an academic field with statistics as language

For example
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(A1) Economics is to describe economic phenomena in statistics.

(Ag) Psychology is to describe psychological phenomena in statistics.

(A3) Biology is to describe Biological phenomena in statistics.

(A4) Newton mechanics is to describe mechanical phenomena in statistics (= dynamical sys-

tem theory).

Although most scientists may be interested in the above answer (A) rather than ”falsifiability”
(cf. [79]), T think that it is not enough (for example, the definition of statistics is not clear).
In this paper, I propose that

(B) Science is an academic field described by quantum language
For example

B1) Economics is to describe economic phenomena by quantum language.

Bs) Psychology is to describe psychological phenomena by quantum language.

B,

(B1)

(B2)

(B3) Biology is to describe Biological phenomena by quantum language.

(B4) Newton mechanics is to describe mechanical phenomena by quantum language.
(Bs)

Bs

Quantum mechanics is to describe quantum mechanical phenomena by quantum lan-
guage.

The reader would be convinced that the answer (B) is better than
the answer (A).

Also, the following may be regarded as the supplementary reader of this text:

e [53]: S. Ishikawa, History of Western Philosophy from the quantum theoretical point of
view [Ver. 2|, Research Report (Department of mathematics, Keio university, Yokohama),
(KSTS-RR-17/004, 2017, 132 pages)
(http://www.math.keio.ac.jp/academic/research_pdf/report/2017/17004.pd1)
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Chapter 1

My answer to Feynman’s question

Dr. R. P. Feynman (one of the founders of quantum electrodynamics) said the following wise
words:(f1) and (#2):

(#1) There was a time when the newspapers said that only twelve men understood the theory
of relativity. I do not believe there ever was such a time. There might have been a time
when only one man did, because he was the only guy who caught on, before he wrote his
paper. But after people read the paper a lot of people understood the theory of relativity
in some way or other, certainly more than twelve. On the other hand, I think I can safely
say that nobody understands quantum mechanics.

(#2) We have always had a great deal of difficulty understanding the world view that quantum
mechanics represents. ------ I cannot define the real problem, therefore I suspect there’s
no real problem, but I’'m not sure there’s no real problem.

In this lecture, I will answer Feynman’s question (f1) and (#2) as follows.

(b) T am sure there’s no real problem. Therefore, since there is no problem that should be
understood, it is a matter of course that nobody understands quantum mechanics.

This answer may not be uniquely determined, however, I am convinced that the above (b) is
one of the best answers to Feynman’s question (1) and (f2).

The purpose of this lecture is to explain the answer (b). That is, I show that

If we start from the answer (b),
we can double the scope of quantum mechanics.
And further, I assert that

Metaphysics (which might not be liked by Feynman )
is located in the center of science.

In this lecture, I will show the above.

!The importance of the two (#;) and (f2) was emphasized in Mermin’s book [76]
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1.1 Quantum language (= measurement theory)
1.1.1 Introduction

In this lecture, I will explain “quantum language” (= measurement theory (=MT)=Linguistic

Copenhagen interpretation ), which is located as illustrated in the following figure:

Figure 1.1. [The location of quantum language in the history of world-description (cf. refs.[35]
56]) |

r~~~~ the realistic world view (monism, reatisim)-—--- T
! |
} relativity \ (unsolved) }
i (monism) — [theory  |——03) ® theory of i
Parmenides \ } @ 1 everythlng |
Socrates | (realism) quantum (quantum phys.) |
| . Vs |
©:Greek | gy, I - [mechanicsfp——@ * |
philosophy | —— """"“““““““'L;néﬁa-gé ————————————————— -
sticism I A I
APlatOI ' (dualism) —=0® ) .
I - I
ristotle | Descartes (linguistic view) Lantum .
.| Locke,... ® linguistic language Emdu‘lge !
—— | Kant philosophy ———— o !
! (idealism) (language) .
: statistics laneuage :
! system theory %@‘ !
: (Descartes, Locke may belong to substance dualism)
L

---- the linguistic world view ( dualism, idealism -)- -

Figure 1.1: The history of the world-view

It should be noted that the above figure implies the following three:

(D ]: to clarify the Copenhagen interpretation of quantum mechanics, that is, the linguistic

Copenhagen interpretation is the true figure of so-called Copenhagen interpretation

[® |: to clarify the final goal of the dualistic idealism (Descartes=Kant epistemology) (cf.
ref. [52] 54])

(@ |: to reconstruct statistics in the dualistic idealism
Therefore,

Figure 1.1 is all in this lecture.

2 ’ For further imformation see my homepage
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Chap. 1 My answer to Feynman’s question

ANote 1.1. If most physicists feel something like metaphysics in quantum mechanics, the reason
is due to That is, we consider that there are two “quantum mechanics”, that is,
“(realistic) quantum mechanics” in (§) and “(metaphysical) quantum mechanics” in . Namely,

“(realistic) quantum mechanics” in %)
e quantum mechanics
“(metaphysical) quantum mechanics” in @0

The former is not completed yet. The latter is “the usual quantum mechanics” studied in
undergraduate course of university. In this lecture, we are not concerned with the former.

ANote 1.2. If readers are familiar with quantum mechanics, it may be recommended to read the
following short papers before reading this lecture text.

(a) S. Ishikawa, Uncertainty relation in simultaneous measurements for arbitrary observables,
Rep. Math. Phys., 9, 257-273, 1991
doi: 10.1016/0034-4877(91)90046-P,

(b) Ishikawa,S. Fuzzy inferences by algebraic method, Fuzzy Sets and Systems 87, 181-200
(1997) |[d0i:10.1016/S0165-0114(96)00035-8|

(c) S. Ishikawa, A Quantum Mechanical Approach to Fuzzy Theory, Fuzzy Sets and Systems,
Vol. 90, No. 3, 277-306, 1997, |doi: 10.1016,/S0165-0114(96)00114-5|

(d) S. Ishikawa, Statistics in measurements, Fuzzy sets and systems, Vol. 116, No. 2, 141-154,
2000
doi:10.1016/S0165-0114(98)00280-2|

(e) S.Ishikawa, A New Interpretation of Quantum Mechanics, Journal of quantum information
science, Vol. 1, No. 2, 35-42, 2011, doi: 10.4236/jqis.2011.12005
(http://www.scirp.org/journal/PaperInformation.aspx?paperID=7610)

(f) S. Ishikawa, Quantum Mechanics and the Philosophy of Language: Reconsideration of
traditional philosophies, Journal of quantum information science, Vol. 2, No. 1, 2-9, 2012
doi: 10.4236/jqis.2012.21002

(http://www.scirp.org/journal/PaperInformation.aspx?paperID=18194)

(g) S. Ishikawa, FErgodic Hypothesis and Equilibrium Statistical Mechanics in the Quantum
Mechanical World View, World Journal of Mechanics, Vol. 2, No. 2, 2012, pp. 125-130.
doi: 10.4236/wim.2012.22014.]

(http://www.scirp.org/journal/PaperInformation.aspx?PaperID=18861#.VKevmiusWap|

)

(h) Ref. [51] S. Ishikawa, Linguistic interpretation of quantum mechanics; Projection Pos-
tulate, Journal of quantum information science, Vol. 5, No.4 , 150-155, 2015,
10.4236 /jqis.2015.54017]
(http://www.scirp.org/Journal/PaperInformation.aspx?PaperID=62464)

3 |[For further imformation see my homepage|
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(i) ref. [60]: S. Ishikawa; Leibniz-Clarke correspondence, Brain in a vat, Five-minute hypoth-
esis, McTaggart’s paradoz, etc. are clarified in quantum language
Open Journal of philosophy, Vol. 8, No.5 , 466-480, 2018, DOI: 10.4236/0jpp.2018.85032
(https://www.scirp.org/Journal/PaperInformation.aspx?PaperID=87862)

j) Ref. : Ishikawa, S., ilosophy of science for scientists; e probabilistic

j) Ref. [62]: Ishik S 2019) Phil hy of sci f ienti Th babilisti
interpretation of science, Journal of quantum information science, Vol. 9, No.3 , 140-154,
(https://www.scirp.org/Journal/paperinformation.aspx?paperid=95447)

The similarities and differences between the linguistic interpretation and so called Copenhagen
interpretation have been clarified in the above (¢). That is, our proposal is as follows:

physics science

‘ so-called Copenhagen mterpretatlon‘ —> ‘ linguistic Copenhagen mteIpIetatlon‘
our proposal

dualistc realism dualiste idealism

1.1.2 From Heisenberg’s uncertainty principle to the linguistic Copen-
hagen interpretation

As explained in §4.3,

(A) In 1991(cf. ref. [26])2, T found the mathematical formulation of Heisenberg’s uncertainty
principle (i.e., A, - A, > h/2 in (4.36)), which clarified that

e under what kind of condition does Heisenberg’s uncertainty principle hold?

I thought that this result is interesting. However, from immediately after the discovery (A),
the interpretation of quantum mechanics began to worry me. There are many interpretations
of quantum mechanics, for example, “the Copenhagen interpretation”, “the many world inter-
pretation”, “the probabilistic interpretation”, etc. In the applied field of quantum mechanics,
we can expect that the same conclusion is derived from different interpretations. In this sense,
the problem of “the interpretation of quantum mechanics” is not serious.

However, concerning Heisenberg’s uncertainty principle, this problem is important. That is
because the meaning of “errors” in Heisenberg’s uncertainty principle depend on the interpre-

tation of quantum mechanics <for example, the meaning of “errors (A, and A,)” depends on

the acceptance of “the collapse of wave function” or not). Thus,

e | want to establish the “standard” interpretation of quantum mechanics.

2Ref.|26]:S. Ishikawa, “Uncertainty relation in simultaneous measurements for arbitrary observables” [Rep.
Math. Phys. Vol.29(3), pp.257-273, 1991}

4 For further imformation see my homepage
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Chap. 1 My answer to Feynman’s question

In what follows, let me mention my idea (i.e., the linguistic interpretation of quantum

mechanics):

Recalling that quantum mechanics was called “matrix mechanics” (when quantum mechan-

ics was proposed (i.e., 1920s), I consider that

(By) from the mathematical point of view, quantum mechanics is the theory of

“square matrix”
On the other hand,

(B2) from the mathematical point of view, classical mechanics is the theory of

“diagonal matrix”
Thus, we have the following problem:

(C) What is the interpretation which is common to both quantum system (B;) and classical

system (By)?
And we conclude that
(D) the answer to the question (C) is uniquely determined as “quantum language”,

where quantum language can describe classical systems as well as quantum systems.
Since quantum language is not physics but language (= metaphysics), quantum language (=
the linguistic interpretation of quantum mechanics) is completely different from other quantum

interpretations. In this sense, we are convinced that

(E) quantum language (= the linguistic interpretation of quantum
mechanics ) is forever,

even if some propose the “final” interpretation of quantum mechanics in the realistic view

(i.e., ® in[Figure 1.1])

5 For further imformation see my homepage
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1.2 The outline of quantum language

1.2.1 The classification of quantum language (=measurement the-
ory)

Quantum language (= measurement theory ) is classified as follows.

( ; classical system : Fisher statistics
ure e
P ( A ))7p quantum system : usual quantum mechanics
1
(A) measurement theory
(=quantum language) ced t classical system : including Bayesian statistics, Kalman filter
mixed type
(A >"I quantum system : quantum decoherence
\ 2

Therefore, we have two kinds of quantum language, i.e., pure measurement theory and

mixed measurement theory. The former is formulated as follows.

|(pure) Axiom 1| |Axiom 2| |quantum linguistic interpretation]|
(Al) ’ pure measurement theory ‘ = ’ pure measurement ‘ + ’ Causality ‘—I— ’ Linguistic interpretation
(=quantum language) (cf. [82.7) (¢f. §10.3) (cf. §3.1)
a kind of spell(a priori judgment) the manual to use spells

And the mixed measurement theory (or, statistical measurement theory) is formulated as fol-

lows.
[(mixed)Axiom (™) 1] [Axiom 2| |quantum linguistic interpretation|
(AQ) ’mixed measurement theory ‘ = ’ mixed measurement ‘—|—’ Causality ‘—i— ’Linguistic interpretation
(=quantum language) (cf. [89.1) (cf. §10.3) (¢f. §37)
a kind of spell(a priori judgment) the manual to use spells

1.2.2 Axiom 1 (measurement) and Axiom 2 (causality)

Since the pure measurement theory is the most fundamental, we mainly devote ourselves
to pure measurement theory. Although it is impossible to read Axiom 1 ( measurement: [§2.7))

and |[Axiom 2 (causality; §10.3)| at the present time, we present them as follows.

6 ’ For further imformation see my homepage, ‘
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Chap. 1 My answer to Feynman’s question

- (B):Axiom 1 (measurement) pure type ~

(This will be able to be read in )

With any system S, a basic structure [A C AJ B(H) can be associated in which measurement

theory of that system can be formulated. In [A C A]ppy, consider a /*-measurement
MZ(O:(X, F,F), S[p}) (or, C*-measurement My (O:(X, FF), S[p]) > That is, consider

e a IW*-measurement MZ(O,S[p]) < or, C*-measurement MA(O:(X, F, F),S[p]) > of
an observable O=(X, JF, F) for a state p(€ GP(A*) : state space)

Then, the probability that a measured value x (€ X) obtained by the W*-measurement
Mz (0, S) ( or, C*-measurement My (O=(X,J, F), S ) belongs to = (€ ¥F) is given by

p(F(E)(= a-(p, F(Z))z) (1.1)
L (if F(Z) is essentially continuous at p, or see Definition 2.14] ).
/
And
s (C): Axiom 2 (causality) ~

(This will be able to be read in §10.3))

Let T' be a tree (i.e., semi-ordered tree structure). For each t(€ T), a basic structure
[A; C A B(H,) is associated. Then, the causal chain is represented by a 11"~ sequential

causal operator {®,, ,, : Ay, — Ztl}(tl,tQ)eTi ( or, (- sequential causal operator

{ @ity 0 Asy — ‘Atl}(tl,tQ)GTé )
- J

Here, note that

(D;) the above two axioms are kinds of spells (i.e., incantation, magic words, meta-

physical statements), and thus, it is impossible to verify them experimentally.

In this sense, the above two axioms correspond to “a priori synthetic judgment” in Kant’s

philosophy (cf. [66]). Therefore,

(D2) what we should do is not to understand the two, but to learn the spells (i.e.,

Axioms 1 and 2) by rote.

7 |[For further imformation see my homepagew
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1.2 The outline of quantum language

Of course, the “learning by rote” means that we have to understand the mathematical defini-

tions of followings:

e basic structure [A C A]p(p), state space &F(A*), observable O=(X, F, F), etc.

ANote 1.3. If metaphysics did something wrong in the history of science, it is because metaphysics
attempted to answer the following questions seriously in ordinary language:

(#1) What is the meaning of the keywords (e.g., measurement, probability, causality) 7

Although the question (f1) looks attractive, it is not productive. What is important is to create
a language to deal with the keywords. So we replace (1) by

(#2) How are the keywords (e.g., measurement, probability, causality) used in quantum language
?

The problem (#;) will now be solved in the sense of (f2).

ANote 1.4. Metaphysics is an academic discipline concerning propositions in which empirical
validation is impossible. Lord Kelvin (1824-1907) said

Mathematics is the only good metaphysics.

Here we step forward:
(1) Quantum language is another good metaphysics.
Lord Kelvin might think that Kant philosophy (Critique of Pure Reason [66]) is not good

metaphysics. However, I consider that a priori synthetic judgment (i.e., axiom which cannot be
examined by experiment) corresponds to [Axiom 1l and [Axiom 2]. That is,

a priori synthetic judgment‘ ( <—>d ) ’Axiom 1l and |Axiom 2‘
correspondence

( Kant philosophy ) (quantum language)

See ref. [35]:S. Ishikawa, Quantum Mechanics and the Philosophy of Language: Reconsideration
of traditional philosophies,|Journal of quantum information science, Vol. 2(1), pp.2-9, 2012

8 ’ For further imformation see my homepage ‘
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1.2.3 The linguistic interpretation

Axioms 1 and 2 are all of quantum language. Therefore,

(f) after learning Axioms 1 and 2 by rote, we need to brush up our skills to use them through

trial and error.
Here, let us recall a wise saying
e FEaxperience is the best teacher, or custom makes all things
and our experience
e A manual helps us to master the rules quickly.

Thus, we understand

to master the linguistic interpretation of quantum mechanics

= to make practice with a manual to use Axioms 1 and 2

Although the linguistic interpretation (= the linguistic Copenhagen interpretation ) is com-

posed of many statements, the simplest and best representation may be as follows.

(E):The linguistic Copenhagen interpretation )

(This will be explained in §3.1))
Only one measurement is permitted.

We can also choose apparently opposite viewpoints concerning the linguistic interpretation,

though they look a bit too extreme.

(E1) Through trial and error, we can do well without the linguistic interpretation.

(E2) All that are written in this note are a part of the linguistic interpretation.

They are viewpoints obtained from the opposite standpoints. In this sense, there is a reason

to regard this lecture note as something like a cookbook.

9 ’ For further imformation see my homepage,
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#Note 1.5. Kolmogorov’s probability theory (cf. [67] ) starts from the following spell:

(#) Let (X,J,P) be a probability space. Then, the probability that a event Z(€ F) happens
is given by P(2)

And, through trial and error, Kolmogorov found his extension theorem, which says that
(1) Only one probability space is permitted.

This surely corresponds to the linguistic interpretation “Only one measurement is permitted.”
That is,

(the most fundamental theorem) (the linguistic interpretation)
- (correspondence)
Probability theory — ’ Quantum language

(Only one probability space is permitted) (Only one measurement is permitted)

In this sense, we want to assert that

() Kolmogorov is one of the main discoverers of the linguistic interpretation.

Therefore, we are optimistic to believe that the linguistic interpretation “Only one measurement
is permitted” can be, after trial and error, acquired if we start from Axioms 1 and 2. That is,
we consider, as mentioned in (H;), that we can theoretically do well without the linguistic
interpretation.

1.2.4 Summary

Summing up the above arguments, we see:

10 For further imformation see my homepage



http://www.math.keio.ac.jp/~ishikawa/indexKSTS5.html

KSTS/RR-19/003
December 26, 2019

Chap. 1 My answer to Feynman’s question

- (F): Summary ( All of quantum language ) ~

Quantum language (= measurement theory ) is formulated as follows.

[Axiom 1] [Axiom 2] |quantum Tinguistic interpretation]
’measurement theory‘ = ’Measurement ‘ + ’ Causality‘—i—’ Linguistic interpretation‘ (1.2)
(=quantum language) (cf. [§2.7) (cf. §10.3) (¢f. §31)
a kind of spell(a priori judgment) manual to use spells

[Axioms]. Here

(F1) Axioms 1 and 2 are kinds of spells, (i.e., incantation, magic words, metaphysical
statements), and thus, it is impossible to verify them experimentally. In this sense, I
consider that

’a priori synthetic judgment‘ —_— ’Axioms 1 and 2‘
quantization (qyantum language)

(Kant philosophy)

Therefore, what we should do is not “to understand” but “to use”. After learning
Axioms 1 and 2 by rote, we have to improve our skills to use them through trial and
€rTor.

[The linguistic interpretation|. From a pure theoretical point of view, we do well
without the interpretation. However,

(F2) it is better to know the linguistic interpretation of quantum mechanics (= the manual
to use Axioms 1 and 2), if we want to make quick progress in using quantum language.

The most important statement in the linguistic interpretation |(§3.1)|is
Only one measurement is permitted.
After all, we think that

Continental Rationalism

[Axioms]
Descartes philosophy — — Kant philosophy
[dualistic idealism] British empiricism [quantum language]
[Linguistic interpretation]
- /

11 For further imformation see my homepage,
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1.3 Example: measurement of “Cold or Hot”

Axioms 1 and 2 (mentioned in the previous section ) are too abstract. And thus, I am afraid
that the readers feel that it is too hard to use quantum language. Hence, let us add a simple
example in this section.

It is sufficient for the readers to consider that our purpose in the next chapters is

e to bury the gap between Axiom 1 and the following simple example (i.e., “Cold” or

HHOtM ) .

Example 1.2. [The measurement of “Cold or Hot" for the water in a cup]  Let testees drink
water with various temperature w °C (0 £ w < 100). And assume: you ask them “Cold or Hot
7”7 alternatively. Gather the data, ( for example, g.(w) persons say “Cold”, gn(w) persons say

“Hot”) and normalize them, that is, get the polygonal lines such that

o ge(w)
felw) = the numbers of testees
_ gn(w)
fn(w) = the numbers of testees (1.3)
And
1 (0 = w = 10)
felw)=1¢ B2 (I0Sw<70) folw) =1~ fo(w)
0 (70 = w £ 100)

Jn

0 10 20 30 40 50 60 70 80 90 100

Figure 1.2: Cold or hot?
Therefore, for example,

(A1) You choose one person from the testees, and you ask him/her whether the water (with

44 2

55 °C) is “cold” or “hot” 7. Then the probability that he/she says [ ot

f.(55) = 0.25
by [fh(55) :0.75}

] is given

12 For further imformation see my homepage
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Chap. 1 My answer to Feynman’s question

In what follows, let us describe the statement (A;) in terms of quantum language (i.e., Axiom

1).
Define the state space €2 such that {2 = interval [0, 100](C R(= the set of all real numbers))

and measured value space X = {c,h} ( where “¢” and “h” respectively means “cold” and

“hot”). Here, consider the “[C-H]-thermometer” such that

(Ag) for water with w °C, [C-H]-thermometer presents

[C-H]-thermometer is denoted by O = (fe, fx)

with probability { fe(w) 1 This

h fh (w)

Note that this [C-H]-thermometer can be easily realized by “random number generator”.

Here, we have the following identification:
(As) (A1) <= (A2)

Therefore, the statement (A1) in ordinary language can be represented in terms of measurement

theory as follows.

(A4) When an observer takes a measurement by [[C-H]-instrument] for
measuring instrumentO=(fc, f},)

[water] with ~ [55°C] , the probability that measured value { IC1 }
(System (measuring object)) (state(=w € Q) )

£.(55) = 0.25 }

is obtained is given by [ Fu(55) = 0.75
h = U.

This example will be again discussed in the following chapter(Example 2.31)).

13 For further imformation see my homepage
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Chapter 2

Axiom 1 — measurement

Quantum language (= measurement theory ) is formulated as follows.

[Axiom 1] [Axiom 2| [quantum linguistic interpretation|
° ’measurement theory‘ := | Measurement |+ ’ Causality ‘—i— ’Linguistic interpretation
(=quantum language) (cf. [§2.7) (cf. §10.3) (cf. §3.1)
a kind of spell(a priori judgment) manual to use spells

Measurement theory asserts that

e Describe every phenomenon modeled on Axioms 1 and 2 (by a hint of the linguistic inter-
pretation)!

In this chapter, we introduce [Axiom 1/ (measurement). [Axiom 2| concerning causality will be
explained in Chapter [10.

2.1 The basic structure[A C A C B(H)|; General theory

The Hilbert space formulation of quantum mechanics is due to von Neumann. I cannot
emphasize too much the importance of his work (cf. [89]).

2.1.1 Hilbert space and operator algebra

Let H be a complex Hilbert space with a inner product (-,-), where it is assumed that
(u, av) = alu,v) (Yu,v € H,a € C(= the set of all complex numbers)). And define the norm
llu|| = [(u,u)|"/2. Define B(H) by

B(H)={T :H — H|T is a continuous linear operator} (2.1)
B(H) is regarded as the Banach space with the operator norm || - || p(sr), where
1Tl ey = Sup I Tz|[m (VT € B(H)) (2.2)
xT H:1

15
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2.1 The basic structure[A C A C B(H)]; General theory

Let T' € B(H). The dual operator 7% € B(H) of T' is defined by
(T*u,v) = (u, Tv) (Yu,v € H)
The followings are clear.
T =T, (Bh) =TiT;
Further, the following equality (called the “C*-condition”) holds:
IT°T|| = |TT*|| = |T|* = |T"|]* (VT € B(H)) (2.3)

When T' = T™* holds, T is called a self-adjoint operator (or, Hermitian operator). Let T, (n €
N ={1,2,---}),T € B(H). The sequence {T,}5°, is said to converge weakly to T (that is,
w—lim, T, =T ), if

lim (u, (T,, — T)u) =0 (Vu € H) (2.4)

n—o0

Thus, we have two convergences (i.e., norm convergence and weakly convergence) in B(H)*.

Definition 2.1. [C*-algebra and W*-algebra] A(C B(H)) is called a C*-algebra, if it satisfies
that

(A1) A(C B(H)) is the closed linear space in the sense of the operator norm || - || g(a).
(Ag) A is x-algebra, that is, A(C B(H)) satisfies that

F,Fhe A= F -F, €A, FeA=F'cA
Also, a C*-algebraA(C B(H)) is called a W*-algebra, if it is weak closed in B(H).

2.1.2 Basic structure[A C A C B(H)]; general theory

Definition 2.2. Consider the basic structure [A C A C B(H)] ( or, denoted by [A C Al
). That is,

e A(C B(H)) is a C*-algebra, and A(C B(H)) is the weak closure of A.

Note that W*-algebra A has the pre-dual Banach space A, ( that is, (A,)* = A ) uniquely.
Therefore, the basic structure[A C A C B(H)] is represented as follows.

e (B): General basic structure:[A C A C B(H)] ~

- — -
: —= [B(H) (2.5)
subalgebra-weak-closure subalgebra
pre-dual
A
- /

! Although there are many convergences in B(H), in this paper we devote ourselves to the two.
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Chap. 2 Axiom 1 — measurement

2.1.3 Basic structure[A C A C B(H)| and state space; General the-
ory
The concept of “state space” is fundamental in quantum language. This is formulated in

the dual space A* of C*-algebra A ( or, in the pre-dual space A, of W*-algebra A).
Let us explain it as follows.

Definition 2.3. [State space, mixed state space] Consider the basic structure:
[ACACBH)

Let A* be the dual space of the C*-algebraA. The mixed state space G"(A*) and the pure
state space GF(A") is respectively defined by

(a) &™(A") ={p e A" | |lp]

- =1,p>0 (ie., p(T*T) > 0(VT € A))}

(b) &P(A*) = {p € & (A*) | p is a pure state}. Here, p(€ &™(A*)) is a pure state if and
only if

p=api+(l—a)p, p1,p2 € 6"(A"),0<a<l= p=p=p

The mixed state space 6™ (A*) and the pure state space GP(A*) are locally compact spaces
(cf. ref.[93]).

Assume that A, is the pre-dual space of A. Then, another mixed state space @m(ﬁ*) is
defined by

(c) 6"(A) ={pe A |l

2. =1,p>0 (ie, p(T*T) > 0(VT € A))}

That is, we have two “mixed state spaces”, that is, C*-mixed state space &™(A*) and W*-
mixed state space & (A,).

The above arguments are summarized in the following figure:

- (C): General basic structure and State spaces ~

SP(A*) Cc GMA*Y) C A

C*-pure state C*-mixed state
Tdual

< > —< . [B(H)

subalgebra-weak-closure subalgebra
l pre-dual
(2.6)
G"(A.,) CA.
W *-mixed state
N J
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2.1 The basic structure[A C A C B(H)]; General theory

Remark 2.4. In order to avoid the confusions, three “state spaces” should be explained in
what follows.

Fisher statistics ---pure state space:&P(A*): most fundamental
(D) “state spaces” C*-mixed state space:&™(A*) : easy

Bayes statistics
W*-mixed state space:S' (A,): natural, useful

In this note, we mainly devote ourselves to the W*-mixed state& (A,) rather than the C*-
mixed stateG™(A*), though the two play the similar roles in quantum language.

18 For further imformation see my homepage
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Chap. 2 Axiom 1 — measurement

2.2 Quantum basic structure|C(H) C B(H) C B(H)|] and
State space

If a conclusion is said previously, we say the following classification of (i.e., quantum state
space and classical state space):

(A)

General basic structure[A C A|p(m)
pure state space GP(A*)
C*-mixed state space &™(A*)
W*-mixed state space & (Ax)

(

(A;):Quantum basic structure[C(H) C B(H)|pm)
(= H))
)
)

pure state space GP(Tr(H)
C*-mixed state space &™(Tr(H)
W*-mixed state space &™(Tr(H)

(=Tr+1(H))
TTH( )

(Ay):Classical basic structure[Cy(£2) € L>(Q,v)|p(r2(aw))

pure state space €2
C*-mixed state space M1()

L W*-mixed state space L}H(Q,u)

In what follows, we shall explain the above classification (A):

) € B(H) € B(H)];

2.2.1 Quantum basic structure[C(H
In quantum system, the basic structure[A C A C B(H)] is characterized as

[C(H) € B(H) € B(H)] (2.7)
That is, we see:
- (B): Quantum basic structure:[C(H) C B(H) C B(H)] ~
Tr(H)
Tdual
c c
G(H> subalgebra-weak-closure B ( H) subalgebra B (H) (2 : 8)
pre-dual
Tr(H)
- J

Before we explain “compact operators class C(H)” and “trace class F(H)”, we have to
prepare “Dirac notation” and “CONS” as follows.
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2.2 Quantum basic structure[C(H) C B(H) C B(H)] and State space

Definition 2.5. [(i):Dirac notation] Let H be a Hilbert space. For any u,v € H, define |u)(v| €
B(H) such that

(lu) (v])w = (v, wyu  (Yw € H) (2.9)

Here, (v| [ resp. |u) | is called the “Bra-vector” | resp. “Ket-vector”].

[(i1):ONS(orthonormal system), CONS(complete orthonormal system)] The sequence {e}32; in a
Hilbert space H is called an orthonormal system (i.e., ONS), if it satisfies

1 (k=1j)
(ﬂl) <€k7€j> :{ 0 (k’#;)

In addition, an ONS {e; }72 , is called a complete orthonormal system (i.e., CONS), if it satisfies
(f2) (z,ex) =0 (Vk =1,2,...) implies that = 0.

Theorem 2.6. [The properties of compact operators class C(H)] Let C(H)(C B(H)) be the
compact operators class. Then, we see the following (C;)-(Cy) ( particularly, “(Cy)<> (Cy)”
may be regarded as the definition of the compact operators class C(H)(C B(H)) )

(Cy) T € C(H). That is,

e for any bounded sequence {u, }° ; in Hilbert space H, {Tu, }5°; has the subsequence

which converges in the sense of the norm topology.

(Cy) There exist two ONSs {ex}72; and {fr}?2, in the Hilbert space H and a positive real

sequence {A;}72, (where, limg oo Ay = 0 ) such that

T = Z Axlex) (frl (in the sense of weak topology) (2.10)
k=1
(C3) C(H)(C B(H)) is a C*-algebra. When T'(€ C(H)) is represented as in (Cs), the following
equality holds

1T B = max A (2.11)

(C4) The weak closure of C(H) is equal to B(H). That is,

C(H) = B(H) (2.12)
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Theorem 2.7. [The properties of trace class Tr(H)| Let Tr(H)(C B(H)) be the trace class.
Then, we see the following (3D;)-(Dy4)( particularly, “(D;)<> (D3)” may be regarded as the
definition of the trace class Tr(H)(C B(H)) ).

(Dy) T e Tr(H)(CC(H) C B(H)).

(Dg) There exist two ONSs {ex}72, and {fi}72, in the Hilbert space H and a positive real

sequence {\;}72, (where, > 27 Ay < 0o ) such that

T = Z Axlex) (frl (in the sense of weak topology)
k=1

(D3) It holds that

C(H)"=Tr(H) (2.13)
Here, the dual norm || - |le(s)+ is characterized as the trace norm || - ||z, such as
Iz = A (2.14)
k=1

when T'(€ Tr(H)) is represented as in (Ds),

(D4) Also, it holds that

TJr(H)* = B(H) in the same sense, Jr(H) = B(H). (2.15)

Remark 2.8. Assume that a Hilbert space H is finite dimensional, i.e., H = C", i.e., C" =

21
Z2
{z=1] .| |z €C,k=1,2,....,n}. Put
Tn
M(C,n) = The set of all (n X n)-complex matrices
and thus,

A=A=B(C")=C(H)=Tr(H)= M(C,n) (2.16)

However, it should be noted that the norms are different as mentioned in (Cj) and (Ds).
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2.2.2 Quantum basic structure[C(H) C B(H) C B(H)| and State space;

Consider the quantum basic structure:

[C(H) € B(H) € B(H)]

and see the following diagram:

- (E): Quantum basic structure and State space ~

SP(Tr(H)) c & (Tr(H)) C Tr(H)

C*-pure state C*-mixed state
Tdual
C -

C(H) — » |B(H)| ————|B(H)

7
subalgebra-weak-closure subalgebra

J{ pre-dual

&"(Tr(H)) c Tr(H)
W*-mixed state

\§ /

In what follows, we shall explain the above diagram.

Firstly, we note that
C(H)" =Tr(H), TJr(H)* = B(H) (2.18)
and
&"(Tr(H)) = " (Tr(H))
={p= i Anlen)(en| @ {en}n, is ONS | i)\n =1\, >0}
e (2.19)
Also, concerning the pure state space, we see:
&"(Tr(H))
={p=le)el : llellm =1} = Tri,(H) (2.20)
Therefore, under the following identification:

&P (Tr(H) > [u)(u| > weH (Ju]=1) (2.21)

identification

S (Tr(H) ={uc H : |ju] =1} (2.22)

where we assume the equivalence: u = eu (0 € R).
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Definition 2.9. Define the trace Tr : Tr(H) — C such that

Te(T) = i<€”’ Te,) (VT € Tr(H)) (2.23)

n=1

where {e, }2°, is a CONS in H. It is well known that the Tr(7") does not depend on the choice
of CONS {e, }°°,. Thus, clearly we see that

o (1)) F) oy = () (0] - F) = (uFu) - (Vllulln = 1,F € BH)  (2:24)
Remark 2.10. Assume that a Hilbert space H is finite dimensional, i.e., H = C". Then,

M (C,n) = The set of all (n x n)-complex matrices

That is,
fu fizo S
F= ffl f:” N f?” e M(C,n) (2.25)
fut a2 o fun
As mentioned before, we see
A=A=B(C")=C(H)=Tr(H)= M(C,n) (2.26)

and further, under the following notations:

fii 0 - 0
‘J'rfl((:”) = {diagonal matrixF’ = 0 f22 ‘ fur >0, Xn:fkk - 1}
0 0 fr.m h=l
fll o --- 0
Trf(Ccm) = {F = 0 f:22 e Trl (C™) ‘ frr =1 (for some k = j),=0 (k # ])}
00 L

We see,

mixed state space: Tr;(C") = {UFU* . FeTIr? (C"), U is a unitary matrix} (2.27)

—

pure state space: Jr%,(C") = {UFU* : F € Ir’7(C"), U is a unitary matrix} (2.28)
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2.3 Classical basic structure[Co(Q2) C L>(Q,v) C B(L*(Q,v))]

2.3 Classical basic structure[Cy(Q) C L>®(Q,v) C B(L*(Q,v))]

2.3.1 Classical basic structure[Cy(Q) C L>(Q,v) C B(L*(Q,v))]

In classical systems, the basic structure[A C A C B(H)] is restricted to the classical basic

structure:
[Co(Q) C L>®(Q,v) C B(L*(Q,v))]

And we get the following diagram:
~— (A): Classical basic structure: [Cy(Q2) € L>(Q,v) C B(L*(Q,v))] ————~

dual
g o g 2
OO(Q) subalgebra~weak—c10sure/ L (Q7 V) subalgebra B(L (Q’ V)) <229>
lpre—dual
LY (Q,v)
~ 4

In what follows, we shall explain this diagram.

2.3.1.1 Commutative C*-algebra C({2) and Commutative W*-algebra L>(,v)
Let €2 a locally compact space, for example, it suffices to image €2 as follows.

R(= the real line), R*(= plane), R"(= n-dimensional Euclidean space),

[a, b](= interval), finite setQ(= {w1, ...,wn})

(with discrete metric dp)
where the discrete metric dp is defined by dp(w,w’) =1 (w # '), =0 (w = ).

Define the continuous functions space Cy(£2) such that

Co(Q) ={f:Q— C| f is complex-valued continuous on 2, lim f(w) =0} (2.30)

w—o0

where “lim,, ., f(w) = 0" means

(B) for any positive real € > 0, there exists a compact set K (C 2) such that

{wlweQ\ K, [f(w)] > e} =0
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Therefore, if ) is compact, the, the condition “lim, o f(w) = 0” is not needed, and thus,
Co(2) is usually denoted by C(€2). In this note, even if 2 is compact, we often denote C'(€2) by
Co(£2).

Defining the norm || - ||¢,() in a complex vector space Cy(§2) such that
IF e = ma | ) (231)
we get the Banach space (CO(Q), I| - HCO(Q)).
Let © be a locally compact space, and consider the o-finite measure space (€2, Bg, /), where,

Bg, is the Borel field, i.e., the smallest o-field that contains all open sets. Further, assume that

(C) for any open set U C €2, it holds that 0 < v(U) = oo

&Note 2.1. Without loss of generality, we can assume that Q is compact by the Stone-Cech
compactification. Also, we can assume that v(Q) = 1.

Define the Banach space L"(€2, v) (where, r = 1,2, 00) by the all complex-valued measurable

functions f : 2 — C such that
[/l < o0
The norm || f|| -0, is defined by

[l @] (when r = 1,2

1Al zr ) = (2.32)

ess.sup| f(w)] (when r = 00)
wes

where
ess.sup,cq|f(w)| =supfa e R | v({w e 2 @ |f(w)|=a}) >0}

L™(€2,v) is often denoted by L"(€2) or L"(€2, B, V).

Remark 2.11. [C(Q) C L>=(Q,v) C B(L*(Q,v))] Consider a Hilbert space H such that
H = L*(Q,v)
For each f € L>(Q), define Ty € B(L*(Q2,v)) such that

LZ(va)5¢—>Tf(¢):f'¢€L2(Q7V)
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Then, under the identification:

L*(Q) > f <+— T;€ B(L*(Qv)) (2.33)

identification

we see that
f€L®Q)C B(L*Q,v))
and further, we have the classical basic structure:
[Co(Q) C L>®(Q) C B(L*(Q,v))] (2.34)

This will be shown in what follows.

Riese theorem (cf. [03]) says that
Co(2)* = M(Q2)(= the set of all complex-valued measures on (2 ) (2.35)

Therefore, for any F' € Cy(R2), p € Co(2)* = M(S2), we have the bi-linear form which is written

by the several ways such as

E) = o (P F )iy = s (P F iy = [ FlIpld) (2.36)

Also, the dual norm is calculated as follows.

lollesey = sup{lo(E) | Flleyey = 1} = sup | /

[1Fllcy =1
—_sup(|Relp(E)) ~ Relp(EDP + | Tm{p(D)) ~ Im(s(T%)) )”2
ol (2:37)

where, Z¢ is the complement of =, and Re(z)=“the real part of the complex number z”,
Im(z)="“the imaginary part of the complex number 2”.

Further, we see that
LYQ,v)* = L™(Q,v) in the same sense, LY(Q,v) = L™(Q,v),
Also, it is clear that
Co(2) C L=(Q,v)

For any f € L*>*(Q,v), there exist f,, € Co(2),n = 1,2, .. such that
v({w € Q[ limy o0 fu(w) # f(w)} =

o) < N fllze@y) (Vw e Q,Vn=1,2,3,...)
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Therefore, we see

lim / Falw) — F@)] - 6(w) Pr(dw) =0 (¥ € LA, 1))

| <
2(Qu) T n—oo

lim [(@, ( — fa)0)
n—oo L
Hence,
the weak closure of Cy(f2) is equal to L>(Q,v)
Then, we have the classical basic structure:

[Co(Q) C L™®(Q) C B(L*(Q,v))] (2.38)

Theorem 2.12. [Gelfand theorem (¢f. [86]) | Consider a general basic structure:
[ACAC B(H)

where it is assumed that A is commutative. Then, there exists a measure space (2, Bg,v)
(where € is a locally compact space) such that

A=Cy(Q), A=L>Q,v), B(H)= B(L*(Q,v))

where (2 is called a spectrum.

2.3.2 Classical basic structure[Cy(Q2) C L>(Q,v) € B(L*(,v))] and
State space

Consider the classical basic structure [Cy(Q) C L>®(Q,v) C B(L*(2,v))]. Then, we see the

following diagram:

s (D): Classical basic structure and State space ~
ML) © Ma@)  © M©)
(=~Q) (probability measure)
C*-pure state C*-mixed state
Tdual
)| o Q)] e [BE(Q)
subalgebra subalgebra
weak-closure
l pre-dual
(2.39)
L () c L'(Q,v)
(probability density function)
W*-mixed state
N J
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In the above, the mixed state space &™(Cy(€2)*) is characterized as

™ (Co(2)") ={p € M(Q) : p =0, [pllwe) =1}
={p € M(Q2) : p is a probability measure on 2 }
::M+1(Q) (2.40)

Also, the pure state space GP(Cy(£2)*) is

&7 (Co(2)7)
={p =6,, € GP(Co(2)") : by, is the point measure at wy(€ ), wy € 2}
=M",(Q) (2.41)

Here, the point measure d,, € M({) is defined by

/Q F(@)bun(d) = Flwn)  (Vf € Co(€))

Therefore,

M2, (Q) = 67(Co(R)7) 36, +— wen (2.42)

identification
Under this identification, we consider that
SP(Co()7) = Q2
Also, it is well known that
LY(Q,v)* = L™(Q,v)
Therefore, the W*-mixed state space is characterized by

LL@w) = {f e D@) : 720, [ flwds) =1}
= the set of all probability density functions on 2 (2.43)

Remark 2.13. [The case that Q is finite: Co(Q) = L>=(Q,v), M(Q2) = L' (2, v) ] Let Q be a
finite set {wy,ws, ...,w,} with the discrete metric dp and the counting measure v. Here, the

counting measure v is defined by

v(D) = t[D](= “the number of the elements of D”)
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Then, we see that

Co(Q) ={F :Q — C| Fis a complex valued function on Q} = L>(Q, v)

And thus, we see that

k=1 k=1

and
felh@n) e S =1 fw) 20
k=1
In this sense, we have the following identifications:
Mia(Q) = L1, (Qv)  (or, M(Q) = LY(Q,v))

After all, we have the following identification:

where the norm || - ||y in the former is defined by
21
29 n
2llco) = max n|zk| Vz=] .| €C
Tn
and the norm || - [|a¢q) in the latter is defined by
21
Izl =D ol V2= | eC
k=1 :
xn

(2.44)

(2.45)

(2.46)
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2.4 State and Observable—the primary quality and the
secondary quality—

2.4.1 1In the beginning

Our present purpose is to learn the following spell (= Axiom 1) by rote.

r (A): Axiom 1(pure measurement)(cf. This will be able to be read in [§2.7)) | ~

With any system S, a basic structure [A C AJ B(#) can be associated in which measurement
theory of that system can be formulated. In [A C Al B(H), consider a I/ *-measurement

Mz(0=(X,F, F),S,) (or, C*-measurement M, (O=(X, ., F), S|, ) That is, consider
e a IV*-measurement MZ(O,SM) ( or, C*-measurement MA(O:(X, F, F),S[p]) > of
an observable O=(X, ¥, F) for a state p(€ GF(A*) : state space)
Then, the probability that a measured value z (€ X) obtained by the W*-measurement
MZ(O, SM) ( or, C*-measurement My (O:(X, F,F), S[p]) ) belongs to = (€ F) is given by
p(F(Z))(= a<(p, F(E))z)

(if F(Z) is essentially continuous at p, or see Definition 2.14] ).

\§ /

The “learning by rote” urges us to understand the mathematical definitions of

(t1) Basic structure[A C A]p ), state space &P(A*)
(#2) observable O=(X,J, F), etc.

In the previous section, we studied the above (f#;), that is, we discussed the following clas-

sification:

(B) General basic structure[A C Al]pm)
state space [6P(A*),6™ (A*),6" (A.)]

( Quantum basic structure[C(H) C B(H)]pm)
]

—=m

state space [6P(Tr(H)),6™(Tr(H))=6 " (Tr(H))

Classical basic structure[Cy(€2) € L*®(2, )] pr20,0))
. state space [Q,M41(Q),L>°(Q,v)]

In this section, we shall study the above (#2), i.e.,

“Observable”
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Recall the famous words: “the primary quality” and “the secondary quality” due
to John Locke, an English philosopher and physician regarded as one of the most influential
of Enlightenment thinkers and known as the “Father of Classical Liberalism”. We think the
following correspondence:

{ [state] <— [the primary quality] (2.47)

[observable] «— [the secondary quality]
And thus, we think

e These (i.e., “state” and “observable”) are the concepts which form the basis of dualism.

Also, the following table (which may include my fiction ) promotes the better understanding

of quantum language as well as the other world-views( i.e., the conventional philosophies).

Table 2.1:  Observable - State - System in world-views (cf. Table 3.1))

World description\ Quantum language H observable ‘ state ‘ system ‘
Plato idea / /
Aristotle / eidos hyle
Locke secondary quality primary quality /
Newton / state point mass
statistics / parameter population
quantum mechanics observable state(~ wave function) particle

ANote 2.2. It may be understandable to consider
“observable” =‘“the partition of word” =*the secondary quality” (2.48)

For example, Chapter 1 (Figure 1.2)) says that ( fe fh) is the partition between “cold” and
Mhot”'
f c f h

0 10 20 30 40 50 60 70 80 90 100
Chapter 1 (Figure 1.2): Cold or hot?

Also, “measuring instrument” is the instrument that choose a word among words. In this sense,

we consider that “observable” = “measurement instrument”. Also, The reason that John Locke’s
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”»

sayings “primary quality (e.g., length, weight, etc.)” and “secondary quality (e.g., sweet, dark,
cold, etc.)” is that these words form the basis of dualism.

2.4.2 Dualism (in philosophy) and duality (in mathematics)

The following question may be significant:
(C1) Why did philosophers continue persisting in dualism?
As the typical answer, we may consider that

(Cy) “I” is the special existence, and thus, we would like to draw a line between “I” and

“matter”.

But, we think that this is only quibbling. We want to connect the question (C;) with the

following mathematical question:
(C3) Why do mathematicians investigate “dual space”?

Of course, the question “why?” is non-sense in mathematics. If we have to answer this, we have

no answer except the following (D):
(D) If we consider the dual space A*, calculation progresses deeply.

Thus, we want to consider the relation between the dualism and the dual space such as

[the primary quality] — <— the state in the dual space A* (2.49)
[the secondary quality] <— the observable in C* algebra A (or, W*-algebra A) '
Thus, we consider that the answer to the (C;) is also “calculation progresses deeply”.
2.4.3 Essentially continuous
In §2.1.2) we introduced the following diagram:
- (E):General basic structure and state space ~
SP(A*) C &MA*) C A*
C*—purestate C*-mixed state
Tdual
C — C
= > —— | B(H
subalgebra-weak-closure subalgebra ( )
l pre-dual
(2.50)
S"(A,) CA,
W*-mixed state
- /
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In the above diagram, we introduce the following definition.

Definition 2.14. [Essentially continuous (cf. ref. [34] ) ] An element F(€ A) is said to be
essentially continuous at py(€ GP(A*)), if there uniquely exists a complex number « such
that

(F1) if p, (€ &"(A,)) weakly converges to po(€ &(A*)) (That is, lim, e, (pn,G>A =
A+ (Po, G)A (VG € A(C A) ), then lim,_,o i (pn, F)Z =«

Then, the value po(F) (= 4 (po, F)I) is defined by the o

Of course, for any po(€ GP(A*)), F(€ A) is essentially continuous at py.
This “essentially continuous” is sometimes used in th case that po(€ &™(A*)).

Remark 2.15. [Essentially continuous in quantum system and classical system]

I]: Consider the quantum basic structure [C(H) C B(H)|pu). Then, we see

(C(H))" = Tr(H) = B(H).

Thus, we have p € &P(C(H)*) C Tr(H), I € C(H) = B(H), which implies that

p(G) = ey~ (P, F))B(H) = Tr(H) (,0, F))B(H) (2.51)

Thus, we see that “essentially continuous” < “continuous” in quantum case.
T1]: Next, consider the classical basic structure [Co(Q2) C L>(Q2,v) C B(L*(2,v))]. A function
F (€ L*(Q,v)) is essentially continuous at wy (€ Q = &P(Cy(2)*)), if and only if it holds that

(Fs) if pn(€ L (2, v) satisfies that

lim | G(w)p,(w)v(dw) = G(wp) (VG € Cph(Q2))

n—o0 0

then there uniquely exists a complex number « such that

lim /QF(w)pn(w)V(dw) =« (2.52)

n—o0

Then, the value of F'(w) is defined by «, that is, F'(wy) = «a.
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./_\;/

0 w1 5

(©,v)
Figure 2.1: not essentially continuous at wy,  essentially continuous at ws

[IT1]: In quantum system, as seen in Supplement (§ 2.4.5]), we see that

(i) if T, — |e)(e] in the sense of weak™ toplology of Tr(H) (where T,, > 0 and ||, |5y = 1),

then T,, — |e)(e| in the sense of norm || - ||5-(z) toplology.
On the other hand, in classical system, it is clear that

(ii) even if p, — ., in the sense of weak* toplology of M(Q) (where p,, € L' (2,v) C M(Q),
pn > 0 and ||pn|law@) = 1), it is not guaranteed that p, — d,, in the sense of norm

| - [lae) toplology.

We think that the theoretical difficulty of classical systems is due to the above reason.

2.4.4 The definition of “observable (=measuring instrument)”

In this section, we introduce “observable”, which is also said to be “measuring instrument” or
“POVM (=positive operator valued measure space)”.

Definition 2.16. [Set ring, set field, o-field] Let X be a set ( or locally compact space). The
3"( C2¥ =P(X)={A| AC X}, the power set of X) (or, the pair (X, J)) is called a ring (
of sets), if it satisfies that

(a) : O(=“empty set”) € T,
b):ZeF (i=12..)=|)SeF [|=eT
i=1 i=1
(C) : 51,52 € 3::>51\EQ eF (Where, El\EQ = {l’ ’ T € El,iL' ¢ EQ})

Also, if X € F holds, the ring F(or, the pair (X,F)) is called a field (of sets).
And further,

(d) if the formula (b) holds in the case that n = oo, a field F is said to be o-field. And the
pair (X, ) is called a measurable space.
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The following definition is most important. In this note, we mainly devote ourselves to the
W*-observable.

Definition 2.17. [Observable,measured value space]  Consider the basic structure

[ACACB(H)

(G1):C*- observable

A triplet O=(X, R, F) is called a C*-observable (or, C*-measuring instrument ) in A,
if it satisfies as follows.

(i) (X,R) is a ring of sets.
(ii) amap F : R — A satisfies that

(@) 0SF(E)<I (VEeR), F(0) =0,
(b) for any p(€ &P(A*)), there exists a probability space (X, R, P,) such that
(where, R is the smallest o-field such that R C R) such that

W (PFE) =PE)  (EeR) (2.53)

Also, X [resp. (X,F,P,)] is called a measured value space [resp. sample probability
space |.
(G2):W*- observable

A triplet O=(X,J, F) is called a W *-observable (or, W*-measuring instrument ) in A,
if it satisfies as follows.

(i) (X,9) is a o-field.
(ii) amap F:JF — A satisfies that
(a) 0SF(E) (Vz=e3),F0)=0,F(X)=1I
(b) for any 5(€ & (A,)), there exists a probability space (X, JF, P;) such that
. (p, F(E))ﬁ =PZ) (V=€) (2.54)
The observable O=(X,J, F') is called a projective observable, if it holds that

FE?*=FE (V29

In this note, we aways assume Hypothesis 2.19 below:

Definition 2.18. Let p € @™(A*), and (X, F, F) be a W*-observable in A. F, = {Z € F |
F(Z) is essentially continuous at p }. The probability space (X,J, P,) is called its sample
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probability space, if it holds that

(f1) T is the smallest o-field that contains F,.

(f2)

o (P F@);=FRE (=T, (2.55)

Concerning the C*-observable, the sample probability space clearly exists. On the other
hand, concerning the W*-observable, we have to say something as follows. As mentioned in
Remark 2.15, in quantum cases ( thus, A* = Tr(H) = A, ), the (#;) and (42) clearly hold.
However, in the classical cases, we do not know whether the existence of the sample probability
space follows from the definition of the W*-observable. Thus, in this note, we do not add the

condition (f) in the definition of the W*-observable.

Hypothesis 2.19. [Sample probability space]. In the above situation, the existence of the
sample probability space is always assumed.

2.4.5 Supplement

Concerning Remark 2.15] [I1I], we add Lemma A and Theorem B as follows.

Lamma A Let H be a Hilbert space. Put B(H) := {T | T : H — H is a bounded linear
operator}. Let C(H)(C B(H)) be a class of all compact operators. Let T'(H)(C B(H)) be a
trace class. Note that it holds that

C(H)* = Tr(H), Tr(H)* = B(H)
Let e € H such that |le||y = 1. Let T' € Tr(H) such that
T2>0, |T||5r(ery) = 1
Put € := 1 — (e, Te). Then, it hold that
1T — le)(elllgrmy < 2€+ 2v/e
Proof. Put P = |e)(e|, then, we see that

1T = le){elllsry = |1 = P+ P)T(I = P+ P) = Pllg(a)
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<||(I = P)T(I = P)||grcery + |( = P)TP|lgp(rry + |PT(I = P)l|gp(rry + |PTP — Pl|3r(m)
=S+ S+ I3+ Js

Next, we estimate each J;(i = 1,2,3,4) as follows.

J, = Trl(I — PYT(I — P)] = Tr[T] — Tr[PT(I — P)] — T+[(I — P)TP] + Tr[PTP]
=Tr[T|—Tr[PTP]=1— (e|Te) =¢

since Tr[PT(I — P)] = 0 = Tr[({ — P)TP]. Putting £ = Te — (e|Te)e(e H), we see that
(€le) = 0. Thus, we see, by the definition of trace, that

<6|T€> + <m m

) <Tr(T) =
Hence,
€113 = (€1€) = (€|Te — (elTehe) = (€]Te) < (€TE)(e|Te)'’? < Vel€luv1 —e
which implies that [|£]|y < /€. Therefore,
Jo = |I(I = PYT Py = 1€l - llellr = 1€l < Ve
since (I — P)TP = (I — P)T|e){e| = |£)(e|. Similarly, we see
Js < Ve

Also, since PTP — P = ({e|Te) — 1)P = —€P,

Ji = IPTP = Pllzwn < ¢
Therefore, we see that

1T — |e)elllgr < J1+ Ja+ Js + Jy < 26+ 24/e

[
Theorem B Let H be a Hilbert space. Put B(H) := {T' | T : H — H is a bounded linear
operator}. Let C(H)(C B(H)) be a class of all compact operators. Let T(H)(C B(H)) be a
trace class. Note that it holds that

C(H)"=Tr(H), Jr(H)"=B(H)
Let e € H such that |le||y = 1. Let T,, € Tr(H)(n = 1,2, ...) such that
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If T,, — |e)(e| in the sense of weak* topology in Tr(H), then it hold that
Tim 1T — fe) el vy = 0
Proof. Since we assume that T,, — |e)(e| in the sense of weak* topology in Tr(H ), then
(elTue) — 1 = Tr{(Ty — le){eDledel] — 0 (n —> o0)

Thus Lemma A is applicable. This completes the proof. O
Remark C The above proof was taught by Prof. Takeshi KATSURA ( Dept. math. Keio

university). I am thankful to him.
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2.5 Examples of classical observables

We shall mention several examples of classical observables. The observables introduced in
Example 2.20-Example 2.23] are characterized as a C*- observable as well as a W*- observable.

In what follows (except Example [2.20)), consider the classical basic structure:

[Co(Q) € L>®(Q,v) C B(L*(Q,v))]

Example 2.20. [Existence observable | Consider the basic structure:
[ACAC B(H)]
Define the observable O(*) = (X, {0, X'}, F*V) in TW*-algebra A such that:
FENQ)y =0, FEV(X)=T (2.56)

which is called the ezistence observable (or, null observable).

Consider any observable O = (X, J, F) in A. Note that {(), X} C F. And we see that

Thus, we see that (X, {0, X}, F©9) = (X, {0, X}, F'), and therefore, we say that any observable
O = (X, T, F) includes the existence observable O

ANote 2.3. The above is associated with Berkley’s words:
(#1) To be is to be perceived (by George Berkeley(1685-1753))
which is peculiar to dualism: This is opposite to Einstein’s saying in monism :
(#2) The moon is there whether one looks at it or not. (i.e., Physics holds without observers.)

in Einstein and Tagore’s conversation. (cf. Note [12.2),

Example 2.21. [The resolution of the identity /; The word’s partition] Let [C(£2) C L>*(Q2,v) C
B(L?(2,v))] be the classical basic structure. We find the similarity between an observable O
and the resolution of the identity I in what follows. Consider an observable O = (X, F) in
L*>(Q) such that X is a countable set (i.e., X = {x1,29,...}) and F = P(X) ={= | E C X},
i.e., the power set of X. Then, it is clear that
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(i) F({zx}) >0 forall k =1,2, ..

(i) > pn[F{zeb)]w) =1 (Vwe),

which imply that the [F({zx}) : k= 1,2,...] can be regarded as the resolution of the identity
element I. Thus we say that

e An observable O ( = (X,7,F) ) in L*(2) can be regarded as

“ the resolution of the identity /

(F({a1 D)) F (a1 () [F({z3})](w)

Q
100
Figure 2.2: 0= ({x1,$2’x3}7 2{:131,3327323}7 F)

In Figure 2.2, assume that Q = [0,100] is the axis of temperatures ( °C), and put X =
{C(=“cold”), L (=“lukewarm” = “not hot enough”), H(=*“hot”) }. And further, put f,, = fc,
Jes = fL, fus = fu. Then, the resolution {f.,, fi,, fus } can be regarded as the word’s partition
C(=“cold”), L(="“lukewarm”=‘“not hot enough”), H(=*“hot”) .

Also, putting

9:<: 2X) = {Q’ {xl}’ {xZ}’ {x3}7 {xla I2}7 {1‘2, w3}’ {xlv :L‘3}, X}

and

=

=

~~
S

S~—
I

0, [F(X)w) = for (@) + far (W) + fay (w) = 1

for (@), [F({Dl(w) = fo, (), [F({zs})](w) = fas(w)
for (@) + far (W), [F({z2, 23})](W) = for (@) + fr5(w)
Jor (@) + fas (W)

—
8
-
—
=
—~
&
S~—
Il

)
{1, 23})](w)

then, we have the observable (X, F(= 2%), F') in L*>([0, 100]).
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Example 2.22. [Triangle observable | Let [C(2) € L>(Q,v) C B(L*(Q2,v))] be the classical
basic structure. For example, define the state space 2 by the closed interval [0,100] (C R).
For each n € NiJ® = {0,10,20,...,100}, define the (triangle) continuous function g, : 2 — R
by

(0 (0L w<=n-—10)
—n—10
@) d 7;0 (n—10 S w < n) (257
_Y 7;0+ (n<w<n+10)
0 (n 410 < w < 100)

Figure 2.3: Triangle observable

Putting Y = N1 and define the triangle observable 0% = (Y,2Y, F*) such that

[FEO)w) =0,  [FA(Y)](w) =1

[FAM)w) =Y galw) (VT €2'8)

nel’

Then, we have the triangle observable 0% = (Y (= N1%),2¥, F2) in L*°([0, 100]).

Example 2.23. [Normal observable]

L2
_ ————€ 20
Yy V2no?

Y

] T 2 x

:—O'
95.4

Figure 2.4: Error function

Consider a classical basic structure [Co(2) € L*(Q,v) C B(L*(Q,v))]. Here, Q = R(

the real line) or, Q@ = interval [a,b] (C R), which is assumed to have Lebesgue measure v/(dw)(
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dw). Let o > 0, which is call a standard deviation. The normal observable Oq,=(R, Bg, G,)
in L>°(Q,v) is defined by

1 z—w)?
G @) = 7o / e~“%7dr (V2 € Br(Borel field), Yw € Q(= R or [a, b]))
ToO =

This is the most fundamental observable in statistics.

The following examples introduced in Example 2.24] and Example [2.25] are not C*- observ-
ables but W¥*- observables. This implies that the W*-algebraic approach is more powerful than
the C*-algebraic approach. Although the C*-observable is easy, it is more narrow than the W*-

observable. Thus, throughout this note, we mainly devote ourselves to W*-algebraic approach.

Example 2.24. [Exact observable | Consider the classical basic structure: [Cy(2) C L>®(Q2,v) C
B(L?(Q,v))]. Let Bg be the Borel field in Q, i.e., the smallest o-field that contains all open
sets. For each = € Bg, define the definition function y. : 2 — R such that
1 (wez)
X=(w) = (2.58)
0 (w¢=)
Put [F&(2)](w) = xz=(w) (2 € Bo,w € ). The triplet 0 = (Q, Bq, F(&) is called
the ezact observable in L>(€,v). This is the W*-observable and not C*-observable, since
[F(e®)(Z)](w) is not always continuous. For the argument about the sample probability space

(cf. Definition [2.18] ), see Example 2.33.

Example 2.25. [Rounding observable] Define the state space 2 by Q = [0,100]. For each
n € N19°={0,10, 20, ...,100}, define the discontinuous function g, : 2 — [0, 1] such that
0 (O=w=n-5)

golw)=¢ 1 (n=5<w=n+5H)
0  (n+5<w < 100)

190 J10 920 950 gso 990  g100

0 10 20 30 40 50 60 70 80 90 100

Figure 2.5: Round observable
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Define the observable Ogxp = (Y (=NiJ), 2Y, Gryp) in L>®(£, v) such that

[Grvo(D)](w) =0, [Grun(Y)](w) =1
(Gro M) =Y gn(w) (VT €27 = 2"

nel’

Recall that g, is not continuous. Thus, this is not C*-observable but W*-observable.
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2.6 System quantity — The origin of observable

In classical mechanics, the term “observable” usually means the continuous real valued
function on a state space (that is, physical quantity). An observable in measurement theory
(= quantum language ) is characterized as the natural generalization of the physical quantity.

This will be explained in the following examples.

Example 2.26. [System quantity] Let [Co(Q) C L=(Q,v) C B(L*(Q,v))] be the classical
basic structure. A continuous real valued function f: 2 — R ( or generally, a measurable
R™-valued function ]7 : 0 — R" ) is called a system quantity (or in short, quantity) on €.
Define the projective observable O = (R, Bg, F') in L*(2, v) such that

1 whenw e f1(2)

[FE)(w) = N (V= € Bg)
0 whenw ¢ f712)

Here, note that

N2

For = Jim 3 2 [F (15| @) = [AF@e) (2.59)

N—o0
n=—N2

Thus, we have the following identification:

7 «— 0= (R,Bg, F) (2.60)

(system quantity on ) (projective observable in L (Q,v))

This O is called the observable representation of a system quantity f Therefore, we say that

(a) An observable in measurement theory is characterized as the natural generalization of the

physical quantity.

Example 2.27. [Position observable , momentum observable , energy observable ]  Consider
Newtonian mechanics in the classical basic algebra [Co(©2) C L*(Q,v) C B(L>*(Q,v))]. For

simplicity, consider the two dimensional space
Q =R, x R,={(¢,p) = (position, momentum) | ¢,p € R}

The following quantities are fundamental:

(1) :7: Q2 =R, q(¢,p) =q¢ (V(q,p) € Q)
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(f2) D: Q =R, plg,p) =p (Y(g,p) € Q)

(#3) € : Q = R, ¢(q, p) =[potential energy | + [kinetic energy |
2

=U(q) + 5~ (Wap) Q)

(Hamiltonian)

where, m is the mass of a particle. Under the identification (2.60]), the above (#1), (#2) and (f3)

is respectively called a position observable, a momentum observable and an energy observable.
Example 2.28. [Hermitian matrix is projective observable | Consider the quantum basic struc-
ture in the case that H = C", that is,

[B(C") € B(C") € B(C")]

Now, we shall show that an Hermitian matrix A(€ B(C")) can be regarded as a projective

observable. For simplicity, this is shown in the case that n = 3. We see (for simplicity, assume
that x; # x,(if 7 # k) )

I 0 0
A=U"|0 o 0|U (2.61)
0 0 T3

where U (€ B(C?)) is the unitary matrix and z; € R. Put

Fa({z}) =U" U, Fa({ze}) =U"

o O O
S = O

]U,

Thus, we get the projective observable O4 = (R, Bg, Flx) in B(C?). Hence, we have the

SO O O O

Fa({zs}) = U”

SO o O oo
— o OI o o o
O OO O O O

o o O
o o O

U FA(R\{ZEl,ZL'Q,SL'g}) = [

following identification®:

A — OA = (R, 'BR, FA) (262)

(Hermitian matrix) (projective observable )

2 For example, in the case that z; = x4, it suffices to define

100 000
Fa{z})=U*|0 1 0|U, Fa({zs})=U"|0 0 0
00 0 00 1

0 0 O
U FA(R\{LL’l,ZCg}) = [0 0 0]
0 0 1

And, we have the projection observable O4 = (R, Bg, Fa).
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Let A(e B(C")) be an Hermitian matrix. Under this identification, we have the quantum

measurement Mpcn)(O4, Sp,), where

p=lo)wl, w=1| . |eC|w[=1
Wn

Born’s quantum measurement theory (or, Axiom 1 (§2.7)) ) says that

(1) The probability that a measured value z(€ R) is obtained by the quantum measurement
Mp(c)(Oa, Sy is given by Tr(p - Fa({x})) (= (w, Fa{z})w) ).

(for the trace: “Tr”, recall Definition [2.9)).

Therefore, the expectation of a measured value is given by
/x(w,FA(dzz)w> = (w, Aw) (2.63)
R
Also, its variance (§4)? is given by

(537 = [ (o= o A Fa(de)) = (Ao, As) = [, Aw)
= [I(4 — {w, Aw))w||* (2.64)
Example 2.29. [Spectrum decomposition] Let H be a Hilbert space. Consider the quantum
basic structure
[C(H) C B(H) C B(H)].
The spectral theorem (cf. [93]) asserts the following equivalence: ((a)< (b)), that is,
(a) T is a self-adjoint operator on Hilbert space H
(b) There exists a projective observable O = (R, Bg, F') in B(H) such that
T = /OO AF(dN) (2.65)

—00

Since the definition of “unbounded self-adjoint operator” is not easy, in this note we regard the

(b) as the definition. In the sense of the (b), we consider the identification:

self-adjoint operator T <—  spectrum decomposition O = (R, Bg, F') (2.66)

identification
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This quantum identification should be compared to the classical identification (2.60]).
The above argument can be extended as follows. That is, we have the following equivalence:

((c)<(d)), that is,

(c) Ty, Ty are commutative self-adjoint operators on Hilbert space H

~

(d) There exists a projective observable O = (R? Bge, () in B(H) such that

T1 :/ )\1G<d)\1d)\2), T2 :/ /\QG(d/\ld)\Q) (267)
R2 R2
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2.7 Axiom 1 — No science without measurement

Measurement theory (= quantum language ) is formulated as follows.

[Axiom 1] [Axiom 2] [quantum Tinguistic interpretation]|
e | measurement theory‘ :=| Measurement | + ’ Causality‘—i— ’Linguistic interpretation
(=quantum language) (cf. [§2.7) (cf. §10.3) (¢f. §31)
a kind of spells (a priori judgment) manual to use spells

Now we can explain Axiom 1 (measurement).

2.7.1 Axiom 1 for measurement

With any system S, a basic structure [A C A C B(H)] can be associated in which measure-
ment theory of the system can be formulated. A state (or precisely, pure state) of the systemsS
is represented by an element of state space SP(A*). An observable (= measuring instrument)
is represented by a C*-observable O = (X, 7, F) in A ( or, W*-observable O = (X,J, F) in A
).

(A1) An observer takes a measurement of an observable [O] for a state p, and gets a measured

value z(€ X).

In a basic structure [A C A C B(H)], consider a W*-measurement Mz (0=(X,F, F), S}
< or, C*-measurement My (O:(X, F,F), S[p]) )

Preparation 2.30. Consider

e a W*-measurement I\/II(O,SM) < or, C*-measurement My (O:(X, F, F),S[p}) ) of an
observable O=(X, F, F) for a state p(€ GP(A*) : state space)

Note that
(As) W*-measurement Mz(0O,Sy,) -+ O is W*- observable , p € GP(A*)
2 C*-measurement M4(O, Sy,)) --- O is C*- observable , p € GP(A*)

In this lecture, we mainly devote ourselves to W*-measurements.
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- (B): Axiom 1(measurement) pure type ~

(This can be read under the preparation to this section )

With any system S, a basic structure [A C AJ B(H) can be associated in which measurement
theory of that system can be formulated. In [A C Al B(H), consider a 1/ *-measurement

MZ(O:(X, F,F), S[p}) (or, C*-measurement My (O:(X, FF), S[p]) > That is, consider

e a IW*-measurement MZ(O,S[,,]) ( or, C*-measurement MA(O:(X, F, F),S[p]) ) of
an observable O=(X, JF, F) for a state p(€ GP(A*) : state space)

Then, the probability that a measured value x (€ X) obtained by the W*-measurement
Mz (0, S) ( or, C*-measurement My (O=(X,J, F), S ) belongs to = (€ ¥F) is given by

p(F(E)(= a-(p, F(Z))z)

(if F'(Z) is essentially continuous at p, or see Definition 2.14) ).

. J

This axiom is a kind of generalization (or, a linguistic turn) of Born’s probabilistic inter-
pretation of quantum mechanics. ¥ That is,

(the law proposed by Born)

quantum mechanics (Born’s quantum measurement )

linguistic turn
(physics)

(a kind of spell)

measurement theory (Axiom 1) (2.68)

(metaphysics, language)

ANote 2.4. The above axiom is due to Max Born (1926). There are many opinions for the term
”probability”. For example, Einstein sent Born the following letter (1926):

(#1) Quantum mechanics is certainly imposing. But an inner voice tells me that it is not yet
the real thing. The theory says a lot, but does not really bring us any closer to the secret
of the ”old one.” I, at any rate, am convinced that He does not throw dice.

From a viewpoint of quantum mechanics, I want to believe that both Born and Einstein are
right. That is because I assert that quantum mechanics is not physics.

2.7.2 A simplest example

Now we shall describe Exampldl.2] ( Cold or hot?) in terms of quantum language (i.e.,
Axiom 1 ).

3 Ref. [6]: Born, M. “Zur Quantenmechanik der StoBprozesse (Vorliufige Mitteilung)”, Z. Phys. (37)
pp.863-867 (1926).
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Example 2.31. [(continued from Exampldl.2) The measurement of “cold or hot" for water in a
cup | Consider the classical basic structure:

[Co(€) € L=(,v) € B(L*(2,v))]

Here, 2 = the closed interval [0,100](C R) with Lebesgue measure v. The state space
GP(Cy(2)*) is characterized as

GP(Cy(Q)") = {6, € M(Q) | w € Q} ~ Q = [0, 100]

fc fh

0C 10°C 20°C 30°C 40°C 50°C 60°C 70°C 80 °C 90°C 100C
Figure 2.6: Cold? Hot?

In Example [[2] we consider this [C-H]-thermometer O = (f, f,), where the state space 2 =
[0,100], the measured value space X = {c¢, h}. That is,

1 (0 £ w = 10)
fllwy=¢ B2 (1W0=Zw=ST70) ,  fulw) =1— fo(w)
0 (70 < w < 100)
Then, we have the (cold-hot) observable O, = (X,2%, F,;) in L>(£2) such that
[Fon(0))(w) = 0, [Fon(X)](w) =

[Ean({eD)](w) = fe(w), [Fen({h})](w )— fn(w)

Thus, we get a measurement Mpoo(q)(Ocn, Ss,)) ( or in short, Mze(q)(Och, Sy). Therefore,
for example, putting w = 55 °C, we can, by Axiom 1 (§2.7)), represent the statement (A;) in
Example [1.2 as follows.

(a) the probability that a measured valuex(€ X={c, h}) obtained by measurement

? } {Fmg?]}(i?) T :

c . F.,({cH)](55) = 0.25

M0 (2)(Ocn, Spw(=355)) belongs to set () is given by [FC:({h})](E)S) 075
{c. h} [Fen({c, h})](55) =

Or more precisely,

(b) When an observer takes a measurement by [[C-H]-instrument]
measuring instrumentO.,=(X,2X ,F.;)

for [water in cup] with  [65 °C] , the probability that measured value
(system(measuring object)) (state(=w € Q) )

c . . . . fc(55) =0.25
[ L 1 is obtained is given by { fn(55) = 0.75 ]
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2.8 Examples: Classical measurements (urn problem,
etc.)

2.8.1 linguistic world-view — Wonder of man’s linguistic compe-
tence

The applied scope of physics physics (realistic world-description method) is rather clear.
But the applied scope of measurement theory is ambiguous.
What we can do in measurement theory (= quantum language) is

(a1): Use the language defined by Axiom 1 ( [§2.7)

(a)

(ag): Trust in man’s linguistic competence

Thus, some readers may doubt that
(b) Is it science?

However, it should be noted that the spirit of measurement theory is different from that of

physics.

2.8.2 Elementary examples—urn problem, etc.

Since measurement theory is a language, we can not master it without exercise. Thus, we

present simple examples in what follows.

Example 2.32. [ The measurement of the approximate temperature of water in a cup (continued

from Exampld2.22 [triangle observable |)]  Consider the classical basic structure:
[Co(©2) € L=(Q,v) € B(L*(Q,v))]

where Q2 = “the closed interval [0,100]” with the Lebesgue measure v.

Let testees drink water with various temperature w °C (0 = w = 100). And you ask them
“How many degrees( °C) is roughly this water?” Gather the data, ( for example, h,(w) persons
say n °C (n = 0,10,20,...,90,100). and normalize them, that is, get the polygonal lines.
For example, define the state space 2 by the closed interval [0,100] (C R) with the Lebesgue
measure. For each n € NJJ° = {0,10,20,...,100}, define the (triangle) continuous function
gn : 2 — [0,1] by

0 (0= w<=n-—10)
—n—10
) % (n—10=w=n)
In\W) = - 10
—% (n<w<n+10)
0 (n+10 < w < 100)
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1 goo 9100

0 10 20 30 40 50 60 70 80 90 100
Figure 2.7: Triangle observable

(a) You choose one person from the testees, and you ask him/her “How many degrees( °C) is
“about 40 °C”

. o . L
roughly this water?”. Then the probability that he/she says { “about 50 °C” } is given

o [ 20040 =020 ]

This is described in terms of Axiom 1 ([§2.7)) in what follows.
Putting Y = N1 define the triangle observable 0% = (Y, 2¥,G*) in L*°(Q) such that

[G2@)(w) =0,  [G2(V)](w) =1
[GAD)(w) =Y gnl(w) (VI € 2Y18" vw € Q = [0, 100))
nel’
Then, we have the triangle observable 02 = (Y (= NiJ%),2Y G#) in L>=([0,100]). And we get
a measurement M« )(0%,Ss,]). For example, putting w=47 °C, we see, by Axiom 1 ([§2.7)),
that
(b) the probability that a measured value obtained by the measurement My (q)(0?, Sj,(=a7))

.| about 40°C | . | [G2({40})](47) = 0.3
is [ about 50 °C 1 is given by [ (GA({501)](47) = 0.7

Therefore, we see:

statement (a)| ——— |statement (b) (2.69)

translation
(ordinary language) (quantum language)

/1]

Example 2.33. [Exact measurement] Consider the classical basic structure:

(Co(Q) € L=(Q,v) € B(LA(S,v))]
Let Bq be the Borel field. Then, define the exact observable 0®® = (X (= Q), F(= Bg), F(&)
in L>(2,v) such that

[FED(E) (W) = xe(w) = ~ (VE € Bo)

Let 6., ~ wo(€ Q). Consider the exact measurement Mo (q (O, Sis.,))- Here, Axiom 1 (
62.7)) says:
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(a) Let D(C Q) be arbitrary open set such that wy € D. Then, the probability that a
measured value obtained by the exact measurement M Loo(QJ,)(O(exa), S[(gwo}) belongs to D

is given by
Co(Q)* <5w07 XD>LO<>(Q,V) =1

From the arbitrariness of D, we conclude that

(b) a measured value wy is, with the probability 1, obtained by the exact measurement
Mo () (O, Sps, ).

though (X, F, [ (.)](wp)) is not a probability space.
Further, put

Fuo ={E€F : wy ¢ “the closure of =7\ “the interior of =}

Then, when = € JF,,, F(Z) is continuous at wy. And, F is the smallest o-field that contains
Fuo-  Therefore, we have the probability space (X, F, Fs,, ) such that

P (E) = [FE)(w)  (VE € Fu)
that is,

(c) the exact measurement Myo(q,) (O, Sis,,,]) has the sample space (X, 5, Ps, ) (= (2,

Ba, Ps,,)), though the uniqueness is not guaranteed.

Example 2.34. [Urn problem] There are two urns U; and Us. The urn U; [resp. Us] contains
8 white and 2 black balls [resp. 4 white and 6 black balls] (¢f. Table 2.2, Figure 2.7).

Table 2.2: urn problem

Urn\_ w-b, white ball black ball
Urn U; 8 2
Urn Uy 4 6

Here, consider the following statement (a):

(a) When one ball is picked up from the urn Us, the probability that the ball is white is 0.4.
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Figure 2.8: Urn problem

In measurement theory, the statement (a) is formulated as follows: Assuming

U, --- “the urn with the state w,”

Uy --- “the urn with the state wy”

define the state space Q by Q = {wy,ws} with the discrete metric and the counting measure v
(i.e.,, v({w1}) = v({we}) = 1). That is, we assume the identification;

Uiy = wy, U= w,,
Thus, consider the classical basic structure:
(Co() € L=(Q,v) € BLA(Q,v))]

Put “w” = “white”] “b” = “black”, and put X = {w,b}. And define the observable O( =(X =
{w7 b}a 2{w,b}’ F)) in LOO(Q) by

[F({w})](wr) = 0.8, [F({o})](w1) = 0.2,
[F({w})](wz) = 0.4, [F({6})](w2) = 0.6.

Thus, we get the measurement Mye(q)(0, Ss,,,)). Here, Axiom 1 ([§2.7)) says that

(b) the probability that a measured value w is obtained by My« )(0O, Sjs,,) is given by
F({b})(wz) = 0.4

Therefore, we see:

statement (a) | —— |statement (b) (2.70)

translation
(ordinary language) (quantum language)
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ANote 2.5. [L>®(Q,v), or in short, L>*(Q2)] In the above example, the counting measure v (i.e.,
v({wi}) = v({w2}) = 1) is not absolutely indispensable. For example, even if we assume that

v({wi}) =2 and v({wa2}) = 1/3, we can assert the same conclusion. Thus, in this note,

L>(Q,v) is often abbreviated to L>((2).

ANote 2.6. The statement (a) in Example [2.34] is not necessarily guaranteed, that is,
When one ball is picked up from the urn Us, the probability that the ball is white is 0.4.
is not guaranteed. What we say is that

the statement (a) in ordinary language should be written by the measurement theoretical
statement (b)

It is a matter of course that “probability” can not be derived from mathematics itself. For
example, the following (#;) and (f2) are not guaranteed.

(#1) From the set {1,2,3,4,5}, choose one number. Then, the probability that the number is
even is given by 2/5

(#2) From the closed interval [0, 1], choose one number . Then, the probability that z € [a, b] C
[0, 1] is given by |b — a|

The common sense — “probability” can not be derived from mathematics itself — is well known
as Bertrand’s paradox (cf. §9.11). Thus, it is usual to add the term “at random” to the above
(#1) and (f2). In this note, this term “at random” is usually omitted.

Example 2.35. [Blood type system] The ABO blood group system is the most important
blood type system (or blood group system) in human blood transfusion. Let U; be the whole
Japanese’s set and let Uy be the whole Indian’s set. Also, assume that the distribution of the
ABO blood group system [O:A:B:AB| concerning Japanese and Indians is determined in (Table
2.3)).

Table 2.3: The ratio of the ABO blood group system

J or INABO blood group O A B AB
Japanese U 30% | 40% | 20% | 10%
Indian Uy 30% | 20% | 40% 10%

Consider the following phenomenon:
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(a) Choose one person from the the whole Indian’s set Us at random. Then the probability

O 0.3

, . A L 0.2

that the person’s blood type is B is given by 04
AB 0.1

In what follows, we shall translate the statement (a) described in ordinary language to
quantum language. Put Q = {w;,ws} and consider the discrete metric (€2, dp). We get consider

the classical basic structure:
[Co(€) € L=(Q,v) € B(L*(2,v))]
Therefore, the pure state space is defined by
S"(Co(1)") = {0 0w }
Here, consider

0o, - “the state of the whole Japanese’s set U (i.e., population)”

0w, -+ “the state of the whole India’s set Uj(i.e., population)”,
That is, we consider the following identification: (Therefore, image Figure [2.9):

Ul ~ 50.117 U2 ~ 50.)2

U1 %50_,1 U2%5w2

Japanese
3:4:2:1]

Figure 2.9: Population(=system)~urn

Define the blood type observable Ogr = ({O, A, B, AB}, 210ABAB} 1) in L®(Q, v) such
that

[Fer({O))(wr) = 0.3, [Fer({A})](w1) = 0.4

4 Note that “population” = “system” (cf. Table 2.1 ).
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[Fer({B})](w1) = 0.2, [Fer({AB})](w1) = 0.1 (2.71)
and,

[Fer({O})](w2) = 0.3, [Fer({A})](wz) = 0.2

[Fer({B})](w2) = 0.4, [Fer({AB})](w2) = 0.1 (2.72)

Thus we get the measurement Mp(q.)(OgT, S[(;UJQ]). Hence, the above (a) is translated to the

following statement (in terms of quantum language):

Co(Q

=

O
(b) The probability that a measured value g is obtained by the measurement
AB
Mz (@) (OBr, Sis,,,)) is given by
[ o) (8 Fir({0) ) 0y = [For ({0 (w2) =03 |
Co@) | 0wy FBr({A}) | 1 (00) = [FT({A})](W02) = 0.2
: 5WQ,FBT<{B}>)LOO o) = [Fer({B})](w2) = 0.4
(

)=
co(@ (0w For ({ABY) ) 1) = [For ({AB})] () = 0.1

#Note 2.7. Readers may feel that Example 2.34} Example [2.35] are too easy. However, as men-
tioned in (a) of Sec. 2.8.1] what we can do is

{ to be faithful to Axioms
[

to trust in Man’s linguistic competence

If some find the other language that is more powerful than quantum language, it will be praised
as the greatest discovery in the history of science. That is because this discovery is regarded as
beyond the discovery of quantum mechanics.
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2.9 Simple quantum measurement (Stern=Gerlach ex-
periment )

2.9.1 Stern=Gerlach experiment

Example 2.36. [Quantum measurement( Schtern—Gerlach experiment (1922))]
Assume that we examine the beam (of silver particles(or simply, electrons) after passing
through the magnetic field. Then, as seen in the following figure, we see that all particles are

deflected either equally upwards or equally downwards in a 50:50 ratio. See Figure 2.10.

\s//}@

electron e

state w = {OQJ

/ N \ | ®

Screen

Figure 2.10: Stern-Gerlach experiment (1922)

Consider the two dimensional Hilbert space H = C2?, And therefore, we get the non-
commutative basic algebra B(H), that is, the algebra composed of all 2 x 2 matrices. Thus,

we have the quantum basic structure:
[C(H) C B(H) C B(H)| = [B(C?) C B(C?) C B(C?)]
since the dimension of H is finite.
The spin state of an electron P is represented by p(= |w)(w]|), where w € C? such that
|w||=1. Put w= [gl] ( where, [|w|]* = |a1]* + |aa]* =1).
2

Define O, = (Z,2%, F,), the spin observable concerning the z-axis, such that, Z = {1, ]}

and

=y o R@n=[y (2.73)
00 [1 0]
ro-[y o] mam= Y.
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Here, Born’s quantum measurement theory (the probabilistic interpretation of quantum

mechanics) says that

(1) When a quantum measurementM g(c2)(O, Si,)) is taken, the probability that
(w, F*({THw) = o ?
(w, F*({{Dw) = |az/?

a measured value [ I ] is obtained is given by

That is, putting w (= {Zl] ), we says that
2

When the electron with a spin state state p progresses in a magnetic field,

the probability that the Geiger counter [ © } sounds

)
1 0] [ a4
@ @] |y o) | gy =P
is give by ) -
_ _ [0 0] [ o]
@ @] g || o] = o2l

Also, we can define O% = (X, 2%, F'), the spin observable concerning the x-axis, such that,

X = {Tma\lfm} and

P = Vs 1) FLb= |1 T e

And furthermore, we can define OY = (Y, 2, F¥), the spin observable concerning the y-axis,

such that, Y = {1,,],} and

P =205, 1h) = TR @2.75)

where 1 = v/—1.

Here, putting

Sp = F({th) = E({1), S, =F{1tH - F{I}). S =F{1}) - E{})

we have the following commutation relation:
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2.10 de Broglie paradox in B(C?)

2.10 de Broglie paradox in B(C?)

Axiom 1(measurement) includes the paradox ( that is, so called de Broglie paradox “there
is something faster than light”). In what follows, we shall explain de Broglie paradox in B(C?),
though the original idea is mentioned in B(L*(R)) (c¢f. §11.2, and refs.[13, [87]). Also, it should

be noted that the argument below is essentially the same as the Stern=Gerlach experiment.

Example 2.37. [de Broglie paradox in B(C?)] Let H be a two dimensional Hilbert space,

i.e., H = C2. Consider the quantum basic structure:

[B(C*) € B(C?) C B(C?)

Now consider the situation in the following Figure 2.11.

half mirror 1

u= g5 (J1+/2)n 4=
75 (fi+f2 ._.. coursel \/Efl ) Di(= (If) ()
photon P| "= (photon detector)

course2 Vol fo

\‘J Dy(= ([ f2)(f2]))

(photon detector)
Figure 2.11:  [Dy + D] = observable O

Let us explain this figure in what follows. Let f;, fo € H such that
Ji= [ } e C? fo= { ] e C?

Put

fi+ fa
V2

Thus, we have the state p = |u){u| (€ &(B(C?))).
Let U(€ B(C?)) be an unitary operator such that

1 0
U= |:0 ei7r/2:|
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Chap. 2 Axiom 1 — measurement

and let ® : B(C?) — B(C?) be the homomorphism such that
®(F)=UFU  (VF e B(C?)
Consider the observable O; = ({1,2},2{12} F) in B(C?) such that

F{1Y) = 1f(hal FA2Y = [f2)(f]
and thus, define the observable ®0; = ({1,2},2{1% ®F) by
OF(E)=U"F(E)U  (VEC{1,2})

Let us explain Figure 211 The photon P with the state u = \/Li(fl + fa) ( precisely, |u)(u| )

rushed into the half-mirror 1

(A;) the f; part in u passes through the half-mirror 1, and goes along the course 1 to the
photon detector D;.

(Ag) the fy part in u rebounds on the half-mirror 1 (and strictly saying, the f, changes to
v —1f5, we are not concerned with it ), and goes along the course 2 to the photon detector
g g
D,.

Thus, we have the measurement:
Mpc2)(®Oy, Siy) (2.77)

And thus, we see:

measured value 1

(B) The probability that a Lneasured value 2|

is obtained by the measurement Mp(c2)(®Oy, Sj)
is given by

i ottan) = e ariz] ~ [ iapo] - |

This is easy, but it is deep in the following sense.

(C) Assume that
Detector D; and Detector D, are very far.

And assume that the photon P is discovered at the detector D;. Then, we are troubled if
the photon P is also discovered at the detector Dy. Thus, in order to avoid this difficulty,
the photon P (discovered at the detector D;) has to eliminate the wave function \/T_j fo

in an instant. In this sense, the (B) implies that

there may be something faster than light
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This is the de Broglie paradox (c¢f. [I3, R7]). From the view point of quantum language, we

give up to solve the paradox, that is, we declare that

Stop to be bothered!

(Also, see [T0]).

ANote 2.8. The de Broglie paradox (i.e., there may be something faster than light ) always
appears in quantum mechanics. For example, the readers should confirm that it appears in
Example 2.36] (Schtern-Gerlach experiment). I think that

e the de Broglie paradox is the only paradox in quantum mechanics
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Chapter 3

The linguistic Copenhagen
interpretation (dualism and idealism)

Measurement theory (= quantum language ) is formulated as follows.

[Axiom 1] [Axiom 2] [quantum linguistic interpretation|
e |measurement theory ‘ :=| Measurement |+ ’ Causality ‘—i— ’ Linguistic interpretation
(=quantum language) (cf. [82.7) (¢f. §10.3) (cf. §3.3)
a kind of spell(a priori judgment) manual to use spells

Measurement theory says that

e Describe every phenomenon modeled on Axioms 1 and 2 (by a hint of the linguistic inter-
pretation)!

Since we dealt with simple examples in the previous chapter, we did not need the linguistic
interpretation. In this chapter, we study several more difficult problems with the linguistic
interpretation. Also, the linguistic interpretation may be called “the linguistic Copenhagen
interpretation” since we believe that it is the true colors of so called Copenhagen interpretation
(¢f. Section 1.1.1).

3.1 The linguistic Copenhagen interpretation

3.1.1 The review of Axiom 1 ( measurement: §2.7)

In the previous chapter, we introduced Axiom 1 (measurement ) as follows.
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- ‘(A): Axiom 1(measurement) pure type ~

(cf. It was able to read under the preparation to [§2.7)) )

With any system S, a basic structure [A C AJ B(H) can be associated in which measurement
theory of that system can be formulated. In [A C Al B(H), consider a }/*-measurement

MZ(O:(X, F,F), S[p}) (or, C*-measurement My (O:(X, FF), S[p]) > That is, consider
e a IW*-measurement MZ(O,S[p]) ( or, C*-measurement MA(O:(X, F, F),S[p]) > of
an observable O=(X, JF, F) for a state p(€ GP(A*) : state space)

Then, the probability that a measured value x (€ X) obtained by the W*-measurement
Mz (0, S) ( or, C*-measurement My (O=(X,J, F), S ) belongs to = (€ ¥F) is given by
P(F(E)(= a-(p, F(E))7)

(if F(Z) is essentially continuous at p, or see Definition 2.14] ).

N Wy
Here, note that

(B;) the above axiom is a kind of spell (i.e., incantation, magic words, metaphysical
statement), and thus, it is impossible to verify them experimentally.

In this sense, the above axiom corresponds to “a priori synthetic judgment” in Kant’s philosophy
(cf. [66]). And thus, we say:

(B2) After we learn the spell (= Axiom 1) by rote, we have to exercise and lesson the spell (=
Axiom 1). Since quantum language is a language, it may be unable to use well at first.

It will make progress gradually, while applying a trial-and-error method.
However,

(Cq) if we would like to make speed of acquisition of a quantum language as quick as possible,
we may want the good manual to use the axioms.

Here, we think that

(Cy)  the linguistic interpretation
= the manual to use the spells (Axiom 1 and 2)

3.1.2 Descartes figure (in the linguistic interpretation)

In what follows, let us explain the linguistic interpretation.
The concept of “measurement” can be, for the first time, understood in dualism. Let us
explain it. The image of “measurement” is as shown in Figure 3.1.
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observer system
(I{(=mind)) (matter)

l_ o B j [observable] l_ AN j

[measured jvalue
(@interfere

<
<

| |
| I
| |
| |
| |
I I

®perceive a reactionl
|
|
I

7

Figure 3.1{Descartes Figure]:The image of “measurement(=@+®))” in dualism

In the above,

(D1) (@: it suffices to understand that “interfere” is, for example, “apply light”.
(b): perceive the reaction.

That is, “measurement” is characterized as the interaction between “observer” and “measuring
object”. However,

(D2) In measurement theory, “interaction” must not be emphasized.

Therefore, in order to avoid confusion, it might better to omit the interaction “(x) and (®)”
in Figure 3.1.
After all, we think that:

(D3) It is clear that there is no measured value without observer (i.e., brain). Thus, we consider
that measurement theory is composed of three key-words:

’measured value | | observable (= measuring instrument ) , ,
(observer,brain, mind) (thermometer, eye, ear, body, polar star (¢f. Note [3.1] later)) (matter)
(3.1)

and thus, it might be called “trialism” (and not “dualism”). But, according to the custom,
it is called “dualism” in this note.

3.1.3 The linguistic interpretation [(E;)-(E7)]

The linguistic interpretation is “the manual to use Axiom 1 and 2”. Thus, there are various
explanations for the linguistic interpretations. However, it is usual to consider that the linguistic
interpretation is characterized as the following (E). And the most important is

Only one measurement is permitted
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(E):The linguistic interpretation (=quantum language interpretation)

With Descartes figure 3.1 (and (E;)-(E7)) in mind,
describe every phenomenon in terms of Axioms 1 and 2

(E;1) Consider the dualism composed of “observer” and “system( =measuring object)”. And
therefore, “observer” and “system” must be absolutely separated. If it says for a
metaphor, we say “Audience should not be up to the stage”. Therefore, self-referential
propositions ( such as "I think, therefore I am”) are excluded from quantum language.

(E2) Of course, “matter(=measuring object)” has the space-time. On the other hand, the
observer does not have the space-time. Thus, the question: “When and where is a
measured value obtained?” is out of measurement theory, Thus, there is no tense in
measurement theory. This implies that there is no tense in science.

(E3) In measurement theory, “interaction” must not be emphasized.

(E4) Only one measurement is permitted. Thus, the state after measurement
or, wave function collapse, the influence of measurement) is meaningless. (c¢f. Projection
g J

Postulate [11.6])

(Es) There is no probability without measurement.

(Eg) State never moves,

and so on.
Also, since our assertion is

quantum language is the final goal of dualistic idealism (=*“Descartes=Kant
philosophy”)

(cf. ® in Figure [1.1]), we have to assert that

(E7) Many of maxims of the philosophers (particularly, the dualistic idealism )
can be regarded as a part of the linguistic interpretation.

Some may think that the (E7) is unbelievable. However,

(F) Since the purpose of philosophies and that of quantum language are the same, that is,
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the non-realistic world view, it is natural to consider that
maxims of philosophers = the linguistic interpretation

Recall the following figure:

Figure 3.1. [=Figure [[L1: The location of quantum language in the history of world-description]

the realistic view———--~-~"""""----~ 0
|
relativity \ (unsolved) |
theory | ——@® ® theory of }
Parmenides > —teverything i
Socrates quantur.n ) (quantum phys.) i
Qelircck | senota oo 22 mechaniesj——® "
PP sticism lapguage K
Plato (dualism) —_— @ .
Aristotle L I (=MT) |
Descartes (linguistic view) | quantunl .
Locke,... linguistic ' R !
© ¢ language —| language
— | Kant philosophy ——— .
i i ' (language) !
(idealism) | l
statistics laneuage !
system theory —&@ .
! 1
! 1
t-- the linguistic view- - -

Figure 1.1: The history of the world-view

In the above, we regard

©@— 00— —0— W (32)

as a genealogy of the dualistic idealism. Talking cynically, we say that

e Philosophers continued investigating “linguistic interpretation” (=“how to use Axioms 1
and 2”) without Axioms 1 and 2.

For example, “Only one measurement is permitted” and “State never moves” may be related
to Parmenides’ words;

There are no “plurality”, but only “one”.
(3.3)

And therefore, there is no movement.
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Thus, we want to assert that Parmenides (born around BC. 515) is the oldest discoverer of the
linguistic interpretation. Also, we propose the following table:

Table 3.1: Trialism (i.e., dualism ) in world-views (cf. Table 2.1))

Quantum language measur 1 servabl state
: guage measured value observable (system)
Plato / idea (cf. Note 3.1)) /
edios
Aristotle / / (hyle)
. . /
Thomas Aquinas universale post rem | yniversale ante rem (universale in re)
. . /
Descartes I, mind, brain body (¢f. Note [3.1)) (matter)
. primary quality
Locke / secondary quality (/)
state
Newton / / (point mass)
parameter
statistics sample space / (population)
. state
quantum mechanics measured value observable (particle)

A Note 3.1. In the above table, Newtonian mechanics may be the most understandable. We regard
“Plato idea” as “absolute standard”. And, we want to understand that Newton is similar to
Aristotle, since their assertions belong to the realistic world view(cf. Figure[l.1)). Also, recall the
formula (3.1)), that is, “observable” =“measuring instrument”=“body”. Thus, as the examples
of “observable”, we think:

eyes, ears, glasses, telescope, compass, etc.

If “compass” is accepted, “the polar star” should be also accepted as the example of the ob-
servable. In the same sense, “the jet stream to an airplane” is a kind of observable (¢f. Section
8.1 (pp.129-135) in [42] ). Also, if it is certain that Descartes is the first discoverer of “I”, I
have to retract my understanding of Scholasticism in Table 3.1l Although I have no confidence
about Scholasticism, the discover of three words (“post rem”, “ante rem”, “in re”) should be
remarkable.
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3.2 Tensor operator algebra

3.2.1 Tensor product of Hilbert space

The linguistic interpretation |(§3.1) says

“Only one measurement is permitted”

which implies “only one measuring object” or “only one state”. Thus, if there are several states,
these should be regarded as “only one state”. In order to do it, we have to prepare “tensor

operator algebra”. That is,

combine several into one
(A) “several states” > “one state”

by tensor operator algebra

In what follows, we shall introduce the tensor operator algebra.

Let H, K be Hilbert spaces. We shall define the tensor Hilbert space H ® K as follows.
Let {e,, | m € N={1,2,...}} be the CONS (i.e, complete orthonormal system ) in H. And,
let {f, | » € N={1,2,...}} be the CONS in K. For each (m,n) € N2, consider the symbol
“em ® fn”. Here, consider the following “space”:

H® K = {g = Z O n€m & In ||g||H®K = [ Z ’O‘m,m|2]1/2 < OO} (3‘4>

(m,n)eNZ (m,n)EN?

Also, the inner product (-, -)ygr is represented by

<€m1 ® fm?em2 ® fn2>H®K = <€m17€m2>H ’ <fn1=fn2>K

1 (my,ny) = (ma,ng)
- { 0 (mq,n1) # (ma,n2) (3.5)

Thus, summing up, we say

(B) the tensor Hilbert space H ® K is defined by the Hilbert space with the CONS {e,, ®
fn ] (m,n) € N*}.

For example, for any e = > °_ e, € H and any f=>° 0,fn € H, the tensor e ® f is
defined by

eRf= > nfulem® fn)

(m,n)eN2
Also, the tensor norm ||u||ggr (v € H ® K) is defined by

[allrex = (@ @) rox ]
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Example 3.2. [Simple example:tensor Hilbert space C?® C3] Consider the 2-dimensional Hilbert
space H = C? and the 3-dimensional Hilbert space K = C3. Now we shall define the tensor
Hilbert space H ® K = C? @ C? as follows.

Consider the CONS {ey,e2} in H such as

S

And, consider the CONS {f.fs, f3} in K such as
1 0 0
=10, fo=|1], fo=|0
0 0 1
Therefore, the tensor Hilbert space H ® K = C? ® C? has the CONS such as
1
e1® f1= {O] ®

, e1®f2—[(1)}® ,e1®f3—[(1)]®

e2®f1=[(1)]® , 62®f2=[ﬂ® ,62®f3:[(1)]®

Thus, we see that
HoK=C®C’=C°

That is because the CONS {e; ® f; | i = 1,2,3, j = 1,2} in H ® K can be regarded as
{gr | k=1,2,...,6} such that

1 0 0
0 1 0
0 0 1
n=a®@fi= |1, g=a®f= |l s=adfs=|,
0 0 0
10] 10] 10]
[0 [0 [0
0 0 0
0 0 0
= fi=|/1, s=adf=|.96=2® =],
0 1 0
10] 10] 1]
This Example [3.2] can be easily generalized as follows.
Theorem 3.3. [Finite tensor Hilbert space ]
C"RC™®: - ®QC™ = Clk1m (3.6)
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Theorem 3.4. [Concrete tensor Hilbert space |
L2(Ql, Vl) X LQ(QQ, Vg) = LQ(Ql X QQ, A0 1/2) (37)

where, 11 ® 15 is the product measure.

Definition 3.5. [Infinite tensor Hilbert space | Let Hy, Hs, ..., H, ... be Hilbert spaces. Then,
the infinite tensor Hilbert space @),-, Hy can be defined as follows. For each k(€ N), consider

the CONS {ei};";l in a Hilbert space Hy. For any map b : N — N, define the symbol Q) , ez(k)
such that

R =W g g dP g ...
k=1

Then, we have:

{éez(k) ) b:N— Nis amap} (3.8)

k=1

Hence we can define the infinite Hilbert space @, , Hy such that it has the CONS (3.8).

3.2.2 Tensor basic structure

For each continuous linear operators F' € B(H),G € B(K), the tensor operator F' @ G
€ B(H ® K) is defined by

(FRG)(e® f)=Fe®Gf (Ve€H, fe€K)

Definition 3.6. [Tensor C*-algebra and Tensor WW*-algebra | Consider basic structures

[A; C A, C B(H))| and [Ay C Ay C B(H,)]

[I]: The tensor C*-algebra A; ® A, is defined by the smallest C*-algebra A such that
{F®G (e B(Hi® Hy)) | F €A, GE A} CAC B(H, ® H,)

[I1): The tensor W*-algebra A; ® A, is defined by the smallest W *-algebra A such that
{F®G (e B(Hi® Hy)) | F €Ay, GE A} CAC B(H, ® H,)

Here, note that AL @Ay = A @ As.
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Theorem 3.7. [Tensor basic structure | [I]: Consider basic structures
(A1 € Ay C B(Hy)] and [A; € Ay C B(H))]
Then, we have the tensor basic structure:
A ® Ay C AL ® Ay C B(H, ® Hy)]

[I1]: Consider quantum basic structures [C(H;) C B(H,) C B(H;)] and [C(Hy) C B(Hs2) C
B(H;)]. Then, we have tensor quantum basic structure:

[C(H,) € B(Hy) C B(H)|] ® [C(Hy) C B(Hs) C B(H,)]
=[C(H, ® H2) C B(H, ® Hy) C B(H, ® H,)]

[T11]: Consider classical basic structures [Co(Q1) € L>®(Qy, 1) C B(L*(Qy,11))] and [Co(2s) C
L>(Qy,v5) € B(L*(15))]. Then, we have tensor classical basic structure:

[Co(1) € L¥( C 1) € B(L*(1,1))] @ [Co(Qa) € L¥(Qs C 115) € B(L*(s,12))]

:[00(91 X Qg) g LOO(Ql X QQ,Vl (29 1/2) Q B(Lz(Ql X QQ,Vl X 1/2))]

Theorem 3.8. The @~ B(Hy) (€ B(Q),—, Hr)) is defined by the smallest C*-algebra that
contains

F1®F2®---®Fn®]®l®---<EB(®Hk))
(VFy € B(Hy), k=1,2,...,n,n=1,2,..)

Then, it holds that

® B(H,) = ® H,) (3.9)

Theorem 3.9. The followings hold:
D) €A = Qo € (A
k=1 k=1
(i) : pr€ & (Ap) = Q) o € & (R Ar))
k=1 k=1

(i) 1 p € & (A;) = Q) or € S"(((X) Ar)")

k=1 k=1

ANote 3.2. The theory of operator algebra is a deep mathematical theory. However, in this note,
we do not use more than the above preparation.
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3.3 The linguistic Copenhagen interpretation — Only
one measurement is permitted

In this section, we examine the linguistic interpretation |(§3.1)} i.e., “Only one measurement
is permitted”. “Only one measurement” implies that “only one observable” and “only one
state”. That is, we see:

only one observable (=measuring instrument)
[only one measurement] =—> (3.10)
only one state

ANote 3.3. Although there may be several opinions, I believe that the standard Copenhagen
interpretation also says “only one measurement is permitted”. Thus, some think that this spirit
is inherited to quantum language. However, our assertion is reverse, namely, the Copenhagen
interpretation is due to the linguistics interpretation. That is, we assert that

)

not

Copenhagen interpretation ‘ == ’Linguistic interpretation

Py

but

Linguistic interpretation ‘ — ’ Copenhagen interpretation

3.3.1 “Observable is only one” and simultaneous measurement

Recall the measurement Example 231 (Cold or hot?) and Example 2.32] (Approximate
temperature), and consider the following situation:

(a) There is a cup in which water is filled. Assume that the temperatureis w °C (0 < w < 100).
Consider two questions:

“Is this water cold or hot?”

“How many degrees( °C) is roughly the water?”
This implies that we take two measurements such that

(£1): M) (Osn=({c, h}, 21" F;), Sy) in Exampld2.31

(#2) : Mpee(q) (02 =(N}J°, oNis’ G2, Sp)) in Exampld2.32

MLOO(Q)<Och7S[w}) \W C/ MLOO(Q) (OA? S[W})
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However, as mentioned in the linguistic interpretation,

“only one measurement” —>“only one observable”

Thus, we have the following problem.

Problem 3.10. Represent two measurements Moo (q)(Oqn=({c, h}, 2{C’h},Fch),S[w}) and
M o () (02 =(NI, 2Mi8” G2)| Sp,;) by only one measurement.

This will be answered in what follows.

Definition 3.11. [Product measurable space] For each k =1,2,...,n, consider a measurable
(Xg, F). The product space X,_; Xj of Xj (k=1,2,...,n) is defined by

>< Xk:{($1’x27"'7xn)|xk eXk‘ (/{321,2,,71)}
k=1

Similarly, define the product X,_, Z of Zx(€ F) (k= 1,2,...,n) by

n

k>flEk:{(x1,xg,...,xn) |z €=k (K=1,2,...,n)}

Further, the o-field X }_,J} on the product space X,_, X} is defined by
(1) X 7_ Ty is the smallest field including {X,_,Zx |Ex € Fr (k=1,2,...,n)}

( Xy Xi, K7 %) is called the product measurable space. Also, in the case that (X,JF) =
(Xi, F) (k= 1,2,...,n), the product space X,_, X; is denoted by X", and the product
measurable space ( X ,_; Xz, X ,_,F;) is denoted by (X", F™).

Definition 3.12. [Simultaneous observable , simultaneous measurement] Consider the basic
structure [A C A C B(H)]. Let p € GP(A*). For each k = 1,2, ..., n, consider a measurement
M5 (Or = (Xy, Fi, Fi), Sj)) in A. Let ( X}_; Xi, X _,F3) be the product measurable space.
An observable O = ( X per Xk, gzzlfﬂc, F ) in A is called the simultaneous observable of
{Or : k=1,2,...,n}, if it satisfies the following condition:

~

F(El X EQ X o+ X En) = Fl(El) . FQ(EQ) .. Fn(En) (311)
( Ve € Ty (k‘:1,2,...,n))

O is also denoted by X p_, O, F = X1 Fy. Also, the measurement Mz(X,_; O, Sy)) is
called the simultaneous measurement. Here, it should be noted that

. . n .
e the existence of the simultaneous observable X, _, Oy is not always guaranteed.

though it always exists in the case that A is commutative (this is, A = L>(f2)).
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In what follows, we shall explain the meaning of “simultaneous observable”.

Let us explain the simultaneous measurement. We want to take two measurements M4 (Oy,
Sip) and measurement M7 (O, Sjp)). That is, it suffices to image the following:

(b)  [state]

p(E6P(A%))

observable —_— ’ measured value ‘
X1 ffl F1 MZ(OI’S[P]) xl(eXl)
e

observable —— [measured value |
X2 Fa, Fg MZ(O%S[P]) JJQ(EXQ)

However according to the linguistic interpretation |(§3.1), two measurements M4 (01, S,)) and
Mz(O2, S[,)) can not be taken. That is,

The (b) is impossible

Therefore, combining two observables O; and O, we construct the simultaneous observable
O; x O, and take the simultaneous measurement M-(O; x Oa, S[p]) in what follows.

(c) _ ’sunultaneous observable ‘—) ’measured value ‘
p(EGP(AY)) 01 %03 M7(01x02,5)) ™ (41 2p)(€X1x X2)

The (c) is possible if O; x O, exists

Answer 3.13. [The answer to Problem3.10]  Consider the state space € such that Q =
[0,100], the closed interval. And consider two observables, that is, [C-H]-observable O., =
(X={c,h},2%, F.,) (in Exampld2.31) and triangle observable 0% = (Y (=N1J),2Y G*) (in Ex-
ampld2.32)). Thus, we get the simultaneous observable O, x 02 = ({c, h}xNIOO e <Y , Frop x
GA), and we can take the simultaneous measurement Myec(q)(Og, X o4 ,S)). For example,
putting w = 55, we see

(d) when the simultaneous measurement Mpe(q)(Ogp X 0%, Sis5)) is taken, the probability

(¢, about 50 °C) 0.125
that the measured value EE’ 22?)?; ?,)% OC)) is obtained is given by 8 ;32 (3.12)
(h, about 60 °C) 0.375

That is because

[(F., x G®)({(c, about 50 °C)})](55)
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=[F({c})](55) - [G*({about 50 °C})](55) = 0.25- 0.5 = 0.125

and similarly,

[(Fu, x G2)({(c,about 60 °C)})](55) = 0.25 - 0.5 = 0.125
[(Fp x G®)({(h,about 50 °C)})](55) = 0.75- 0.5 = 0.375
[(F., x G®)({(h,about 60 °C)})](55) = 0.75-0.5 = 0.375

ANote 3.4. The above argument is not always possible. In quantum mechanics, a simultaneous
observable O; x Oz does not always exist (See the following Example [3.14] and Heisenberg’s
uncertainty principle in Secl4.4]).

Example 3.14. [The non-existence of the simultaneous spin observables]  Assume that the
electron P has the (spin) state p = |u)(u| € &P(B(C?)), where

0]
‘e ij (where, [u| = (Jou|* + |aa|*)!/* = 1)

Let O, = (X(= {1,1}),2%, F?) be the spin observable concerning the z-axis such that

P =y o] Fan=J Y

Thus, we have the measurement Mpc2) (0, = (X, 2%, F#), S,).
Let O, = (X, 2%, F'®) be the spin observable concerning the x-axis such that

. 1/2 1/2 i 12 —1/2
P =y vale N ={10 T

Thus, we have the measurement Mpc2) (0, = (X, 2X ), Si))
Then we have the following problem:

(a) Two measurements Mp(c2)(0, = (X, 2%, F7), S|,)) and Mp(c2) (0, = (X, 2%, F*), S,)) are
taken simultaneously?

This is impossible. That is because the two observable O, and O, do not commute. For
example, we see
. . 11 o /2 1/2]  [1/2 1/2

P =1 val o ol = s o
And thus,

FEHE ({1 # FE{TH (1))
/1]
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The following theorem is clear. For completeness, we add the proof to it.

Theorem 3.15. [Exact measurement and system quantity] Consider the classical basic struc-
ture:

[CO(Q) g LOC(Qﬂ V) g B(LQ(Q/ I/))}

Let O(()exa) = (X,F, F&)) (le., (X,F, F)) = (Q,Bq,x) ) be the exact observable in
L>(Q,v). Let O; = (R, Bg, G) be the observable that is induced by a quantity g : 2 — R as in
Example 2.20(system quantity). Consider the simultaneous observable O™ X 0;. Let (z,y)

(€ X xR) be a measured value obtained by the simultaneous measurement M (q . (O(()exa) X 0y,
Sis.1)- Then, we can surely believe that z = w, and y = g(w).

Proof. Let Dy(€ Bg) be arbitrary open set such that w(€ Dy C Q=X). Also, let D;(€ Bg)
be arbitrary open set such that g(w) € D;. The probability that a measured value (x,y)

obtained by the measurement My (q,,) (0% x 0y, Ss.)) belongs to Do x Dy is given by x,, (w)-
X, (Dl)(w) = 1. Since Dy and D; are arbitrary, we can surely believe that z = w and y =

g(w). O
3.3.2 “State does not move” and quasi-product observable

We consider that

“only one measurement” — “state does not move”
That is because

(a) In order to see the state movement, we have to take measurement at least more than
twice. However, the “plural measurement” is prohibited. Thus, we conclude “state does
not move”

Review 3.16. [= Example[2.34turn problem] There are two urns Uy and Uy. The urn U; [resp.
Us] contains 8 white and 2 black balls [resp. 4 white and 6 black balls] (¢f. Figure 3.2).

Table 3.2: urn problem

Urn\_w-b|  white ball black ball
Urn Uy 8 2
Urn Us 4 6

Here, consider the following statement (a):

(a) When one ball is picked up from the urn Us, the probability that the ball is white is 0.4.
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wi (=~ Uy) wa (= Us)

Figure 3.2: Urn problem

In measurement theory, the statement (a) is formulated as follows: Assuming

Uy --- “the urn with the state w;”
Uy --- “the urn with the state wy”

define the state space Q by Q = {wy,ws} with discrete metric and counting measure v. That
is, we assume the identification;

Ul ~ Wi, U2 ~ Wa,
Thus, consider the classical basic structure:
(Co() € L¥(Q,v) € B(LA(@, )]

Put “w” = “white’} “b” = “black”, and put X = {w,b}. And define the observable Owb( =
(X = {w, b}, 20w Fp)) in L=(Q) by

Fus({w}h)] () = 0.8, Fus{0})](wr) = 0.2,
Fus({w})](ws) = 0.4, Fus{b})](ws) = 0.6. (3.13)

Thus, we get the measurement My (q)(Oup, Sjs,,))- Here, Axiom 1 ([§2.7) says that

— —

(b) the probability that a measured value w is obtained by Mpe(q)(Ouws, Sps.,)) is given by
Fun({0})(w2) = 0.4

Thus, the above statement (b) can be rewritten in the terms of quantum language as follows.

b ] is obtained by the measurement My (o) (Ouws,

(c) the probability that a measured value { v
Slwy]) is given by

fQ Fup({w})](w)de, (dw) = [Fup({w})](w2) = 0.4
olFun({b })](W)5w2(dw = [Fup({0})](w2) = 0.6

'11

Problem 3.17. (a) [Sampling with replacement]: Pick out one ball from the urn Us, and
recognize the color (“white” or “black”) of the ball. And the ball is returned to the
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urn. And again, Pick out one ball from the urn Us,, and recognize the color of the ball.
Therefore, we have four possibilities such that.

(w,w) (w,b) (b,w) (b,d)

It is a common sense that

(w, w) 0.16
the probability that E;U’ul)); is given by 8;3
(b.b) 0.36

Now, we have the following problem:

(a) How do we describe the above fact in term of quantum language?

Answer Is suffices to consider the simultaneous measurement Mo (q)(OZ,, Sisn,)) (=
ML"O(Q)(Owb X Owb73[5w2]) ), where 012111) = ({w,b} X {’w,b},Q{w’b}X{w’b}, Fuz)b(: wa X wa)).
The, we calculate as follows.

Fiy({(w,w)})(w1) = 0.64, Fp({(w, b)})(wr) = 0.16
F2,({(b,w)}) (1) = 0.16, F2,({(b,D)})(w1) = 0.4
and
F2,({(w, w)})(wz) = 0.16, F2,({(w, b)})(ws) = 0.24
Fp({(b,w)})(w2) = 0.24, Fiop({(b,0)})(w2) = 0.36
Thus, we conclude that
(w, w)
(b) the probability that a measured value EZ]’U?; is obtained by Mpe(q)(Ouwb X Oub, Sjs,,1)
(5.5)
[Fup({w})](w2) - [Fup({w})](wz) = 0.16
s given by | Fanl{0})le2) - [Fun({B)](e2) = 021
[Fus({0}))(w2) - [Fup({w})](w2) = 0.24
[Fup({01)](w2) - [Fup({b})](w2) = 0.36

Problem 3.18. (a) [Sampling without replacement|: Pick out one ball from the urn Us,, and
recognize the color (“white” or “black”) of the ball. And the ball is not returned to
the urn. And again, Pick out one ball from the urn U,, and recognize the color of the
ball. Therefore, we have four possibilities such that.

(w,w) (w,b) (b,w) (b,d)
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It is a common sense that

(w, w) 12/90

. (w, b) o 24/90

the probability that (b, w) is given by 24/90
(b, b) 30/90

Now, we have the following problem:

(a) How do we describe the above fact in term of quantum language?

Now, recall the simultaneous observable (Definition3.12)) as follows. Let Oy = (X, F, Fi)
(k=1,2,...,n ) be observables in A. The simultaneous observable O = (X _, X, X} _ %,
F)) is defined by

F(21 X Ep X -+ X Zp) = F1(E1) Fy(Zn) - - Fo(E,)
(VEk e i, Vk = 1,2,...,71)

The following definition (“quasi-product observable”) is a kind of simultaneous observable:

Definition 3.19. [quasi-product observable |  Let Oy = (Xj, F, Fy) (k = 1,2,...,n ) be
observables in a W*-algebra A. Assume that an observable Oy , = (><Z:1 X5, &Z:ﬁ"k,
Fi5. ) satisfies

Fio n(X1 X - X X1 X Zpg X Xpq1 X oo x X)) = Fi(Ex) (3.14)
(V= € Fi,Vk=1,2,...,n)

The observable Oy ,, = (XZ:1 X, X Z:{fk, Fis. ) is called a quasi-product observable
of {Of | k=1,2,...,n}, and denoted by

qp n n qp
X Ok: (X Xk, Xlkzlgjk, X Fk)

k=1,2,...,n =1 k=1,2,....,n

Of course, a simultaneous observable is a kind of quasi-product observable. Therefore, quasi-
product observable is not uniquely determined. Also, in quantum systems, the existence of the
quasi-product observable is not always guaranteed.

Answer 3.20. [The answer to Problem [3.17] Define the quasi-product observable O, (;1? Ouwp =
({w, b} x {w, b}, 2lwbbx{wdt " p, (= wa(iwab)) of Oup = ({w, b}, 20w F) in L>(Q) such that

Fio({(w,0)})(w) = 8;)7, Fio({(w, b)})(w1) = 8%2
Fio({(b,w)})(w1) = 2%8, Fro({(b,0)})(wn) = QS;Bl
Fio({(w,0)})(ws) = 4503, Fio({(w, b)})(w2) = 4926
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Fia({(b, ) () = o Fial{(bb)P)w) = "o

Thus, we have the (quasi-product) measurement Mzeo)(O12, S)
Therefore, in terms of quantum language, we describe as follows.

(w, w)
w, b)
b, w)
b, b)
[ [Fa({(w,w)})](ws) = % |
[Fra({(w, 0)})](w2) = &L

[Fro({(b, w)})](w2) = 6

[Fr2({(5,0) D] (w2) = 55

(b) the probability that a measured value E is obtained dy My (q)(Ouwsp gg Ouwb, S[(;WQ])
(

is given by

3.3.3 Only one state and parallel measurement

For example, consider the following situation:

(a) There are two cups A; and A, in which water is filled. Assume that the temperature of
the water in the cup Ay (k = 1,2) is wy °C (0 = wy = 100). Consider two questions “Is
the water in the cup A; cold or hot?” and “How many degrees( °C) is roughly the water

in the cup A5?”. This implies that we take two measurements such that

(81): M) (Ocn=({c, h}, oleh} Fn), Spy) in Exampld2.31

(#2) : Mpee(q) (02 =(NjJ°, 2N’ GAY, Slwp)) in Example2.32

M () (Och, Speon) \wl C 2 Q/ Mre(a) (02, Si,))

However, as mentioned in the above,
“only one state” must be demanded.

Thus, we have the following problem.
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Problem 3.21.  Represent two measurements Mzwq)(Oa=({c, h}, 21" F,), S,)) and
Mo () (02 =(N}5°, oNIS” G2, Sls)) by only one measurement.

This will be answered in what follows.

Definition 3.22. [Parallel observable] For each k = 1,2,...,n, consider a basic structure
[Ar € Ax C B(H)], and an observable Oy = (Xj, F%, F).) in Ag. Define the observable
O = (X}p_, Xy, RP_ Ft, F) in @}, A such that

F(El X EQ X X En) = Fl(El) X FQ(EQ) KRR Fn(En) (315)

Vi, € Fy (]{Z: 1,2,...,n)
Then, the observable O = (X §_, X, M 7_,F;, F) is called the parallel observable in Qr_; Ax,
and denoted by F = Qi_, Fr, 0= &®i_; Ok. the measurement of the parallel observable 0=

Xi_, Oy, that is, the measurement Mgy 7, (6, Si®7_, o)) 18 called a parallel measurement,
and denoted by Mg 7, (®i=1 Ok, Si@r_, pu1) oF @y Mz (O, Spp)-

The meaning of the parallel measurement is as follows.

Our present purpose is
e to take both measurements Mz (01, S|,,)) and My (O, S,,))

Then. image the following:

_— DS E—— ’measured Value‘
p1(E6P(AT)) 0; Mz, (01,50,,) 21(€X1)

(b)

— — ’measured Value‘

p2(€EGP(AL)) 0, M7, (02,575,)) 22(€X2)

However, according to the linguistic interpretation|(53.1), two measurements can not be taken.
Hence,

The (b) is impossible

Thus, two states p; and p; are regarded as one state p; ® po, and further, combining two
observables O; and O,, we construct the parallel observable O; ® O, and take the parallel
measurement Mz o7 (01 ® Oy, Sjy,p,)) in what follows.

(c) ’parallel observable‘ | measured value |
P1®p2(ECP(AT)®EP(AS)) 01202 M7, 67, (01802,5],,8p,)) (71,72)(€X1x X2)
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The (c) is always possible

Example 3.23. [The answer to Problem B.21]]  Put ©Q; = Qy = [0,100], and define the

state space 3 x 5. And consider two observables, that is, the [C-H]-observable O., =

(X={c,h}, 2%, F.,) in C(Qy) (in Exampld2.31) and triangle-observable 02 = (Y (=NijJ"),2Y, G*)

in L®(Qy) (in ExampldZ32). Thus, we get the parallel observable Oy ® 0% = ({c,h} x
100

NI 2lehbxNig” By @ G2) in L®( x €2y), take the parallel measurement M o0 (0, x022) (Ocn ®
O%, Sj(w1w2)]). Here, note that

5(,01 ® 5w2 - 5(w1,w2) ~ <W17w2).
For example, putting (wy,ws) = (25, 55), we see the following.

d) When the parallel measurement Moo, xq,)(Ocn @ O2, Sji25.55)) is taken, the probability
(Q21%x92) [(25,55)]

(¢, about 50 °C) 0.375
(c,about 60 °C) | . : - 0.375
that the measured value (h, about 50 °C) is obtained is given by 0.195
(h, about 60 °C) 0.125

That is because

[(Fo, © G2)({(c, about 50 °C)})](25, 55)
=[F.({cH](25) - [G2 ({about 50 °C})](55) = 0.75 - 0.5 = 0.375

Thus, similarly,

[(Fun ® G2)({(c, about 60 °C)}))(25,55) = 0.75 - 0.5 = 0.375
[(Fon ® G2)({(h, about 50 °C)})](25,55) = 0.25 - 0.5 = 0.125
[(Fon ® G2)({ (1, about 60 °C)})](25,55) = 0.25 - 0.5 = 0.125

Remark 3.24. Also, for example, putting (wq,ws) = (55, 55), we see:

¢, about 50 °C)
¢, about 60 °C)
h, about 50 °C)
h, about 60 °C)
0.125
0.125
0.375
0.375

(
(e) the probability that a measured value E is obtained by parallel mea-
(

surement Moo, x0,)(Ocn ® 0%, Si(55,55)) 1s given by
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That is because, we similarly, see

Fo,({chH](55) - [G>({about 50 °C})] 0.25-0.5 = 0.125
G

[ ( (55)
[Fo({cH)](55) - [G2({about 60 °C})](55) = 0.25 - 0.5 = 0.125 (3.16)
[Fo,({h})](55) - [G*({about 50 °C})](55) = 0.75 - 0.5 = 0.375 '
[Fo,({h})](55) - [G* ({about 60 °C})](55) = 0.75 - 0.5 = 0.375
Note that this is the same as Answer B.13] (cf. Note 3.5 later).
The following theorem is clear. But, the assertion is significant.
Theorem 3.25. [Ergodic property] For each k = 1,2,--- ,n, consider a measurement

Moo () (Or(:= (Xk, Tk, Fx)), Ss.)) with the sample probability space (X, Fy, P’). Then, the
sample probability spaces of the simultaneous measurement M Lm(m(xzzl Oy, Sj5,)) and the
parallel measurement Mzeon) (Q)_; Ok, Sigr_6.,)) are the same, that is, these are the same

as the product probability space

(kxlxk, &Z:ffm®ﬂ:) (3.17)
- k=1
Proof. It is clear, and thus we omit the proof. ( Also, see Note [3.5 later.) O]

Example 3.26. [The parallel measurement is always meaningful in both classical and quantum

systems | The electron P, has the (spin) state p; = |uy){u;| € &(B(C?)) such that

U = [gj (where, [|u]| = (Jou|? + |51 D)V2 = 1)

Let O, = (X(= {1,1}),2%, F*) be the spin observable concerning the z-axis such that

Fam =y o P =g 1]

Thus, we have the measurement Mp(c2) (0, = (X, 2%, F#), 5,,)).
The electron P has the (spin) state py = |us) (us| € GP(B(C?)) such that

o {%} (where, [[uzl| = (Jas|* + |52)"* = 1)

Let O, = (X, 2%, F*) be the spin observable concerning the x-axis such that

i 1/2 1/2 . 12 —1/2
F({T}):[l/Q 1/2}’ F({L}):[—l/Q 1/21

Thus, we have the measurement Mpc2)(0, = (X, 2%, F*), S},,))

Then we have the following problem:
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(a) Two measurements Mpc2) (0, = (X, 2%, F*),5},,)) and Mpc2) (0, = (X, 2%, F7), S1,,)

are taken simultaneously?

This is possible. It can be realized by the parallel measurement
MB((C2)®B((C2)(OZ ® OZ = (X X X, QXXX, FZ ® F$), S[p@p])

That is,

(b) The probability that a measured value is obtained by the parallel measurement

AN N N TN
=
== —
S e N N

Mac2yenc2)(0: ® O, Sjpe,) is given by

<u7 FZ({T})“) <u7 Fx({T})“) = P1P2

(u, F=({1})u) (u, F*({1})u) = p1(1 — p2)

(u, F*({{ ) (u, F*({1})u) = (1 = p1)ps

(u, F=({1H)u) (w, F*({1})u) = (1 = p1)(1 — p2)

where py = |as|*, py = %(’041|2 + Gz + @10z + |as|?)

ANote 3.5. Theorem [B3.25] is rather deep in the following sense. For example, “To toss a coin
10 times” is a simultaneous measurement. On the other hand, “To toss 10 coins once” is
characterized as a parallel measurement. The two have the same sample space. That is,

“spatial average” = “time average”

which is called the ergodic property. This means that the two are not distinguished by
the sample space and not the measurements (i.e., a simultaneous measurement and a parallel
measurement). However, this is peculiar to classical pure measurements. It does not hold in
classical mixed measurements and quantum measurement.
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Chapter 4

Linguistic Copenhagen interpretation
of quantum systems

Measurement theory (= quantum language ) is formulated as follows.

[Axiom 1] [Axiom 2| [quantum linguistic interpretation|
e |measurement theory‘ := | Measurement |+ ’ Causality ‘—i— ’Linguistic interpretation
(=quantum language) (cf. [§2.7) (¢f. §10.3) (cf. §3.0)
a kind of spell(a priori judgment) manual to use spells

Measurement theory says that

e Describe every phenomenon modeled on Axioms 1 and 2 (by a hint of the linguistic inter-
pretation)!

In this chapter, we devote ourselves to the linguistic interpretation |(53.1) for general (or, quan-
tum) systems.

4.1 Kolmogorov’s extension theorem and the linguistic
interpretation

Kolmogorov’s probability theory (cf. [67] ) starts from the following spell:
(#) Let (X, d, P) be a probability space. Then, the probability that a event = (€ F) happens
is given by P(Z)

And, through trial and error, Kolmogorov found his extension theorem, which says that
(1) “Only one probability space is permitted”
which surely corresponds to

(1) “Only one measurement is permitted” in the linguistic interpre-
tation |(§3.1)
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Therefore, we want to say that

(f) Parmenides (born around BC. 515) and Kolmogorov (1903-1987) said about the same
thing

(cf. Parmenides’ words (3.3))).
Let A be a set (called an index set). For each A\ € K, consider a set X,. For any subsets
A CAy(C /A\), TA, A, 1S the natural map such that:
TAL,Ag * X X)\—> X X/\. (41)
AEA2 AEM

Especially, put mp = m, ;. Consider the basic structure

A CACB(H)

For each \ € //i, consider an observable (X, Jy, F)) in A. Note that the quasi-product ob-
servable O = (X, Xy, X, 1%, F3) of { (X0, T, F)) | X € A} is characterized as the

observable such that:
FR(mpl(B2) = FA(Ey)  (VEx €Ty, VAEND), (4.2)

though the existence and the uniqueness of a quasi-product observable are not guaranteed in
general. The following theorem says something about the existence and uniqueness of the
quasi-product observable.

Let A be a set. For each \ € K, consider a set X. For any subset Ay C Ay( C K), define

the natural map ma, A, : Xaea, Xx — Xxea, Xi by

X X33 (za)aers = (Ta)ren, € X Xy (4.3)
AEA, AEA

The following theorem guarantees the existence and uniqueness of the observable. It should
be noted that this is due to the the linguistic interpretation |(§3.1), i.e., “only one measurement

is permitted”.

Theorem 4.1. [ Kolmogorov extension theorem in measurement theory ( cf. [31,[33] ) ] Consider

the basic structure
(A CAC B(H)

For each A € /AX, consider a Borel measurable space (X, F)), where X) is a separable complete
metric space. Define the set ’PO(K) such as ?0(7\) ={AC A | A is finite }. Assume that the
family of the observables { Oy = ( X ea X, XaeaFr, Fa ) | A€ Po(A) } in A satisfies the

following “consistency condition”:
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~

e for any Ay, Ay € Po(A) such that A; C Ao,

FA2 (lel,/\g (EAl)) = FAl (EAl) (VEA1 € )\gf\ 9:)\) (44)

Then, there uniquely exists the observable 67& = (>< red X Xoea I ﬁ?\) in A such that:

ﬁK(WX1<EA)) = FA(EA) (VEA € ,\>€<A F\, VA € ?O(K))
Proof. For the proof, see refs.[31], 33].

Corollary 4.2. [Infinite simultaneous observable | Consider the basic structure
ACACB(H)

Let A be a set. For each A € K, assume that X, is a separable complete metric space, F) is
its Borel field. For each \ € /NX, consider an observable Oy = (X, Ty, F)) in A such that it

satisfies the commutativity condition, that is,
Fkl (Ek‘1>Fk2 (Ek2) = sz (E'ka)F/ﬂ (Ek1> (VEkl S Stklv VEkz S ‘rfkw Ky 7é k2) (45>

Then, a simultaneous observable 0= ( X yex X, X Aei s =X ek F) uniquely exists. That
is, for any finite set Ag(C A), it holds that

F((X Z)x( X X)))= X R(E) (V2 € T, VYA e Ay)
AEAg AEA\Ag A€Ag

Proof. The proof is a direct consequence of Theorem 4.1. Thus, it is omitted. O

Remark 4.3. Now we can answer the following question:
(B) Why is Kolmogorov’s extension theory fundamental in probability theory ?
That is, I can assert the following chain:

(Linguistic interpretation)

Only one measurement is permitted‘

(Kolmogorov’s extension theorem 4.1l in quantum language ) (Kolmogorov’s extension theorem)

— ’The existence of measurement\ — | The existence of sample space‘

/1]
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4.2 The law of large numbers in quantum language

4.2.1 The sample space of infinite parallel measurement ).~ M4(O =
(X7 ?7 F)? S[p])

Consider the basic structure
[A CAC B(H)
(that is, [€(H) € B(H) € B(H)], or [Co(Q) € L™(2.) € BLA(Q,v)))

and measurement Mz(0 = (X, F, F'), S,)), which has the sample probability space (X, T, P,)
Note that the existence of the infinite parallel observable O (= R, 0) = (XN, X727,
F (=@, F)) in an infinite tensor W*-algebra Q- , A is assured by Kolmogorov’s extension
theorem (Corollaryid.2).
For completeness, let us calculate the sample probability space of the parallel measurement

M®Z° 1Z(O, Si®: , »)) in both cases (i.e., quantum case and classical case):

Preparation 4.4. [I|: quantum system: The quantum infinite tensor basic structure is defined
by

[C(®F2,H) € B(®pL, H) € B(®pL, )]
Therefore, infinite tensor state space is characterized by
& (Tr(@i H)) C 6™ (Tr(9p H)) = & (Tr(p, H)) (4.6)
Since Definition 2.17 says that F = F, (Vp € &P(Tr(H))), the sample probability space (X,

X2, F, Pgee,,) of the infinite parallel measurement Mg g (®72,0 = (XN, X2, 7,
®k = 17F), Sigx , ») is characterized by

Pgie, (31 x D x - x Zyx (X X)) = X (p, F(E)) 0 (4.7)
k=n+1 k=1
(VE,€eT=3,,(k=12,...,n),n=1,2,3---)
which is equal to the infinite product probability measure @ _, P,.

[I1]: classical system: Without loss of generality, we assume that the state space (2 is compact,
and v(2) = 1 (¢f. Note 2.1)). Then, the classical infinite tensor basic structure is defined by

[Co(x321Q) € L¥(x32,Q, ®2,v) © B(L* (2,9, @;2,1v))] (4.8)

Therefore, the infinite tensor state space is characterized by

& (Co(xi2,2)") (= X 9) (4.9)
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Put p = 6,. the sample probability space (XY, X7 F, Pgee ) of the infinite parallel
measurement My (xe o g ) (@72,0 = (XN, X i1 F, ®k = 1°F), Sigee ;) is characterized
by

Per, p(E1 X Ba x - x By x ( X X)) = X[F(E)](w) (4.10)

k=n+1 k=1

(V2,€eF=3,,(k=1,2,....,n),n=1,2,3--+)

which is equal to the infinite product probability measure @;_, P,.
[I11]: Conclusion: Therefore, we can conclude

(f) in both cases, the sample probability space (X", X, F, Pgx ,) is defined
by the infinite product probability space (X", X ° F, &, P,)

Summing up, we have the following theorem ( the law of large numbers ).

Theorem 4.5. [The law of large numbers ] Consider the measurement Mz(0 = (X, F, F), S|,)
with the sample probability space (X, &, P,). Then, by Kolmogorov’s extension theorem (Corol-

laryi1.2]), we have the infinite parallel measurement:
M@;"zlﬁ(@)iozlo = (X", M2, T, @2, F), Si®:2 o)
The sample probability space (XY, X7, F, Pge . p) is characterized by the infinite probability
space (XN, X7 F, &, P,). Further, we see
(A) for any f € L'(X, P,), put

Dy ={(wras,.. ) e x| g LTSI E T _ gl )

n—o0 n

( where, E(f)= fX f(x)P,(dz) )

Then, it holds that

Pee, o(Dy) =1 (4.12)
That is, we see, almost surely,
S F(@) Py(dz) | = |lim, o L G2t ) (4.13)
(population mean) (sample mean)

Remark 4.6. [Frequency probability ] In the above, consider the case that

ro=x@={y P23 ceo
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Then, put
. k| meE 1 <k<n _
D,_= {(:El,m,...) e XM nlgfolo ] - ! = Pp(:)} (4.14)
(where, #[A] is the number of the elements of the set A)
Then, it holds that
P, p(Dy.) =1 (4.15)

Therefore, the law of large numbers (Theorem [4.5) says that
1) the probability in Axiom 1 ( 32.7]) can be regarded as “frequenc
(f1) the p y g quency

probability”
Thus, we have the following opinion:
G. Galileo - --the originator of the realistic world view
(#2)
J. Bernoulli ---the originator of the linguistic world view

4.2.2 Mean, variance, unbiased variance

Consider the measurement Mz (O = (R, Bg, F'), Si,)). Let (R, Bg, P,) be its sample proba-
bility space. That is, consider the case that a measured value space X = R.
Here, define:

population mean(ug) : E[Mz(0 = (R, BgF), S),)] = /RxPp(da:)(: 1) (4.16)

population variance((c5)?) : V[Mz(0O = (R, BgF), S},))] = /R(x — u)?P,(dz)  (4.17)

Assume that a measured value (21, x9, 23, ..., ,,) (€ R™) is obtained by the parallel measure-
ment ®j_,;Mz(0, Sy,). Put

[ R SIS

sample distribution(v,) : v, " e M, (X)
— N\ . Tron Ty +To+ -+ Tp,
sample mean(fi,) : E[@]_Mz(O, 5,))] = ——— - (=n)

_ /R v, (da)

sample variance(s;) : V[®}_;Mz(0, S|,))] =

- [ =Pl

(x1 —0)? + (22 — )2 + - + (32 — 10)?

(11 =) + (23 = ) + -+ (22 — 1)”

unbiased variance(u,) : U[®}_;Mz(0, S|,))] = N
n —

n

- [ o=t

n—1

Under the above preparation, we have:
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Theorem 4.7. [Population mean, population variance, sample mean, sample variance] Assume
that a measured value (1, 72,23, - )(€ RY) is obtained by the infinite parallel measurement
Qi Mz(O = (R, Bg, F), Si,). Then, the law of large numbers (Theoremid5)) says that

4.16]) = population mean(us) = lim it T2t T =: 1 = sample mean
Ho H
n—o00 n

(21 — Q) + (x2 — 1) + -+ - + (2 — p3)*

(4.17) = population variance(cg) = lim

n—00 n
)2 —a)2 4. — )2
= lim (w1 =B+ (@2 = )"+ + (20 = ) =: sample variance
n—00 n

Example 4.8. [Spectrum decomposition] Consider the quantum basic structure
[C(H) € B(H) € B(H)]

Let A be a self-adjoint operator on H, which has the spectrum decomposition (i.e., projective
observable) O4 = (R, Bg, F4) such that

A /R AFA(dN)

That is, under the identification:

self-adjoint operator: A <—  spectrum decomposition:04 = (R, Bg, F4)

identification

the self-adjoint operator A is regarded as the projective observable O4 = (R, Bgr, Fi4). Fix the
state p, = |u)(u| € &(Tr(H)). Consider the measurement Mgy (Oa, Sjjuy(u))- Then, we see

population mean(ug’, ) : E[Mp (04, Sty )] = /RMu, Fa(d\)u) = (u, Au) (4.18)

population variance((08")?) : V[Mp) (04, Sjuyup)] = /R()\ — (u, Au))*{u, Fa(d\)u)
— (A = {u, Au)ul? (4.19)

4.2.3 Robertson’s uncertainty principle

Now we can introduce Robertson’s uncertainty principle as follows.

Theorem 4.9. [Robertson’s uncertainty principle (parallel measurement) (cf. [83]) | Consider
the quantum basic structure [C(H) C B(H) C B(H)]. Let A; and Ay be unbounded self-
adjoint operators on a Hilbert space H, which respectively has the spectrum decomposition:

Oa, = (R, By, Fy,) to Oa, = (R, B, Fa,)
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Thus, we have two measurements Mp()(O04,, Sjp,]) and Mp(g)(04,, Sjp.]), Where p, = |u)(ul
€ GP(C(H)*). To take two measurements means to take the parallel measurement:
Mp(cn)(Oa,, Spp.)) ® Mpcn)(Oa,, Spp,)), namely,

MB(H)@B(H) (OA1 & Osz S[pu®Pu])
Then, the following inequality (i.e., Robertson’s uncertainty principle ) holds that

Pu | Pu
oft ol 2

[{u, (ArAs = A Au)| - (Vu)(ul = pu, lullm =1)

DN | —

where ¢/ and o) are shown in (4.19), namely,

{ ot = [{Avu, Avu) — [(u, Avu) > = [|(Ay = (u, Ayu) Ju]
o = [(Asu, Asu) — |(u, Agu) ' = || (Aa — (u, Agu) Ju]

Therefore, putting [A;, As] = A1 As — Ay Ay, we rewrite Robertson’s uncertainty principle as
follows:

[Avull - [[Agu]l = [[(Ar = (u, Avw)ul| - |(A2 = (u, Agu))ull = [(u, [Ar; AoJu)|/2 (4.20)

For example, when A;(= Q) [resp. As(= P) | is the position observable [resp. momentum
observable | (i.e., QP — PQ) = h/—1), it holds that

h

1
Pu . Pu >

Proof. Robertson’s uncertainty principle (4.20) is essentially the same as Schwarz inequality,
that is,

[(u, [A1, AoJu)| = [(u, (A1 Ag — A2 A1)u)

=[ (o, (A1 = {u, Av)) (A {u, As)) = (A = {u, Asu))(Ay — {u, Ayu)) )|
<2/ (Ar — {u, Ayuh)ul] - [|(Az — (u, Agu))u]
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4.3 Heisenberg’s uncertainty principle

4.3.1 Why is Heisenberg’s uncertainty principle famous?

Heisenberg’s uncertainty principle is as follows.

Proposition 4.10. [Heisenberg's uncertainty principle (¢f. [20]:1927) ]

(i) The position z of a particle P can be measured exactly. Also similarly, the momentum
p of a particle P can be measured exactly. However, the position x and momentum p of
a particle P can not be measured simultaneously and exactly, namely, the both errors
A, and A, can not be equal to 0. That is, the position  and momentum p of a particle
P can be measured simultaneously and approximately,

(ii) And, A, and A, satisfy Heisenberg’s uncertainty principle as follows.

A, - A, = h(= Plank constant/27=1.5547 x 107**Js). (4.21)

This was discovered by Heisenberg’s thought experiment due to y-ray microscope. It is
(A) one of the most famous statements in the 20-th century.

But, we think that it is doubtful in the following sense.

#Note 4.1. T think, strictly speaking, that Heisenberg’s uncertainty principle(Proposition 4.10)
is meaningless. That is because, for example,

(#) The approximate measurement and “error” in Proposition 4.10 are not defined.

This will be improved in Theorem [4.15] in the framework of quantum mechanics. That is,
Heisenberg’s thought experiment is an excellent idea before the discovery of quantum mechanics.
Some may ask that

If it be so, why is Heisenberg’s uncertainty principle (Proposition 4.10) famous?
I think that

Heisenberg’s uncertainty principle (Proposition 4.10) was used as the slogan for adver-
tisement of quantum mechanics in order to emphasize the difference between classical
mechanics and quantum mechanics.

And, this slogan was completely successful. This kind of slogan is not rare in the history of
science. For example, recall “cogito proposition (due to Descartes)”, that is,

I think, therefore I am.

which is also meaningless (cf. §8.4). However, it is certain that the cogito proposition built the
foundation of modern science.
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ANote 4.2. Heisenberg’s uncertainty principle(Proposition 4.10) may include contradiction (cf.
ref. [26]), if we think as follows

(#) it is “natural” to consider that
ASE:‘x_%" AP:’p_ﬁv
where

Position: [ : exact measured value (=true value), z : measured value]
Momentum: [p : exact measured value (=true value), p : measured value]

However, this is in contradiction with Heisenberg’s uncertainty principle (4.21)). That is because
(4.21)) says that the exact measured value (z,p) can not be measured. As seen in Remark [4.23]
note that the concept of "true vale” is nonsense.

4.3.2 The mathematical formulation of Heisenberg’s uncertainty prin-
ciple

In this section, we shall propose the mathematical formulation of Heisenberg’s uncertainty
principle [4.10.

Consider the quantum basic structure:

[C(H) € B(H) € B(H)]

Let A; (i = 1,2) be arbitrary self-adjoint operator on H. For example, it may satisfy that

[Al, AQ](Z: A1A2 — A2A1) = h\/ —17

Let O4, = (R, B, Fa,) be the spectral representation of A;, i.e., A; = [p AFy4,(d)), which is
regarded as the projective observable in B(H). Let py = |u)(u| be a state, where u € H and

|lu|| = 1. Thus, we have two measurements:
by (£I8
(Bl) MB(H)(OA1 ::(RagﬁFx‘h)’ S[Pu}) v ) (u,A1u>
expectation
by (L18
(B2) My (O, i=(R, B, Fi,), Sp,)) L (u, Ayu)
expectation

(Vpu = |u){ul € G*(C(H)))

However, since it is not always assumed that A; A; — A A; = 0, we can not expect the existence

of the simultaneous observable Oy4, x O4,, namely,
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e in general, two observables O4, and O4, can not be simultaneously measured
That is,
(Bs) the measurement Mp(z)(0a, x O4,, Sj,,]) is impossible, Thus, we have the question:

Then, what should be done?

In what follows, we shall answer this.
Let K be another Hilbert space, and let s be in K such that [|s|| = 1. Thus, we also

have two observables O 4, :=(R, B, Fi, ®I) and O 4,57 :=(R, B, F4, ® I) in the tensor algebra
B(H ® K).
Put

the tensor state p,s = |u ® s)(u ® s

And we have the following two measurements:

by (@
(C1) Mprex)(Oaser, Sp) L (w@ s, (A @ D(u®s) = (u, )
expectation
by (@.18)
(C2) Mprer)(Oaer Sp..) — (u® s, (A @ I)(u® s)) = (u, Au)
expectation

It is a matter of course that

and
(Cg) MB(H@K)(OA1®I X OA2®[, S[ﬁus]) is impossible.

Thus, overcoming this difficulty, we prepare the following idea:

Preparation 4.11. Let EZ (1 = 1,2) be arbitrary self-adjoint operator on the tensor Hilbert
space H ® K, where it is assumed that

-~

[Ay, Ay](:= A Ay — A3A)) =0 (i.e., the commutativity) (4.22)

Let O3 = (R, B, F3 ) be the spectral representation of A, ieA; = Je AF; (d)), which is
regarded as the projective observable in B(H ® K). Thus, we have two measurements as
follows:
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b o~
(D1) Mpwer)(07,, Sip..) 2O, s, A(u®s))

expectation

b ~
(D) Maem) (01, Spn)  ——s (u® 5, Ap(u @ s))

expectation

Note, by the commutative condition (4.22)), that the two can be measured by the simultaneous
measurement Mpek) (05, X O3 ,5(5,.), where O3 x Oz = (R*,B? F; x Fz).
Again note that any relation between A; ® I and ﬁl is not assumed. However,

e we want to regard this simultaneous measurement as the substitute of the above two
(Cy) and (Csy). That is, we want to regard

(Dy) and (Dy) as the substitute of (C;) and (Cs)

For this, we have to prepare Hypothesis 4.9 below.

Putting

~ ~

we define the A%S and Zﬁﬁts such that

i

A% = Ni(u® s)| = |[(A; = A @ D(uw )| (4.24)
A% =|(Ni — (u@ s, Ni(u@ ) (us)|
(A - AR —(u®s, (4 - AN ues) (ue s)|

where the following inequality:
AP > AR (4.25)

1S common sense.

By the commutative condition (4.22)), (4.23)) implies that
[Ny, No] + [Ny, A @I+ [A1 @ I, No] = —[A1 @ I, Ay @ 1] (4.26)

Here, we should note that the first term (or, precisely, |(u ® s, [the first term](u ® s))| ) of
(4.26) can be, by the Robertson uncertainty relation (¢f. Theoremd.9)), estimated as follows:

QZ%T 'Z%; > |(u® s, [N1, NoJ(u® s))| (4.27)
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4.3.2.1 Average value coincidence conditions; approximately simultaneous mea-
surement

However, it should be noted that
In the above, any relation between A; ® I and EL- is not assumed.

Thus, we think that the following hypothesis is natural.

Hypothesis 4.12. [Average value coincidence conditions |. We assume that

(u@s, Ni(u®s))=0  (VueH,i=1,2) (4.28)
or equivalently,
(w®s, A(u®s)) = (u,An)  (Vue H,i=1,2) (4.29)

That is,

the average measured value of Mpuex) (03 , 55,
=(u® s, A(u® s))
=(u, A;u)
=the average measured value of Mgy (O4,, Sjp,1)
(\V/U € H, ||u||H =1l1= 172)

Hence, we have the following definition.

Definition 4.13. [Approximately simultaneous measurement| Let A; and Ay be (unbounded)
self-adjoint operators on a Hilbert space H. The quartet (K, s, A;, As) is called an approxi-
mately simultaneous observable of A; and A, if it satisfied that

(E1) K isaHilbertspace. s € K, [|s|]|x = 1, A, and A are commutative self-adjoint operators
on a tensor Hilbert space H ® K that satisfy the average value coincidence condition
(4.28), that is,

(u® s, A(u® s)) = (u, Aju) (Vu e Hyi=1,2) (4.30)

Also, the measurement Mp(rei)(Oz X Oz ,5p,,) is called the approximately simultaneous
measurement of Mpy(0a,, Spp,)) and Mpw)(O04,, Spp.)-
Thus, under the average coincidence condition, we regard

(Dy) and (Dy) as the substitute of (C;) and (Cs)
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And

(Es) A%S (= (A, — A, @ 1)(u®s)||) and A%; (= |[(Ay— Ay @ I)(u®s)||) are called crrors of
the approximate simultaneous measurement measurement Mp(rex) (07, % O3, Sj5,.)

Lemma 4.14. Let A; and A, be (unbounded) self-adjoint operators on a Hilbert space H.
And let (K, s Al, Ag) be an approximately simultaneous observable of A; and A,. Then, it
holds that

AR = AR (4.31)
(@ s, [Ny, A @ (u®s)) =0  (Vue H) (4.32)
(W@ s, [A @I NJ(u®s)) =0 (Vue H) (4.33)

The proof is easy, thus, we omit it.

Under the above preparations, we can easily get “Heisenberg’s uncertainty principle” as

follows.

|(u, [A1, AoJu)|  (Yu € H such that |ju|| =1) (4.34)

DN | —

ﬁus ﬁus _ _/p:z‘s . _/P:}Ls
A AP (= AR AR >

Summing up, we have the following theorem:

Theorem 4.15. [The mathematical formulation of Heisenberg's uncertainty principle]
Let A; and Ay be (unbounded) self-adjoint operators on a Hilbert space H. Then. we have

the followings:

(i) There exists an approximately simultaneous observable(K s, 121\1, 121\2) of A; and A,, that
is, s € K, ||s|x = 1, A; and A, are commutative self-adjoint operators on a tensor
Hilbert space H® K that satisfy the average value coincidence condition (4.28]). There-
fore, the approximately simultaneous measurement M) (07, X O3,,S[,.)) exists.

(ii) And further, we have the following inequality (i.e., Heisenberg’s uncertainty principle).
AR AR (= AR = (A - Ay@ D s)|| - (A - A D )|

[{(u,[A1, AsJu)| (VYu € H such that ||[u|| =1) (4.35)

(iii) In addition, if AjAy — As Ay = hy/—1, we see that
A%; : A%; > h/2 (Yu € H such that |ju]| = 1) (4.36)
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Proof. For the proof of (i) and (ii), see
o Ref. [26]: S. Ishikawa, Rep. Math. Phys. Vol.20(3), 1991, pp.257 273,

As shown in the above (4.34), the proof (ii) is easy (cf. [33][77]), but the proof (i) is not easy
(¢f [T, 33]).

4.3.3 Without the average value coincidence condition

Now we have the complete form of Heisenberg’s uncertainty relation as Theorem [4.15 To be
compared with Theorem [1.15 we should note that the conventional Heisenberg’s uncertainty
relation (= Proposition [110) is ambiguous. Wrong conclusions are sometimes derived from
the ambiguous statement (= Proposition [L.10]). For example, in some books of physics, it
is concluded that EPR-experiment (Einstein, Podolosky and Rosen [14], or, see the following

section) conflicts with Heisenberg’s uncertainty relation. That is,

[I ] Heisenberg’s uncertainty relation says that the position and the momentum of a particle

can not be measured simultaneously and exactly.
On the other hand,

[IT ] EPR-experiment says that the position and the momentum of a certain “particle” can

be measured simultaneously and exactly ( Also, see Note [4.3. )

Thus someone may conclude that the above [I] and [II] includes a paradox, and therefore,
EPR-experiment is in contradiction with Heisenberg’s uncertainty relation. Of course, this is
a misunderstanding. This “paradox”was solved in [20, 33]. Now we shall explain the solution
of the paradox.

[Concerning the above [I]] Put H = L?(R,). Consider two-particles system in H ® H =

LQ(R%(]1 ) In the EPR problem, we, for example, consider the state u. ( € H® H =
LA(R?, ) (or precisely, ]ue>(u6]> such that:
Uc(q1, G2) = 9 : ¢ w20 g (ateb)? | idlae) (4.37)
Teo

where € is assumed to be a sufficiently small positive number and ¢(qi,¢2) is a real-valued

function. Let A;: L*(R? ) = L?*(R? ) and As: L?*(R? ) = L*(R? ) be (unbounded)

(q1,92 (q1,92 (q1,92 (q1,g2)
self-adjoint operators such that

ho

A = Ay = ——.
1 q1, 2 i@ql

(4.38)
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4.3 Heisenberg’s uncertainty principle

Then, Theorem [L.T5]says that there exists an approximately simultaneous observable( K s, A\l, 22)

of A; and A,. And thus, the following Heisenberg’s uncertainty relation (= Theorem [1.15)) holds,
| Avue — Avue| - || Ague — Agu|| > /2 (4.39)

[Concerning the above [II]] However, it should be noted that, in the above situation we
assume that the state u, is known before the measurement. In such a case, we may take another

measurement as follows: Put K =C, s =1. Thus, ( HIH) K=H®H, u®@s=u®1 =

u. Define the self-adjoint operators A; : LA(R?, ) — LA(RE, ,,) and Ay LX(R?, ) —
L*(R?, ,,)) such that
-~ ~ ho
A =b— Ay = Ay = — 4.40
1 42, 2 277 o ( )

Note that these operators commute. Therefore,
(1) we can take an exact simultaneous measurement of ﬁl and A, (for the state u,).

And moreover, we can easily calculate as follows:

\Alue AlueH

// b — q2 — Q1 6 80 (g1—q2—a) (Q1+Qbe)2 . eizz)(ql,qQ) 2

R2 \/

// (b— N/ o~ 5oz (0—a2—a)*~ gy (@1+a2—b)? }1/2
R2 a) = @) 27T60’

=2, (4.41)

1/2
d%@z}

and

| Ague — Ague|| = 0. (4.42)
Thus we see
| Ay, — Avuel| - || Asue — Asug|| = 0. (4.43)

However it should be again noted that, the measurement (#) is made from the knowledge of
the state wu,.

[[I] and [II] are consistent | The above conclusion (4.43)) does not contradict Heisenberg’s
uncertainty relation (4.39), since the measurement (£) is not an approximate simultaneous mea-
surement of A; and A,. In other words, the (K| s, 121\1, 121\2) is not an approximately simultaneous

observable of A; and A,. Therefore, we can conclude that
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(F) Heisenberg’s uncertainty principle is violated without the average value coincidence con-

dition

(c¢f. Remark 3 in ref.[26], or p.316 in [33]).

ANote 4.3. Some may consider that the formulas (4.41)) and (4.42)) imply that the statement [II]
is true. However, it is not true. This is answered in Remark [8.15.

Also, we add the following remark.

Remark 4.16. Calculating the second term (precisely , (u® s, “the second term” (u®s))) and
the third term (precisely , (u ® s,“the third term” (u ® s))) in (4.26]), we get, by Robertson’s

uncertainty principle (4.20),

AR - o(Agiu) > |(u® s, [Ny, Ao ® T)(u ® s))| (4.44)
SN - oA u) > [(u® s, [AsT, NoJ(u @ 9))| (4.45)

(Vu € H such that ||u|| =1)
and, from (4.20), (4.27), (4.44)),(4.45]), we can get the following inequality
A’%"f . A%“; + A%; o (A u) + A%“f o (Ag;u)
>ANT AT+ AT (A u) + AT o(Ag;u)
1
2§|<u, [A1, As]u)| (Vu € H such that ||Ju]| = 1) (4.46)

Since we do not assume the average value coincidence condition, it is a matter of course that
this (4.46)) is more rough than Heisenberg’s uncertainty principle (4.35))

If a certain interpretation is adopted such that A%S and A%S mean “error:e(Aj,u)” and
1 2

“disturbance:n( Ay, u)”, respectively, then the inequality (4.46), i.e.,

[{u, [As; AgJu)]

DN | —

€(Ar, u)n(Ag,u) + €(Ar, u)o(Ag, u) + o(Ar, u)n(As, u) >

is called Ozawa’s inequality (cf. [78]). He asserted that this inequality is a faithful description

of Heisenberg’s thought experiment ( due to -ray microscope ).
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4.4 EPR-paradox (1935) and faster-than-light

4.4.1 EPR-paradox

Next, let us explain EPR-paradox (Einstein-Poolside-Rosen: [14] [87]). Consider Two elec-
trons P, and P, and their spins. The tensor Hilbert space H = C? ® C? is defined in what

follows. That is,
|1 10
e]. - 0 I 62 - 1

(i.e., the complete orthonormal system {e, ez} in the C?),
C2®CQZ{ Z Q;;€; & €; | Qg E(C,z',j: 1,2}
ij=1,2

Put u= > a;e;®ejandv= Y pBe; ®e;. And the inner product (u, U>¢:2®C2 is defined
ij=12 ij=12
by

<U, U>C2®C2 = Z aiJ ’ 5i7j

4,j=1,2

Therefore, we have the tensor Hilbert space H = C? ® C? with the complete orthonormal
system {e; ® e1,€1 ® e9,e9 ® €1, €2 @ €3}

For each F' € B(C?) and G € B(C?), define the F ® G € B(C* ® C?) (i.e., linear operator
F®G:C*®C*— C?*®C?) such that

(FG) (u®v)=Fu® Gu
Let us define the entangled state p = |s)(s| of two particles P, and P, such that

s=—=(e1 ®ey — e ®eq)

V2

Here, we see that (s, s),_. = Her®er—ex®er,e; Qe — e @ eq) =1(1+1) =1,

c2@C?
and thus, p is a state. Also, assume that

two particles P, and P, are far.

Let O = (X,2% F?) in B(C?) (where X = {1,]} ) be the spin observable concerning the

z-axis such that

P =y o] Fan=[ Y
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The parallel observable O ® O = (X?,2% x 2% F* @ F?) in B(C? @ C?) is defined by

1
I

(F* @ )AL DN = P e B = | ol e é 8
(F* @ F)({(L, D)) = F ({1} @ F*({1}) = 8 ?_ ? cl) 8
(F o )N = P e P = [0 oo )0 ¢
(F* @ F)({(L, DY) = F ({1} @ F*({I}) = 8 ? ? 8 (1)

Thus, we get the measurement Mp(c2gc2)(0®0, Si,)) The, Born’s quantum measurement theory

says that

When the parallel measurementmeasurement Mp(c2gc2) (0 ® O, Sig) is taken,

(T, 1)
the probability that the measured value E*: B is obtained
)
(s, (F* @ F*)({(1, 1) })$) 2 =0
e atven by | (5 (79 PICE DD s = 05
(s, (F* @ F*)({(1,1)})$) 0 = 0.5
(s, (F* @ F*) {1, 1)})$) oy = 0
That is because, F*({1})e1 = e1, F*({l})es = ea, F*({1})e2 = F*({}})e1 = 0 For example,

(s, (F7 @ FH){(1, D H$) o0

:%«61 ®ers—ex@er), (F*({1H @ F ({{N(e1®ex —e2a @ er))
1

Cc2@C2 - 5

1
:§<(61 Rey —ea®e1),61 @ eg)

Here, it should be noted that we can assume that the 1 and the o (in (21, 22) € { (T2,12),
(12,42), (42, 12), (42, 42)}) are respectively obtained in Tokyo and in New York (or, in the earth

and in the polar star).

(probability 3) (probability )
(b) ()
T2 1 s T
® o or [ o
Tokyo New York Tokyo New York

This fact is, figuratively speaking, explained as follows:
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e Immediately after the particle in Tokyo is measured and the measured value 1, [resp. |.]
is observed, the particle in Tokyo informs the particle in New York “Your measured value

has to be |, [resp. 1,]”

Therefore, the above fact implies that quantum mechanics says that there is something faster

than light. This is essentially the same as the de Broglie paradoz (cf. [87]). That is,

e if we admit quantum mechanics, we must also admit the fact that there is

something faster than light (i.e., so called “non-locality”).

ANote 4.4. EPR-paradox is closely related to the fact that quantum syllogism does not hold in
general. This will be discussed in Chapter 8. The Bohr-Einstein debates were a series of public
disputes about quantum mechanics between Albert Einstein and Niels Bohr. Although there
may be several opinions, I regard this debates as

[Einstein] - [Bohr]

(realistic view) Vs (linguistic view)

For the further argument, see Section [10.7] (Leibniz-Clarke debates).

ANote 4.5. [Shut up and calculate]. The above argument may suggest that there is something
faster than light. However, when faster-than-light appears, our standing point is

Stop being bothered

This is not only our opinion but also most physicists’. In fact, in Mermin’s book [76], he said

(a) “Most physicists, I think it is fair to say, are not bothered.”
(b) If T were forced to sum up in one sentence what the Copenhagen interpretation says to
me, it would be “Shut up and calculate”

If it is so, we want to assert that the linguistic interpretation |(§3.1)| is the true colors of “the
Copenhagen interpretation”. That is because I also consider that

(¢) If T were forced to sum up in one sentence what the linguistic interpretation says to me, it
would be “Shut up and calculate.”
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4.5 Bell’s inequality should be reconsidered

This section is extracted from the following paper:

Ref. [55]; Ishikawa,S., Bell’s inequality should be reconsidered in quantum language |,
JQIS, Vol. 7, No.4 | 140-154, 2017, |DOI: 10.4236/jqis.2017.74011
(http://www.scirp.org/Journal/PaperInformation.aspx?PaperID=80813)

4.5.1 Bell’s inequality in mathematics

Bell’s inequality is important in the relation of "the hidden variable”. J. Bell showed that,
if Bell’s inequality is violated, then the hidden variable does not exist. However, it should be
noted that even if Bell’s inequality is violated, it does not imply that quantum mechanics is
wrong. In this section I would like to mention some of the things about Bell’s inequality, though
I am not concerned with ”the hidden variable”.

Firstly, let us mention Bell’s inequality in mathematics.

Theorem 4.17. [The conventional Bell’s inequality (cf. refs. [82,110,[87])] The mathematical
Bell’s inequality is as follows: Let (©,B, P) be a probability space. Let (fi1, fa, f3, f1) : © —
X4= {—1,1}*) be a measurable functions. Define the correlation functions ézj(z =125 =
3,4) by [o f:(0)f;(0)P(d6). Then, the following mathematical Bell’s inequality ( or precisely,
CHSH inequality (cf. ref. [10])) holds:

‘EB — §14’ + ’é23 + ézzﬂ <2 (4.47)

Proof. It is easy as follows.

“the left-hand side of the above eq.(4.47)”

/ 1F5(6) — £4(6)| Pd6) + / 1£4(6) + £4(6) | P(dB) <

This completes the proof.

This theorem is too easy, but we must remember the linguistic interpretation:
(#) There is no probability (or, no probability space ) without measurements.

Thus, in this section, we discuss ”What is the probability space in Theorem 4.177”.
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4.5.2 Bell’s inequality holds in both classical and quantum systems

Now let us consider a kind of generalization of the quasi-product observable (cf. Definition

3.19)) as follows.

Definition 4.18. [Combinable, Combined observable(cf. ref. [29])] Let {Si,S5s,...,.5;} be a
family (i.e., a set of sets) such that S; C {1,2,....n} (V[ =1,2,...,j}). Foreachl € {1,2,...,j},
consider an observable O; = (X 4c5, X5, X ses,Fs, F) in a W*-algebra A, and define a natural
map 7 1 Xj—12..0 Xk — Xses X5 such that

.....

X X, D (ﬂfk)k:l,Z,...n = (xk)kESl e X X
k=1,2,..., n keS;

Here, the {O; : | = 1,2,...,j} is said to be combinable, if there exists an observable O =

.....

P(ry (X E))=F(X Z,) (E,€T.,s€8)

SES] SES]

Also, the observable O is called a combined observable of {O;: 1 =1,2,...,j}

Note that, for each /, a measurement Mz (O, Si,,)) is included in M (O, Sp,))-

In this section we devote ourselves to the following simple combined observable.

Example 4.19. [Combined observable | Let [A, A|pm) be a basic structure. Put X = {—1,1}.
Let O = (X,P(X),Fy), Oy = (X,P(X),Fy), O3 = (X,P(X), Fs), Oy = (X,P(X), F3) be
observables in A. Consider four observables: O3 = (X2, P(X?), Fi3), Oy = (X2, P(X?), Fiy),
Ogs = (X2, P(X?), Fy3), Ogy = (X2, P(X?), Fay) in A such that

(4.48)

for any x € {—1,1}. The four observables Oy3, O14, O3 and Oq4 are said to be combinable if
there exists an observable O = (X*, P(X*), F) in A such that

Fis({(z1,23)}) = F({z1} x X x{z3} x X),  Fu({(z1,24)}) = F({z1} x X x X x {24})

Fos({(z2,23)}) = F(X X {xa} x {z3} x X),  Fau({(z2,24)}) = F(X X {@2} x X X {24})
(4.49)
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for any (w1, 39, 23,14) € X*. The observable O is said to be a combined observable of O;;
(1 =1,2,7 = 3,4). Also, the measurement Mz(O = (X*, P(X*), F), S,y) is called the combined
measurement of Mz(O1s, Sjpg)), M7(O14, Spe1), Mz(O2s, Sppe)) and Mz(Oa4, Sipgp)-

Remark 4.20. (i): Note that the formula (4.49) implies (4.48). The condition (4.48) is not
needed.

(ii): Syllogism (i.e., [[A = B] A [B = C]] = [A = (] ) does not hold in quantum systems but
in classical systems (cf. Section 8.7). A certain combined observable plays an important role

in the proof of the classical syllogism (cf. ref. [29]).

The following theorem is all of our insistence concerning Bell’s inequality. We assert that

this is the true Bell’s inequality.

Theorem 4.21. [Bell’s inequality in quantum language] Let [A, ﬁ] B(H) be a basic
structure. Put X = {—=1,1}. Fiz the pure state po( € GP(A")). And consider the
four measurements Mz(0O13 = (X2 P(X?), F13),S[po]) 701 = (X2, P(X?), Fi4), Sipo))

M7(023 = (X2, P(X?), F23), Spp)) and Mz(0sy = (X2, T(XZ) F24), Sipe))-  Or equivalently,
consider the parallel measurement ®2_1,27J_374MZ(O” = (X2, P(X?), F};),Sp)- Define four
correlation functions (i = 1,2,j = 3,4) such that
Y urv po(Ey({(u,0)})
(u,0)eX xX

Assume that four observables O3 = (X% P(X?),Fi3), O = (X% P(X?),Fy), Oy =
(X2, P(X?), Fy3) and Oy = (X%, P(X?), Fyy) are combinable, that is, we have the com-
bined observable O = (X* P(X*), F) in A such that it satisfies the formula (4.49). Then we
have a combined measurement Mz(0 = (X*, P(X*), F), Sjp]) of Mz(O13, Sjpe)), Mz(O14, Sipy)).
M7(Oa3, Spo)) and Mz (Oa4, Sipy)). And further, we have Bell’s inequality in quantum language
as follows.

|Ri3 — Ria| + |Ros + Ros| £ 2 (4.50)

Proof. Clearly we see, i =1,2,5 = 3,4,
Rij = > zi-xj po(F({(21, 22, w3, 24)})) (4.51)
(z1,22,x3,24) EX XX X X XX
( for example, Ry = D@1 s )X xxxxxx L1 T3 po(F({(21, 22, 23, 74) })) ). Therefore, we

see that

|R13 — Ria| + |Ras + Ro|
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- Z [|$1 ‘1'3—$1'£B4|—|—|ZL‘2-3:3—|—552-934| PO(F({(x1,$2,$3,$4)}))
(21,72,73,74)EX X X X X XX
- > [|x3 — xg] + |23 + 24| | po(F({ (21, 22, 73, 24) })) < 2

(1,22,3,04) EX X X X X x X

This completes the proof. O

As the corollary of this theorem, we have the followings:

Corollary 4.22. Consider the parallel measurement ®;_1 2 j—3 4M7(0;; = (X2, P(X?), F};), Sipe])
as in Theorem |4.21. Let

xr = ((33%3’55%3)’ (214, 734), (233, T33), (@4@24)) € X5(={-1,1}%)

be a measured value of the parallel measurement ®;—1 2 j=34M7(0;; = (XQ,T(XZ),FZ-j),S[pO]).
Let N be sufficiently large natural number. C’onsider N -parallel measurement ® L[ ®iz12j=23
M7 (0;; == (X%, P(X?), Fyj), Sipo)) |- Let {a"})_, be the measured value. That is,

1,1 21 1,1 21 1,1 21 1,1 21 T
<<3713 13 ), (14, 27y ), (3523 » Lo3 )s (T, w3y ))

1,2 22 1,2 22 1,2 22 1,2 22
<($13=x13) (g, 210 )s (05,233 ), (T4, @ 24))

{a" i = e (X*)N

1,N 2N 1,N 2N 1,N 2N 1,N 2N
_((9513 213 )5 (1) 52y )s (w93, @53 ), (T9) -, 5] ))_

Here, note that the law of large numbers says: for sufficiently large N,
[N
Rij ~ ~ atel (i=1,2,5=3,4).

n=1

Then, it holds, by the formula (4.50), that

xi?,nﬁ:sn - $14n$14 x§3nxg3n Y $14n$§4n
DIRCCEE g I ot e A ot R
n=1 n=1

which 1s also called Bell’s inequality in quantum language.

Remark 4.23. [(i):The conventional Bell’s inequality (cf. refs. [10, 82] 87])] From the math-
ematical point of view, the formulas (4.47) and (4.50) are the same. However, the probability
space (X* P(X*), po(F(-))) in Theorem 4.21]is visible and concrete.

[(ii): "true value” (or, "hidden value”)] In Theorem [4.21], we have the combined measurement

M7(O = (X*, P(X?), F), S|). Thus, some may consider that
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e the true value (x1, s, x3,x4) (of observables O, k = 1,2,3,4 in Example [4£.19) can be

obtained by the measurement Mz(O = (X*, P(X*), F), S},).
No-Go theorem (cf. [82] ) is usually mentioned in terms of Einstein’s world view. However,

e If No-Go theorem is mentioned in terms of Bohr’s world view, we think that No-Go

theorem is the existence theorem of the combined observable.

4.5.3 “Bell’s inequality” is violated in classical systems as well as
quantum systems

In the previous section, we show that Theorem 4.21] (or Corollary [4.22) says

(F1) Under the combinable condition (¢f. Example [4.19), Bell’s inequality (4.50) (or, (4.52))

holds in both classical systems and quantum systems.
Or, equivalently,

(Fg) If Bell’s inequality (4.50) (or, (4.52))) is violated, then the combined observable does not

exist, and thus, we cannot obtain the measured value ( by the combined measurement).

Remark 4.24. This is similar to the following elementary statement in quantum mechanics:

(F,) We have no simultaneous measurement (= combined measurement ) of the position
observable () and the momentum observable P, and thus we cannot obtain the measured
value ( by the simultaneous measurement),

which may be, from Einstein’s point of view, represented that “true value (or, hidden variable)
of the position and momentum” does not exist. Since the error A is usually defined by
A = |rough measured value — true valuel, it is not easy to define the errors Ag and Ap in
Heisenberg’s uncertainty principle Ag - Ap > h/2 (cf. Noted.2]). As seen in Section 4.3, this
definition was completed and Heisenberg’s uncertainty principle was proved (c¢f. Corollary 1
in ref. [26]). Also, according to the maxim of dualism: “To be is to be perceived” due to G.
Berkeley, we think that it is not necessary to name that does not exist (or equivalently, that
is not measured ).

The above statement (Fy) makes us expect that

(G) Bell’s inequality (4.50) (or, (4.52))) is violated in classical systems as well as quantum

systems without the combinable condition.

This (G) was already shown in my previous paper [34]. However, I received a lot of questions

concerning (G) from the readers. Thus, in this section, we again explain the (G) precisely.
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4.5.3.1 Bell test experiment

In order to show the (G), three steps ([Step:I] ~[Step:I1I]) are prepared in what follows.
[Step: I] . Put X = {-1,1}. Define complex numbers ai(= o + frv/—1 € C :
the complex field) (k = 1,2, 3,4) such that |a;| = 1. Define the probability space (X?, P(X?), v4,q,)
such that (1 =1,2,7 = 3,4)

Vaga; ({(1, 1)}) = Vao, ({(=1, =1)}) = (1 — auar; — 5i3;) /4
Vasa; ({(=1, 1)}) = Vaa, ({(1, =1)}) = (1 + cvicx; + Bif3;) /4 (4.53)

The correlation R(a;,a;) (i =1,2,j = 3,4) is defined as follows:

Rlaia5) = ) @1 Tavie, ({(21,22)}) = —ic; — Bi; (4.54)

(z1,02)EX XX

Now we have the following problem:
(H) Find a measurement Mz(Oq,q, := (X2, P(X?), Fu.a,), Sppo)) (i = 1,2,j = 3,4) such that
00(Fuay (2)) = vy () (V2 € P(X?)) (4.55)

and

Fa1a3<{$1} X X) = Fa1a4({l’1} X X) Fazas({xQ} X X) = Fa2a4({3}2} X X)
Flyay (X X {23}) = Fapay (X X {23})  Foyau (X X {24}) = Flpa, (X X {24})
(V:L‘k € X(E {—1, 1}), k= 1,2,3,4)

which is the same as the condition (4.48])

[Step: IIJ.

Let us answer this problem (H) in the two cases (i.e., classical case and quantum case), that is,

(i):the case of quantum systems: [A = B(C?) ® B(C?)(= B(C?® C?)), A = B(C?) ® B(C?)]

(ii):the case of classical systems: [A = Cy(2) ® Co(Q)(= Co(2 x Q)), A = L®(Q) @ L=(Q) |

(i):the case of quantum system: [A = B(C?) ® B(C?)]

Put
ol o] e
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For each a, (k =1,2,3,4), define the observable O,, = (X, P(X),G,,) in B(C?) such that

Gak<{1}>:ﬂ;k ‘ﬂ, Gak<{—1}>=ﬂ ! —fk]_

where a; = oy — Bxv/—1. Then, we have four observable:
Ou, = (X, P(X),Go, @ 1), O, =(X,P(X),I®GC,,) (i=1,2,7=34) (4.56)
and further,
Ouia; = (X?, P(X?), Fra; = Go, ® Gy;)  (1=1,2,j=3,4) (4.57)

in B(C?) ® B(C?), where it should be noted that F, ,, is separated by G,, and G,,.
Further define the singlet state py = [1)s) (15| ( € &7(B(C* ® C?)*)), where

¢s = (61 ) _€2®€1)/\/§
Thus we have the measurement Mp(c2gc2)(Oaya,, Spe)) in B(C?) ® B(C?) (i = 1,2,5 = 3,4).

The followings are clear: for each (z1,72) € X%(= {-1,1}?),

po(Fasa;({(21,22)})) = (s, (Go,({21}) ® G, ({22}))05) = Vao,({(z1,22)}) (i =1,2,5 =3,4)
(4.58)

For example, we easily see:

po(Fap, ({(1, 1)})) = (s, (Ga, ({1}) @ G, ({1}))s)

1 @ 1 a;
=2(e1®@es —ey@en), (| Cﬂ ® {a‘ Cﬂ)(el Reg— e @ep))
L J

o [1-Le Dt 2oL Dol
=l = [ - B e bpled = [3] - [3] 2 Lo

:é(z —aa; — a;a;) = (1 — aza; — BiB;) /4 = Va,a; ({(1,1)}).

OOI»—t
N—

0ol—=

Therefore, the measurement Mp(c2gc2)(Oaya;, i) satisfies the condition (H).

(ii):the case of classical systems: [A = Cy() ® Co(2) = Cy(02 x Q)]
Put wo(= (wp,wly)) € QX Q. pg = duy (€ SP(Co(2 x Q)7), i.e., the point measure at wy) ).
Define the observable Og,q, 1= (X?, P(X?), Fiq,) in L=(Q x Q) such that

[Foia, {1, 22) D) = Voo, ({(z1,22)})  (V(21,22) € X*,i=1,2,j =3,4,Vw € 2 x Q)
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Thus, we have four observables
Ouia; = (X%, P(X?), Fuoo,)  (1=1,2,5=3,4) (4.59)

in L>(2 x Q) ( though the variables are not separable (c¢f. the formula (4.57) ). Then, it is

clear that the measurement Mc,@x0)(Ou;q;, S[(;wo]) satisfies the condition (H).

(ii)":the case of classical systems: [A = Co(Q) ® Co(2) = Co(2 x )]
It is easy to show a lot of different answers from the above (ii). For example, as a slight

generalization of (9), define the probability measure l/éiaj (0 <t <1) such that

Vawa, (=1, D)} = v, (L, =D} = (1 + t(ase; + 5iB;)) /4 (4.60)
And consider the real-valued continuous function t(€ Cy(2 x Q)) such that 0 < t(w',w") <1
(Vw = (W, w") € Q x Q). And assume that t(wy) = 1 for some wy(= (wf),wy)) € Q x Q.

po = 0wy (€ GP(Co(Q x Q)%), ie., the point measure at wy) ). Define the observable Qy,q; :=
(X2, P(X?), F,.q,) in L>(Q2 x Q) such that
[Faiaj({(x17m2)}>](w) = Végﬁj({(xla@)}) (V(x171:2) S Xzai =1,2,j=3,4,Vw € QX Q)
(4.61)

Thus, we have four observables
Oaiaj = (X2::P(X2)7Faiaj) (Z: 1>2a]:374)

in L>(2 x Q) ( though the variables are not separable (c¢f. the formula (4.57) ). Then, it is

clear that the measurement Mz (qxq)(Oa;a; S[(;wo]) satisfies the condition (H).

[Step: III].

As defined by (9), consider four complex numbers ax(= ax + Spv/—1;k = 1,2,3,4) such

that |ax| = 1. Thus we have four observables

Ouyas i= (X2> iP<X2)7 Fa1a3)v Ouras i= (sz T(Xz)a Foay),
Ouzas := (X2v?(X2>7Fa2a3)= Ouzas := (X2=?<X2)7Fa2a4)7

in A. Thus, we have the parallel measurement ®;_; 5 j—3.4 M7 (04,0, == (X*, P(X?), Fusa,), Sip))
in ®i:1,2,j:3,4‘z'
Thus, putting

1++v/-1 1—+v—-1
ap =v—1, ap =1, G3ZT, MZT,
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we see, by (10), that

|R(a1,a3) — R(ay,as)| + |R(az,a3) + R(as, as)| = 2v2 (4.62)

Further, assume that the measured value is x(€ X®). That is,

T = ((Ii’n I%3)7 (1%47 xil)’ (‘T%?)? .1'33), (1’54, ‘7‘34)) € X X2<E {_17 1}8)

ij=1,2

Let N be sufficiently large natural number. Consider /N-parallel measurement ®n 1 [ ®i=1,2 =34
M7(Oq,a, == (X2, P(X?), Fasa;), Sipe]) - Assume that its measured value is {z" . That is,

i 1,1 2,1 1,1 2,1 1,1 2,1 1,1 2,1 T
((5‘313 1y )y (T, 71y ), (w9, w93 ), (w3}, m5) ))

1,2 22 1,2 22 1,2 22 1,2 22
(x5, 273), (011, 27y ), (293, 053 ), (w9}, T5))
{a"} = e( X  xHV(={-1,1}®V)

i=1,2,j=3,4

LN 2Ny (LN 2Ny 1N 2Ny LN 2N
_((%3 cxyy ) (@ oy ), (23,53 ), (T2),25) ))_
Then, the law of large numbers says that

N

1 1n _2n . .
R(a;, aj) =~ NZ% rit (i=1,2,j=3,4)
n=1
This and the formula (18) say that
lenlﬂn ixlnlﬁn lenxQn ixllen
| 13 ¥13 14 *~14 | | 23 23 24 24 | ~ 2\/_ (463)
n=1 n=1 N

Therefore, Bell’s inequality (4.50) (or, (4.52))) is violated in classical systems as well as quantum

systems.

Remark 4.25. For completeness, note that the observables Oqq; (i = 1,2,7 = 3,4) in the

classical L>*(€2 x ) are not combinable in spite that these commute. Also, note that the
formulas (4.60) and (4.61)) imply that

[Faias ({7} X X)|(w) = [Fayas ({7} x X)|(w) = 1/2,  [Fayas({z} X X)|(w) = [Fapas ({7} X X)](w) = 1/2,

[Faras (X X {z}))(w) = [Fazas (X x {zP)(w) = 1/2,  [Fayas (X X {z}H))(w) = [Fasas (X x {z})](w) = 1/2
(Vo € X,Vw € Q x ),

which is similar as (4.48)).
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4.5.4 Conclusion

In Bohr-Einstein debates (refs. [14, [5]), Einstein’s standing-point (that is, “the moon is
there whether one looks at it or not” (i.e., physics holds without observers) ) is on the side of
the realistic world view in Figure 1. On the other hand, we think that Bohr’s standing point
(that is, “to be is to be perceived’ (i.e., there is no science without measurements )) is on the
side of the linguistic world view in Figure 1.1.

In this paper, contrary to Bell’s spirit (which inherits Einstein’s spirit), we try to discuss
Bell’s inequality in Bohr’s spirit (i.e., in the framework of quantum language). And we show

Theorem 4.21] ( Bell’s inequality in quantum language), which says the statement (F5), that is,

(I;) (= (F2)): [ from Bohr’s standing-point]:
If Bell’s inequality (4.50) (or, (4.52))) is violated, then the combined observable does
not exist, and thus, we cannot obtain the measured value (by the measurement of the

combined observable).

Also, recall that Bell’s original argument (which is under the influence of Bohr-Einstein debates)

says, roughly speaking, that

(I3) [ from Einstein’s standing-point]:
If the mathematical Bell’s inequality (4.47)) is violated in Bell test experiment (the quan-

tum case of Section 4.5.3), then hidden variables do not exist.

It should be note that the concept of “hidden variable” is independent of measurements, thus,
the (I3) is a philosophical statement in Einstein’s spirit, or precisely, the (I3) may says that
quantum mechanical phenomenon (i.e., Bell test experiment) cannot be described in Einstein’s
spirit. On the other hand, our (I;) is not related Einstein’s spirit, that is, it is a statement in
Bohr’s spirit (i.e., there is no science without measurements). It is sure that Bell’s answer (I5)
is philosophically attractive, however, we believe in the scientific superiority of our answer (I).

For example, consider the following problem:

(J) [Problem]: Why is Bell’s inequality violated in the Bell test experiment ( mentioned in
Section 4.5.3)7

It is sure that everybody agrees to the answer (I;) and not (Iy). Thus, the scientific superiority
of our answer (I;) is clear. That is, we think that Bell’s (I5) is a philosophical view of the
scientific (I;). If so, we can, for the first time, understand Bell’s inequality from the practical

point of view.
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That is,
Theorem [4.21] is the true Bell’s inequality.

And we conclude that whether or not Bell’s inequality holds does not depend on whether
classical systems or quantum systems (in Sections 4.5.3), but depend on whether the combined
measurement exists or not (in Section 4.5.2). Thus, Bell’s inequality is violated even in classical

systems (in Section 4.5.3).

Remark 4.26. Note that the great disputes in the history of the world view (¢f. Figure [.1]in

Section 1.1) are always formed as follows:

Einstein,... Bohr,...
| realistic world view | e ’linguistic world View‘
(monistic realism) o (dualistic idealism)

For example,

Table 4.1 : The realistic world view vs the linguistic world view

Dispute \ R vs. L the realistic world view the linguistic world view
Greek philosophy Aristotle Plato
Problem of universals| Nominalisme(William of Ockham) Realismus(Anselmus)
Space-times Clarke( Newton) Leibniz
Quantum mechanics Einstein (cf. [14]) Bohr (¢f. [5])

(cf. Note [10.7 in Chapter 10 or ref. [52]).
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Chapter 5

Fisher statistics (I)

Measurement theory (= quantum language ) is formulated as follows.

[Axiom 1] [Axiom 2| [quantum linguistic interpretation]|
e |measurement theory ‘ :=| Measurement |+ ’ Causality ‘—F ’ Linguistic interpretation
(=quantum language) (cf. [§2.7) (¢f. §10.3) (cf. §31)
a kind of spell(a priori judgment) manual to use spells

Measurement theory says that

e Describe every phenomenon modeled on Axioms 1 and 2 (by a hint of the linguistic inter-
pretation)!

In this chapter, we study Fisher statistics in terms of Axiom 1 ( measurement: [§2.7]). We shall
emphasize

the reverse relation between measurement and inference

(such as “the two sides of a coin”).

The readers can read this chapter without the knowledge of statistics.

5.1 Statistics is, after all, urn problems

5.1.1 Population(=system)<>state

Example 5.1. The density functions of the whole Japanese male’s height and the whole Amer-
ican male’s height is respectively defined by f; and f4. That is,

/ p fr(x)d A Japanese male’s population whose height is from a(cm) to (cm)
x)dr =
o J A Japanese male’s overall population
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A An American male’s population whose height is from a(cm) to f(cm)
fa(z)de = - ; -
o An American male’s overall population
Let the density functions f; and f4 be regarded as the probability density functions f; and f4
such as

the set of all Japanese males
the set of all American males
ability that his height is from «a(cm) to (cm) is given by

Fn((o, B (ws) = [ fr(@)de ]
[Fuller, B))(wa) = [ fa(z)dz

Now, let us represent the statements (A;) and (As) in terms of quantum language: Define
the state space 2 by Q = {wy,wa} with the discrete metric dp and the counting measure v
such that

(A) From } , choose a person (at random). Then, the prob-

v({ws)) =1, v({wa}) =1

<It does not matter, even if v({wy}) = a, v({wa}) =050 (a,b> 0)>

Ulz(sw‘] U2%5w,4

All American males

All Japanese males

in this urn Us

in this urn U;

Figure 5.1: Population~urn(<>state)

Thus, we have the classical basic structure:
(Classical basic structure[Cy(Q) C L>(Q,v) C B(L*(Q,v))]
The pure state space is defined by
&"(Co()") = {0u;, 0un} = {ws,wat =
Here, we consider that
0w, -+ “the state of the set U; of all Japanese males”,

J

wa “the state of the set U, of all American males”,

and thus, we have the following identification (that is, Figure [5.1)):
Ulzéw, UQ%(SLUA

The observable O, = (R, B, F},) in L>*(Q,v) is already defined by (A). Thus, we have the
measurement Mo )(Op, Sj5,)) (w € Q@ = {ws,wa}). The statement(A) is represented in terms
of quantum language by
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Mz (@) (On, Siw,)

(B) The probability that a measured value obtained by the measurement
MLOO(Q) (Oh, S[WA])

belongs to an interval [, () is given by

oo (Ours (o 8)) ) e = [Fh(lax, 8))] ()
v (Fs Full0s 8)) ) ey = [F (o)) ()

Therefore, we get:

statement (A)| ———— |statement (B)
translation
(ordinary language) (quantum language)

5.1.2 Normal observable and student ¢-distribution

Counsider the classical basic structure:
(Co(9) € L=(Q,) € BLA(Q,v))]

where 2 = R (=the real line) with the Lebesgue measure v. Let o > 0 be a standard deviation,
which is assumed to be fixed. Define the measured value space X by R (i.e., X = R ). Define
the normal observable O, = (X (=R), By, G,) in L>*(2, v) such that

6@ = = [ exp{—%ﬂu—w)?} & (5.1)

2ro

(VE € By (= By), Yw € Q(=R))

where By is the Borel field. For example,

1 g 22 1 20 2
e 222dx = 0.683..., e 202dxr = 0.954...,
V2ro? /g V2ro? /20

1 1.960

V2mo? J_1.960

e 207 dr=0.95

o 1 A
Y= Vamar® 2
—20 —0 5 20 >

Figure 5.2: Error function
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Next, consider the parallel observable @;_, Oc, = (R", Bgn, Q,_, G,) in L>(Q", v®") and
restrict 1t on

K={(ww,... e | weQ}cam

This is essentially the same as the simultaneous observable 0" = (R™, Bgn, X ,_; G) in L>®(Q).
That is,

(X Go)(E1 x 2 x -+ x B)l(w) = X [GolE0)])
B k>n<1 217r0 /Ek o [ - T;(xk - W)Q] o 2

(V) € By (= Bp), Yw € Q(=R))

Then, for each (21,9, ,2,) € X"(=R"), define
. Ti Tyt Ty

n —

n
(71 _En)2+(x2_fn)2+"'+(xn_En>2
n—1

U? =

and define the map v : R® — R such that

) Ty — W
Tp) = —F—
’ U,/\/n
Then, we have the observable Oz = (X (= R), By, 7)) in L*(R) such that

Qp(xl, To,. ..
i /_ T € =)|w (vEemn (653

The observable Ors = (X(=R), By, T)7) in L>(R) is called the student ¢ observable .
Here, putting

[77(2)](w) = [GU({(xl,xQ,...,xn) eR" |

2
fo(x) = {[(n/2) (1+ - )2 (I' is Gamma function) (5.4)
(- Drl((n—1)/2)  n—1
we see that
TIENw) = [ £ (EeT) (55)
which is independent of w and o. Also note that
2
lim f7(z) = lim Ln/2) 1+ -2 )2
n—00 n—oo \/(n— )7rl'((n—1)/2) n—1
I

e
\ 27

thus, if n > 30, it can be regarded as the normal distribution N(0,1)( that is, mean 0, the
standard deviation 1).
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5.2 The reverse relation between Fisher ( =inference)
and Born ( =measurement)

In this section, we consider the reverse relation between Fisher ( =inference) and Born (
=measurement)

5.2.1 Inference problem ( Statistical inference )

Before we mention Fisher’s maximum likelihood method, we exercise the following problem:

Problem 5.2. [Um problem( =Examplé2.34), A simplest example of Fisher's maximum
likelihood method]

There are two urns U; and Us. The urn U; [resp. Us| contains 8 white and 2 black balls
[resp. 4 white and 6 black balls].

Ul(% wl)

loJeJeole) )
(oJoJeolo) )

Figure 5.3: Pure measurement (Fisher’s maximum likelihood method)
Here consider the following procedures (i) and (ii).

(i) One of the two (i.e., Uy or Us) is chosen and is settled behind a curtain. Note, for
completeness, that you do not know whether it is U; or Us.

(ii) Pick up a ball out of the unknown urn behind the curtain. And you find that the ball
is white.

Here, we have the following problem:

(iii) Infer the urn behind the curtain, U; or Us?

The answer is easy, that is, the urn behind the curtain is U;. That is because
the urn U; has more white balls than U,. The above problem is too easy, but it includes the
essence of Fisher maximum likelihood method.

5.2.2 Fisher’s maximum likelihood method in measurement theory

We begin with the following notation:
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Notation 5.3. [M7(0O, Sp,j)]:  Consider the measurement My (O=(X,J, F), S};) formulated
in the basic structure [A C A C B(H)]. Here, note that

(A1) In most cases that the measurement My (O=(X,J, F)), Si,) is taken, it is usual to think
that the state p (€ GP(A*)) is unknown.

That is because

(Az) the measurement My (O, Sp,)) may be taken in order to know the state p.

Therefore, when we want to stress that

we do not know the state p
The measurement Mz (O=(X,J, F), Si,) is often denoted by
(A3) Mﬁ <O=<X, ff, F), S[*]>

Further, consider the subset K(C &P(A*)). When we know that the state p belongs to K, My
(0=(X,T,F), Sp) is denoted by Mz(O, Sy, (K))). Therefore, it suffices to consider that

Mz(0, 51)) = Mz(0, 5 (6"(A")))

Using this notation Mz(O, Sp,j), we characterize our problem (i.e., inference) as follows.

Problem 5.4. [Inference problem]

(a) Assume that a measured value obtained by Mz (0O=(X,J, F), S;y(K))) belongs to =(&
F). Then, infer the unknown state [] (€ §2)

or,

(b) Assume that a measured value (z,y) obtained by Mz(O=(X x Y,F X G, H), S;,;(K)))
belongs to = x Y (£ € F). Then, infer the probability that y € T

Before we answer the problem, we emphasize the reverse relation between “inference” and
“measurement”.
The measurement is “the view from the front”, that is,

(By) (observable[O], state[w(€ Q)]) — "N, measured valuelz(€ X)]
Moo (0)(0,S[)

On the other hand, the inference is “the view from the back”, that is,

(B2) (observable[O], measured value[z € Z(€ F)]) MLC“?;C;—)—) state [w(€ Q)]
£20(2) (0,57

In this sense, we say that
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the inference problem is the reverse problem of measurement

Therefore, it suffices to image Fig. 5.4.

: : ‘ measurement
(measuring object) } ) ( ~ )
’unknown state‘ } —_— ’measured value ‘
: (measuring instrument) probabilistic (output)
| (observer)

inference

Figure 5.4: The image of inference

In order to answer the above problem [5.4] we shall describe Fisher maximum likelihood

method in terms of measurement theory.

Theorem 5.5. [(Answer to Problem [E.4(b)): Fisher's maximum likelihood method(the general

case)] Consider the basic structure
[A CAC B(H)

Assume that a measured value(z, y) obtained by a measurement Mz(O=(XxY, ¥ X G, H), S,y (K)))
belongs to = x Y (2 € F). Then, there is reason to infer that the probability P(I') that y € I'

is equal to

where, py € K is determined by.

po(H(ZxY))=maxp(H(Z xY)) (5.6)

peK

Proof. Assume that p1,po € K and pi(H(E X Y)) < po(H(E x Y)). By Axiom 1 (

measurement: [§2.7))

(i) the probability that a measured value(z,y) obtained by a measurement M(0O, S},,)) be-
longs to = x Y is equal to p1(H(Z x Y))

(ii) the probability that a measured value(z,y) obtained by a measurement M (O, S,,;) be-
longs to = x Y is equal to po(H(Z x Y))
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Since we assume that p1(H(Z X Y)) < po(H(Z x Y)), we can conclude that “(i) is more rare
than (ii)”. Thus, there is a reason to infer that [*] = wy. Therefore, the pg in (5.0) is reasonable.
Since the probability that a measured value(z,y) obtained by Mz(O, S,,) belongs to = x I is
given by po(H(Z x I')), we complete the proof of Theorem 5.5l O

Theorem 5.6. [(Answer to5.4(a)): Fisher's maximum likelihood method in classical case |
(i): Consider a measurement Mye(q)(O =(X,JF, F), Sij(K))). Assume that we know that a
measured value obtained by a measurement M) (O, S (X)) belongs to = (€ F). Then,
there is a reason to infer that the unknown state state [¥] is wy (€ ) such that

[F(Z)](wo) = max[F(Z)](w)

wes

o
Figure 5.5: Fisher maximum likelihood method

ii): Assume that a measured value xq (€ X) is obtained by a measurement My g (O
()
=(X,7,F), S(K)). Define the likelihood function f(z,w) by

= in im M
f(w,w) = Inf [aax,maﬂ(wl#ogﬁ{x} FE)(w) (5:7)

Then, there is a reason to infer that [*] = wy(€ K) such that f(xg,w) = 1.

Proof. Consider Theorem [5.5in the case that
A C A C BH)| = [Co(Q) € L¥(Q) € BLX(9)]

Thus, in the measurement M) (0=(X x Y,F X G, H), S;,j(K))), consider the case that
Fixed O1=(X, T, F), any 0,=(Y,9,G),
0=0, x0y= (X xY, TG F xG), po=0s,

Then, we see

[H(Z)](wo) x [G(I)](wo)
[H (Z)](wo) > [G(Y)](wo)

And, from the arbitrariness of Og, there is a reason to infer that

P() = = [G(D)](wo) (VI € 9) (5-8)

[*] = 4y, A w)

identification
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#Note 5.1. The linguistic interpretation says that the state after measurement is non-sense. In
this sense, the readers may consider that

(#1) Theorem [5.6]is also non-sense

However, we say that

(#2) in the sense of (5.8]), Theorem [5.6 should be accepted.
or

(#3) as far as classical system, it suffices to believe in Theorem [5.6

Answer 5.7. [The answer to Problem 5.2] by Fisher's maximum likelihood method)]
You do not know which the urn behind the curtain is, U; or Us.

Assume that you pick up a white ball from the urn.

The urn is U; or Uy? Which do you think?

Figure 5.6: Pure measurement (Fisher’s maximum likelihood method)

Answer: Consider the measurement Mro(q) (0= ({w, b}, 21w¥ F) S.,)), where the ob-
servable O, = ({w, b}, 2" F,;,) in L>°(Q) is defined by

[Fup({w})](wr) = 0.8, [Fun({0})](w1) = 0.2
[Fup({w})](w2) = 0.4, [Fun({b})](w2) = 0.6 (5.9)

Here, we see:

max{ [Fup({w})](wi), [Fup({w})](w2) }
=max{0.8,0.4} = 0.8 = F,ps({w})](w1)
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5.2 The reverse relation between Fisher ( =inference) and Born ( =measurement)

Then, Fisher’s maximum likelihood method (Theorem [0.0]) says that
[#] = w1

Therefore, there is a reason to infer that the urn behind the curtain is U;. O]

ANote 5.2. As seen in [Figure 5.4], inference (Fisher maximum likelihood method) is the reverse
of measurement (i.e., Axiom 1 due to Born). Here note that

(a) Born’s discovery “the probabilistic interpretation of quantum mechanics” in [6] (1926)

(b) Fisher’s great book “Statistical Methods for Research Workers” (1925)

Thus, it is surprising that Fisher and Born investigated the same thing in the different fields in
the same age.
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5.3 Examples of Fisher’s maximum likelihood method

All examples mentioned in this section are easy for the readers who studied the elementary
of statistics. However, it should be noted that these are consequence of Axiom 1 ( measurement:

§2.7).

Example 5.8. [Urn problem] Each urn U;, Us, Us contains many white balls and black ball

such as:
Table 5.1: urn problem
w-b\_Urn Urn U3 Urn Uy Urn Us
white ball 80% 40% 10%
black ball 20% 60% 90%
Here,

(i) one of three urns is chosen, but you do not know it. Pick up one ball from the unknown
urn. And you find that its ball is white. Then, how do you infer the unknown urn, i.e.,

Ul, UQ or Uj?
Further,

(ii) And further, you pick up another ball from the unknown urn (in (i)). And you find that
its ball is black. That is, after all, you have one white ball and one black ball. Then, how

do you infer the unknown urn, i.e., Uy, Us or U3?

In what follows, we shall answer the above problems (i) and (ii) in terms of measurement
theory.

Consider the classical basic structure:
[Co(Q2) C L>(Q,v) C B(L*(Q,v))]
Put
0w, (R wj) <— [the state such that urn Uj is chosen] (j =1,2,3)

Thus, we have the state space Q ( ={w;,wq, w3} ) with the counting measure v. Further, define
the observable O = ({w, b}, 2" F) in C(Q) such that

F({w})(w) = 0.8, F({w})(ws) = 0.4, F({w})(ws) = 0.1
F({b})(wn) = 02, F({b})(w2) = 0.6, F({b})(ws) = 0.9
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[{——))

Answer to (i): Consider the measurement Mo (q)(0O, S}j), by which a measured value “w

is obtained. Therefore, we see
[F({wh))(wr) = 0.8 = max[F({w})](w) = max{0.8, 04, 0.1}
Hence, by Fisher’s maximum likelihood method (Theorem(.6) we see that
(] = w1

Thus, we can infer that the unknown urn is Uj.
Answer to (ii): Next, consider the simultaneous measurement Moo (q)( Xizl 0 = (X7,

2X* F— X}_ F), S), by which a measured value (w,b) is obtained. Here, we see
[F{w,b)P)w) = [FHwh](w) - [F({b})](w)
thus,
[F({(w,b)P](wr) = 0.16, [F({(w,b)P](wz) = 0.24, [F({(w,b)})](ws) = 0.09
Hence, by Fisher’s maximum likelihood method (Theoreni5.0), we see that
¥ = wp

Thus, we can infer that the unknown urn is Us. O

Example 5.9. [Normal observable(i): 2 = R] As mentioned before, we again discuss the

normal observable in what follows. Counsider the classical basic structure:
[Co(Q) C L>(Q,v) C B(L*(Q,v))] (where, Q =R)

Fix ¢ > 0, and consider the normal observable Og, = (R, Bg,G,) in L>®(R) (where 2 = R)
such that

Go(2N0) = 5= | expl 53l = Pl

(V=2 € By, VueQ=R)

Thus, the simultaneous observable X;_, Og, (in short, 0% ) = (R, Bys, G3) in L*(R) is
defined by
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G (~1 X Zp x E3)|(1) = [Go(ED)](1) - [Go(E2)](1) - [Go(E3)] (1)
(21 — ) + (@2 — p)? + (x5 — p)?
2’/TO' ///_1 XEg X =3 eXp 202 ]

X dl’ldajgd.xg

(V=Zk € Br,k=1,2,3, VYueQ=R)

Thus, we get the measurement M Loo(R)(O?ég, S[*])

Now we consider the following problem:

(a) Assume that a measured value (29, z9, 23) (€ R?) is obtained by the measurement Mg (O, ,

Si)- Then, infer the unknown state [+](€ R).

Answer(a) Put

1 1
=[x — =, 20+

— i =1,2
N7 7 N] (/L ) ’3)

Assume that N is sufficiently large. Fisher’s maximum likelihood method (Theorem5.0]) says

that the unknown state[ x | = g is found in what follows.

(G5(E10 % Zs % Ey)] (o) = max[G5 (51 x 22 x Z3) (1)

Since N is sufficiently large, we see

1 (@) = po)? + (2§ — o) + (2§ — puo)?
(V2mo)3 20
1 0_ )2 0_ )2 0_ )2
— max exp| — (2 — ) + (25 — p)* + (25 — p) ]]
neR L(\/270)3 202
That is,
(21 = 10)? + (25 = p10)* + (5 — pro)” = min {(2] — 0)? + (2 — )’ + (&5 — )*}

Therefore, solving %{ .-} =0, we conclude that

0 0 0
Ty + Ty + T3

Mo = 3

[Normal observable(ii)] Next consider the classical basic structure:
[Co(Q) C L>(Q,v) C B(L*(Q,v))] (where, 2 =R x R})

and consider the case:
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e we know that the length of the pencil p is satisfied that 10cm g L cm <30.
And we assume that
(#) the length of the pencil p and the roughness o of the ruler are unknown.

That is, assume that the state space Q = [10,30] x Ry (={p € R |10 < p <30} x {0 €
R|o>0})
Define the observable O = (R, By, G) in L*([10, 30] x R, ) such that

[GE)N (1, 0) = [Go(E)(1) (V2 € By, V(p,0) € 2=][10,30] x Ry)
Therefore, the simultaneous observable 0% = (R?, By, G*) in C([10, 30] x R}) is defined by

[G*(E1 X Ep X B3)](,0) = [G(E1)] (1, 0) - [G(E2)] (1, 0) - [G(Zs)) (1, 0)

1 N2 Ry N2
:W/ exp| — L 020 28 = g
Z1XE2XE3

(V= € Br,k=1,2,3, V(u,0) € Q=1]10,30] x R;)

Thus, we get the simultaneous measurement M (10,30 xr (0%, Si)- Here, we have the follow-

ing problem:

(b) When a measured value (29, 29, 29) ( € R?) is obtained by the measurement M ([0 30k )

(0%, Sp), infer the unknown state [x](= (uo,00) € [10,30] x Ry ), i.e., the length po of

the pencil and the roughness oy of the ruler.

Answer (b) By the same way of (a), Fisher’s maximum likelihood method (Theoreml5.6)

says that the unknownstate [ * | = (1, 0¢) such that
1 (2§ — p0)? + (25 — po)? + (25 — po)?
= oxp| - 5 )
(V2mop)? 20¢
1 0_ )2 0_ )2 0_ )2
— max {— eXp[ o (ml M) + ($2 M) + (LL’3 :U’) ]} (51())
(1.0)€[10,30] xRy L (1/270)3 202
Thus, solving %{---}: , 321 =0 we see
10 (when (29 4+ 23 + 29)/3 < 10)
po =14 (9+29+23)/3  (when 10 < (2 + 29 +23)/3 £ 30) (5.11)
30 (when 30 < (29 + 29 +29)/3)

o0 = (@) — B2 + (2 — )2 + (o3 — 0)2}/3
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where
fi= () +xy+ w3) /3
[l
Example 5.10. [Fisher's maximum likelihood method for the simultaneous normal measurement].
Consider the simultaneous normal observable Of = (R", B, G") in L¥(R x R;) (such as

defined in formula (5.2])). This is essentially the same as the simultaneous observable O" =

(R”, Bgn, X _; Gy) in L(R x R,). That is,
(X Go)(Er x Ea x - X Ep)J(w) = X [G,(Eg)](w)

n 1 1
= X . — 1)’ | do
X 2M/Eep[ 22(k u)] K

(VEk € By (= Bg), Vw = (,0) € Q(=R xR,))

Assume that a measured value x = (x1, 29, ..., z,)(€ R") is obtained by the measurement
Moo mxr,) (0" = (R, By, G7),Sp). The likelihood function L, (u, 0)(= L(x, (1, 0)) is equal to
1 Yoz — p)?
L (/jJ, ) . Zk 1( ) ]

ex
Waray P T a2
or, in the sense of (5.7),

1 Yo (@R —p)?

exp| — ==L~
. (V2mo)™ 20
Lz(/% 0') - 1 ox [ _ ZZ:l(xk*ﬁ(I)P] (512)
(Vara(@)r P %@
(Vm = (xl,xQ,...,xn) € R”7 Yw = (Mg) cN=R x R+)_
Therefore, we get the following likelihood equation:
L, OL.(,
Oalp0) _ o OLalpo) _ (5.13)
ou 0o

which is easily solved. That is, Fisher’s maximum likelihood method (Theorem5.0) says that

the unknown state [¥] = (i, 0) (€ R x Ry) is inferred as follows.

T1+To+ ...+ Ty

p=T(r) =

(5.14)
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5.4 Moment method: useful but artificial

Let us explain the moment method (¢f. [33]), which as well as Fisher’s maximum likelihood
method are frequently used.

Consider the measurement My (O = (X,J,F), S|,)), and its parallel measurement ®}_,M, (O
= (X,F,F), S) (=Mga(®jp_, 0 := (X", 5", ®,_, )’S[®Z:1P])' Assume that the measured
value (r1, T2, ..., x,)(€ X™) is obtained by the parallel measurement. Assume that n is suffi-
ciently large. By the law of large numbers (Theorem 4.5)), we can assure that

Ozy + 05y + -+ 0s,
+ —7: + )

Ma(X) 31 ( = = p(F(-)) € Myi(X) (5.16)
Thus,
(A) in order to infer the unknown state p(€ GP(A*)), it suffices to solve the equation (5.10)

For example, we have several methods to solve the equation (5.16]) as follows.

(B1) Solve the following equation:
[ (-) = P(F () ey = min{{[vn () = pr(F ()l [ pr(€ SP(A%))} (5.17)

(By) For some fi, fo, -+, fn € C(X) (= the set of all continuous functions on X), it suffices
to find p(€ GP(A*)) such that A(p) = min,, cerar)) A(p1), where

:i] [ semtas) ~ [ a@prae)

:zn:’fk(l’1)+fk($2) o+ fr(@n) / Fule df))’

n
k=

(Bs) In the cases of the classical measurement M=) (0 = (X, F, F), S|,)) (putting p = 4,,),

it suffices to solve

Ozi‘fk($l)+fk(x2) o+ fr(n) / Fule

n

F9lw)| (518

k=1

or, it suffices to solve

fi(z1)+f1(z2)++ f1(zn) fX fl df)]( )
f2(x1)+f2(xi)+'“+f2(x" fX fz df)]( )
S @) o (2) - i () — [ Fn(O)[F(dE)](w) =
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(B4) Particularly, in the case that X = {&,&, -+ ,&n} is finite, define fi, fo, -+, f, € C(X)
by

F(6) = X, ) = { L (€=8&)

0 (§# &)
and, it suffices to find the p(=¢,) such that

i ‘X{sk}(xl) + X (

To) + 4 X, (Tn)
k=1

n

-3 | Aom = & =l g 310 = 0

- /X Yoo, E)p(F(d6))

The above methods are all the moment method. Note that

(C1) It is desirable that n is sufficiently large, but the moment method may be valid even when
n=1.

(Cy) The choice of fy is artificial ( on the other hand, Fisher’ maximum likelihood method is
natural).

Problem 5.11. [=Problemb.2: Urn problem: by the moment method]
You do not know which the urn behind the curtain is, U; or Us.

Assume that you pick up a white ball from the urn.
The urn is U; or Uy?

Which do you think?

Figure 5.7: Inference(by moment method)

Answer: Consider the measurement My (0= ({w, b}, 21“¥  F) S,). Here, recall that
the observable O, = ({w, b}, 2{w% F,;) in L>®(Q) is defined by

[Fup({w})](wr) = 0.8, [Fup({0})](w1) = 0.2
135
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[Fup({w})](w2) = 0.4, [Fun({0})](w2) = 0.6

[}

Since a measured value “w” is obtained, the approximate sample space ({w,b},2{"} 1) is

obtained as

n({w}) =1, n{b}) =0
[when the unknown state [*] is w;]

BI7) =1 - 0.8+ 10 —0.2]
[when the unknown state [*] is ws]

GI7) = |1 — 0.4] + [0 — 0.6]

Thus, by the moment method, we can infer that [*] = wy, that is, the urn behind the curtain
is Ul-
[ITI] The above may be too easy. Thus, we add the following problem.

Problem 5.12. [Sampling with replacement|: As mentioned in the above, assume that “white
ball” is picked. and the ball is returned to the urn. And further, we pick “black ball”, and it
is returned to the urn. Repeat this, after all, assume that we get

(Lw” , “b?? , Céb?? , “w” , “b?? , “w” , “b” ,
Then, we have the following problem:

(a) Which the urn behind the curtain is U or Us?

Answer: Consider the simultaneous measurement M) (x7_,0= ({w, b}7, 200" xT_ | F),
Sr)- And assume that the measured value is (w,b, b, w,b,w,b). Then,

[when [*] is w;]

(517) = |3/7 — 0.8] + |4/7 — 0.2| = 52/70
[when [#] is wo]

(B.I7) = [3/7 — 0.4] +4/7 — 0.6] = 10/70

Thus, by the moment method, we can infer that [*] = ws, that is, the urn behind the curtain
is UQ.
]
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Example 5.13. [The most important example of moment method] Putting Q@ = R x R,

={w=(u,0) | p € R,0 >0} with Lebesgue measure v, Consider the classical basic structure
[Co(Q) € L=(Q,v) C B(L*(Q,v))]
Assume that the observable Og = (X (= R), By, G) in L*(, v) satisfies that

/ £C(d)] (1, 0) = . / (€ — wPlC(de)] (1, 0) = o
(Vw = (1,0) € Q=R x R,))

Here, assume that a measured value (x1, 2, 23)(€ R?) is obtained by the simultaneous mea-

surement X i:l M) (Og, S ). That is, we have the 3-sample distribution v3 such that

Oy + Oz + Oy
v = 3 € M4 (R)

Put f1(€) =&, fo(&) = €2. Then, by the moment method (5.18)), we see:

0 —i | [ ntae) - [ e
_g ‘ <$1)k + (IE;)k + (l‘n)k - /Rfk[G<d§)](ﬂa U)‘

? 4 (29)* 4 (23)

Ty + 2o+ T x
%J_i_i_4+wl (D)
3 3
Thus, we get:
o Z1 + T2 + Tp
3
o2 — (21)? + (22)* + (23)*
3
(961 _ %)2 + <x2 _ %)2 + (363 _ %)2

3

which is the same as the (5.11)) concerning the normal measurement.

#Note 5.3. Consider the measurement My ) (O=(X, 2X F), Si), where X = {x1,z2,..., 75}
is finite. Then, we see that

“Fisher’s maximum likelihood method” =“moment method”

[Answer| Assume that a measured valuez,,(€ X) is obtained by the measurement M4 (O=(X, 2%,
F), S)

[Fisher’s maximum likelihood method]:
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(a) Find wg(€ €2) such that
[F({2m})](wo) = max[F({zm})](w)

[Moment method]:

(b) Since we get the approximate sample probability space (X,2%,6, ), we see
0= [F{{z: )W)+ 40 = [F{zm-1D](w)] + [1 = [F({zm})](w)]
+10 = [F({zmpr D](@)| + - + [0 = [F({zn})](w)]
=[F{z1)l(w) + -+ [F{zm-1D](w) + [F({zm})](w)
+ [F({zma )W) + -+ [F{za})](w)
=1 = 2[F({zm})](w)

Thus, it suffice to find wo(€ ) such that
1= 2[F({zp})](wo) = min(1 = 2[F({zm })](w))

Thus, Fisher’s maximum likelihood method and the moment method are the same in this case.
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5.5 Monty Hall problem — Non-Bayesian approach —

Monty Hall problem is as follows™.

Problem 5.14. [Monty Hall problem ]

You are on a game show and you are given the choice of three doors. Behind one door is
a car, and behind the other two are goats. You choose, say, door 1, and the host, who knows
where the car is, opens another door, behind which is a goat. For example, the host says that

(b) the door 3 has a goat.

And further, he now gives you the choice of sticking with door 1 or switching to door 27
What should you do?

|

l é § |

door door door J |
No. 1 No. 2 No. 3 |

Figure 5.8: Monty Hall problem

Answer: Put = {w;,ws, w3} with the discrete topology dp and the counting measure v.

Thus consider the classical basic structure:
[Co(Q) € L¥(2,v) € BLA(Q, )]
Assume that each state §,,, (€ G”(C(Q)*)) means
dw,, < the state that the car is behind the door m (m =1,2,3)

Define the observable O; = ({1,2,3},2{123} [) in L>(Q) such that

F({1D)) = 0.0, [A{2))@) =05, [F{3)]w) = 05,
A1) =00, [A{2))@) =00,  [A({3})](wr) = 1.0,
F({1D)ws) = 0.0, [A{2))ws) =10,  [A{3)](ws) =00,  (5.19)

I This section is extracted from the followings:

(a) Ref. [33]: [S. Ishikawa, “Mathematical Foundations of Measurement Theory,” Keio University Press Inc.
2006.

(b) Ref. [37]: S. Ishikawa, “Monty Hall Problem and the Principle of Equal Probability in Measurement
Theory,” |Applied Mathematics, Vol. 3 No. 7, 2012, pp. 788-794. doi: 10.4236/am.2012.37117.
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where it is also possible to assume that Fi({2})(w1) = a, Fi({3})(w1) =1—a (0 < a < 1). The
fact that you say “the door 1” clearly means that you take a measurement Mpe(q)(O1, Sp).

Here, we assume that

a) “a measured value 1 is obtained by the measurement M) (O1, Spy)”

& The host says “Door 1 has a goat”

b) “measured value 2 is obtained by the measurement Mo () (O, Sp) ”

& The host says “Door 2 has a goat”

c) “measured value 3 is obtained by the measurement Mo () (O1, Sp) ”

& The host says “Door 3 has a goat”

Recall that, in Problem [5.14] the host said “Door 3 has a goat” This implies that you get the
measured value “3” by the measurement Mo (01, Spg). Therefore, Theorem [5.6] (Fisher’s
maximum likelihood method) says that you should pick door number 2. That is because we see

that

max{[F1({3})](w1), [FL1({3})](w2), [F1({3})](ws)} = max{0.5, 1.0, 0.0}
= 1.0 = [F({3})](w2)

and thus, there is a reason to infer that wquaualweigh[x] = d,,. Thus, you should switch to

door 2. This is the first answer to Problem [5.14 (Monty-Hall problem). O]

#ANote 5.4. Examining the above example, the readers should understand that the problem “What
is measurement?” is an unreasonable demand. Thus,

we abandon the realistic approach, and accept the metaphysical approach.

Also, for a Bayesian approach to Monty Hall problem, see Chapter [0l and Chapter [19L

Remark 5.15. [The answer by the moment method] In the above, a measured value “3” is
obtained by the measurement My (0O=({1,2,3},21123} F), S},;). Thus, the approximate
sample space ({1,2,3}, 2123} 1)) is obtained such that v, ({1}) = 0, v1({2}) = 0, v, ({3}) = 1.
Therefore,

[when the unknown [*] is w]

GI7) =0 — 0]+ [0 — 0.5/ + |1 — 0.5] =1,
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[when the unknown [*] is ws]

GI7) =0—-0/+[0-0/+1—-1]=0
[when the unknown [*] is ws]

GIT) =[0—0]+[0—1]+1—0] =2

Thus, we can infer that [*] = wy. That is, you should change to the Door 2.
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5.6 The two envelope problem —Non-Bayesian approach

This section is extracted from the following:

Ref. [50]: S. Ishikawa; The two envelopes paradox in non-Bayesian and Bayesian statistics

(arXiv:1408.4916v4 [stat.OT| 2014 )

Also, for a Bayesian approach to the two envelope problem, see Chapter [O.

5.6.1 Problem(the two envelope problem)

The following problem is the famous “two envelope problem( cf. [72] )”.

Problem 5.16. [The two envelope problem|

The host presents you with a choice between two envelopes (i.e., Envelope A and Envelope
B). You know one envelope contains twice as much money as the other, but you do not know
which contains more. That is, Envelope A [resp. Envelope B| contains V) dollars [resp. V5
dollars]. You know that

(a) %zl/?or, %:2

Define the exchanging map @ : {Vi, Vo} — {V3, Va} by

—__ ‘/27 (1f[[’=‘/1)7
YTV (ifz =)

You choose randomly (by a fair coin toss) one envelope, and you get z; dollars (i.e., if you
choose Envelope A [resp. Envelope B|, you get Vi dollars [resp. V5 dollars] ). And the host
gets Ty dollars. Thus, you can infer that T, = 2z, or T = x1/2. Now the host says “You are
offered the options of keeping your x; or switching to my z;”. What should you do?

Envelope A Envelope B

Figure 5.9: Two envelope problem

[(P1):Why is it paradoxical?]. You get ae = x1. Then, you reason that, with probability 1/2,
71 is equal to either a/2 or 2« dollars. Thus the expected value (denoted E iy ep(¥) at this
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moment) of the other envelope is
Eoiher(@) = (1/2)(a/2) + (1/2)(2a) = 1.25x (5.20)

This is greater than the a in your current envelope A. Therefore, you should switch to B.
But this seems clearly wrong, as your information about A and B is symmetrical. This is the
famous two-envelope paradox (i.e., “The Other Person’s Envelope is Always Greener” ).

5.6.2 Answer: the two envelope problem 5.16

Counsider the classical basic structure
(Co(Q) € L¥(Q,v) € B(L(Q,v))]

where the locally compact space (2 is arbitrary, that is, it may be R, = {w | w > 0} or the one
point set {wp} or @ = {2" | n = 0,41,42,...}. Put X =R, = {z | z > 0}. Consider two

continuous (or generally, measurable ) functions V; : Q — R, and V5 : © — R,. such that
Vo(w) =2V (w) or, 2Vsh(w) = Vi(w) (Yw € Q)

For each k = 1,2, define the observable Oy, = (X (= R;), (= By, : the Borel field), F;) in
L*>(Q,v) such that

_ 1 (if Vi(w) € B)
[Fe(E)](w) = { 0 (if Vi(w) ¢ 2)

(Vw € Q,V= € T = Bg, ie., the Bore field in X(= Ry))

Further, define the observable O = (X, JF, F) in L*>°(2, v) such that

F(E) = %(Fl(E) ¥ FQ(E)> (VE € ) (5.21)
That is,
1 (if Vi(w) € 2, Va(w) € E)
12 (i) ez, Vhw) gD
FEIW =Y 12 (1w ¢2 Vhw) €3)
0 (ifVi(w)¢E, Va(w) ¢ E)
(Vw € Q,V= € T = By i.e., = is a Borel set in X(=R,) )

Fix a state w(€ §2), which is assumed to be unknown. Consider the measurement My (q,)(0 =
(X,TF,F),Syy). Axiom 1|(§2.7) says that
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(A;) the probability that a measured value {

B o 1/2
= (X,3,F),S) is given by { 172 }

If you switch to { v

of switching is

Vi(w)
Va(w)

s 2=

} is obtained by the measurement M (q,,) (O

}. Therefore, the expectation

(Va(w) = Vi(w))/2 + (Vi(w) — Va(w))/2 =0

That is, it is wrong “The Other Person’s envelope is Always Greener”.

Remark 5.17. The condition (a) in Problem [5.16/ is not needed. This condition plays a role

to confuse the essence of the problem.

5.6.3 Another answer: the two envelope problem [5.16

For the preparation of the following section (§ 5.6.4), consider the state space €2 such that

Q:R+

with Lebesgue measure v. Thus, we start from the classical basic structure

[Co(Q) € L®(Q,v) C B(L*(,v))]

Also, putting Q = {(w,2w) | w € R,}, we consider the identification:

Q>w —

(w,2w) € Q (5.

(identification)

Further, define V; : Q(=R,) = X(=R,) and V5 : Q(=R,) — X(=R,) such that

Viw)=w, Ww) =2w  (VweN)
And define the observable O = (X (= R, ),J(= Bg, : the Borel field), F) in L>(Q,v) such
that
1 (fweZ 2wesx)
_ 1/2 (ifweZzZ, 2wé¢= _
FENW) = 1?2 Eifwgé: 2w§5§ (W € Q,¥= € F)
0 (ifwé¢= 2w¢E)

Fix a state w(€ ), which is assumed to be unknown. Consider the measurement My (q,)(0 =

(X,F,F), )

144
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(Ay) the probability that a measured value

—N
S
£

Il
&

} is obtained by My (q.)(0 =

(X,T,F),Sp) is given by { 1/2 }

1/2
If you switch to { %Eig }, your gain is { “féii : 2%3 } Therefore, the expectation of

switching is
(V2(w) = Vi(w))/2+ (Vi(w) = V2(w))/2 =0
That is, it is wrong “The Other Person’s envelope is Always Greener”.

Remark 5.18. The readers should note that Fisher’s maximum likelihood method is not used
in the two answers ( in §5.6.2 and §5.6.3). If we try to apply Fisher’s maximum likelihood
method to Problem [5.16] ( Two envelope problem), we get into a dead end. This is shown

below.

5.6.4 Where do we mistake in (P1) of Problem [5.1677

Now we can answer to the question:
Where do we mistake in (P1) of Problem [5.167

Let us explain it in what follows.

Assume that
(a) a measured value « is obtained by the measurement My~ (q,,)(0 = (X, F, F), Siy)

Then, we get the likelihood function f(«,w) such that

= in im [F(E)](w) _J 1 (w=a/20ra)
flonw) = “’16% [E%{x}v[gﬁ(E)}(wl)#O [F(E)](wl)] { 0 ( elsewhere )
X(=R,)
(5, ) (o, 2c0) ) ﬁ(% Q=R,)

Figure 5.10: Two envelope problem
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Therefore, Fisher’s maximum likelihood method says that
(B1) unknown state [#] is equal to /2 or «

< If [*] = /2 [resp. [*¥] = « |, then the switching gain is (/2 — «) [resp. (2« — )] )
However, Fisher’s maximum likelihood method does not say

“the probability that [*] = a/27=1/2
(B2) “the probability that [¥] = o”=1/2
“the probability that [*] is otherwise”=0

Therefore, we can not calculate ( such as (5.20)):

1 1
(04/2—04)X§+(2a—a)x§:1.25a

(Cy) Thus, the sentence “with probability 1/2” in [(P1):Why is it paradoxical?] is wrong.
Hence, we can conclude that
(Cy) If “state space” is specified, there will be no method of a mistake.

since the state space is not declared in [(P1):Why is it paradoxical?].

After all, we see
(D) If “state space” is specified, there will be no room to make a mistake.

since the state space is not declared in [(P1):Why is it paradoxical ?].

Remark 5.19. The condition (b) in Problem 5.16 is indispensable. Without this condition, we
can not difine the observable O = (X, J, F) by the formula (5.23), and thus we can not solve
Problem 5.16. However, it is usual to assume the principle of equal weight (i.e., no information

is interpreted as a fair coin toss ), or more precisely,

(8) the principle that, in the absence of any reason to expect one event rather than another,

all the possible events should be assigned the same probability

Under this hypothesis, the condition (b) may be often omitted. Also, we will again discuss the
principle of equal weight in Chapters 9 and 18.

146 For further imformation see my homepage



http://www.math.keio.ac.jp/~ishikawa/indexKSTS5.html

KSTS/RR-19/003
December 26, 2019

Chap. 5 Fisher statistics (I)

147

#Note 5.5. The readers may think that

(#1) the answer of Problem [5.16] is a direct consequence of the fact that the information about
A and B is symmetrical (as mentioned in [(P1): Why is it paradoxical?] in Problem [5.16)).
That is, it suffices to point out the symmetry.

This answer (f1) may not be wrong. But we think that the (#1) is not sufficient. That is because

(#2) in the above answer (1), the problem “What kind of theory (or, language, world view) is
used?” is not clear. On the other hand, the answer presented in Section [5.6.2 is based on
quantum language.

This is quite important. For example, someone may paradoxically assert that it is impossible
to decide “Geocentric model vs. Heliocentrism”, since motion is relative. However, we can say,
at least, that

(#3) Heliocentrism is more handy (than Geocentric model) under Newtonian mechanics.
That is, I think that
(#4) Geocentric model may not be wrong under Aristotle’s world view.

Therefore, I think that the true meaning of the Copernican revolution is

‘Aristotle’s world view ‘ Newtonian mechanical world view| (5.23)
(the Copernican revolution)

and not

| Geocentric model | | Heliocentrism | (5.24)
(the Copernican revolution)

Thus, this (5.24)) is merely one of the symbolic events in the Copernican revolution (5.23)). The
readers should recall my only one assertion in this note, i.e., Figure [I.T] (The history of the world
views).
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Chapter 6

The confidence interval and statistical
hypothesis testing

The standard university course of statistics is as follows:

— ’conﬁdence interval‘ — ’statistical hypothesis testing‘

(maximum likelihood method)

(moment method)

@
— ’ANOVA (Analysis of Variance) ‘

In the previous chapter, we are concerned with (D (inference) in quantum language. In this
chapter, we devote ourselves to @) and ) (confidence interval and statistical hypothesis testing).

This chapter is extracted from

Ref. [44]: S. Ishikawa; A quantum linguistic characterization of the reverse relation
between confidence interval and hypothesis testing  (jarXiv:1401.2709 [math.ST| 2014])

6.1 Review: classical quantum language(Axiom 1)

Firstly, we review classical measurement theory as follows.

149


http://arxiv.org/abs/1401.2709

KSTS/RR-19/003
December 26, 2019

6.1 Review: classical quantum language(Axiom 1)

- ‘ (A): Axiom 1(measurement) classical pure type ~

(¢f. This can be read under the preparation to [§2.7)) )

With any classical system S, a basic structure [Co(Q2) C L>®(Q,v) C B(L*(Q,v))]
can be associated in which measurement theory of that classical system can be for-
mulated. In [Co(Q) C L>*(Q,v) C B(L*(Q,v))], consider a I¥*-measurement

Mio<(a) (O=(X, F, F), Sis,) (o1, C*-measurement My~(a)(O=(X, 7, F), Sjs)) ). That

is, consider

e 2 W*-measurement Moo, (O,S[(;w]) ( or, C*-measurement
Mo (0) (O:(X, F, F),S[(;w}) ) of an observable O=(X,F F) for a state
0. (€ MP(Q) : state space)

Then, the probability that a measured value x (€ X) obtained by the W*-measurement
M o0 (2,0 (O, S[M) ( or, C*-measurement Mz q) (O:(X, F,F), S[(;w]) > belongs to = (€ F)
is given by

0 (F(2)(= [F(E)(w) = m@) (0w, F(E)) Lo (00))

(if F/(Z) is essentially continuous at d,,, or see Definition 2.14! ).

\§ /

In this chapter, we devote ourselves to the simultaneous normal measurement as follows.

Example 6.1. [Normal observable]. Let R be the real axis. Define the state space 2 = R xR,

where Ry = {0 € R|o > 0} with the Lebesgue measure v. Consider the classical basic structure:
Co(Q) € L) € B(LA(Q, )]

The normal observable Og = (R, Bg, G) in L®(Q(= R x R,)) is defined by

I o

(VE € Bgr(= the Borel field in R)), Vw = (u,0) €Q2=RxR,).

[GE)(w) =

Example 6.2. [Simultaneous normal observable]. Let n be a natural number. Let Og =
(R, Bg,G) be the normal observable in L>®°(R x R,). Define the n-th simultaneous normal

observable OF = (R, BE, G™) in L*(R x R, ) such that

[G"( =1 Z0)] (W) = X [G(Er)](w)
2o ) / /exp D (6 — p)? |dxidxs - - - dxy, (6.2)

202

k lh‘k
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(VEp € Br(k=1,2,...,n), Yw=(u,0)ceQ=RxR,).

Thus, we have the simultaneous normal measurement My mxr,)(0g = (R", Bg, G"), Siu0))-

Consider the maps 77 : R” = R, SS: R"” — R and 7 : R® — R such that

Ty +To+ -+ T,
n

() =p(xy, z0, ..., 2p) =

=

(Vo = (21,29, ...,1,) € R") (6.3)

n

SS(z) = 88(w1, w2, ..., wn) = (2 — Al(x))* (Vo = (21,79,...,3,) €ER") (6.4)

o(z) =0(x1,29,...,2,) = \/ZZ:1<$kn_ fiw))? (Vo = (21, 29,...,2,) € R") (6.5)

Therefore, we get and calculate (by the formulas of Gauss integrals ( in § [7.4)) two image
observables (0%) = (R, Bg,G" o ') and SS(O%) = (R, B, , G" 0%71) in LR xR,) as

follows.

[(G" Ou
D e (T — )
27”7 / / exp| — 57 |dxidxs - - - dxy,
{zeR" : p(x)e=}
2
= v / exp| — M]dx (6.6)
2no J=, 202

(V21 € Br, Yw=(u,0)eQ=RxR,).
and,

[(G 0S5

N2
/ / exp| — &= <2 2 M) |dxidxs - - - dxy,

{z€R" : SS(x)€Z2}

- / P 1(@)da (6.7
Eg /02
(VE; € Br,, Yw=(u,o0)eQ=RxR,).

27rc7

where pﬁz_l(x) is the probability density function of y?-distribution with (n — 1) degree of
freedom. That is,

x(n—l)/Z—le—x/Q

P = =g @0 (6.8)

where, I' is the Gamma function.
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6.2 The reverse relation between confidence interval method
and statistical hypothesis testing

In what follows, we shall mention the reverse relation (such as “the two sides of a coin”)
between confidence interval method and statistical hypothesis testing.

We devote ourselves to the classical systems, i.e., the classical basic structure:

[Co(Q) C L>(Q,v) C B(L*(Q,v))]

6.2.1 The confidence interval method

Consider an observable O = (X, F, F') in L>(2). Let © be a locally compact space (called

the second state space), which has the semi-metric d§ (Vo € X) such that,

(#) for each z € X, the map d% : ©% — [0, 00) satisfies (i):d%(6,6) = 0,
(ll)d%(el, 92) = d:é(eg, 91), (11)0%(91, 93) S d%(@l, (92) + d%(Qg, 93)

Further, consider two maps £F: X - QO and 7:Q) - 0. Here, F: X - O and7:Q — 0O

is respectively called an estimator and a system quantity.

Theorem 6.3. [Confidence interval method |. Let a positive number a be 0 < a <« 1, for
example, a = 0.05. For any state w( € ), define the positive number 6.~ ( > 0) such that:

Sl=e —inf{5 > 0: [F({z € X : d5(E(x), 7(w)) < 0})]w) =1 — a} (6.9)

Then we say that:
(A) the probability, that the measured value = obtained by the measurement My (q) (O =
(X,F,F), S[wo]) satisfies the following condition (6.10), is more than or equal to 1 — «
(e.g., 1 —a=0.95).
ds(E(x), m(wp)) < 0L (6.10)
And further, put
D9 = {r(w)(€ ©) : d§(E(x), m(w)) < 657F. (6.11)
which is called the (1 — a)-confidence interval. Here, we see the following equivalence:

6.10) <= DL *° > 7w(wp). (6.12)
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X S) Q

Figure 6.1 Confidence interval D} €

Remark 6.4. [(B1):The meaning of confidence interval]. Consider the parallel measurement
®;}:1 Mz (@) (O =(X,F F), S[WO}), and assume that a measured value x = (z1,2,...,25)(€
X7) is obtained by the parallel measurement. Recall the formula (6.12). Then, it surely holds
that

 Nun(j | DO 3 )

J—o0 J

>1—a(=0.95) (6.13)

where Num[A] is the number of the elements of the set A. Hence Theorem [6.3] can be tested
by numerical analysis (with random number). Similarly, Theorem [6.5 ( mentioned later ) can

be tested.

[(B2)] Also, note that

69) =0 *=inf{6 >0: [F{z € X : d§(E(x),n(w)) <éP](w) >1—a}
=inf{n>0:[F{xr e X : d§(E(x),m(w)) > n})](w) < a} (6.14)

6.2.2 Statistical hypothesis testing

Next, we shall explain the statistical hypothesis testing, which is characterized as the reverse

of the confident interval method.

Theorem 6.5. [Statistical hypothesis testing]. Let o be a real number such that 0 < o < 1,
for example, a = 0.05. For any state w( € ), define the positive number 72 ( > 0) such that:

o =nf{n>0:[F{z € X : dg(E(z),m(w)) = n})l(w) < a} (6.15)
( by the (6.14), note that 6}~ = n%)

Then we say that:
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(C) the probability, that the measured value & obtained by the measurement Mz (q) (O =
(X,F,F), S[WO]) satisfies the following condition (6.10), is less than or equal to « (e.g.,
a = 0.05).

a5 (E (), m(w0)) = S, (6.16)

Further, consider a subset Hy of ©, which is called a “null hypothesis”. Put

R3? = N {E(z)(€ ©) : d5(E(x), m(w)) > nS}. (6.17)

weQ such that r(w)edy
which is called the («)-rejection region of the null hypothesis Hy. Then we say that:

(D) the probability, that the measured value x obtained by the measurement M q) (O =
(X,F,F), Siy)) (where m(wo) € Hy) satisfies the following condition (6.18)), is less than
or equal to «a (e.g., a = 0.05).

ty 2 E(). (6.18)

Figure 6.2: Rejection region EO;IN (when Hy = {m(wo)}

Corollary 6.6. [The reverse relation between Confidence interval and statistical hypothesis testing
]. Let 0 < a < 1. Consider an observable O = (X, F, F) in L>*°(Q), and the second state space
© (i.e., locally compact space with a semi-metric dg(z € X) ). And consider the estimator
E : X — © and the system quantity 7 : Q — ©. Define 6.~ by (6.9), and define % by (6.15)
(and thus, 657 = n2).

(E) [Confidence interval method]. for each x € X, define (1 — «)-confidence interval by
D, = {r(w)(€ ©) : d5(E(x), m(w)) < 0,7} (6.19)
Also,

DI = (e Q) : d5(E(x), n(w)) < 17} (6.20)
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Here, assume that a measured value z(€ X) is obtained by the measurement My (o) (O =

(X,F, F), S[wo]). Then, we see that

(E;) the probability that

DI*® 5 71(wp)  or,in the same sense DL 3w,

is more than 1 — «.

(F) [statistical hypothesis testing]. Consider the null hypothesis Hy(C O). Assume that the

155

state wo(€ §2) satisfies:

m(wo) € Hy(C O)

Here, put,
DO T @
Ry, = N {E(z)(€ ©) : do(E(x),m(w)) = ng}- (6.21)
weN such that n(w)eHy
or,
RyY = ETN(Ry)) = N {w(€ X) 1 dg(E(x),m(w)) > 1%} (6.22)

weQ such that n(w)eHy
which is called the (a)-rejection region of the null hypothesis Hy.

Assume that a measured value z(€ X) is obtained by the measurement My« (o) (O =

(X,F,F), Si)). Then, we see that
(F1) the probability that
“BE(x) € E%}?” or, in the same sense, “x € E%}f” (6.23)

is less than «.
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6.3 Confidence interval and statistical hypothesis testing
for population mean

Consider the classical basic structure:
[Co(2) € L>(Q,v) € B(L*(Q,v))]
Fix a positive number « such that 0 < a < 1, for example, o = 0.05.

6.3.1 Preparation (simultaneous normal measurement)

Example 6.7. Consider the simultaneous normal measurement Mz gxr,) (0% = (R", Bg, G"),
Si(uey) in L°(RxR,). Here, the simultaneous normal observable Og, = (R”, By, G") is defined
by

[G"(Xk 1Z0)](w) = X4 [G(E k)}(w)

2 (T = 1)?
Tro) / /exp 202 |dzydzy - - - dxy, (6.24)

k 1—‘k

(V=2 € Br(k=1,2,...,n), Yw=(u,0) € Q=RxR,).

Therefore, the state space €2 and the measured value space X are defined by

Q:RXR+
X =R"

Also, the second state space © is defined by
O=R

The estimator £ : R" — O(= R) and the system quantityr :  — © are respectively
defined by

E(z) = E(21, s, ..., ) = Ti(z) = “”2;'””"

Q=RxR,5w=(,0) = mw)=peO®=R

Also, the semi-metric dg) in O is defined by

d8)<91762> =161 — 6, (V0,02 € © =R)
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6.3.2 Confidence interval

Our present problem is as follows.

Problem 6.8. [Confidence interval].  Consider the simultaneous normal measurement
Mreo@mxry) (Of = (R", BR,G"), Sjuo))- Assume that a measured valuex € X = R" is
obtained by the measurement. Let 0 < a < 1.

Then, find the D!=%®(C ©) (which may depend on &) such that

e the probability that u € D1~ is more than 1 — a.

Here, the more D1~%®(C ©) is small, the more it is desirable.

Consider the following semi-distance dg ) in the state space R x R, :

dg)((ﬂl,al), (p2,02)) = |1 — po] (6.25)
For any w = (u,0)( € Q = R x R,), define the positive number 6.~ ( > 0) such that:
6, =inf{n >0: [F(E’l(Ballda) (w;n)](w) > 1—a}
Q

where Balld<1 (win) ={wi(€Q): dg)(w,wl) <n}t=[p—np+n xRy

Hence we see that

E~(Ball ) (w; ) = E ([ —n, p+ 0] x Ry)

1 +...+x,

={(x1,...,2,) ER" 1 p—n < < p+n} (6.26)

Thus,

[G"(E_I(Balld<1> (w;m))(w)

D e (T — 1)
e = dridxy - - - dxy,
27r0 / / Xp 202 ] e

p—n< =TI <y

- // expl — 2=t T

2o )" 202
( ) —p< Lt <)
n 2 vnn/o 2
= Vi / exp| — n:L’Q dx = / exp| — x—]dx (6.27)
2o —n 20 V2 vnn/o 2

Solving the following equation:

| e

—z(a/2) x2 1 [e's) 332
E/ exp| — E]dm = Ton /( / )exp[ — ?]dx = (6.28)
—00 z(a/2
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we define that

o = ) (6.29)

| Q

T
vn
Then, for any z ( € R"), we get D1~ (the (1 — a)-confidence interval of x ) as follows:
D, ={w(€ Q) : do(E(z),w) < 0,7}
1+ ...+, o o
- =) = g A T« O (2 ,
{(n,0) e Rx Ry = p—pilx)] = | - s ZHG) (6.30)

Also,

D, = {r(w)(€ ©) : da(B(x),w) < 0,7}

r1+...+x, o o
= R : -0 =lp—-—N < —2z(=
{ne = ()| = [p - | < \/ﬁZ(Q)}
which depends on o.
A RJF
Dl—a,Q
X
fi(z) R

Figure 6.3: Confidence interval D1~ for the semi-distance dg )

6.3.3 Statistical hypothesis testing[null hypothesisHy = {uo}(C O =
R)]

Problem 6.9. [Statistical hypothesis testing]. Consider the simultaneous normal measurement
Moo @mxry) (OF = (R™, B, G"), Siue))- Assume the null hypothesis Hy such that

Hy ={m}(C ©=R))

Let 0 < a k1. R
Then, find the rejection region R?}S(Q ©) (which may depend on o) such that

e the probability that a measured value z(€ R") obtained by Mpemxr,) (0% =
(R™, BE, G™), S{(uo,0))) satisfies that

E(z) € ISL?{S
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is less than «.

Here, the more the rejection region E?IS is large, the more it is desirable.

Define the null hypothesis Hy such that

Hy = {uo}(C O(= R))

For any w = (u,0)( € Q@ =R x R, ), define the positive number n¢ ( > 0) such that:

= inf{n>0: [F(E*I(Balldcg(?f(w); m)lw) < a}

where Ball§y ((w)in) = {0( € ©) : d§(1,6) = n} = ((=00, 0=l U +1,00))

Hence we see that

BT (Ballyy (n(w);n) = B (=00, = 1] U [+ 1,00))
(x1—p) + ...+ (2 — )
| - | >n}

={(z1,...,x,) € R" :
Thus,

[G"(E_l (Ball§1> (m(w);n))](w)
/ / exp| — Do (k= p1)? |dxidxs - - - dxy,

202

271'0
‘(11 )+ +(5Un u)|>77

/ / exp| — 2= 1(:1%) == 2 |daydxs - - - dxy,
271'0

Z1+ txn ‘>n

2 2
= Vi / exp| — n$2 dr = / exp| — w—]da:

Solving the following equation:

(a/2) ZL‘2 [eS) $2 o
exp| — —]dr = — exp| — Z=dr = =
=] esl= ) E/W [~ Sl =

we define that

(6.31)

(6.32)

(6.33)

(6.34)
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Therefore, we get E?‘{N ( the (a)-rejection region of Hy(= {u} € ©(=R)) ) as follows:

R = [ {E@)(c0=R):d(E(x),r(w)) >}
m(w)=p€{po}
= {B)(= I € R i) — g = DI g > T 639)

Remark 6.10. Note that the ﬁ?ﬂ?} ( the (a)-rejection region of {pp} ) depends on o.
Thus, putting

=, . _ . T+ ...+x, o o
oy, = (), 0) € RX By o = i) = o = =12 2 Z-a(3)) (630

we see that ﬁ?ﬂo}xMz“the slash part in Figure 6.4”.

Q

~

(@]
{ro} xRy

WW

;uo R

Figure 6.4: Rejection region fi‘{)‘uo} (which depends on o)

6.3.4 Statistical hypothesis testing[null hypothesisHy = (—o0, 1](C O(=

R))]

Our present problem was as follows

Problem 6.11. [Statistical hypothesis testing]. Consider the simultaneous normal measure-
ment Mzeomxr,) (O = (R", Bg,G"), S|uey). Assume the null hypothesis Hy such that

Hy = (=00, 1] (€ © = )

Let 0 < o < 1. R
Then, find the rejection region R?j?(g ©) (which may depend on o) such that

e the probability that a measured value z(€ R") obtained by Mpemxr,) (0% =
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(R™, BR, G™), S|(uo,0))) satisfies that
E(z) € ﬁ%}?
is less than a.

Here, the more the rejection region EES is large, the more it is desirable.

[Rejection region of Hy = (—o0, o] € ©(= R)]. Consider the simultaneous measurement
Moo @mxr,) (O = (R, B, G"), Sju0y) in LZ°(R x R;). Thus, we consider that 2 = R x R,
X = R"™. Assume that the real ¢ in a state w = (p, 0) € Q is fixed and known. Put

O=R

The formula (6.3) urges us to define the estimator £ : R — O(= R) such that

Tyt Tyt Ty

E(x) == n(x) - (6.37)
And consider the quantity 7 : 2 — © such that
Q=RxR,>5w=(,0) = 7mlw)=pe=R
Consider the following semi-distance dg " in O(=R):
01 — 6] 6y < 61,0,
42 ((6,,65) = { 102 =%l 01 =60 <0, (6.38)

6 — 6] 62 <6y <6
0 01,02 < 0y

Define the null hypothesis Hx such that
Hy = (~00, jio)(C ©(= R))
For any w = (u,0)( € Q@ =R x R, ), define the positive number n¢ ( > 0) such that:

18 = ink{n > 0+ [P (Bally (r(): )} @) < )
where Ballgg)(w(w);n) ={0(€0): dg)(,u,@) >n} = <(—oo,,u —n)Up+ n,oo))

Hence we see that

B (Ballfy (n(w)in) = B~ ([ +1,50))

n 1+ ...+,
={(z1, . 70) ER" ¢ g < ="}
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(w1 —p) + .+ (20— 1)

={(z1,...,2,) ER" : >n} (6.39)

Thus,

[G"( '(Ball <z>( w);n))}(w)
/ / exp 22:1(1% - N)Q]dxld@ cdr,

202

27TO'
(x1—p)+.. +(9€n u)>77

> e ()
27r0 / / exp| — 2102 |dxidxs - - - dxy,

961+ Faxn >

NG / nx2 / x?
= exp| — —=|dx = exp| — —]dx 6.40
270 Jiz>n 2 V21 Jja|> /o 7 (040

Solving the following equation:

(a/2) 5132 00 ZE2
\/%/ exp| — E]dx = \/—_ /( . exp| — ?]d:v =« (6.41)

we define that

s = —=2(a) (6.42)

Then, we get fi?]S ( the (a)-rejection region of Hy(= (—o0, o] € O(=R)) ) as follows:

RS, = [ {BE@(€6=R):d5(E@) mw) >}
7(w)=pe€(—00, 0]
= {E(z)(= M) ceR . Ut T 1o > ——z(a)} (6.43)

n WV

Thus, in a similar way of Remark [6.10, we see that R = “the slash part in Figure 6.5,

—00,uo] XRy
where
=, 1 +...+x, r+...+x, o
R(foo,,uo]XR_F = {(E(z)(= #),U) ERXRy -, Ho = %Z(@)}

(6.44)
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Figure 6.5: Rejection region ﬁ?‘ﬁo o] (which depends on o)
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6.4 Confidence interval and statistical hypothesis testing

for population variance

6.4.1 Preparation (simultaneous normal measurement)

Consider the simultaneous normal measurement Mz m®xr,) (OF = (R", Bg,G"), S|u0))

in L>*(R x R;). Here, recall that the simultaneous normal observable O = (R", Bg, G") is

defined by

[G”(Xk 1Z0)](w) = X [( )KW)

(V= GER(kzl,Q,...,n), Vw = (p,0) € Q=R x Ry).

where, note that

Q — R X R+
X =R"
The second state space © is
@ — R+

Putting

we define the estimator £ : R* — O(= R, ) by

E(z) = E(xy, 29, ...,

and the system quantity 7 : 2 — © by

Q=RxR,>5w=(u,0)—»mw)=0c€0 =R,

(6.45)
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6.4.2 Confidence interval

Our present problem is as follows.

Problem 6.12. [Confidence interval for population variance]. Consider the simultaneous normal
measurement My rxr,) (O = (R, BE, G"), S|(4,0)])- Assume that a measured valuer € X =
R™ is obtained by the measurement. Let 0 < o < 1.

Then, find the D!=%®(C ©) (which may depend on ) such that

e the probability that o € D17 is more than 1 — «

Here, the more D1~%®(C ©) is small, the more it is desirable.

Consider the following semi-distance d(@1 ) in O(=R,):
) B A
d@ (61,92) = | ;dO" = |10g0’1 - IOg O'2| (646)
For any w = (u,0)( € 2 =R x R, ), define the positive number §1~* ( > 0) such that:

65 =inf{n >0: [F(E_I(Balldg)(w; n)](w) >1—a}
= inf{n >0: [F(E*l(Baujg)(w; mM(w) < al (6.47)

where

Balldcg> (w;n) = Balldcg)((u; o),n) =R x {0’ : |log(c’'/o)] = n} =R x ((0,0¢7"] U [oe", 00))
(6.48)

Then,

E_I(Balldcg>(w; n) =E1 (]R x ((0,0e¢™" U [oe, oo)))
={(x1,...,2,) € R" : <ZZ:1(33k - ﬁ(m))2>1/2 <oce "oroe” < <ZZ:1(371<:

n n

fi(z))? ) 1/2}
(6.49)

Hence we see, by the Gauss integral (6.7)), that

(G"(E~ (Baﬂdu)(w )} (w
:; / / exp[— 22:1(% _M)z]dxldx2~~dxn

(V2mo)n 202
E- 1 ]RX (0,0e=MU[oen, oo)))

—2
2

ne” =" 0 ne?n
- [ @ [ ph@de=1- [ g (6.50)
0 n,

ne2n e—2n
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Using the chi-squared distribution pf_l(:ﬁ) (with n — 1 degrees of freedom) in (6.8), define the
617 such that

l—a= / pf_l(x)dm (6.51)

R (6.52)
Hence we get, for any 2 ( € X), the D1~ (the (1 — a)-confidence interval of = ) as follows:
D = {w(€ Q) + dg) (B(x), 7(w)) < 6,7}

={(p,0) e R xRy : ge " < <ZZ:1($kn_ E(x))2>1/2 < 06571;&} (6.53)

r_(z—p(z 1/2 55(x)+ /2
Recalling (6.4)), i.e., (z) = <M> = (55" we conclude that

n

DI = (o) ER xRy : E(a:)e_‘sib_a <o< E(x)e‘si_a}

e—za}fa L 625};‘* L
={(n,0) ER xR, : - S(r) <o*< - S(x)} (6.54)
And
DI*® —{s c R, : E(x)e_(sifa <o< E(a:)e‘s’l;a}
200 o200
={(n,0) ERXRy 1 ——55(z) <0 < ——55(x)}
R,
7(z)e
x
Dl—a,Q
X
Y F(x)e "
R

Figure 6.6: Confidence interval D1~ for the semi-distance d(@1 )
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6.4.3 Statistical hypothesis testing[null hypothesisHy = {09} C O =
R]

Our present problem is as follows.

Problem 6.13. [Statistical hypothesis testing]. Consider the simultaneous normal measure-
ment Mpomxr,) (0g = (R", Bg,G"), S|ue)). Assume the null hypothesis Hy such that

Hy = {UO}(Q O = ]R))

Let 0 <a < 1. ~
Then, find the rejection region R?}S(Q ©) (which may depend on p) such that

e the probability that a measured valuer(€ R™) obtained by Mp~gxr,) (0% =
(R™, B, G™), S{(uo,0))) satisfies that

E(z) € 15:%1(3
is less that «.

Here, the more the rejection region ]3%:) is large, the more it is desirable.

For any w = (u,0)( € @ =R x R,), define the positive number n¢ ( > 0) such that:

= ity > 0: [F(E~ (Bally (win))](w) < a)
Recall that

=0, " =0, (=)
Hence we get the IA%?I]? ( the (a)-rejection region of Hy = {oo} € © =R, ) as follows:

RS =Ry = [ {E@)(€0):dg)(E@),n(w)) = nZ}

m(w)=c€{o0}
= {E(z)(€ © =Ry) : dy)(B(x), 00) > n2}

= {G(z)(€ © =R,) : 7(z) < 0ope™™ or gpe™ < (x)} (6.55)

n Tz 1/2
where 7(z) = (M) _

n

Thus, in a similar way of Remark [6.10, we see that fiﬁx {UO}:“the slash part in Figure 6.7,

where

Eﬁ&x{go} ={(1,7(z)) e Rx R, : 7(z) < oo™ or ope™ < 7(x)} (6.56)
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TS

0y

Ay _Lad

1

Figure 6.7: Rejection region ﬁ%x{m}

6.4.4 Statistical hypothesis testing[null hypothesisHy = (0,00] C O =
R+]

Our present problem is as follows.

Problem 6.14. [Statistical hypothesis testing]. Consider the simultaneous normal measure-
ment Mpomxr,) (0 = (R", Bg,G"), S|ue)). Assume the null hypothesis Hy such that

Hy = (0,00](€ © =R))

Let 0 < a < 1. R
Then, find the rejection region R?}S(g ©) (which may depend on p) such that

e the probability that a measured valuer(€ R™) obtained by Mpemxr,) (0% =
(R™, B, G™), S{(uo,0))) satisfies that

E(x) € R\OI_}S
is less that «.

Here, the more the rejection region EQHS is large, the more it is desirable.

Consider the following semi-distance dg ' in O(=R,):

|f(;2 %do’| = |logo; —logos| (09 < 07,09)
|f02 ldg| = |logog — logos| (01 < o < 02)
(

(2) _ g
do (o1,02) = |f;§1 1do| = |logog —logoi| (02 <09 < o4) (6.57)
0 (0-17 02 S 0-0)
For any w = (u,0)( € Q@ =R x R, ), define the positive number n¢ ( > 0) such that:
nG = inf{n > 0: [F(E~"(Bally (w;n))](w) < a} (6.58)
(S]
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where
Bally (w;n) = Ballie ((5;9),m) = R x [o€”, 00) (6.59)
Then,

E_I(Balldcg> (w;n)) = B <[ae’7, oo))

—{(z1,..., 1) ER ¢ 0e" < F(x) = (Zzﬂ(””’“ — i) )1/2} (6.60)

n

Hence we see, by the Gauss integral (6.7)), that

[G"(E o (Baﬂcm (w;n))] (W)

2
1\ T —

0'0677<a ()

< / T () (6.61)

Solving the following equation, define the (n$)' (> 0) such that

a= /00 pf_l(:v)d:v (6.62)

nez("?%)

Hence we get the E?IS ( the (a)-rejection region of Hy = (0, 0] ) as follows:

RiS =Ry = [ {E@)(€ 6 =Ry):dd(E(x),n(w)) =S}
m(w)€(0,00]
= () {E@)(€0): dS(E(x),n(w) > ()}
m(w)€(0,00]
= {o(=7(z)) e R, : oo™ < 7(z)} (6.63)

n i 1/2
where 7(x) = (M) _

n

Thus, in a similar way of Remark [6.10, we see that ﬁ%x(o UO}:“the slash part in Figure 6.8”,

where

!/

Rey 0oy = {(1,7(2)) ERX Ry 0pe™) <T()} (6.64)
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i

0y
\ 0'067(77%)/

RX 00’0

1

Figure 6.8: Rejection region RRX 0,00]
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6.5 Confidence interval and statistical hypothesis testing
for the difference of population means

6.5.1 Preparation (simultaneous normal measurement)

Consider the parallel measurementM o (rxr,)x®xk,)) (OZ®O0FE = (R"xR™ , Bg X Bm G"®
G™), i o pasea)) (i L2((R x Ry ) x (R x Ry))) of two normal measurements.

Assume that o; and o, are fixed and known. Thus, this parallel measurement is represented
by Mo (®xr) (nga1 ® Og”al = (R* x R™ B X BE, Gs," @ Go,™), Siure)) It L°(R % R).

Here, recall the normal observable (6.1)), i.e.,

o2mo 202

(G (2)](p) = ! /:exp[ - M]olx (VE € Br(=Borel field in R)), Vu € R). (6.65)

Therefore, we have the state space 2 = R* = {w = (u1, p2) : p1,p2 € R}. Put © = R with
the distance dg)(ﬁl, 03) = |6, — 05| and consider the quantity 7 : R* — R by

(g1, pi2) = p1 — po (6.66)
The estimator E : X(= X x Y =R" x R™) — O(= R) is defined by

E(xla e Ty YL, - aym) = anl e - kal o (667>

For any w = (g, p2)( € © = R X R), define the positive number 7%(= §.7%) ( > 0) such
that:

(=0, %) =inf{n >0: [F(E”(Ballfép(ﬂ(w); m)lw) = a}

where Balldc(l)(w(w); n) = (—o0, i1 — 2 — N U [u1 — pa 4+ n, 00). Define the null hypothesis Hy
=)
(C © = R) such that

Hy = {60}
Now let us calculate the 2 as follows:

E’l(Ba11§g>(7r(w); 1) = B (=00, p — p2 — 7] U [t — pi2 + 1, 00))

ERTL x R™ - |Zkz:1$lc _ Zk’:lyk _(

—{(1, e T Ys s U — )| >
{@1, T,y Um) - - p — p2)| = n}
n_ T _ m_ _
—{(Z1, .-, Ty Y1s -+ s Ym) € R" X R™ yZ’f—l(n’“ f1) —Zk—1<f; 1) Sy (6.68)
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means
Thus,
[(No™ @ Noy™ )(E™ (Baﬂdm( m(w); )] (w)
1
(\/ 2101 )" (V2T og)™
X / / eXp[ o Zk:l(xk2_ ,LLl) Zk’ 1(yk’ ) ]dl’ de dl,ndyldyg L dym
207 203
‘Zk 1(% H1) Pt (g — H2)
1 Do TE D pe Uk
= exp|—=£= - = dridxsy - - - dr,dy dys - - - dy,,
(\/%0_1) (\/%0_2 / / p[ 20_% 20_% ] 1 2 Y1ay2 Y
Zk 11k R 1yk
1 7 2
=1- CR— / exp[ — %]dﬁ (6.69)
V2m(Zh 4+ Z2)12 2(3L + %2)
Using the z(a/2) in (6.33), we get that
fe? 51—04 (U% + 0%)1/2 (Oé) (6 70)
= =(—+—=)""z(=< .
s w n m 9

6.5.2 Confidence interval

Our present problem is as follows

Problem 6.15. [ Confidence interval for the difference of population means]. Let o1 and gy be
positive numbers which are assumed to be fixed. Consider the parallel measurement Mo (g xr)
(0g,, ®0g, = R"xR™, By X B, Gs," ®Go,™), Siurpsy))- Assume that a measured value
T=(r,y) = (1, -, T, Y1,-- -, Ym) ( € R" x R™) is obtained by the measurement. Let
0<axl.

Then, find the confidence interval D(lg;;‘)@( C O) (which may depend on o1 and o3) such that

e the probability that pu; — ug € D( is more than 1 — a.

zy)

Here, the more the confidence interval D(1 O‘)e is small, the more it is desirable.

Therefore, for any Z = (z,y) = (¥1,.. ., Zn, Y1, -- -, Ym) ( € R" X R™), we get DI~ ( the

(1 — «)-confidence interval of Z ) as follows:

D% = {w(€ Q) : do(E(2), m(w)) < 6,7}

n m 2 2
— (o) €R xR ;[ A=k Dim e Ty Do)
n

_ < (L
=Ly — )| < (B 2y

(6.71)
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6.5.3 Statistical hypothesis testing[rejection region: null hypothesisHy =
{ro} €O =R|

Our present problem is as follows

Problem 6.16. [Statistical hypothesis testing for the difference of population means|. Consider
the parallel measurement Mpe(ryr) (O’éa1 ® 0g,, = (R" x R™ B2 X Bm G,," @ Gy™),
Si(u1,u2)])- Assume that

Ty, po) = p1 — p2 = 0 € © =R
that is, assume the null hypothesisHy such that
Hy ={6}(S © =R))

Let 0 <a < 1. ~
Then, find the rejection region R?j}?(g ©) (which may depend on p) such that

e the probability that a measured value(x,y)(€ R™ x R™) obtained by M gxr) (O’C‘;G1 ®
0F, = R" x R™ By KB, Go," ® Go,™), Si(uruay)) satisfies

T+ 2o+ -+ 2y y1+y2+"'+ym ;O
E(x,y) = " — - € Ry,

is less than «.

Here, the more the rejection region E?Ifj is large, the more it is desirable.

By the formula (6.70), we see that the rejection regionR2 ( (o)-rejection region of Hy =
{6p}(C ©) ) is defined by
iy = M {B@)(€ ©) : dg)(B(@), 7(w)) = 13}

w=(p1,u2)EQ(=R2) such that m(w)=p1—p2€HN (={60})
2 2

_ _ _ _ ag g @)
= {(x) — Aly) € O(=R) : [(x) ~ Fily) — bo] > (- +-2)"*2(5)} (6.72)
or,
RyY = N {Z(e R" x R™) : d§)(B(Z),m(w)) > n2}
w=(p1,p2)€Q(=R?) such that m(w)=u1—p2€Hn(={60})
=~ n m — — O-% O-% 1/2 o
= {F(e R" xR") : [A(x) — Aly) — 6ol = (T + 2)2(3)} (6.73)
Here,

_ ZZ:l Lk ﬂ(y) _ 2221 Yk

fil(x) - —
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means

6.5.4 Statistical hypothesis testing[rejection region: null hypothesisHy =
(—00,6)] € © =R]

Our present problem is as follows

Problem 6.17. [Statistical hypothesis testing for the difference of population means|. Consider
the parallel measurement Mpe(ryr) (O’éa1 ® 0g,, = (R" x R™ B2 X Bm G,," @ Gy™),
Si(u1,u2)])- Assume that

m(p, po) = p1 — p2 = (—00,6] CO =R
that is, assume the null hypothesisHy such that
Hy = (—00,60](S © =R))

Let 0 <a < 1. ~
Then, find the rejection region R?j}?(g ©) (which may depend on p) such that

e the probability that a measured value(x,y)(€ R™ x R™) obtained by M gxr) (O’C‘;G1 ®
0F, = R" x R™ By KB, Go," ® Go,™), Si(uruay)) satisfies

TitTat- 4Ty itYat ot Um

E —
(z,y) " -

;O
S RHN
is less than «.

Here, the more the rejection region E?Ifj is large, the more it is desirable.

Since the null hypothesis Hy is assumed as follows:
HN = (—OO, QO]a

it suffices to define the semi-distance dg) in ©(= R) such that

’91 — (92‘ (V91,92 S © = R such that 90 S 91,02)
dS(0,,6,) = { max{0;,6,} — 0, (V6y,0, € © = R such that min{6;,6,} < 6y < max{6;,0,})

0 (V@l, 02 S © = R such that 917 02 S Qo)
(6.74)

Then, we can easily see that
Ry = N {E@)(€ ) : dg)(B@),m(w)) = 12}
w=(p1,u2)€Q(=R2) such that =(w)=p1—p2€Hx (=(—00,00])
B B B B o2 o2

= {7(2) —7iy) €R = Al@) = Fly) = 00 > (- + —2)!22(a)} (6.75)
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Chap. 6 The confidence interval and statistical hypothesis testing

6.6 Student t-distribution of population mean

6.6.1 Preparation

Example 6.18. [Student ¢-distribution]. Consider the simultaneous measurement M Lo (RxR4)
(0g = (R™, BE,G™), Sjuey) in L°(R x Ry). Thus, we consider that & = R x Ry, X = R".
Put © = R with the semi-distance d§(Vz € X) such that

|61 — 0,
o'(z)/v/n
where 7'(x) = \/-"50(r). The quantity 7 : Q(= R x R, ) — O(= R) is defined by

dg(el,eg) = (V.Z' e X = R”,Vﬁl,QQ €0 = R) (676)
Q=R xRy)sw=(u,0) —7(p,0) =peO=R) (6.77)

Also, define the estimator F : X (= R") — ©(= R) such that

$1+1’2+ +x,

E(z) = E(x1,29,...,0,) = f(z) = " (6.78)
Define the null hypothesis Hy (C © = R)) such that
N = {0} (6.79)
Thus, for any w = (ug,0)( € 2 =R x R,), we see that
[G"({z € X(=R") : dg(E(z),m(w)) = n})l(w)
—o (e x + Bl )
7(2) /v
L e ) g
(\/%0"/ / p| 552 Jdzydzy - - - dx,
< GEA
exp| — Zk 1 )" == |dxidxs - - - dxy
()]
7 @)/
=1- / Pl (z)dx (6.80)

-
where pf,_; is the t-distribution with n — 1 degrees of freedom. Solving the equation 1 — o =

S, bt (w)de, we get

o, =nl =t(a/2)
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6.6 Student t-distribution of population mean

6.6.2 Confidence interval

Our present problem is as follows

Problem 6.19. [Confidence interval]. Consider the simultaneous normal measurement
Mieo@xry) (Of = (R™, BR,G"), Sjuo))- Assume that a measured valuex € X = R" is
obtained by the measurement. Let 0 < a < 1.

Then, find the confidence interval D1=%€(C ©) (which does not depend on &) such that

e the probability that u € D17 is more than 1 — «

Here, the more the confidence interval D!1=%® is small, the more it is desirable.

Therefore, for any z ( € X), we get D1=%®( the (1 — a)-confidence interval of x ) as follows:

DI ={r(w)(€0):weQ, d5(E(r),n(w)) <6}

=m6@@ﬂm:n@rfﬁgwwmgusm@+f%%mm» (6.81)

D% ={w = (p,0)(€ Q) 1w € Q, dg(E(z),m(w)) <057}

={w=(p,0)(€ Q) : u(x) - 6\//(? 5\//<?

6.6.3 Statistical hypothesis testing|null hypothesisHy = {uo}(C 0 =
R)]

t(a/2) < p <h(z) + t(a/2)} (6.82)

Our present problem was as follows

Problem 6.20. [Statistical hypothesis testing]. Consider the simultaneous normal measure-
ment Mz~ mwxr,) (0g = (R, Bg, G"), S{(u.0))- Assume that

= Ho
That is, assume the null hypothesis Hy such that
Hy = {j10}(C © = R))

Let 0 < a <k 1. R
Then, find the rejection region R?j;)(g ©) (which does not depend on o) such that

e the probability that a measured valuex(e R") obtained by Mpecmxr,) (0% =
(R™, Bg, G™), S((u,0)]) satisfies

E(z) € E?{S
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Chap. 6 The confidence interval and statistical hypothesis testing

is less than «.

Here, the more the rejection region fifls is large, the more it is desirable.

The rejection regionﬁ?j}?( (cv)-rejection region of null hypothesis Hy (= {o}) ) is calculated

as follows:
Roo _ N (E(x)(€0): di(E(x).n(w)) > 1)
w=(1,0)E(=RxR ) such that =(w)=peHy (={uo})
=%mwe@@R>:%%§§§%gwm} )
:ﬁw»e@eR>:msn@y—:%%mmwnnwwfv?wwm3ud (6.83)
Also,
R N reX: d(E@).xw) >}
w=(p,0)€Q(=RxR4) such that =(w)=peHn(={uo})
—wex=Rr : O #l0

a'(z)/vn

={re X=R": py <pux)— E:;?t(a/Q) or fi(x) +

f%&wmsM} (6.81)

6.6.4  Statistical hypothesis testing[null hypothesis Hy = (—o0, u](C
©=R)]

Our present problem was as follows

Problem 6.21. [Statistical hypothesis testing]. Consider the simultaneous normal measure-
ment Mz~ mwxr,) (0g = (R, Bg, G"), S{(u.0))- Assume that

e (_007 ,U/O]
That is, assume the null hypothesis Hy such that
Hy = (~00, o] (€ © = R))

Let 0 < a < 1. R
Then, find the rejection region ngﬁ(g ©) (which does not depend on o) such that

e the probability that a measured valuex(e R") obtained by Mpecmxr,) (0% =
(R™, Bg, G™), S((u,0)]) satisfies

E(z) € E?{S
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6.6 Student t-distribution of population mean

is less than «.

Here, the more the rejection region E?IS is large, the more it is desirable.

Since the null hypothesis Hy is assumed as follows:
HN = (_007 MO]?

it suffices to define the semi-distance dg in ©(= R) such that

=yt (V61,0 € © = R such that 1o < 6;,6,)
dg(01,02) = %ﬁi}ﬁ;“o (V01,05 € © = R such that min{fy, 05} < pg < max{6;,6-})
(Vel,ﬁg € O = R such that 01762 S MO)
(6.85)
for any z € X = R"™.
Then, («)-rejection regionﬁ?}’s is calculated as follows.
pa,© . - o
RC = M {B)(€ ©): dy(E(),n(w)) =12}
w=(p,0)EQ(=RxR4) such that n(w)=pcHy(=(—o00,u0])
(lx) € O=B) : o < ila) ~ “ () (6.56)
= {n(z = : T) — o ,
K Mo = NG
Also,
R = N {z(e X =R") : dp(B(x),7(w)) > 15}

w=(p,0)€Q(=RxR4) such that n(w)=peHy(=(—00,u0])

5\/_ ta)} (6.87)

={z(€e X =R") : o < lr) -

Remark 6.22. There are many ideas of statistical hypothesis testing. The most natural idea

is the likelihood-ratio, which is discussed in

(a) Ref. [33]: [S. Ishikawa, “Mathematical Foundations of Measurement Theory,” Keio Uni-
versity Press Inc. 2006.

(b) Ref. [36]: S. Ishikawa, “A Measurement Theoretical Foundation of Statistics,” Applied
Mathematics, Vol. 3, No. 3, 2012, pp. 283-292. doi: |10.4236/am.2012.33044

Also, we think that the arguments concerning “null hypothesis vs. alternative hypothesis” and

“one-sided test and two-sided test” are practical and not theoretical.
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Chapter 7
ANOVA( = Analysis of Variance)

The standard university course of statistics is as follows:

@ @ 8)
— ’conﬁdence interval ‘ — ‘statistical hypothesis testing

(likelihood method, moment method)

@
— [ANOVA]

In the previous chapters, we studied 1,2 and @. In this chapter, we devote ourselves to
@(ANOVA). This chapter is extracted from the following.

Ref. [45]: S. Ishikawa, ANOVA (analysis of variance) in the quantum linguistic formulation
of statistics (larXiv:1402.0606 |math.ST| 2014 )

7.1 Zero way ANOVA (Student t-distribution)

In the previous chapter, we introduced the statistical hypothesis testing for student ¢-
distribution, which is characterized as “zero” way ANOVA (analysis of variance ). In this
section, we review “zero” way ANOVA (analysis of variance ).

Consider the classical basic structure
[Co(€) € L=(Q,v) € B(L*(Q,v))]
where
Q=R xR, ={(p,0) | puis real, o is positive real}

Consider the simultaneous normal measurement My mgxr,) (Of = (R™, Bg, G"), Sjuey) (in

L>*(R x R,)). For completeness, recall that
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7.1 Zero way ANOVA (Student ¢-distribution)

[Gn( k 15k)](w) = Xk UG (ER)](w)
27_‘_0 / /GXp Zk 12‘2-]62 ) }dl’ldlédxn (71>

k 1‘—‘k

(VEp € Br(k=1,2,...,n), VYw=(u,0) e Q=RxR,).

And recall the state space 2 = R x R, the measured value space X = R", the second state
space(=parameter space) © = R. Also, recall the estimator £ : X (= R") — O(= R) defined
by

B(z) = E(v1,a,..., 2,) = i) = 22T T o (72)

n

and the system quantity 7 : Q(=R x Ry) — ©(= R) defined by
(=R xR,) 3w = (1,0) = 7(s,0) = j1 € O(=R) (73)

The essence of “studentized” is to define the semi-metric d§(Vz € X)) in the second state space

©(= R)such that

|g(1) — 9(2)| |9(1) — 9(2)|
vno(z) SS(x)

dz(0M 9Py = (Vz e X =R", VoW 4P c © =R) (7.4)

Thus, as mentioned in the previous chapter, our problem is characterized as follows.

Problem 7.1. [The zero-way ANOVA]. Consider the simultaneous normal measurement
Moo mxr,) (OF = (R™, BR,G"), Syu0)) Here, assume that

= Ho

That is, the null hypothesis Hy is defined by Hy = {10} (€ © = R)). Consider 0 < a < 1.
Then, find the largest R;“;J?(g ©) (independent of o) such that

(A1) the probability that a measured value z(€ R") (obtained by Mpemxr,)(0% = (X (=
R™), Bg, G™), S[(MOJ)])) satisfies

E(z) € Ry (7.5)

is less than «.
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Chap. 7 ANOVA( = Analysis of Variance)

We see, for any w = (9, 0)( € @ =R x Ry),

/ / exp| — D 1( >]d:v1d:n2 -dz,,

_ lB(x)—pol
vVn—1<
" ~VSS(z)/vn—-1

/ / exp| — L= 1( B == 2 ldxydxs - - - dxy, (7.6)

n(f(z))2
<7
SS(z)/(n—1)

27r0

(Ag) by the formula of Gauss integrals ( Formula [7.8(A)(§7.4)), we see

o0

:/ pan_l)(t)dt =a (eg., a=0.05) (7.7)
7

2n(n—1)
where pgn_l) is the probability density function of F-distribution with (1,7 — 1) degree of
freedom.
Note that the probability density function p{;llm)(t) of F-distribution with (n1,ns) degree
of freedom is defined by

I 1 nq n1/2 t(n1—2)/2 0 7 8
oo L (m) > |
P ) = B ) ) T mtmymrz (120 (7.8)
where B(-,) is the Beta function.
The a-point: F'2, (> 0) is defined by
/ Ponmy)dt = (0<a <1 eg., a=0.05) (7.9)
Fio
Thus, it suffices to solve the following equation:
n’nn—1)=F,_, (7.10)
Therefore,
Fl
a2 n—1,«
= —"= 7.11
()7 = s (7.11)
Then, the rejection regionﬁ?j}?( (or }A%%I)V() is calculated as
Ry, = N {E(x)(€©): do(E(x),m(w)) =5}

w=(11,0)€Q(=RxR4) such that n(w)=pcHy(={1o})
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7.1 Zero way ANOVA (Student ¢-distribution)

— (i) c 0(=R) : POL0l sy ) c o= my - PO b0l e

SS(x) o(x)
- B() = pol Foia
- {,u(x) €O(=R) : a(x) = n—1 }
— (1) € O B) ¢ o < (w) — ()| 2 o ) + ()| 2 < g} (712
and,
Rye = BT (R
Fota v P
- {a: € X(=R") : po < Filw) —7(a)|| = or fi(w) +7(a) | e < MO} (7.13)

ANote 7.1. (i): It should be noted that the mathematical part is only the (Ag).
(ii): Also, note that

()  F-distribution with (1,n — 1) degree of freedom
= the student ¢-distribution with (n — 1) degree of freedom

Thus, we conclude that

(712) = (683)  (7.13) = (6.84)
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7.2 The one way ANOVA

For each i = 1,2,--- ,a, a natural number n; is determined. And put, n = >

a .
i=1 i

Consider the parallel simultaneous normal observable Of = (X (= R"), BE,G") ( in L>®(Q(=

(R* x R4 )) ) such that

= L[ [l S il 5 %
@ EN) = g | [ el | X X duy

202 i=1 k=1

(‘v’w = (Ml?ﬂ?a"'7ua70) €EN=R"x R-‘r??‘ S B]ln%)
That is, consider

ML"O(R“XRH(OZ = (X(E Rn)? Br: Gn)> S[(#:(Mlyum'" uua)ﬁ)})

Put q; as follows.

ai:ui—% Vi=1,2,...,a)

and put,
0 =R
Thus,, the system quantity 7 : {2 — O is defined as follows.
Q=R*"XRy dw= (1,12, pfla,0) = m(w) = (a1,09,...,0,) € O =R"
Define the null hypothesis Hy(C © = R®) as follows.
Hy ={(a1,a2,...,0,) EO=R" : oy =ap=... =, =}

o)

Here, note the following equivalence:

(13

P =flo=...=l, < ‘= =...=q,=0" < «(717)"

Hence, our problem is as follows.

(7.14)

(7.15)

(7.16)

(7.17)

Problem 7.2. [The one-way ANOVA]. Put n = > 7 n;. Consider the parallel simultaneous
normal measurement Mzeogaexr, (0% = (X(= R"™), BR, G™), Siu=(u1 12, pa),0)]) Here, assume
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that

M1 = [b2 = Ha

that is,

W(MI’M%"' nua): (0707 70)

Namely, assume that the null hypothesis is Hy = {(0,0,---,0)} (€ © = R)). Consider
0<axl. R
Then, find the largest R?}S(g ©) (independent of o) such that

(A1) the probability that a measured value z(€ R™) (obtained by Mpeo(raxr,)(0Of = (X (=
Rn), Bﬁ, Gn), S[(M=(M1,M2f" 7ua)’g)])) satisfies

E(z) € E%S

is less than «.

Consider the weighted Euclidean norm ||§(V) — §®)||g in © = R? as follows.

100 — @ = 7y (0(1) 6(2)>2
=1

(V09 = (07,657, ...,00) e R, £=1,2)

Also, put

X =R">2=((Tir)k=12..n)i=12. .a

3, = ==l _ izt 2y Tk (7.18)
n; n;
Theorem [5.0] (Fisher’s maximum likelihood method) urges us to calculate 7 (z)(= @) as

follows.

For r € X = R",
ﬁ(95) = ﬁ(((ﬂﬁzk) k=1,2,..., ni>z’:1,2 ..... a)

= Z i(mzk - xz")Q

i=1 k=1
_Zazlek_z:k lxlk)
i=1 k=1
Zk 1(9% 1) \2
- mz _,uz )
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:ﬁ(((f’?ik—ui)kzm ..... ni)i:1,2 ..... a) (7.19)

For each x € X = R", define the semi-norm dg§ in © such that

(1 _ g2
42 (6, @) = H(Q_—QH@ (v, 9 € @)). (7.20)
SS(x)

Further, define the estimator £ : X (= R") — O(= R?%) as follows.

E(@ :E((flfik)izl,z,...,a,kzm ..... n)

_(ZZH Tik D i1 Dbt Tik D T2k Zz 1 Zk 1 Lik > ket Tak _ D et Dokt xik)
= e
n

Y

n n n Y n

o T ?f oy Tk
:<Zk_1 s Xkl ) = (2, — 2. )iz (7.21)
n n 1=1,2,...,a
Thus, we get

|E(x) — 7(w)][3
_||<Zk: 1 Tik Qi ZZ; a?m)

oo (@)im2alle

||<Zkz 1 ik Zz 1Zk 1 Lik — (i — Z?_l:ui>>
i=1,2,...,a

remarking the null hypothesis Hy (i.e., pu; — # =o;=00=1,2,...,a)),

(B L R TR S e (722)
=1,2,..., a Y

Therefore, for any w = ((fik)iz12,...a, k=1,2,..n,0)( € & = R™ x R,), define the positive real n2
( > 0) such that

= inf{n > 0: [G”(E‘l(Ballgg (m(w);n))|(w) > a} (7.23)
where
Ballg% (m(w);n) ={0 €O : d§(r(w),0) >n} (7.24)

Recalling the null hypothesis Hy (i.e., p; — # =a;=00=1,2,...,a)), calculate n2 as

follows.

BN (Ball (r(w)in) = {z € X =R" : d5(E(x),x(w)) > n}

_ Con L NE@) —mWE S il —@.l)? 2
—{ze X =R": <500) © = s .)2>n} (7.25)
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For any w = (1, pi2, - - -, fla, 0) € @ = R* x R, such that 7(w)(= (a1, a0,...,q,)) € Hy(=
{0,0,...,0)}), we see

[G™ (B! (Ballgy ((w);m))) ()
_ 1 / / exp| — Zz 1Zk 1(xlk ) ] ;< >< dz .

( 27‘(‘0‘) 202 i=1k=1

"1(9” e T Te

Zg 1Zk l(xzk m )2 n

1 a n; s 2 a n;
- // exp| — 2ozt ot (Vi) ] X0 X day,
(@)n 2 i=1k=1
(ZZ 1 nl(z « T, )2/(a D) 2(n—a)

(¢, Tpt 1(% 2.2/ (n- o @D

(Ag) By the formula of Gauss integrals (Formula [7.8(B)(§7.4])), we see

- ﬁz(na) pglflyn*a) (t)dt = a (e.g., a=0.05) (7.26)
@1
where, p(a Ln—a) 1S @ probability density function of the F-distribution with p (a—1.n—a) degree
of freedom.

Therefore, it suffices to solve the following equation

20 _
nn=—a) _ = FI7, (= “a-point”) (7.27)

(a—1)
This is solved,

(15)* = FiZaala = 1)/(n — a) (7.28)
Then, we get Eg@ (or, Eg;X; the («)-rejection region of Hy = {(0.0....,0)}(C © = R*) ) as
follows:
R = N {B(2)(€ 0) : dg(B(x), m(w)) = 1

w=((1s)%1,0)€Q(=RexR) such that =(w)=(un)L

)
-~ (B(e 0) et e =

pa;X _ p—1/paOy z . (Z? ln%(x —JI..)Q)/(CL—I) a—1
B =B ) =e e X o S (e — =) > et (T30)

ANote 7.2. It should be noted that the mathematical part is only the (Asg).
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7.3 The two way ANOVA
7.3.1 Preparation

As one of generalizations of the simultaneous normal observable (7.14), we consider a kind

of observable %" = (X (= R%"), B Gy in [>°(Q(= (R x R,)).

(G (2)](w)
a b n o —1.)2 n b oa
- i —1\T; 7
_ 1 /m/eXp[_E_l > i1 2okt (Tige — Hag) | X X X daygy
(V2ro)dbrn ) 207 k=1j=1i=1
(‘v’w = ((Mij)i:LQ,...,a,jZI,? ..... b, O') e Q)= ]Rab X R+, E € B%bn) (731)

Therefore, consider the parallel simultaneous normal measurement:

MLOO(RabXR+)(OaGbn = (X(E Rabn)’ iB]%bn’ Gabn)’ S[(ﬂ:(“ij | 1=1,2,---,a,j=1,2,- 7b)’0)])

Here,
a b
_ 21‘:1 Zj:l Hij
pij = R(= p.. = 0 )
23:1 Hij Z?:l Z?=1 Hig
Fail= e =g = = - R
a b
_ _ Z?:l Hij Zz‘:l Zj:l Hij
HBi(= ey — b == = )
+ (@) (= iy — pge = piej + pr) (7.32)
And put,
X =R 252 = (Tijk)ic12,..0, j=1.2,.b, k=1.2,..m
n b n a n
o ke Tuk 21 Dk T D DY
17 ° n ) i bn s e an ,
Z?ﬂ 22:1 ZZ:1 Tijk
- T abn (7.33)
7.3.2 The null hypothesis: ;. = po. =+ = ptg. = p-.
Now put,
© =R* (7.34)
187

For further imformation see my homepage) ‘



http://www.math.keio.ac.jp/~ishikawa/indexKSTS5.html

KSTS/RR-19/003
December 26, 2019

7.3 The two way ANOVA

define the system quantity m : Q(= R® x R,) — O(= R%) by

Q=R xRy 5w = ((ftsj)i=12,..0=12,..6,0) = T1(w) = (@)i_y (= (e — p.)iy) € © =R

(7.35)
Define the null hypothesis Hy(C © = R®) such that
Hy ={(a1,a2,...,0,) EO=R* : oy =y =... =, = a} (7.36)
={(0,0, - 0)} (7.37)
Here, “(7.30)<(7.37)" is derived from
ac = g a; = g(ul — ) = 2 stl AN g 2 %}21 i _ 0 (7.38)

Also, define the estimator £ : X (= R%*") — ©(= R%) by

E(z) = (Z?:I D k=1 Tih B D it 2?:1 > k=1 33z‘jk)
bn abn i=12,...a

= (2 =) (739)

77777777777

Now we have the following problem:

Problem 7.3. [The two-way ANOVA|. Consider the parallel simultaneous normal measure-
ment:

MLOO(RabXRJr)(OaGbn = (X(= ]Ralm), 3%)”, Gabn), S[(M=(Mij |i=1,2, aj=1,2, 71))70)])

where we assume that

that is,

7T1(/“L17/L27"' ,,U,a) = (0707 70)

namely, consider the null hypothesis Hy = {(0,0,---,0)} (CO =R")). Let 0 < a < 1.
Then, find the largest Rﬁ?(g ©)(independent of o) such that

(A1) the probability that a measured value z(€ R*") obtained by My gaxg,)(O&" = (X (=
Ralm); B?Rbna Gabn), S[(M=(Mij | i=1,2, a,j=1,2, ,b),a)]) satisfies that

E(z) € fi?,fj

is less than «.

188 For further imformation see my homepage



http://www.math.keio.ac.jp/~ishikawa/indexKSTS5.html

KSTS/RR-19/003
December 26, 2019
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Further,

He(l) _ H(Q)HG) _ i (61(1) _ 952))2

i=1

(V6 = (6% 69 . 0V e R®, £ =1,2)

a

Motivated by Theorem [5.0] (Fisher’s maximum likelihood method), define and calculate 7 (z) ( =

SS(z)/ (abn)) as follows.

a b n a b n
Z —1 Lijk

=222 (=) =33 ) (wi = SR

i=1 j=1 k=1 1=1 j=1 k=1

a b n n

Z — (331 k Mg )

= Z (@i — pij) — == é )2

i=1 j=1 k=1
Zﬁ(((%jk - Nz’j)izl,Q,...,a, j:1,2,...,b)k:1,2,~--,n) (7-40)

Define the semi-distance d§ ( in © = R?) such that
_ 10— 0®le

ds(6W, ) (VoM. 0 € @ = R*, Yz € X = R*") (7.41)

Define the estimator E : X (= R%*") — ©(= R%) such that

b n a b n
El(z) — (Zjl Dokt Tijk Die Zj:l Dkt xijk) B < )
(z) = - =(z..—x...
bn abn i=1,2,....a ¢ i=1,2,....a

Therefore,

,,,,,,

1E(z) — 7 (w)é

b n a b n
"y (Zjl > ko1 Tijh B > i1 Zj:l > k=1 xijk) B (@4) 12
bn abn i=1,2,....a ‘Ji=12...a ©
b n a b n b a b
"y <Zj:1 > k=1 Tijk B D ie1 Zj:l > k=1 xijk) B (Zj:l Fij D ie1 Zj:l Mij) ||2
bn abn i=1,2,....a b ab i=1,2,....a ©
n b a b n
"y (Zk:l ijl(xijk — Hij) B Dic1 Zj:l > ke (Tije — Mz’j)) 2
bn abn i=1,2,....a ©
and thus, if the null hypothesis Hy is assumed (i.e., g —p. =a; =0 (Vi=1,2,...,a) )
n b a b n a
S JIT T » YRS ¥
bn abn =120 © i’ o ’

=1
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Thus, for any w = (u1, p2)( € @ = R x R), define the positive number n% ( > 0) such that:
2 = inf{n > 0 [G(E(Ball (v(w); m)](w) = a} (7.43)
Assume the null hypothesis Hy. Now let us calculate the 1 as follows:

E~'(Ballg (t(w);n)) = {z € X =R™ : dg(E(z),m(w)) > n}
abn ¢, ijl(xij. —x...)?
D i1 23:1 > et (@i — %‘j')Q
That is, for any w = ((1ij)i=1.2....a, j=12...b, ,0) € 2 such that 7(w)(= (a1, 9, ...,a,)) € Hy(=

{0,0,...,0)}),

={rc X =R" : >} (7.44)

[G“”"< Y(Ballg, (m(w); 1)) ()
Z?ﬂ Z?tl D oher (@ige — pig)? e
270) (V2r0)abn / / ] X X Xdw;j

202 k=1 j=1i=1

Ballc (m(w);n))

_ 1 / / expl Sty D S (e — i)

( 27T0-)abn
abn Z Zb

z:gzl Zb:l Zk:l(wljk xi e
a b n
:—1 / / exp|— D i Zj:l > he (Tin)?
(1 /27T)alm 2

n b a
X X X dxy;
202 ]k:Ijzli:I ik

)2 >772

n b a
] X X Xd{Eijk

k=1j=1i=1
PILIND DL
(a 1) >n2(ab(n—l))
pOHE 123 125 5=1 @ije—T >2 abn(a—1)
ab(n—1)

(7.45)

(As) using the formula of Gauss integrals derived in Kolmogorov’s probability theory, we finally
get as follows.

= o Plot.abn_1)(D)dt = (e.g., o =0.05) (7.46)
n(a—1)

where p{;_l,ab(n_l)) is the F-distribution with (@ — 1,ab(n — 1)) degrees of freedom. Thus, it

suffices to calculate the a-point ng(i D Thus, we see

(15)* = Foyn_1y.0 - nla—1)/(n — 1) (7.47)
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Chap. 7 ANOVA( = Analysis of Variance)

Therefore, we get }Aig;e (or, ﬁ%;x; the («a)-rejection region of Hy = {(0.0....,0)}(C © =R?) )
as follows:

= f {E(z)(€ ©) : dg(E(x), m(w)) = 15

w=((ps)¢_,,0)€Q(=RexR) such that =(w)=(e;)¢ ;€ Hn={(0,0,...,0)}

(LS — e P =l

X

={FE(x O): 7.48
e O e o (e — w1y = e ()
Thus,
N, (T 5 (o — o) fa = ) i

Rifs = BT RD) = {a(€ X) T > Foa 1y
v S Tl — ) (b — 1)~ b

(7.49)

]

ANote 7.3. It should be noted that the mathematical part is only the (Asg).

7.3.3 Null hypothesis: . = pteg =+ = pty, = pt--

Our present problem is as follows

Problem 7.4. [The two-way ANOVA|. Consider the parallel simultaneous normal measure-
ment:

M oo mav ) (O™ = (X (= R™™), BE™, G*™), Si(um(us, | i=1.2 aj=1.2, b)0)])

where the null hypothesis

fhog = fhog = = = [luy = [l

is assumed. Let 0 < a < 1.
Then, find the largest Rﬁ?(g ©)(independent of o) such that

(B)' the probability that a measured value z(€ R*") obtained by Myegaygr,)(0OF" = (X (=
Ralm); B?Rbna Gabn), S[(M=(Mij | i=1,2, a,j=1,2, ,b),a)]) satisfies that

E(z) € fi?,fj

is less than «.
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7.3 The two way ANOVA

Since a and b have the same role, by the similar way of §7.3.2] we can easily solve Problem

.4

7.3.4 Null hypothesis: (af);; =0 (Vi=1,2,...,a, j=1,2,...,b)
Now, put
0 =R* (7.50)
And, define the system quantityr : Q — © by

Q=R" x Ry>w= ((Mij)i=1,2,...,a, §=1,2,...,by o) —=7m(w) = ((aﬁ)ij)i:m,...,a, j=12,.p €O = R

(7.51)
Here, recall:
(aB)ij = Mij = Bye = fhej =+ fho- (7.52)
Also, the estimator E : X (= R%") — O(= R®) is defined by
E((xz'jk)izl ..... a, j=1,2,..b, k=1,2,..., n)
n b n b n a b n
:(Zkzl Tigh | 2ajm 2k=1 Tigk | 2jmn 2k Tigk N D it Dujet Dkt wijk)
n bn an abn i=1,2,....a j=1,2,...b,
=\z,..—z..—T.. 7.53
(x” i T T >i1,2 ..... aj=12,..b, ( )

Our present problem is as follows

Problem 7.5. [The two way ANOVA]. Consider the parallel simultaneous normal measure-
ment:

MLm(R“bXR+)(OaGI)n = (X(E Rabn)’ 3]?{1)”7 Gabn), S[(H:(Nij [i=1,2,,a,j=1,2, 7b)"’)]>
The null hypothesis Hy(C © = R%®) is defined by

HN - {((aﬁ)ij)i:l,l...,a, j=1,2,....b €O = Rab : ((’Yﬁ)m - Oa (VL - 17 27 ceey @, 7 - 17 21 cevy b)}

That is,

(aB)ij = Mis — pge — Joo; F e =0 (i=1,2,-++ a, j=1,2,-+b) (7.55)

Let 0 < a < 1. R
Then, find the largest R?}S(Q ©)(independent of o) such that
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Chap. 7 ANOVA( = Analysis of Variance)

(C1) the probability that a measured value 2(€ R*") obtained by Mpe gy, (08" = (X (=

Rabn), 3%’", Gab"), S[(#:(uij |i=1,2, aj=1,2, ,5)70)]) satisfies that
E(x) € R\OI;S

is less than a.

Now,
e 2
1) _ p®2) _ @ @
60— 02l = | S5 (60— 6)
i=1 j=1
(V0O = (05)ic12, 0, 12,0 € R, £ =1,2)

and, define the semi-distance dg in © by
_ 1oV —6%e

dz, (W, 92) (VoW 0@ € 0,Vx € X)

E((%k - ,Uij)izl ..... a,j=1,2,..b, k=1,2,..., n)

n b n
(Zkzl(%k — prig) e 2ok (Tigk — fhig)
n bn
b n a b n
B Zj:l Zk:l(il?ijk — i) n Z¢:1 ijl Zkzl(i%‘k — i)

an abn )i:1,2 ..... aj=1,2,..b,

:<($ij' = hig) = (Tee = ) = (@eje = o) + (2o _M")>

i=1,2,....a j=1,2,...b,

:(5’5@'3" — Tyeo — oo+ x) (Remark:null hypothesis (a/3);; = 0)

i=1,2,...,a j=1,2,...b

Therefore,
E((%‘jk)izl ..... a, j=1,2,..b, k=1,2,..., n) = E((%gk - Mij)i:l ..... a, j=1,2,..b, k=1,2,..., n)
Thus, foreach i =1,...,a, 7 =1,2,...b,

Eij(ijn — ij)

n b n b n
:Zkzl(xijk - Nz’j) _ Zj:l Zk:1(xijk - /~Lz‘j) _ Zj:l Zk:l(%‘jk B :uz'j)

n bn an
a b n
n Dic1 23:1 > e (@i — ij)

abn

=Lij(z) — (aB)i

(7.56)

(7.57)

(7.58)

(7.59)
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=T, — Lo — Tujo +Toue — () (7.60)

And, we see:

1B () - m(w)li3
—I1(Biy(@) - (@B);).

1=1,2,...,a 7=1,2,...b

Recalling that the null hypothesis Hy (i.e., (af); =0 (Vi =1,2,...,a, j =1,2,...,b) ), we
see

(-
<
_|._
8
~—
[\
—~
EN
D
[\
~—

i=1 j=1

— Lo

Thus, for each w = (u,0)( € @ = R® x R), define the positive real n® ( > 0) such that
ne =inf{n >0: [G(E’l(Ballngé (m(w);n)(w) > a} (7.63)

Recalling the null hypothesisHy (i.e., (af);; =0 (Vi =1,2,...,a, j =1,2,...,b) ), calculate

the nSas follows.

E7!(Ballgy (r(w);n) = {z € X =R™ : d§(E(x),m(w)) >}

abny i, Zj:1(%j- —Tjee =T F T...)?
a b n
Zizl Zj:l Zk:l(xljk‘ - xij')2

={re X =R" . > n?} (7.64)

e R ]

(ie, (af)iy =0 (Vi=1,2,...,a, j=1,2,...,b) ), we see:

Z; 7 " boa
ZZ 123 1Zk 1( gk /“LJ) ] X X deijk
202 k=1j=14i=1

( 27TO' abn /

1 (BalGy ((

[Gab”(E’l(Baﬂc( (w);m))(w)
w)in

expl—
)

a b n
_ 1 exp|— Dim1 2jmt 2ape (Tijl — Mij)Q] >n< >b< ;< d-
(v2mo)abn 202 k=1j=11i=1 ik
{zeX : dg (E(z),m(w)>n}

a b n 2 b

1 o . _ ‘/E’L n a

/ / exp] > e 23_1 > e (Tijk) | X X X diyy
( \ 2 ‘)abn 2 k=1j=1:i=1

T sh 1@, val)?

P 123 1Ek 1(1111c * ‘-)2 o
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a b n 2 n b a
C . (@
_ 1 / / exp[_zz_l 23_1223k_1< Jk) ] X X X d%‘jk

(\/g)alm k=1j=1i=1
T TiaG, ‘e
-1 < _n2(ab(n—1)
Zgzl Z] 1Zk 1($ij zi..)Q abn(a—1)(b—1)
ab(n—1) 8
(7.65)
(C3) Then, by the formula of Gauss integrals [T.8(D) (§7.4) , we see
:/ ) p{('a—l)(b—l),ab(n—l))(t)dt = O[( e.g., x = 005) (766)

n(a=1)(6-1)
where pﬂa_l) (b_1).ab(n_1)) 1S & probability density function of the F-distribution with ((a—1)(b—
1),ab(n — 1)) degrees of freedom.

Hence, it suffices to the following equation:

”(n—1)  a-ne-n

— — [44 _ : t77 7.
na—1b-1) wb(n_1). (= “a-point”) (7.67)

thus, we see,
()2 = Fy 00 Vnla = 1)(0—1)/(n — 1) (7.68)

Therefore, we get the («)-rejection region Eg;@ (or, }A%;;X; Hy = {((af)ij)iz12, aj=12, b
(@B)ij=0(=1,2,--,a,j =1,2,--- ,b)}(C O =R®) ):
RyS = f {B(x)(€ ©) : db(B(x), m(w)) = 3}
w=((nij)2_1b_,0)EQ(=RaxR) such that m(w)=(aB)i;cHy
(S S (e =20 /(0= DO=1) ooy
(s Yo Y (wige = 2,52)%)/ (ab(n — 1)) ~ " e

={E(z)(€ ©): } (7.69)

Also,

(S S (e 2o/~ DO 1)
(Zz 12] 1Zk: 1(!13ij T, ) )/(ab(n—l)) ab(n— 1)

}

(7.70)

RS = ETY(RGO) = {a(e X) -

ANote 7.4. It should be noted that the mathematical part is only the (Cs).
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7.4 Supplement(the formulas of Gauss integrals)

7.4.1 Normal distribution, chi-squared distribution,
Student t-distribution, F-distribution

Definition 7.6. [Fdistribution ]. Let ¢ > 0, and n; and ns be natural numbers. The probability
density function pf; 1) (1) of F-distribution with the degree of freedom(ny, n») is defined by

$n1-2)/2

@ = 5oy ()™ (t>0) (77
P\ = B0y /2,n0/2) \na ) (L4 myt/ng) o+l /2 - '

where, B(-,-) is the Beta function, that is, for x,y > 0,

1
B(:U,y):/ (1 — )yt
0
Note that

F-distribution with degree of freedom(1,n — 1)

= Student ¢-distribution with the degree of freedom(n — 1)

Define two maps 77 : R” — R and SS : R® — R as follows.

ZZ=1 Lk

n
n

SS(x) = SS(x1, 29, ,x,) = Z(l’k —(x))?

k=1
(Vo = (21,29, - ,x,) € R")

() =M1, 22, 2n) =

=

Formula 7.7. [Gauss integral(normal distribution and chi-squared distribution)]. This was already

mentioned in (6.6) and (6.7).

Formula 7.8. [Gauss integral( F-distribution )]. For ¢ > 0,

(A) exp| — L 1( K == 2 ldayday - - - dxy, :/ pan_l)(t)dt (7.72)
Y i
(B): Forn=> 7 n,
1 a ng
// exp| — 2= 1Zk i)’y S5 g
(V2™ i=1k=1

(S mile ,—e, )%/ (a=1)
TSN = )7/ (n=a) ~e
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= / p{;—lm—a) (t)dt (773)

1 S S Yy (k) b
: — X X X dx;;
© (V/2m)abn / / Pl 2 ]k=1j=1z‘=1 ik

E(; IE] l(z - ..)2

(a— 1)
Z(zl 121 1Zk l(zljk z )2 =
ab(n—1) 4
00
F
:/ Pla—1,ab(n—1y)()dt (7.74)
c

Or, equivalently,

a b n
D) —— / / eXp[—Zi:1 2o Zk:l(xijk)?] XX X ds
- (V/2m)abn 2 bt jetion
P IEDY 1(“” T 'j )2
(a 1)(b 1) Sc
i Zb =121 Tk~ Ii--)Q
ab(n—1) .
_/ P{Ea—l)(b—l),ab(n—l))(t)dt (7.75)
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Chapter 8

Practical logic—-Do you believe in
syllogism?—

For examle, consider three kinds of syllogisms as follows. One is the the (natural) logic inherent
in our ordinary language such as

(#1) Since Socrates is a man and all men are mortal, it follows that Socrates is mortal.
Another is the mathematical syllogism such as
(f2) “A= B” and “B = C” imply “A = C” (where “A = B” is defined by “-~AV B”)

It is certain that pure logic (=mathematical logic) is merely a kind of rule in mathematics
or meta-mathematics. Thus, mathematical syllogism (f2) is not guaranteed to be applicable
to our world such as (f1). However, many philosophers ( e.g. Aristotle) might consciously or
unconsciously propose the interpretation such that the two (f1) and (f2) are closely related.

The other is “practical logic” that means the logic in measurement theory. In this chapter, we
prove the (f1) in classical measurement theory. Also, we point out that syllogism does not hold
in quantum systems

8.1 Marginal observable and quasi-product observable

Definition 8.1. [(=Definition [3.19)):quasi-product product observable | Let Oy = (X, Fi, Fi)
(k = 1,2,...,n ) be observables in a W*-algebra A. Assume that an observable O , =

I This chapter is mostly extracted from the following:

(#) Ref. [29]: S. Ishikawa, “Fuzzy Inferences by Algebraic Method,” Fuzzy Sets and Systems, Vol. 87, No. 2,
1997, pp. 181-200. |d0i:10.1016,/S0165-0114(96)00035-8
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8.1 Marginal observable and quasi-product observable

(XZ:1 X, X Zzlffk, Fio. ) satisfies

Flo. (X1 X X Xpg X Ep X Xpyq X -+ X X)) = Fp(Ex). (8.1)
(\V/Ek e i, Vk = 1,2,...,n)

The observable Oy ,, = (><Z:1 X, &Zzlrfk, Fia..n) is called a quasi-product observable of
{0k | k=1,2,...,n}, and denoted by
qp

X OkI(X Xk, IXZ:lgjk,
n k=1 k

k=1,2,..,

qp
X Fk)

,,,,,,

Of course, a simultaneous observable is a kind of quasi-product observable. Therefore, quasi-
product observable is not uniquely determined. Also, in quantum systems, the existence of the

quasi-product observable is not always guaranteed.

Definition 8.2. [Image observable, marginal observable] Consider the basic structure [A C
A C B(H)]. And consider the observable O = (X, F, F) in A. Let (Y,G) be a measurable
space, and let f : X — Y be a measurable map. Then, we can define the image observable

f(O)=(X,TJ, Fo f)in A, where F o f~! is defined by
(FofHT=F( Y1) (VI'e9).

[Marginal observable] Consider the basic structure [A € A C B(H)]. And consider the
observable Oio_,, = (X,_; X, M }_Fx, Fio.,) in A. For any natural number j such that
1 = j < n, define Fl(é)n such that

Fl(%)n(E]) = F12..‘n(X1 X o+ X Xjfl X Ej X Xj+1 X oo X Xn) (VEJ c g:])

Then we have the observable O%)n = (Xj, 95, Fl(é)n) in A. The Ogjz)n is called a marginal
observable of O1,._,, ( or, precisely, (j)-marginal observable ). Consider a map P; : X oy Xp —

X such that

n

k><1 > (ZL’l,l’Q, cy Ly ,J]n) =T € Xj.

Then, the marginal observable O%)n is characterized as the image observable Pj(O12. ).
The above can be easily generalized as follows. For example, define 05122),1 = (X1 x Xo, F1 KTy,

F, 1(212)n) such that

FSP (2 xZ) = FUP (21 x Sy x Xy x -+ x X)) (V21 € F1,VEy € Fo).

n

Then, we have the (12)-marginal observable O%mn = (X1 x Xy, F1 KTy, F1(212)n) Of course, we

also see that Fis , = Fl(gl%:;;n)-
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The following theorem is often used:

Theorem 8.3. Consider the basic structure
A CACB(H)

Let A be a C*-algebra. Let O = (X1, 71, F1) and Oy = (Xy, Ty, Fy) be W*-observables in
A such that at least one of them is a projective observable. (So, without loss of generality,
we assume that O, is projective, i.e., Iy = (Fy)? ) Then, the following statements are

equivalent:

(i) There exists a quasi-product observable O3 = (X7 x X5, F; X Fy, F} (;?Fg) with marginal
observables O; and O,.

(11) 01 and 02 COmrnute, that iS, Fl(El)FQ(EQ) = FQ(EQ)Fl(El) (VEl < 3"1,V52 € ?2)

Furthermore, if the above statements (i) and (ii) hold, the uniqueness of the quasi-product
observable O3 of O; and O, is guaranteed.

Proof. See refs. [12, 29] 33].
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8.2 Properties of quasi-product observables

Consider the measurement Mz(O19=(X1 x Xy, F1 W Fy, F12), S),) with the sample probability
space (X1 x X, F1 W Fy, 4+ (P7 Fw(‘))z)-
Put

x5 A (,07 F12(51 X E2))ﬁ A* (07 F12(51 X E%))z - F, V= F
Rep, ™ 10u] = |, (0, F12(Ef x Z2)) 7 - (o, F12(E5 x Z5)) 7 (V51 € 91, V=, € 52)

where, =¢ is the complement of = {x € X | x ¢ E}. Also, note that

2= (ps F12(E1 X E2)) 7 + s+ (ps F12(E1 X E5)) 7 = a+ (p, Fl(zl)](El))ﬁ
a (0 Fia(Z5 % 29)) 1+ a- (. Fa(E5 x )7 = - (0. L (E)) 1
(0 Fra(Z5 % Z9)) 7+ a- (p, Fro(E1 % 28)) 7 = 4+ (0, 13 (25)) %
a (0 Fia(Z1 % Z5)) 1+ a- (p, Fra(E5 x 25)) 7 = - (0. F13) (29)) 1

We have the following lemma.

Lemma 8.4. [The condition of quasi-product observables| Consider the general basic structure
[A CAC B(H).

Let 01 = (Xl,?l,Fl) and 02 = <X2,3727 FQ) be observables in C(Q) Let 012 = (Xl X Xg,gjl X
Fo, Fi1o=F glng) be a quasi-product observable of O; and O,. That is, it holds that

F=Fy, F=F)

Then, putting ailXEQ = 4+ (p, F12(Z1 X E2)) 7 = p(F12(Z1 x E)), we see

R =(0a] = [# {0 Fe S < EN o Sy X
_ Hajlxaz - Eleg(Fl(El)) - a?xg? B } (8.2)
p(F2(Z2)) — « L+a,” 7 = p(Fi(Z1)) — p(Fa(Z2))
and
max{0, p(F1(Z1)) + p(Fa(Zs)) — 1} S o <
min{p(Fi(Z1)), p(F2(Z2))}
(VE; € F1,V=0 € Fo,Vp € GP(AY)) (8.3)
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Reversely, for any ailXEQ satisfying (8.3)), the observable Q5 defined by (8.2) is a quasi-
product observable of O; and O,. Also, it holds that

E1XEg

p(F(E1 x=Z5)) =0 <= @,
= p(F1(Z1)) = p(F2(Z2)) (8.4)

Proof. Though this lemma is easy, we add a brief proof for completeness. 0 < p(F((E] xZ})))
<1, (V=] € F1, 2} € F,) we see, by (8.2) that

which clearly implies (8.3). Conversely. if a satisfies (8.3)),then we easily see (8.2)),Also, (8.4)

is obvious. This completes the proof. O]

Let O = (X7 X Xo, F1 X Ty, F12:F1(;§F2> be a quasi-product observable of Oy = (X, F1, F1)
and Oy = (X5, Fy, Fy) in A. Consider the measurement M (015 =(X; x Xo, F1XFy, F12:F1(>13F2),
Si)). And assume that a measured value(x1,z2) (€ X1 x X,) is obtained. And assume that
we know that x; € Z;. Then, the probability (i.e., the conditional probability) that zo € =5 is
given by

p_ PG X 5)) p(Fi2(E1 X E))
p(F1(Z1)) p(F12(E1 x E2)) + p(F12(Z1 X E5))
And further, it is, by (8.3)), estimated as follows.
max{0, p(F1(Z1)) + p(F2(S2)) — 1} _
p(F12(Z1 X Z3)) + p(F12(Z1 X F5)) —

Example 8.5. [Example of tomatoes| Let Q = {wy,ws, ....,wn} be a set of tomatoes, which is
regarded as a compact Hausdorff space with the discrete topology. Consider the classical basic

structure

[Co(Q) € L*(Q,v) € B(L*(Q,v))]
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Consider yes-no observables Ogp = (Xpp, 270, Fyp) and Ogy = (Xgw, 255V, Fiw ) in C() such
that:

Xpp = {yRDa nRD} and Xqy = {ySWa nsw}7

where we consider that “yzp” and “ngp” respectively mean “RED” and “NOT RED”. Similarly,
“Ysw and “ngy” respectively mean “SWEET” and “NOT SWEET".

For example, the w; is red and not sweet, the wy is red and sweet, etc. as follows.

O OO @

Yrp YrD

Nsw Ysw Ysw ce Nsw

Figure 8.1: Tomatoes ( Red or Sweet? )

Next, consider the quasi-product observable as follows.

qp
012 = (XRD X Xsw, QXRDXXSWa F:FRDXFSW)

That is,
enlOroysw o1 — | {(Wmos ysw) DI (wr)  [F({(yan, nsw) 1)l (wr)
Reptee v 0fo = [t IS (e o)
{(yRD ysw)t [FRD({yRD})] - a{(yRDyysw)}
[st({ysw})} ~ X rpwsw)) 1+ Y wrp wsw) [Fro({yro })] — [Fow ({ysw )]
where v, (wy) satisfies the (8.3). When we know that a tomato wy, is red, the probability

P that the tomato wy is sweet is given by

P [F'({ (o, ysw) H] (wr) _ [P (yro, ysw) D1 (wr)

[E({(Yros Ysw) DI (@) + [F({ (Yr, nsw) 1] (wr) [Fro ({Yno })](wr)

Since [F'({(yup, ysw) Pl(wi) = v, (wy), the conditional probability P is estimated by

max{0, [F1({yao D] (wr) + [F({yswhl(wi) =1} o o min{F ({ysw})](@r), [Fo({yswHI(wr)}
[Fro ({ro 1)] (w) - [Fro ({ro })] (w)
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8.3 Implication—the definition of “="

8.3.1 Implication and contraposition

In Example 85 consider the case that [F({(yrp, nsw)})](w) = 0. In this case, we see

LF'({ (4ro, Ysw) })](w)
[F({ (yro, Ysw) D] (W) + [F({ (Yo, nsw) })] (w)

Therefore, when we know that a tomato w is red, the probability, that the tomato w is sweet,

=1

is equal to 1. That is,

CE({ (Yo nsw) D) = 07 <= [“Red” — “Sweet”

Motivated by the above argument, we have the following definition.

Definition 8.6. [Implication] Consider the general basic structure

[ACACB(H)

Let 012 = (Xl X XQ, ?1 X ?2, FIQZFl(;?FQ) be a quasi—observable n ﬁ Let P c Gp(‘A*), El
€ F1, =9 € Fy. Then, if it holds that

p(F12(E1 X (E3))) =0
this is denoted by

oll.= — 0?5 8.5
(0155 E1] Mq(Olz.Sm)[ 15 Zo] (8.5)

Of course, this (8.5) should be read as follows.

(A) Assume that a measured value (21, z2)(€ X; xX3) is obtained by a measurementM ey (O12,

S[w])' When we know that z; € =;, then we can assure that x5 € =5.

The above argument is generalized as follows. Let Ois_, = ( XZ:1 X, Xlzzl&"k, Fis ,, =
qp

X  Fy) be a quasi-product observable in A. Let 2, € F,and =, € F;. Then, the condition
k=1,2,....n

- (p i3 (50 x (25) = 0
(where, =¢ = X \ E) is denoted by

o) .z = [0Y .= 8.6
[ 12...n» ]MI(OLZ,..n:S[ﬂ])[ 12..n) J] ( )

205 ’ For further imformation see my homepage ‘



http://www.math.keio.ac.jp/~ishikawa/indexKSTS5.html

KSTS/RR-19/003
December 26, 2019

8.3 Implication—the definition of “="

Theorem 8.7. [Contraposition] Let O15 = (X X Xy, F1 X Fy, F12:F1()1?F2) be a quasi-product
observable in A. Let p € GP(A*). Let Z; € Fy and =5 € Fy. If it holds that

— (085, (8.7)

O(l),El
033 ]MZ(OI%SW

then we see:

2 —
<~ [Og; =5)

O(l)’ Ec
[ 12 1] MZ(0127S[,)])

Proof. The proof is easy, but we add it. Assume the condition (8.7)). That is,
a-(ps Fi2(E1 x (X2 \ 52))) 7 =0
Since =1 X Z¢ = (29)¢ X =5 we see
ax (0, Fra((E9)° x E5)) 7z = 0
Therefore, we get

1 —c 2 —cC
[O§2)5 =1 < [Og; =5)

M7(O12,5,))
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8.4 Cogito— I think, therefore I am—

This section is published in the following:

e ref. [60]: S. Ishikawa; Leibniz-Clarke correspondence, Brain in a vat, Five-minute hypoth-
esis, McTaggart’s paradoz, etc. are clarified in quantum language
Open Journal of philosophy, Vol. 8, No.5 , 466-480, 2018, |DOI: 10.4236/0jpp.2018.85032
(https://www.scirp.org/Journal/PaperInformation.aspx?PaperID=87862)

e ref. [61]; S. Ishikawa; Leibniz-Clarke correspondence, Brain in a vat, Five-minute hypoth-
esis, McTaggart’s paradoz, etc. are clarified in quantum language; [Revised version] ; Keio
Reseach report; 2018; KSTS/RR-18/001, 1-15 (https://philpapers.org/rec/ISHLCB)
(http://www.math.keio.ac.jp/academic/research_pdf/report/2018/18001.pdf)

Recall the following figure.

observer system
(I(=mind)) (matter)
l_ [measured jvalue [observable] I[s_tate] j
(@interfere |

<
<

®perceive a reactio

. =1

|
i
|
|
|
I

[Descartes Figure 8.2 (=Figure 3.1) |:The image of “measurement(=@+®))” in dualism

The following example may be rather unnatural, but this is indispensable for the well-
understanding of dualism.

Example 8.8. [Brain death(cf. ref. p.89 in [42])] Consider the classical basic structure

[CO(Q) g LOC(Q 7/) g B(LQ(Q V))]

Let w, (€ Q = {wi,ws,...,wn}) be the state of Peter. Let O = (X} x Xy, 2517%X2,

ap _ _
Fio=F1x F5) be the_brain death observable in L_OO(Q) such that Xy = {1, T} Xy, = {L, L},
where T' = “think”, T' = “not think”, L = “live”, L = “not live”. For each w, (n =1,2,..., N),
0, satisfies the condition in Table 8.2.

[Table 8.2 ]: Brain death observable Oy = (X; x Xy, 2X1%%2 [,)
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Ny [F2({L})](wn) [F2({T )] (wn)
[FE{THlwa)| (T (=1)")/2 0

(=[Fro({T}x{L](wn)) | EF2({THx{L})](wn))

[F1({T})](wn) 0 (1—(=1)")/2
ElF2ATHALDI@n) | (=R Tx{L)]wn)

Since [Fi2({T} x {L})](w,) = 0, the following formula holds:

[ 12 1T} = [ 12 ;{L}]

Moo () (012:S[wy)
Of course, this implies that
(Ay) Peter thinks, therefore, Peter lives.

This is the same as the statement concerning brain death. Note that in the above example,
we see that

observer<—doctor, system<—Peter,

The above (A;) should not be confused with the following famous Descartes’ saying (=

cogito proposition):

(Ag) “I think, therefore I am”.

in which the following identification may be assumed:
observer<—:I, system<+—1

And thus, the above is not a statement in dualism (=measurement theory). In order to propose
Figure 8.2 (i.e., dualism) ( that is, in order to establish the concept “I” in science), he started
from the ambiguous statement “I think, therefore I am”. Summing up, we want to say the

following irony:

(B) Descartes proposed the dualism (i.e., Figure [8.2] ) by the cogito proposition (Ay) which is

not understandable in dualism.

ANote 8.1. It is not true to consider that every phenomena can be describe in terns of quantum
language. Although readers may think that the following can be described in measurement
theory, but we believe that it is impossible. For example, the followings can not be written by
quantum language:
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(D : tense—past, present, future — ® : Heidegger’s saying “In-der-Welt-sein”
@ : the measurement of a measurement, @ : Bergson’s subjective time

® : observer’s space-time,

® : Only the present exists ( due to Augustinus(354-430))

If we want to understand the above words, we have to propose the other scientific languages (
except quantum language). We have to recall Wittgenstein’s sayings

The limits of my language mean the limits of my world
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8.5 Combined observable —Only one measurement is
permitted —

8.5.1 Combined observable — only one observable
The linguistic interpretation says that

“Only one measurement is permitted”

= “only one observable” = “the necessity of the combined observable”

Thus, we prepare the following theorem.

Theorem 8.9. [The existence theorem of classical combined observable(cf.refs.[29, 33])] Consider

the classical basic structure
[Co(Q) € L=(Q,v) € B(L*(Q,v))]

And consider observables O19=(X; X X5, F; K Fy, F15) and Og3= (Xo x X3, Fo K F3, Fo3) in
L>(Q,v). Here, for simplicity, assume that X;={z}, z? "} (1 = 1,2,3) is finite, Also,

i PRI i

assume that F; = 2%. Further assume that

0522) = 0223) (That iS, F12<X1 X EQ) = FQg(EQ X Xg) (VEQ c 2X2))
Then, we have the observable O193=(X; x X5 x X3,F; X Fy x F3, Fia3) in L>(£2) such that

O%? = 012, 0522? = Oa3

That is,

(12) jm — o - = (23) - o=\ — =

F123 (.:1 X Z9 X Xg) = F12(~:1 X .:2), F123 (Xl X Z9 X .:3) = Fzg(.:g X .:3) (88)
(V=1 € F1,V=0 € Fy,VE3 € F))

The Oj93 is called the combined observable of Q19 and Ogs.

Also, for the general definition of ”combined observable”, see Definition [4.18|

Proof. Ojy3 = (X1 X Xy X X3, F1 X Fy x F3, Fla3) is, for example, defined by

[Fios({ (@1, 22, 24) })](w)
[ [Fa({(z1,22) (W) - [Fas({ (22, 73) })](w)
[Fi2(X1 % {x2})](w)

([Fi2(X1 % {z2})](w) #0and )

([F12(X1 X {z2})](w) = 0 and )
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(Vw € Q,V(x1,x9,73) € X1 X Xo X X3)

This clearly satisfies (8.8). O

Counter example 8.10. [Counter example in quantum systems] Theorem 8.9 does not hold

in the quantum basic structure
[C(H) € B(H) € B(H)]

For example, put H = C", and consider the three Hermitian (n x n)-matrices 77, T, T3 in

B(H) such that
T =TT, 10T =TT, T\Ts5#T51 (8.9)

For each k = 1,2,3, define the spectrum decomposition O, = (X, F, Fy) in H (which is

regarded as a projective observable) such that

where Xk = R,Srk = BR.

From the commutativity, we have the simultaneous observables
012=01 X Oy = (X7 x X3, F1 K Fy, Fi1s = F1 X F3)
and
023=03 x O3 = (X3 x X3,F K F3, Fog = Fy X F3)
It is clear that
0 = 0% (that is, Fia(X; x o) = F3(S) = Fos(Zo x X3)  (VEs € F))

However, it should be noted that there does not exist the observable O193=(X; x X5 x X3, F; K
9:2 X 953, F123) in B(H) such that

0% = 015, 0P = Oy

That is because, if Opo3 exists, Theorem [8.3] says that O; and O3 commute, and it is in
contradiction with the (8.9). Therefore, the combined observable Ojy3 of O15 and O3 does

not exist.
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8.5.2 Combined observable and Bell’s inequality

Now we consider the following problem:

Problem 8.11. [combined observable and Bell's inequality (¢f. [42])] Consider the basic
structure

[ACACB(H)

Put X1 = X2 = X3 = X4 = {—]_, 1} Let 013:(X1 X Xg, 2X1 X 2X3, F13), 014:(X1 X X4, 2X1 X
2X4 ), Ogz= (Xy x X3, 2%2 x 2%3 Fh3) and Ogy= (X x X3, 2%2 x 2%4 F})) be observables
in L>°(Q2) such that

1) 2 3 3 4 4
Og3 - 014), 023 - 0(24)7 Og?)) - O;?;)a O§4) = Oé4)

Define the probability measure v, on {—1,1}* by the formula (4.53). Assume that there
exists a state pg € GP(A*) such that

Now we have the following problem:

(a) Does the observable Oj934=( Xizl Xk, Xizl Ty, Flass) in A satisfying the following (%)

exist?
13) 23) 24
(ﬂ) 0(1234 - 01‘3 032%4 - 014 032%4 - 023 0523)4 = 024

In what follows, we show that the above observable O34 does not exist.

Assume that the observable 01234:(><i:1 Xk, Xizl Fk, Fiosq) exists. Then, it suffices to
show the contradiction. Define Ci3(po), C1a(po), Caz(po) and Cas(pg) such that

4
Ci3(po) = / 4 L1 T3 Ax (ﬂo, Flaza( X dl‘k))ﬁ (: / Ty - T3 Valbl(dxldeS))
>< k=1 X1xX3

k=1 Xk

4
C1a(po) / © Ty A (/)0, Flaza( X dxk))/{ (: / Ty - Ty Va1b2(d$1dl'4))
e 1Xk k=1 X1 % X4
4
Ca3(po) / * T3 A (007 Flaza( X dxk))/{ (Z / T2 - T3 Va%l(dfl?2d5€3))
e 1Xk k=1 Xox X3
4
Ca4(po) / © Ty A (Poy Flaza( X dfk))ﬂ (: / Lo * Ty Va2b2(d132dx4))
k= 1Xk k=1 Xox X4
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Then, we can easily get the following Bell’s inequality: (cf. Bell’s inequality (4.47)).

|C13(po) — Cra(po)| + [Caz(po) + Caalpo)]

4
< [ Jmlfo =l el by [Fana X dow)] ()

k=1 Xk

<2 (since zp € {—1,1}) (8.11)

However, the formula (4.62) says that this (8.11) must be 24/2. Thus, by contradiction, we says
that O1234 satisfying (a) does not exist. Thus we can not take a measurement Mz(O1234, S[p)-
However, it should be noted that

(b) instead of M4(O1934, S[p.]). We can take a parallel measurement M®i71ﬁ(013 ®014® 093 ®
Oa4, S[®2:1p0]). In this case, we easily see that (8.11) = 24/2 as the formula (4.62).

That is,

(c) in the case of a parallel measurement, Bell’s inequality is broken in both quantum and

classical systems.

ANote 8.2. In the above argument, Bell’s inequality is used in the framework of measurement
theory. This is of course true. Also as seen in Section 4.5.3, J.S. Bell asserted (cf. [4]) that

(#) Problem [8.11]is related to the theory of “hidden variables”.
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8.6 Syllogism and its variations

Next, we shall discuss practical syllogism (i.e., measurement theoretical theorem concerning

implication (Definition8.6) ). Before the discussion, we note that

(#) Since Theorenl8.9l ( The existence of the combined observable) does not hold in quantum

system, ( c¢f. Counter Exampld8.10), syllogism does not hold.

On the other hand, in classical system, we can expect that syllogism holds. This will be proved

in the following theorem.

Theorem 8.12. [Practical syllogism in classical systems] Consider the classical basic structure

[Co(Q) € L(Q,v) C B(L*(Q,v))]

Let O193 = (X7 X Xy X X3, F1 X Fo X F3, Flggzgé)k:LZng) be an observable in L>(Q2) Fix
we N, = €T, Zy € Fy, Z3 € F3 Then, we see the following (i) — (iii).
(i).(practical syllogism)

o= = 0):=,], [0¥):= = o=
0523 Z4] MLOO(Q)(0123,S[w])[ 123: Z2],  [Of23; 52 MLOO(Q)(OH&SM)[ 123} =3

implies

@%@x%ﬂ@f@%ax%mw
[Flo3’ (2] X Z3)](w)  [Fla3” (B x Z25)](w)

FRE)w) 0 ]
[Fi(E)](w) — [FE)w) 1 - [Fa(Es)](w)

That is, it holds:

ol = — o¥.= 8.12
[ 123 1] MLOO(Q)(OH&S[W])[ 123 3] ( )

oY) e — 02 ; 2o, o = — 0 [ =
[0123; E4] My oe (0 (Or25:5) [O123: Z2),  [Of23; 2 My (0 (Or2:51) [O123; =3
implies
13) = = 13) (= _ —c
Rep2=[0() — | (Fizg (B x Za)l(w) [Figg) (51 x Z)]()
[Fla3’ (2 X Z3)](w)  [Flag (B x Z§)](w)
214

’ For further imformation see my homepage)



http://www.math.keio.ac.jp/~ishikawa/indexKSTS5.html

KSTS/RR-19/003
December 26, 2019

Chap. 8 Practical logic-Do you believe in syllogism?—

_ 0z, e, [Fi(ED](w) = oz, e,
[FaE))w) —as oy 1—as o — [FipE)] - [F(Es)]
where
max{[Fi(Z2)](w), [Fis(E1)](w) + [Fh(Zs)] (w) — 1}
< a2, () £ min{[F5(E0)](w), [Fa(Es))(w)} (8.13)
(iii).
O], =  Oby=l Oyl <= [Oh=i
implies
(13) /= — (13) /= =c
Ren=Es 1003 _ [l (B1 x Za)l(w)  [Fi <:1X:3>1<w>]
e O s e
_ (%) F)EN]w) — az, e, () ]
[FoA(Es)(@) = 0z e, (@) 1—ag o (@) — [Foa(ED)](w) — [Fi3(Z3)](w)
where
max{0, [F5(21)](w) + [ (Zs)](w) — [Fiay(Z2)](w)}
<oy o (w) < min{[FH(E)] W), [F5(Es)](w)}

Proof. (i): By the condition, we see

0= [F\2 (21 x Z9](w) = [Fias(E1 X B x Za)](w) + [Fios(E1 x 5 x E5)](w)

0= [F57(Z2 x Z9](w) = [Fi2s(E1 X B x Z9))(w) + [Fiaa(E5 x Ez x E5)](w)

Therefore,
0= [F123<El X Eg X Eg)](&)) = [F123(El X E; X Eg)]((ﬂ)
= [F123(51 X B x E§)J(w) = [F123(E] x Zp x E5)}(w)
Hence,

3) (= —c —_ —_ —c 13) (= —c —c
[Fls) (21 x Z9)](w) = [Fias(S1 x 2 x E5))(w) + [Fh3 (21 x 5 x Z5)](w) =0

Thus, we get, (8.12).
For the proof of (ii) and (iii), see refs. [29] 33]. O
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Example 8.13. [Continued from Example [8.5] Let O; = Ogy = (Xgw, 255V, Fyy) and O3 =
Orp = (Xpp, 2570, Fyp) be as in Example 8.5, Putting Xpp = {yre, Nrp}, consider the new
observable Oy = Opp = (Xgp, 2%, Fyip). Here, “yrp” and “ngp” respectively means “ripe”

and “not ripe”. Put

Rep[O,] = [[FSW({ysw})](Wk:), [FSW({nsw})](wkﬂ
Rep[Oy] = [[FRF’({yRP})](wk)? [FRP({an})](wk)}
Rep[O3] = [[FRD({?JRD})](Wk)7 [FRD({nRD}ﬂ(Wk)}

Consider the following quasi-product observable:

ap
O1p = (Xaw X XRP72XSWXXRP>F12:FSWXFRP)

qp
O3 = (Xnp X Xpp, 258PXXRD o= [ X )
Let w;, € . And assume that

Ol {ysw}] = [0 {yme )],

oo (2)(0123,5(w; 1)

2 3
[03); {yrw}] — [05%; (v }] (8.14)
Moo () (0123,50,,))

Then, by Theorem R.12(i), we get:
_ | Fas(wsw} X {yro Dl(wr)  [Fis({ysw} X {nan})](wr)
Rep[O13] = |:[F13({nSW} X {yro Pl (wr)  [Fis({nsw} x {nRD})KWk)]

_ { [Fow ({ysw )] (wr) 0 }
[Fro ({Yro )] (wr) = [Fow({ysw D] (wr) 1= [Fao({yao })](wr)

Therefore, when we know that the tomato wy, is sweet by measurement Moo () (0123, Sp,)), the
probability that wy is red is given by
[Fis({ysn} * {po )] (1) ol | )
[Fia({ysw} X {yro P(wr) + [Fis({ysw} X {neoD(wr)  [Fro({Yro })](wr)

Of course, (8.14) means

“Sweet” = “Ripe” “Ripe” = “Red”
Therefore, by (8.12]), we get the following conclusion.
“Sweet” = “Red”
However, it is not useful in the market. What we want to know is such as
“Red” = “Sweet”

This will be discussed in the following example.
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Example 8.14. [Continued from Example [8.5] Instead of (8.14]), assume that

ofu} — Olve} Olve} — Olvs} (8.16)
! Moo (0)(012,5(s,,.1) 2 2 Moo () (023,515,,,1) ’

When we observe that the tomato w, is “RED”, we can infer, by the fuzzy inference My (q)(O1s,

Ss.,,1), the probability that the tomato w,, is “SWEET” is given by

[Fi3({ysw} X {ynn})](wn)
[Fi3({ysw} X {yno P](wn) + [Fiz({nsw} X {yro })](wn)

which is, by (8.3)), estimated as follows:

max{ [Fre({Yre })](wn)  [Fsw({ysw})] + [Fro({yro})] — 1
[Fro({yro )] (wn)” [Fro({yro )] (wn)

Q=

Pl D)

[Fran({ymo P (wn)
(8.17)

} < @ < min{

Note that (8.16) implies (and is implied by)
“RIPE” = “SWEET” and “RIPE” = “RED” .
And note that the conclusion (8.17) is somewhat like
“RED” = “SWEET"” .

Therefore, this estimation (8.17) may be useful in marckets.

/1]
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8.7 EPR-paradox says that syllogism does not hold in quantum systems

8.7 EPR-paradox says that syllogism does not hold in
quantum systems

Remark 8.15. [Syllogism does not hold in quantum system (cf. ref. [39] ) |
Concerning EPR’s paper[14], we shall add some remark as follows. Let A and B be particles
with the same masses m. Consider the situation described in the following figure:

A B
Figure 8.3: The case that “the velocity of A”= —“the velocity of B”

The position g4 (at time ty) of the particle A can be exactly measured, and moreover, the
velocity of vg (at time ¢y) of the particle B can be exactly measured. Thus, we may conclude
that

(A) the position and momentum (at time tg) of the particle A are respectively and exactly
equal to ¢4 and —mupg 7

(As mentioned in Section 4.4.3, this is not in contradiction with Heisenberg’ uncertainty
principle).
However, we have the following question:

Is the conclusion (A) true?

Now we shall describe the above arguments in quantum system:
A quantum two particles system S is formulated in a tensor Hilbert space H = H; ® H; =

L*(R,) ® L*(R,,) = L*(R? )). The state ug (€ H = Hy ® Hy = LQ(R%%(D))) ( or precisely,

(g1,92)

pPo = |u0>(u0|>of the system S is assumed to be

1

27%0_@ = L5 (q1—g2—2a)%— (Q1+Q2)2 (8.18)

uO(Qh Q2) =

where a positive number € is sufficiently small. For each £ = 1,2, define the self-adjoint

operators Qy,: LQ(R%ql’qQ)) — LQ(R%%%)) and Py : LQ(R%ql o) ) — L*( 2q1 qg))
ho
= P = —
Q1 qi1, 1 0
ho
= Py=— 8.19
Q2 = qo, 2 Z.an ( )

(#1) Let O; = (R3, Bgs, F}) be the observable representation of the self-adjoint operator (Q; ®
Py)) x (I ® P,). And consider the measurement Mpg) (01 = (R?, Bgs, F1), Sfjug)uol])-
Assume that the measured value (1, pa, po)(€ R3). That is,

(21, p2) — D2

(the position of A, the momentum of As) Mp(#)(01,5]55))  the momentum of Ag

218 ’ For further imformation see my homepage



http://www.math.keio.ac.jp/~ishikawa/indexKSTS5.html

KSTS/RR-19/003
December 26, 2019

Chap. 8 Practical logic-Do you believe in syllogism?—

(42) Let Oy = (R?, By, F,) be the observable representation of (I®P,)x (Py®I). And consider
the measurement Mp()(0y = (R%, Bgs, Fy), Slluo)(uol))- Assume that the measured value
(pg, —p2>(€ R?’) That iS,

Y2 — —D2

the momentum of Ag MB(H)(O%S[pO]) the momentum of A;

(#3) Therefore, by (#;) and (f), “syllogism” may say that

—Po ( that is, the momentum of A; is equal to —pg)

the momentum of A;

Hence, some assert that
(B) The (A) is true

But, the above argument ( particularly, “syllogism”) is not true, thus,

The (A) is not true

That is because

(f4) (Q1 @ P2) x (I ® Pp) and (I ® Py) x (P ® I) ( Therefore, O; and Oy ) do not commute,
and thus, the simultaneous observable does not exist.
Thus, we can not test the (f3) experimentally.

Remark 8.16. After all, we think that EPR-paradox says the following two:
(C1) syllogism does not necessarily hold in quantum systems,
(Cy) there is something faster than light.

We think that (C;) is not serious. Thus, we do not need to investigate how to understand the
fact (C;1). On the other hand, (Cy) is serious. Although we have to make efforts to understand
the “fact (Cy)”, this is the problem in physics (i.e., in %) in Figure [I.1)). Recall that the spirit
of quantum language (i.e., in (o in Figure [I.T)) is

“Stop being bothered.”
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Chapter 9

Mixed measurement theory (DBayesian
statistics)

Quantum language (= measurement theory ) is classified as follows.

{classical system : Fisher statistics
pure type

(f1)

quantum system : usual quantum mechanics
(ﬁ) measurement theory

mixed type

(2)

In this chapter, we study mixed measurement theory, which includes Bayesian statistics.

(=quantum language) classical system : including Bayesian statistics, Kalman filter
quantum system : quantum decoherence

9.1 Mixed measurement theory(DOBayesian statistics)

9.1.1 Axiom( 1 (mixed measurement)

In the previous chapters, we studied Axiom 1 (pure measurement: [§2.7)), that is,

|(pure) Axiom 1] |Axiom 2] |quantum linguistic interpretation)
’ pure measurement theory ‘ = ’ pure measurement ‘—I—’ Causality ‘ + ’ Linguistic interpretation ‘
(=quantum language) (cf. [§2.7) (¢f. §10.3) (¢f. §37)
a kind of spells (a priori judgment) manual to use spells

(9.1)

In this chapter, we shall study “Axiom™) 1 (mixed measurement)” in mixed measurement
theory, that is,

|(mixed)Axiom(m) 1 [Axiom 2] [|quantum linguistic interpretation]|
’ mixed measurement theory ‘ = ’ mixed measurement ‘+’ Causality ‘Jr ’ Linguistic interpretation ‘
(=quantum language) (cf [89.1]) (¢f. §10.3) (¢f. §37)
a kind of spells (a priori judgment) manual to use spells

(9.2)
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In the previous chapters, we mainly discussed pure measurements listed in Review 9.1,
especially W*-measurement (A;).

Review 9.1. [=Preparation 2.30].

(A7) W*-measurement MZ(O: (X,F, F), S[p}), where O= (X, J, F) is a W*-observable in A,
and p(€ GP(A*)) is a pure state. Here, "W *-measurement Mz (O, S|,)” is also denoted
by

"measurement”” Mz (0. Sj,))” ,or “measurement Mz (0. S|,))” ,

(Ag) C*-measurement My (O: (X, 3, F), S[p]), where O= (X, JF, F') is a C*-observable in A,
and p(€ GP(A*)) is a pure state. Here, ”C*-measurement My (O, Sj;)” is also denoted
by

"measurement® My (O. SM)” ,or "measurement My (O. S[p])” .

In this chapter, we introduce four “mixed measurements” as follows.

Preparation 9.2.

(B1) W*-mixed measurement Mz(O= (X,J,F), S)(wo)), where O= (X,F,F) is a W*-
observable in_ﬁ, and wy(€ & (A,)) is a W*-mixed state. Here, ”WW*-mixed measure-
ment Mz (O, Spj(wo))” is also denoted by

" W*-mixed measurement"” Mz (O. Sy, (wp))”, or
”mixed measurement Mz (0. S, (wp))”
(Bz) C*-mixed measurement Mz(O= (X,F,F), Si(po)), where O= (X,F,F) is a W*-

observable in A, and py(€ &™(A*)) is a C*-mixed state. Here, ” C*-mixed measurement
Mz (O, Sp(po))” is also denoted by

”C*-mixed measurement”” Mz (0. Spy(po))”, or

”mixed measurement Mz (0. Sp,j(po))”

Although we mainly devote ourselves to the above two, we add the followings.

(Bs) W*-mixed measurement My (O= (X,F,F), Sy(wp)), where O= (X,F,F) is a C*-
observable in A, and wo(€ G"(A,)) is a W*-mixed state. Here, "TW*-mixed measure-
ment My (O, Spj(wo))” is also denoted by

" W*-mixed measurement®” My (O. Sp,y(wp))”, or

”mixed measurement My (O. Sy, (wp))”

(B4) C*-mixed measurement My (O= (X,5,F), Sy(po)), where O= (X,F,F) is a C*-

222 ’ For further imformation see my homepage ‘



http://www.math.keio.ac.jp/~ishikawa/indexKSTS5.html

KSTS/RR-19/003
December 26, 2019

Chap. 9 Mixed measurement theory (DBayesian statistics)

observable in A, and py(€ &™(A*)) is a C*-mixed state. Here, ”C*-mixed measurement
M4 (O, Sp(po))” is also denoted by

” C*-mixed measurement® M (O. g[*](Po))”a or

”mixed measurement My (O.S}(po))”

We now give Axiom™ 1 for mixed measurements. We will discuss (C;) mainly, and (Cs)
when necessary.

~——— (0):Axiom!” 1 (mixed measurement) | ————

Let O= (X,J, F) be an observable in A

(C1): Let wy € 6" (A,). The probability that a measured value obtained by W*-mixed
measurement Mz (0= (X, 5, F), Syy(wo)) belongs to = (€ F) is given by

7. (w0 FE)x (= wo(F(E))

(Cy): Let pg € &™(A*). The probability that a measured value obtained by C*-mixed
measurement Mz (0= (X, F, F), Sp(po)) belongs to Z (€ F) is given by

w (oo, F@)x (= p(F(E))
NG /

As we learned Axiom 1 by rote in pure measurement theory,

we have to learn Axiom™ 1 by rote, and exercise a lot of examples

The practices will be done in this chapter.

Remark 9.3. In the above Axiom™ 1, (C;) and (Cy) are not so different.
(t1) In the quantum case, (Cy)=(C,) clearly holds, since &™(Tr(H)) = & (Tr(H)) in (2.17).
(f2) In the classical case, we see

D)= |, wo(w)v(dw
L}Fl(QV) > wy po(D) fD o(w)v( )> o €M+1(Q>

Therefore, in this case, we consider that

Moo (0.0) (0=(X, F, F), Sy (wo)) = M) (0=(X,F, F), Spq(po))

Hence, (C;) and (Cs) are not so different. In oder to avoid the confusion, we use the following
notation:

W*-state wy (€ & (A,) is written by Roman alphabet (e.g., wo, w, v, ...)

C*-state py (€ &™(A*) is written by Greek alphabet (e.g., po, p, ...)

/1]

223

For further imformation see my homepage) ‘



http://www.math.keio.ac.jp/~ishikawa/indexKSTS5.html

KSTS/RR-19/003
December 26, 2019

9.2 Simple examples in mixed measurement theory

9.2 Simple examples in mixed measurement theory
Recall the following wise sayings:
experience is the best teacher, or custom makes all things

Thus, we exercise the following problem.

Review 9.4. [Answer 5.7/ to Problem [5.2 by Fisher's maximum likelihood method]
You do not know the urn behind the curtain. Assume that you pick up a white ball from the
urn. Which urn do you think is more likely, Uy or Uy ?

Ur~w; 7

\/|
.;‘:.

Figure 9.1 (= [Figure 5.6; ): Pure measurement (Fisher’s maximum likelihood method)

Answer Consider the state space 2 = {w;,ws} with the discrete topology and the measure
v such that

v{wh) =1, v({w}) =1 (9-3)

In the classical basic structure [Co(Q) C L>®°(,v) C B(L?*(£2,v))], consider the measurement
Mz (0= ({W, B}, 2W:B} Fyp), i), where the observable Owp = ({W, B}, 2W-B} Fyy5)
in L>(€2) is defined by

[Fws({W})](w1) = 0.8, [Fws({B})](w1) = 0.2
[Fws({W}H](w2) = 0.4, [Fwp({B})](w2) = 0.6. (9.4)

Here, we see:

max{[Fys({W})](w1), [Fws({W})](w2)}
= max{0.8,0.4} = 0.8 = Fyys({W})](wr).

Then, Fisher’s maximum likelihood method (Theorem [5.6) says that
[*} = W1.

Therefore, there is a reason to infer that the urn behind the curtain is Uj. O]
Thus, we exercise the following problem.
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Problem 9.5. [mixed measurement M~ (q,)(0 = (X, F), Syy(w))]

U1~w1
100p%
Oo000e —
(eJeJoJo) J

Figure 9.2: Mixed measurement (Urn problem)
(#1) Assume an unfair coin-tossing (7,,1-,) such that (0 < p < 1): That is,

the possibility that “head” appears is 100p%
the possibility that “tail” appears is 100(1 — p)%

If “head” [resp. “tail”] appears, put an urn U; (=w;) [resp. Us(/ws2)] behind the curtain.
Assume that you do not know which urn is behind the curtain, Uy or Us). The unknown
urn is denoted by [x|(€ {wy,ws2}).

This situation is represented by w € L% (Q,v) (with the counting measure v), that is,

| (fw=uw)
w(w)—{ 1—p (fw=wy)

(#2) Consider the “measurement” such that a ball is picked out from the unknown urn. This
“measurement” is denoted by My (,)(0, Sij(w)), and called a mixed measurement.

Then, we have the following problems:

(a) Calculate the probability that a white ball is picked from the unknown urn behind the
curtain !

And further,

(b) when a white ball is picked, calculate the probability that the unknown urn behind the
curtain is U; !

We would like to remark

e the term ”subjective probability” is not used in the above problem.

Answer: Assume that the state spaceQ2 = {w;,ws} is defined by the discrete metric with the

225 ’ For further imformation see my homepage ‘



http://www.math.keio.ac.jp/~ishikawa/indexKSTS5.html

KSTS/RR-19/003
December 26, 2019

9.2 Simple examples in mixed measurement theory

following measure v:
v({wi}) =1, v({ws}) = 1. (9.5)
Thus, we start from the classical basic structure:
[Co(©) € L=(Q,v) C B(L*(Q,v))], (9.6)

in which we consider the mixed measurement Myq) (0= ({W, B}, 2W-B} F) S, (w)). Here,
the observable Oy g = ({W, B},2IW:B} Fyy5) in L>®(Q) is defined by

[Fws({W})](w1) = 0.8, [Fws({B})](w1) = 0.2
[Fws({W})](wz) = 0.4, [Fws({B})](w2) = 0.6. (9.7)

Also, the mixed state wy € L (2, v) is defined by
wo(wi) =p,  wolwsz) =1—p. (9.8)
Then, by Axiom™ 1, we see
(a): the probability that a measured value x (€ {W, B}) is obtained by My« q)(0= ({W, B},
2tW-B}  F), Spy(w)) is given by
P({z}) = p1) (wo, F({z})) /Q[F({x})](w) - wo(w)v(dw)

plF({a}))(wr) + (1 —p)[ ({z})](ws)
0.8p+0.4(1 —p) (when x=W)

~ 1 02p+0.6(1—p) (when z=B) (9:9)

The question (b) will be answered in Answer [9.13] O
ANote 9.1. The following question is natural. That is,

(#1) In the above (i), why is “the possibility that [* ] = w; is 100p% ---” replaced by “the

probability that [*] = w is 100p% ---7 ?
However, the linguistic interpretation says that
(#2) there is no probability without measurements.

This is the reason why the term “probability” is not used in (i). However, from the practical
point of view, we are not sensitive to the difference between “probability” and “possibility”.
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Example 9.6. [Mixed spin measurement Mpc2)(0O = (X = {1,1},2%, F#), S;,(w))]  Consider
the quantum basic structure:

[B(C*) € B(C?) € B(C?)]
And consider a particle P; with spin state p; = |a){a| € &?(B(C?)), where
o
o= [0 e e (ol = art+ oy = 1

And consider another particle P, with spin state ps = [b)(b| € &?(B(C?)), where

b= {gj < C2 ( ”b“ = (’61’2 + ‘52‘2>1/2 _ 1)

Here, assume that

“ e “ e a particle P, | . . D
e the “probability” that the “particle” P is { a particle P, } is given by { 1—p

That is,

state p; | —————— | unknown state [¥] | «————— |state py
“probability” p “probability” 1—p

(Particle Py) (Particle P) (Particle P»)

Here, the unknown state [*] of Particle P is represented by the mixed statew (€ &™(Tr(C?)))
such that

w = pp1+ (1 = p)p2 = pla){al + (1 — p)[b)(b|

Therefore, we have the mixed measurement Mpc2) (0, = (X, 2%, F?), Si,y(w)) of the z-axis
spin observable O, = (X, F, F'*), where

Fam =y o P =g 1]

And we say that

(a) the probability that a measured value { I

Mp(c2) (0. = (X, 2%, F7), Siy(w)) is given by

} is obtained by the mixed measurement

reien) (10, P ) mieny = plaal? + (1 = p) |
rees) (w0, F2({4) ) nes) = plaal® + (1 = p) P2

Remark 9.7. As seen in the above, we say that
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(a) Pure measurement theory is fundamental. Adding the concept of “mixed state”, we can
construct mixed measurement theory as follows.

’ mixed measurement theory ‘ = ’ pure measurement theory ‘—l— mixed state
M oe (2) (O, S (w)) Moo () (O, Sp) w

Therefore,

There is no mixed measurement without pure
measurement

That is, in quantum language, there is no confrontation between “frequency probability” and
“subjective probability”. The reason that a coin-tossing is used in Problem is to emphasize
that the naming of “subjective probability” is improper.
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9.3 St. Petersburg two envelope problem
This section is extracted from the following:

Ref. [50]: S. Ishikawa; The two envelopes paradox in non-Bayesian and Bayesian statistics
(larXiv:1408.4916v4 [stat.OT] 2014 )

Now, we shall review the St. Petersburg two envelope problem (cf. [9]V).

Problem 9.8. [The St. Petersburg two envelope problem] The host presents you with a choice
between two envelopes (i.e., Envelope A and Envelope B). You are told that each of them
contains an amount determined by the following procedure, performed separately for each
envelope:

() a coin was flipped until it came up heads, and if it came up heads on the k-th trial, 2¥
is put into the envelope. This procedure is performed separately for each envelope.

You choose randomly (by a fair coin toss) one envelope. For example, assume that the envelope
is Envelope A. And therefore, the host get Envelope B. You find 2™ dollars in the envelope
A. Now you are offered the options of keeping A (=your envelope) or switching to B (= host’s
envelope ). What should you do?

Envelope A Envelope B

Figure 9.2: Two envelope problem

[(P2):Why is it paradoxical?].
You reason that, before opening the envelopes A and B, the expected values E(z) and E(y)
in A and B is infinite respectively. That is because

1 1 5 1
For any 2™, if you knew that A contained x = 2™ dollars, then the expected value E(y) in B
would still be infinite. Therefore, you should switch to B. But this seems clearly wrong, as your
information about A and B is symmetrical. This is the famous St. Petersburg two-envelope
paradox (i.e., “The Other Person’s Envelope is Always Greener” ).

1 D.J. Chalmers, “The St. Petersburg Two-Envelope Paradox,” Analysis, Vol.62, 155-157, (2002)
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9.3.1 (P2): St. Petersburg two envelope problem: classical mixed
measurement

Define the state space Q such that Q = {w = 2% | k = 1,2,---}, with the discrete metric
and the counting measure v. And define the exact observable O = (X, JF, F') in L*>(£, v) such
that
|2C

}

; (V=2 € F,Vw € Q)

Define the mixed state w (€ L}, (€, v), i.e., the probability density function on Q) such that

X
€
¢

W
w

[1] [1]

—~~

1
0

wo(w) =277 (Vw=2"€ Q).

Consider the mixed measurement Mz (q,)(0 = (X, F, F), Spy(wp)). Axiom™ 1(Cy) [(§9.1)
says that

(A) the probability that a measured value 2* is obtained by Mz« ) (O = (X, F, F), Sp(wp))
is given by 27

Therefore, the expectation of the measured value is calculated as follows.

E:izk-z—kzoo
k=1

Note that you knew that A contained x = 2™ dollars (and thus, £ = oo > 2™). There is a
reason to consider that the switching to B is an advantage.

Remark 9.9. After you get a measured value 2 from the envelope A, you can guess (also see
Bayes theorem later) that the probability density function wy changes to the new w; such that
w1 (2™) = 1,w;(2%) = 0(k # m). Thus, now your information about A : w; and B : wy is not
symmetrical. Hence, in this case, it is true: “The Other Person’s envelope is Always Greener”.

ANote 9.2. There are various criterions except the expectaion. For example, consider the criterion
such that

« .1 . . . . ” 1
(#) “the probability that the switching is disadvantageous” < 3
Under this criterion, it is reasonable to judge that

m=1 —> switching to B
m=2,3,... = keeping A
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9.4 Bayesian statistics is to use Bayes theorem

Although there may be several opinions for the question “What is Bayesian statistics?”, we
think that

Bayesian statistics is to use Bayes theorem

Thus,

let us start from Bayes theorem.

The following is clear.

Theorem 9.10. [The conditional probability]. Consider the mixed measurement Mz (0= (X x
V,F X G, H), Siy(w)), which is formulated in the basic structure

[ACAC B(H)]

Assume that a measured value (z,y) (€ X xY) is obtained by the mixed measurementMz(O=
(X xY,FXG, H), Spy(w)) belongs to Zx Y (€ F). Then, the probability that y € I is given
by
(w0 HE X D)z
A (w, H=ZEXY))z

(VI € G)

Proof. This is due to the property (or, common sense) of conditional probability. O]

In the classical case, this is rewritten as follows.

Theorem 9.11. [Bayes' Theorem (in classical mixed measurement)]. Consider the simultaneous
measurement Mz (0= (X x Y, F X G, F x G), S},j(wp)) formulated in the classical basic struc-
ture [Co(Q2) C L>®(Q,v) C B(L*(Q,v))]. Here the observable O;,=(X x V,FNX G F x G) is
defined by the simultaneous observable of the two observables O1=(X, F, F) and O,=(Y, G, G).
That is,

(FxG)ExT)=FE)-GI) (VE€FVeg). (9.10)

Assume that

(a) a measured value (z,y) (€ X x V) obtained by the mixed measurement M (q)(O12=
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(X xY, 5K G, F x G), Spy(wp)) belongs to = x Y (where, Z € ).
Then, the probability such that "y € I'” is given by
@) (wo, H (2 X T)) oo ( _ JolFE)w) - [GI)](w) 'wo(w)V(dw)> (9.11)
@) (wo, H(Z X Y)) 1 () JolF(E)](w) - wo(w)v(dw)
Here, putting
_ [F(E)](w)-wo(w)
() Waew(W) = T E @ watom@ (T € ).
we see:
(9:23) — / (G(T)](@)waen (@)1 (dw) (VT € G). (9.12)
0

Remark 9.12. [How to understand Bayes' Theorem| Bayes’ theorem [0.11] is usually read as
follows.

(b') If a measured value = (€ X) obtained by the mixed measurement M=) (0= (X, F, F),
S[*](wo)) belongs to = (€ F), then, the following state collapse happens:

[wo] ——2 [Whew]

pre-state ~ post-state

The above (d) superficially contradicts the linguistic interpretation, which says
A state never moves.

In this sense, the above (b) or (b’) (i.e., Bayes’ theorem) is convenient and makeshift.

Answer 9.13. [Bayes' Theorem (=Problem [9.5/ and the answer to (c2)) |

Assume that the state space Q0 = {wy,ws} is defined by the discrete metric with the following
measure v:

v({w}) =1, v({ws}) = 1. (9.13)

Thus, we start from the classical basic structure:
Co(©) € L¥(2v) € BILA(Q )], (9.14)

in which we consider the mixed measurement Mo (0= ({W, B}, 2W:B} F) S (w)). Here,
the observable Oy g = ({W, B}, 2IW:B} Fy5) in L>®(Q) is defined by

[Fws({W})](w1) = 0.8, [Fwp({B})](wi) = 0.2,
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[Fws({W})](w2) = 0.4, [Fws({B})](w2) = 0.6. (9.15)
Also, the mixed state wy € L (Q,v) is defined by
wo(w1) = p, wo(w2) =1 —p. (9.16)

Then, by Axiom™ 1, we see

a): the probability that a measured value x (€ {W, B}) is obtained by My« ) (0= ({W, B},
(©)
2W-B}  F), Spy(w)) is given by

P({z}) = e (wo, F({z})) 1 A[F({x})](w)-wo(w)V(dw)

= plF({z})](wr) + (1 —P)[ ({z})](w2)
{O8p+04 —p) (when z=W)

0.2p+0.6(1 —p) (when z = B) (9.17)

[ W*-algebraic answer to Problem [9.5(c) in Sec. 9.1.2]
Since “white ball” is obtained by a mixed measurement My (q)(O, Sij(wo)), a new mixed state
Wyew (€ L1 (Q)) is given by

0.8p (when w = wy)
Whew (W) = [F({WP](w)wo(w) B 0.8p + 0.4(1 — p)
T LAVl @we(@)r(ds) 0.4(1 — p)

0.8p + 0.4(1 — p) (when w = w)

[ C*-algebraic answer to Problem 9.5/ (c2) in Sec. 9.1.2]
Since “white ball” is obtained by a mixed measurement Mz ) (O, Sui(po)), a new mixed state
Prew (€ M 1(R2)) is given by

_ F{W})po _ 0.8p 0.4(1 — p)
oo = T IFQW DI @)po(de)  08p+ 0401 — ) T 08p+ 041 —p)
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9.5 Two envelope problem (Bayes’ method)
This section is extracted from the following:

ref. [50]: S. Ishikawa; The two envelopes paradox in non-Bayesian and Bayesian statistics — (
arXiv:1408.4916v4 [stat.OT] 2014 )

Problem 9.14. [ (=Probleml5.16): the two envelope problem |

The host presents you with a choice between two envelopes (i.e., Envelope A and Envelope
B). You know one envelope contains twice as much money as the other, but you do not know
which contains more. That is, Envelope A [resp. Envelope B| contains V; dollars [resp. V5
dollars|. You know that

(a) w=1/20r, =2

Define the exchanging map @ : {Vi, Vo} — {Vi, V,} by

W (ifz=1h)

You choose randomly (by a fair coin toss) one envelope, and you get z; dollars (i.e., if you
choose Envelope A [resp. Envelope B], you get Vi dollars [resp. V5 dollars] ). And the host
gets T1 dollars. Thus, you can infer that ; = 2x; or T; = x1/2. Now the host says “You are
offered the options of keeping your x; or switching to my z;”. What should you do?

Envelope A Envelope B

Figure 9.4: Two envelope problem

[(P1):Why is it paradoxical?]. You get a = 1. Then, you reason that, with probability 1/2,
71 is equal to either /2 or 2« dollars. Thus the expected value (denoted E i} e (v) at this
moment) of the other envelope is

Eother(@) = (1/2)(/2) + (1/2)(2a) = 1.25a (9.18)

This is greater than the a in your current envelope A. Therefore, you should switch to B.
But this seems clearly wrong, as your information about A and B is symmetrical. This is the
famous two-envelope paradox (i.e., “The Other Person’s Envelope is Always Greener” ).
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9.5.1 (P1): Bayesian approach to the two envelope problem
Consider the state space €2 such that
Q=Ry(={weR|w>0})
with Lebesgue measure v. Thus, we start from the classical basic structure
[Co() € L¥(2,v) € B(L*(,v))]
Also, putting Q = {(w,2w) | w € R}, we consider the identification:

Qow — (w,2w) € O (9.19)
(identification)

Further, define V; : Q(=R,) = X(=R,) and V5 : Q(= R;) — X(= R,) such that
V(w) =w, Va(w)=2w (Vw € Q)

And define the observable O = (X (= R, ),J(= Bg, : the Borel field), F) in L>(Q,v) such
that

1 (fweZ, 2wex)
- ) 12 (fweE, 2wé¢=) -
FEND) =9 12 (ifwez 2wez) (Vw € Q,VE € 7)
0 (ifwé=z 2w¢iE)
X(:@Jr)
!
(5.0)  (a,20) - ==Ry)

Figure 9.5: Two envelope problem

Recalling the identification : {3 (w,2w) +— w € Q = R, assume that
po(D) = / wo(w)dw (YD € By = By )
D

where the probability density function wy : Q(~ R,) = R, is assumed to be continuous positive
function. That is, the mixed state po(€ My1(Q(= R, ))) has the probability density function

wo.
Axiom™ 1/(§9.1)| says that
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) that a measured value obtained by the mixed

&, ) is given by

(A;) The probability P(Z) (£ € By
- [] (po)) belongs to =Z(€ Bx = BR+

measurement My 4. (O

n

),

F(E)](w)poldw) = / [F(2)) (w)awo(w)dw

wo(z/2) N wo2(a:) dr (V=€ Bz,) (9.20)

Therefore, the expectation is given by
3

/]R+ zP(dz) = %/OOO 2+ (wo(w/2)/2 + wo(w) ) do = > /R+ zwo(z)dz

Further, Theorem [9.11] ( Bayes’ theorem ) says that

(A2) When a measured value « is obtained by the mixed measurement My (g 4.)(0 = (X, J, F),

S1(po)), then the post-state ppost(€ Mi1(£2)) is given by

wo(a/2)
N == wo ()
P = Siom + Sozo (9.21)
post —"(";/2> + wo () (5 —w(’(;/z) + wo(a) (022)

@) a— g o .
}, then you change { o 90 }, and thus you get the switching gain

Therefore, the expectation of the switching gain is calculated as follows:

/((—9 N ) P(da)

)
B, V27w (a) ) qpg(a)
2
:/ (ywolaf2) o wela) g (9.22)
B, 2 4 2

Therefore, we see that the swapping is even, i.e., no advantage and no disadvantage.
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9.6 Monty Hall problem (The Bayesian approach)

9.6.1 The review of Problem5.14] ( Monty Hall problem in pure
measurement)

Problem 9.15. [Monty Hall problem (The answer to Fisher’s maximum likelihood
method) |

You are on a game show and you are given the choice of three doors. Behind one door
is a car, and behind the other two are goats. You choose, say, door 1, and the host, who
knows where the car is, opens another door, behind which is a goat. For example, the

host says that
(b) the door 3 has a goat.

And further, He now gives you the choice of sticking with door 1 or switching to door
2?7 What should you do?

|
|
door door door J @ |
No. 1 No. 2 No. 3 |

Figure 9.6: Monty Hall problem

Answer: Put = {w,ws, w3} with the discrete topology dp and the counting measure v.

Thus consider the classical basic structure:
[Co(©) € L=(Q,v) € B(L*(Q,v))]
Assume that each state J,,, (€ &P(Cp(£2)*)) means
dw,, < the state that the car is behind the door 1 (m = 1,2, 3)

Define the observable O; = ({1,2,3},2{423} F}) in L>(Q) such that

F{ID@) =00, [AREN@) =05 [RE3N]) =05,
F({1D)w2) = 0.0, [R({2N)@s) =00,  [A{3N](w) = 1.0,
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[Fi({1D)](ws) = 0.0, [FA({2D)](ws) = 1.0,  [Fi({3})](ws) = 0.0, (9.23)

where it is also possible to assume that Fi({2})(w1) = a, Fi({3})(w1) =1 —a (0 < a < 1).
The fact that you say “the door 17 means that we have a measurement M LOO(Q)(OI, S[*]). Here,

we assume that

a) “a measured value 1 is obtained by the measurement My q)(O1, Si)”

& The host says “Door 1 has a goat”

b) “measured value 2 is obtained by the measurement Mze () (O, Sp) 7

& The host says “Door 2 has a goat”

c) “measured value 3 is obtained by the measurement Mz (O1, Sp) ”

& The host says “Door 3 has a goat”

Since the host said “Door 3 has a goat] this implies that you get the measured value “3” by the
measurement Myeqy(O1, Sp). Therefore, Theorem [5.6/ (Fisher’s maximum likelihood method)

says that you should pick door number 2. That is because we see that

max{[F1({3})](w1), [FL({3})](w2), [F1({3})](ws)} = max{0.5, 1.0, 0.0}
= 1.0 = [F({3})](w2)

and thus, there is a reason to infer that [x] = §,,. Thus, you should switch to door 2. This is

the first answer to Monty-Hall problem. O]

9.6.2 Monty Hall problem in mixed measurement

Next, let us study Monty Hall problem in mixed measurement theory (particularly, Bayesian

statistics).

Problem 9.16. [Monty Hall problem(The answer by Bayes’ method) ]

Suppose you are on a game show, and you are given the choice of three doors (i.e.,
“number 17 ‘“number 27 “number 37). Behind one door is a car, behind the others,
goats. You pick a door, say number 1. Then, the host, who set a car behind a certain
door, says

(£1) the car was set behind the door decided by the cast of the distorted dice. That is,
the host set the car behind the k-th door (i.e., “number k”) with probability py (or,
weight such that p; +py +ps =1, 0 < pi,pa,p3 < 1).

And further, the host says, for example,
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(b) the door 3 has a goat.

He says to you, “Do you want to pick door number 27”7 Is it to your advantage to switch
your choice of doors?

Answer: In the same way as we did in Problem O.15] (Monty Hall problem:the answer by
Fisher’s maximum likelihood method), consider the state space Q = {w;,wq,ws} with the
discrete metric dp and the observable O;. Under the hypothesis (f;), define the mixed state vy
(€ M;1(9)) such that

I/O = pléwl +p25UJ2 +p35UJ3

namely,

v{wi}) =p1, w({w}) =p2, w{ws}) = ps
Thus we have a mixed measurement M) (O1, Siy(10)). Note that

a) “measured value 1 is obtained by the mixed measurement M) (O1, Su(10))”

& the host says “Door 1 has a goat”

b) “measured value 2 is obtained by the mixed measurement My y(O1, Sp(10))”

<> the host says “Door 2 has a goat”

c) “measured value 3 is obtained by the mixed measurement My (q)(O1, Sp(v0))”

&> the host says “Door 3 has a goat”

Here, assume that, by the mixed measurement My q)(O1, Sp(1)), you obtain a measured
value 3, which corresponds to the fact that the host said “Door 3 has a goat” Then, Theorem
9.11] (Bayes’ theorem) says that the posterior state vpost (€ M41(€2)) is given by

Fl({g}) X

et T e, R(BY)Y

That is,

p1

Vpost (\W = 2 y  Vpost (W :La Vpost\\W =0.
() = gt e (on)) = 2 )

Particularly, we see that

(f2) if p1 = pa = p3 = 1/3, then it holds that vpest({w1}) = 1/3, vpest({w2}) = 2/3,
Vpost {ws}) = 0, and thus, you should pick Door 2.
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[]

A Note 9.3. It is not natural to assume the rule (4;) in Problem [9.T6. That is because the host may
intentionally set the car behind a certain door. Thus we think that Problem [9.16lis temporary.
For our formal assertion, see Problem [9.17] latter.
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9.7 Monty Hall problem (The principle of equal weight)

9.7.1 The principle of equal weight— The most famous unsolved
problem

Let us reconsider Monty Hall problem (Problem 0.4, Problem@.15]) in what follows. We

think that the following is one of the most reasonable answers (also, see Problem [19.5)).

Problem 9.17. [Monty Hall problem (The principle of equal weight) |

Suppose you are on a game show, and you are given the choice of three doors (i.e.,
“number 1] “number 27 “number 37). Behind one door is a car, behind the others,
goats.

(£2) You choose a door by the cast of the fair dice, i.e., with probability 1/3.

According to the rule (f), you pick a door, say number 1, and the host, who knows
where the car is, opens another door, behind which is a goat. For example, the host
says that

(b) the door 3 has a goat.

He says to you, “Do you want to pick door number 27”7 Is it to your advantage to switch
your choice of doors?

Answer: By the same way of Problem(0.15] and Problem9.16 (Monty Hall problem), define
the state space Q@ = {wi,ws, w3} and the observable O = (X,F, F). And the observable
O = (X, 3, F) is defined by the formula (9.23). The map ¢ : Q — Q is defined by

Pp(w1) = w2, P(w2) =ws, B(ws) =wr
we get a causal operator ® : L2(Q) — L>®(Q) by [®(f)](w) = f(d(w)) (Vf € L>®(Q), Yw € Q).
Assume that a car is behind the door k£ (k = 1,2,3). Then, we say that

1,2 ML‘X)(Q)(OaS[UJk])
(a) By the dice-throwing, youget | 3,4 | ,then, take a measurement | Mo ) (PO, S,,))
576 MLoo(Q)((I)QO,S[wk])

We, by the argument in Chapter 11 (¢f. the formula (TT.7))%, see the following identifications:
M_e< (@) (20, Sy)) = Mioe(0) (0, Sig(en)s Mroe(@)($20, Spuy)) = Mie(0)(0, Sigzup))):

Thus, the above (a) is equal to

2Thus, from the pure theoretical point of view, this problem should be discussed after Chapter 11
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1,2 Mo (9)(O, i)
(b) By the dice-throwing, you get | 3,4 | then, take a measurement | Mz () (O, Sip(ws))
5,6 M_e () (O, Sig2 ()

Here, note that 3(dw, 4 0pwy) + 0¢2(wy)) = (0w, + 0wy + 0uy) (VE = 1,2,3). Thus, this (b) is

identified with the mixed measurement Mye(q)(O, Sj(ve)) , where
1
Ve = §(5w1 + 0w, + 50-)3)

Therefore, Problem [9.17]is the same as Problem [9.16. Hence, you should choose the door 2. [

#Note 9.4. The above argument is easy. That is, since you have no information, we choose the
door by a fair dice throwing. In this sense, the principle of equal weight — unless we have
sufficient reason to regard one possible case as more probable than another, we treat them as
equally probable — is clear in measurement theory. However, it should be noted that the above
argument is based on dualism.

From the above argument, we have the following theorem.

Theorem 9.18. [The principle of equal weight] Consider a finite state space (2, that is,
Q ={wy,ws,...,w,}. Let O = (X, F, F) be an observable in L>(2, ), where v is the counting
measure. Consider a measurement My (q)(O, Sy). If the observer has no information for the

state [*], there is a reason to that this measurement is identified with the mixed measurement

Moo (@) (O, St (we)) ( or, Mpe(0) (0, Sp(ve)) ), where

1
we(wy) = 1/n (VE=1,2,...,n) or v, =~ Z%

Proof. The proof is a easy consequence of the above Monty Hall problem (or, see [33,[36]). O

#Note 9.5. Concerning the principle of equal weight, we deal the following three kinds:

(#1) the principle of equal weight in Remark [5.19
(#2) the principle of equal weight in Theorem [9.18
(#3) the principle of equal weight in Proclaim [19.4
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9.8 Averaging information ( Entropy )

As one of applications (of Bayes theorem), we now study the “entropy (cf. [88])” of the
measurement. This section is due to the following refs.

(8) Ref. [30]: S. Ishikawa, A Quantum Mechanical Approach to Fuzzy Theory, Fuzzy Sets
and Systems, Vol. 90, No. 3, 277-306, 1997, doi: 10.1016/50165-0114(96)00114-5

(#) Ref. [33]: [S. Ishikawa, “Mathematical Foundations of Measurement Theory,” Keio Uni-
versity Press Inc. 2006.

Let us begin with the following definition.

Definition 9.19. [Entropy (c¢f. [30,33]) ] Assume
Classical basic structure [Cy(Q) C L>®(Q,v) C B(L*(2,v))]

Consider a mixed measurement My« q,) (0 = (X,2%, F), Sij(wp)) with a countable measured
value space X = {1, xs,...}. The probability P({z,}) that a measured value z,, is obtained
by the mixed measurement M) (O, Sy (wo)) is given by

P({an}) = A[F({wn})](W)wo(w)V(dw) (9.24)

Further, when a measured value x,, is obtained, the information I({x,}) is, from Bayes’ theorem
9.111 is calculated as follows.
7 _ {znPI(w) [E({zn})](w)
o JolF({znDl(W)wo(w)v(dw) = Jo[F({zn D] (w)wo(w)r(dw)
Therefore, the averaging information H (M pe(q) (O, Spj(wp))) of the mixed measurement My o)

(0, Spij(wo)) is naturally defined by

wo(w)v(dw)

log

H My () (0, S (wo)) ZP {zn}) - I({xn}) (9.25)

Also, the following is clear:

H (Moo (O, S (1)) Z / ({2 )] () log[F ({2 )] (w)wo (w)v(dw)

- ZP({ﬂfn})log P({xn}) (9.26)

243 For further imformation see my homepage



http://dx.doi.org/10.1016/S0165-0114(96)00114-5
http://www.keio-up.co.jp/kup/mfomt/
http://www.keio-up.co.jp/kup/mfomt/
http://www.math.keio.ac.jp/~ishikawa/indexKSTS5.html

KSTS/RR-19/003
December 26, 2019

9.8 Averaging information ( Entropy )

Example 9.20. [The offender is man or female? fast or slow?]  Assume that

(a) There are 100 suspected persons such as {s1, sg, ..., S100}, in which there is one criminal.

Define the state space Q = {wy,ws, ..., w100} such that
statew, - - - the state such that suspect s, is a criminal (n=1,2,...,100)

Assume the counting measure v such that v({wy}) = 1(Vk = 1,2,---,100) Define a male-
observable O, = (X = {ym, nm}, 2%, M) in L>=(Q) by

M (g )] (@) = 1y, () = { 0 (nis odd)

1 (nis even)

[M({nm})/(wn) = ma,, (@n) =1 = [M({ym})](wn)

For example,

Taking a measurement Mye(q)(Om, Sp,,]) — the sex of the criminal s17 —, we get the

measured value ny,(=female).

Also, define the fast-observable Oy = (Y = {y;, ns},2Y, F) in L>=(Q) by

n—1

[F{ye)lwn) = fulwn) = =55

[F({ns)l(wn) = foe(wn) =1 = [F({ye})](wn)

According to the principle of equal weight (=Theorem [9.18 ), there is a reason to consider
that a mixed state wo (€ L}(Q)) is equal to the state w. such that wo(w,) = we(w,) = 1/100
(Vn). Thus, consider two mixed measurement Mze(q)(Om, Spj(we)) and My (q)(Os, Spy(we)).

Then, we see:
H (Moo ()(Onm, Spy(we))) = My, (W) We (W) v (dw) - log/mem(w)we(w)V(dw)

—/Qm{nm}(w)we(w)y(dw)-log/ﬂmnm(w)we(w)y(dw)
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N S S S S
Also,
H (Mi(Or Sia(w))) = [ fu)10g fy (@) (w)v(a)
[ o) tog fohun)plde) = [ fulhul(do) og | fu(whulv(d
— [ ey Tog | fu ) (w)p(d)
! 1

#2/ Alog, AdA + 1 = — +1=0.278"- (bit)
0

2log, 2

e
Therefore, as eyewitness information, “male or female” has more valuable than “fast or

slow”.
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9.9 Fisher statistics:Monty Hall problem [three prison-
ers problem]

This section is extracted from the following:

Ref. [49]: S. Ishikawa; The Final Solutions of Monty Hall Problem and Three Prisoners
Problem  (jarXiv:1408.0963v1 [stat.OT] 2014 )

It is usually said that

Monty Hall problem and three prisoners problem are

so-called isomorphism problem

But, we think that the meaning of “isomorphism problem” is not clarified, or, it is not able to
be clarified without measurement (or, the dualism).

Therefore, in order to understand “isomorphism”, we simultaneously discuss the two

. Monty Hall problem
three prisoners problem

9.9.1 Fisher statistics: Monty Hall problem [resp. three prisoners
problem]

Problem 9.21. (=Problem9.15: [Monty Hall problem]).

Suppose you are on a game show, and you are given the choice of three doors (i.e., “Door
Ay “Door Ay) “Door Ag”). Behind one door is a car, behind the others, goats. You do

not know what’s behind the doors

However, you pick a door, say “Door A;”, and the host, who knows what’s behind the

doors, opens another door, say “Door Aj] which has a goat.

He says to you, “Do you want to pick Door A5?” Is it to your advantage to switch your

choice of doors?
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Prob

lem 9.22. [three prisoners problem].

Three prisoners, A;, As, and A3 were in jail. They knew that one of them was to be set
free and the other two were to be executed. They did not know who was the one to be
spared, but the emperor did know. A; said to the emperor, “I already know that at least
one the other two prisoners will be executed, so if you tell me the name of one who will
be executed, you won’t have given me any information about my own execution”. After

some thinking, the emperor said, “A3 will be executed.” Thereupon A; felt happier

1
=Num{A1,A2}])

because his chance had increased from g —m— -5 to 5 . This prisoner

Ay’s happiness may or may not be reasonable?

“ Az will be executigd’

>
T

N —

(Emperor)

L
=C \ >

=C 1)

l—’\f/\/
L
—C \ >

9.9.2

The answer in Fisher statistics: Monty Hall problem [resp.
three prisoners problem)]

Let rewrite the spirit of dualism (Descartes figure) as follows.
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In the dualism, we have the confrontation
“observer<—system”

as follows.

Table 9.1: Correspondence: observer - system

Problems\ dualism H Mind(=I=Observer) ‘ Matter(=System) ‘
Monty Hall problem you Three doors

Three prisoners problem Prisoner A; Emperor’s mind

In what follows, we present the first answer to Problem (.21 (Monty-Hall problem) }

Problem [9.22] (Three prisoners problem)
in classical pure measurement theory. The two will be simultaneously solved as follows. The

spirit of dualism (in Figure 9.7) urges us to declare that

@ |

Put Q = {w;,ws,ws} with the discrete topology. Assume that each state ¢, (€ &(C(Q)*))

means

“observer
“observer

QN

you” and “system =~ three doors” in Problem [9.21
prisoner A;” and “system = emperor’s mind” in Problem [9.22

dw,, < the state that the car is behind the door A,
0w, < the state that the prisoner A4,, is will be executed

(m=1,2,3) (9.27)
Define the observable O; = ({1,2,3},2{423} [)) in L>(Q) such that

F{1DI) = 0.0,  [AEN@) =05, [FA{3N]w) = 0.5,
Fi({1D]w2) = 0.0, [R{2N)@s) =00,  [A{BN](w) = 10,
F{1DIw) = 0.0, [A{2))@s) =10,  [A{3N]ws) =00,  (9.28)

where it is also possible to assume that Fi({2})(w1) = a, Fi({3})(w1) =1 —a (0 < a < 1).

Thus we have a measurement M LOO(Q)(O]_, S[*}), which should be regarded as the measurement
“Door A;”

b cal . fth L you say 1 .

theoretical representation of the measurement that “Prisoner Ay asks to the emperor

Here, we assume that

a) “measured value 1 is obtained by the measurement Mpec(q)(O1, S)”
[ the host says “Door A; has a goat” |

54 . .
| the emperor says “Prisoner A; will be executed”

b) “measured value 2 is obtained by the measurement Mpec(q)(O1, Sp) ”
[ the host says “Door A, has a goat” ]

54 . .
| the emperor says “Prisoner A, will be executed”
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c) “measured value 3 is obtained by the measurement M) (O1, Sp) ”
the host says “Door Az has a goat”
the emperor says “Prisoner Az will be executed”

Recall that [ the host said “Door 3 has a goat }

the emperor said “Prisoner Az will be executed”
you

This implies that Prisoner A,

Si)- Note that

} get the measured value “3” by the measurement M Loo(Q)(Ol,

[F1({3})](we) = 1.0 = max{0.5, 1.0, 0.0}
= max{[F1({3})](wn), [FL({3})](w2), [ ({3})](ws)}, (9.29)

Therefore, Theorem (Fisher’s maximum likelihood method) says that

(By) In Problem (Monty-Hall problem), there is a reason to infer that [*] = d,,. Thus,
you should switch to Door As.

(B3) In Problem (Three prisoners problem), there is a reason to infer that [*] = d,.
However, there is no reasonable answer for the question: whether Prisoner A;’s happiness

increases. That is, Problem [9.22] is not within Fisher’s maximum likelihood method.
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9.10 Bayesian statistics: Monty Hall problem [three pris-
oners problem)]

This section is extracted from the following:

Ref. [49]: S. Ishikawa; The Final Solutions of Monty Hall Problem and Three Prisoners
Problem  (jarXiv:1408.0963v1 [stat.OT] 2014 )

9.10.1 Bayesian statistics: Monty Hall problem [resp. three pris-
oners problem]

Problem 9.23. [(=Problem9.16))Monty Hall problem (the case that the host throws the dice)].

Suppose you are on a game show, and you are given the choice of three doors (i.e., “Door
A;? “Door Ay) “Door Ag”). Behind one door is a car, behind the others, goats. You do

not know what’s behind the doors.

However, you pick a door, say “Door A;”, and the host, who knows what’s behind the

doors, opens another door, say “Door Aj) which has a goat. And he adds that

(#1) the car was set behind the door decided by the cast of the (distorted) dice. That is,
the host set the car behind Door A, with probability p,, (where p1 + ps + p3 = 1,

0<pi,p2,p3 <1).

He says to you, “Do you want to pick Door A5?” Is it to your advantage to switch your

choice of doors?

Problem 9.24. [three prisoners problem].

Three prisoners, A;, Ay, and A3 were in jail. They knew that one of them was to be set

free and the other two were to be executed. They did not know who was the one to be
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spared, but they know that

(f2) the one to be spared was decided by the cast of the (distorted) dice. That is, Prisoner
Ay, is to be spared with probability p,, (where py+pa+p3 =1, 0 < p,pe,ps < 1).

but the emperor did know the one to be spared. A; said to the emperor, “I already
know that at least one the other two prisoners will be executed, so if you tell me the
name of one who will be executed, you won’t have given me any information about

my own execution”. After some thinking, the emperor said, “A3 will be executed.”

Thereupon A; felt happier because his chance had increased from S (=N {jh A1) to

1

SN[ )] This prisoner A;’s happiness may or may not be reasonable?

“As will be executgd”

p—

>
o

(Emperor)

L
=C \ >

=C &)

l—’\f/\/
L
—C \ (>

9.10.2 The answer in Bayesian statistics: Monty Hall problem [resp.
three prisoners problem]

In the dualism, we have the confrontation
44 7
observer<—:system

as follows.

Table 9.2: Correspondence: observer - system

Problems\ dualism H Mind(=I=Observer) ‘ Matter(=System) ‘
Monty Hall problem you Three doors

Three prisoners problem Prisoner A Emperor’s mind

In what follows we study these problems. Let €2 and O; be as in Section 9.8. Under the

hypothesis { EE;; }, define the mixed state vy (€ M7, (2)) such that:

Vo({wl}) = D1, Vo({w2}) = D2, Vo({w:s}) = D3 (9'3())
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Thus we have a mixed measurement My )(O1, Su(10)). Note that

a) “measured value 1 is obtained by the measurement Mpec(q)(O1, Sp)”
[ the host says “Door A; has a goat” ]

54 . .
| the emperor says “Prisoner A; will be executed”

b) “measured value 2 is obtained by the measurement Mze () (O, Spy) ”
[ the host says “Door A, has a goat” |

= . .
| the emperor says “Prisoner A, will be executed”

c) “measured value 3 is obtained by the measurement My (q)(O1, Sp) ”
[ the host says “Door As has a goat” |

< | the emperor says “Prisoner A3 will be executed”

Here, assume that, by the statistical measurement My (q)(O1, Sj(10)), you obtain a measured
the host said “Door As has a goat”

the emperor said “Prisoner Az is to be executed”
Then, Bayes’ theorem says that the posterior state v (€ M7 (£2)) is given by

Fi({3}) x 1o

value 3, which corresponds to the fact that

Vst = W2 Z 70 9.31
P (v, F1({3))) (8:31)
That is,
Vpost({w1}) = 5 2 » ot ({w2}) = 52—, vpos(fws}) = 0. (9.32)
5 T D2 5 T D2
Then,

(I1) In Problem 9.23,

if Vpost ({w1}) < Vpost({w2}) (i-e., p1 < 2pq), you should pick Door A,

if Vpost ({w1}) = Vpost({w2}) (i€, p1 = 2ps), you may pick Doors A; or Ay
if Vpost ({w1}) > Vpost({w2}) (i-e., p1 > 2ps), you should not pick Door A,

(I12) In Problem [0.24]

if vy({wi1}) < Vpost ({w1}) (i-e., p1 < 1 —2py), the prisoner A;’s happiness increases
if voy({wi1}) = Vpost ({w1}) (i.e., p1 =1 — 2py), the prisoner A;’s happiness is invariant
if vo({wi}) > Vpost ({w1}) (i.e., p1 > 1 — 2psy), the prisoner A;’s happiness decreases
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9.11 Equal probability: Monty Hall problem [three pris-
oners problem)]

This section is extracted from the following:

ref. [49]: S. Ishikawa; The Final Solutions of Monty Hall Problem and Three Prisoners
Problem  (arXiv:1408.0963v1 [stat.OT] 2014 )

Problem 9.25. [(=Problem.16)Monty Hall problem (the case that you throws the dice)].

Suppose you are on a game show, and you are given the choice of three doors (i.e., “Door
Ay “Door Ay) “Door Ag”). Behind one door is a car, behind the others, goats. You do
not know what’s behind the doors. Thus,

(#1) you select Door Ay by the cast of the fair dice. That is, you say “Door A;” with
probability 1/3.

The host, who knows what’s behind the doors, opens another door, say “Door A3} which
has a goat. He says to you, “Do you want to pick Door A5?” Is it to your advantage

to switch your choice of doors?

Problem 9.26. [three prisoners problem( the case that the prisoner throws the dice)].

Three prisoners, A;, Ay, and A3 were in jail. They knew that one of them was to be set
free and the other two were to be executed. They did not know who was the one to be

spared, but the emperor did know. Since three prisoners wanted to ask the emperor,

(f2) the questioner was decided by the fair die throw. And Prisoner Ay was selected with
probability 1/3

Then, A; said to the emperor, “I already know that at least one the other two prisoners
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will be executed, so if you tell me the name of one who will be executed, you won'’t
have given me any information about my own execution”. After some thinking, the

emperor said, “Az will be executed.” Thereupon A; felt happier because his chance

had increased from 3(:Num[{jh, LA o 2(:Num[1{ R This prisoner A;’s happiness

may or may not be reasonable?

“As will be execut¢d”

p—

-

(Emperor)

7

L
=C \ (>

= /)

L"\f/ -
T
=)

Answer By Theorem [9.18(The principle of equal weight), the above Problems and
is respectively the same as Problems and in the case that p; = ps = p3 = 1/3. Then,

the formulas (9.30) and (9.32)) say that
(Ay) In Problem.25] since vpost({w1}) = 1/3 < 2/3 = 1post({wa}), you should pick Door As.

(Ay) In Problem9.20] since vo({w1}) = 1/3 = vpost({w1}), the prisoner A;’s happiness is invari-
ant.

Therefore,

(By) Problem9.25 [Monty Hall problem ( the case that you throw a fair dice)]

Vpost({w1}) < vpose({wa}) (e, pr =1/3 <2/3 = 2py),
thus, you should choose the door A,

(By) Problem9.20] [three prisoners problem ( the case that the emperor throws a fair dice)],

w{wi}) = vposi({wi}) (e, pr=1/3 =1—2py),

Thus, the happiness of the prisoner A; is invariant
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#Note 9.6. These problems (i.e., Monty Hall problem and the three prisoners problem) continued
attracting the philosopher’s interest. This is not due to that these are easy to make a mistake

for high school students, but

these problems include the essence of “dualism”.
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9.12 Bertrand’s paradox( “randomness” depends on how
you look at)

Theorem9.18(the principle of equal weight) implies that
e the “randomness” may be related to the invariant probability measure.
However, this is due to the finiteness of the state space. In the case of infinite state space,
“randomness” depends on how you look at

This is explained in this section.

9.12.1 Bertrand’s paradox(“randomness” depends on how you look
at)

Let us explain Bertrand’s paradox as follows.

Consider classical basic structure:
(Co(Q) € L=(Qm) € B(LA(Q,m))]

We can define the exact observable Og = (2, Bg, Fg) in L*(£2,m) such that

1
£
Il
—N
O
©E

[Fe(@)](w) = x

Here, we have the following problem:

(A) Can the measurement Mye (o) (Og, Si(p)) that represents “at random” be determined

uniquely?

This question is of course denied by so-called Bertrand paradox. Here, let us review the

argument about the Bertrand paradox (cf. [25, 33| 47]). Consider the following problem:

Problem 9.27. (Bertrand paradox) Given a circle with the radius 1. Suppose a chord of the
circle is chosen at random. What is the probability that the chord is shorter than v/3?
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X2
A

™1

N\

Figure 9.8: Bertrand’ paradox

Define the rotation map 77, : R? — R? (0 < # < 27) and the reverse map Tyey : R? — R?

rot
such that

9 |cosf —sin@_xl _01_:61
Trorr = [sin& 0056’} [xz}’ Treve = [1 0 |9

Problem 9.28. (Bertrand paradox and its answer) Given a circle with the radius 1.

X2
A

™~1

N\

Figure 9.9: Bertrand’ paradox
Put Q = {l |l is a chord}, that is, the set of all chords.

(B) Can we uniquely define an invariant probability measure on 7

Here, “invariant” means “invariant concerning the rotation map Tfot and reverse map ey .
In what follows, we show that the above invariant measure exists but it is not determined

uniquely.
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(Pic.1) (Pic.2)

—2\ 2\
)

Figure 9.10: Two cases in Bertrand’ paradox

[The first answer (Pic.1(in Figure 9.10))]. In Pic.1, we see that the chord [ is represented
by a point (o, 8) in the rectangle @ = {(a, 8) | 0 < a < 27, 0 < f < 7/2(radian)}. That is,

we have the following identification:

Q(= the set of all chords) 3 la 5 = +— (a,8) € Q(C R?).

identification

Note that we have the natural probability measure nu; on € such that v4(A) = 1\1\/11%88[[9‘4]} =
1

% (VA € Bg,), where “ Meas” = “ Lebesgue measure”. Transferring the probability

measure v; on {2; to {2, we get p; on ). That is,

M+1(Q) =N — vV € M-l—l(Ql)

identification

(#) It is clear that the measure p; is invariant concerning the rotation map 7%, and reverse

map Trey.

Therefore, we have a natural measurement Mo (q,m)(Or = (2, Bo, Fi), Su(p1)). Consider
the identification:

D=5 <+— {(a,B)€Q : “thelength of [, 5" < \/§} cy

identification

Then, Axiom™) 1 says that the probability that a measured value belongs to = V3 18 given by

SN
=m1({l(a,p) = (o, 8) € Q1 | “the length of (55" < V3})
Meas[{(a,8) |0 < a < 2, /6 < 6 < 7/2)]

~ Meas[{(a,8) |0 <a <21, 0< 4 <7/2}]

JFsE R ma = [ 1 g
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2 x (m/3) 2
N 2 3
[The second answer (Pic.2(in Figure 9.10))]. In Pic.2, we see that the chord [ is repre-
sented by a point (z,y) in the circle Qy = {(z,y) | 2* +y? < 1}.
That is, we have the following identification:

Q(= the set of all chords) > l(,,)  +— (z,y) € Qa(C R?).

identification

Meas[4a] _ Meas|4)

We have the natural probability measure vy on € such that vy(A) = Meas (] —
2

(VA € Bg,). Transferring the probability measure v5 on €y to €, we get ps on Q. That is,

M_H(Q) S P2 —— Vs € M_H(QQ)

identification

(#) It is clear that the measure p, is invariant concerning the rotation map 7%, and reverse

map Trey.

Therefore, we have a natural measurement My om)(Or = (2, Bg, Fg), Sp(p2)).

Consider the identification:

OD= x5 <+— {(z,y) € Q : “the length of l(4 3" < \/5} c)

identification

Then, Axiom™) 1 says that the probability that a measured value belongs to = V3 18 given
by

[ FeEpI) i) = [ 1 o)

=V3
=15({l{zy) = (#,y) € Dz | “the length of ;)" < V3})
_Meas[{(z,y) [1/4<2®+y* <1}] 3

s 4’

Conclusion 9.29. Thus, even if there is a custom to regard a natural probability measure
(i.e., an invariant measure concerning natural maps) as “random”, the first answer and the

second answer say that

(%) the uniqueness in (B) of Problem [9.28] is denied.
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Axiom 2——causality

Measurement theory has the following classification:

pure type { classical system : Fisher statistics |
(A1) quantum system : usual quantum mechanics
(A) measurement theory
(=quantum language) mixed type { classical system : including Bayesian statistics, Kalman filter
(A2 ) quantum system : quantum decoherence

This is formulated as follows.

(Bl):’ pure measurement theory ‘

(=quantum language)

|(pure) Axiom 1] [Axiom 2] |quantum linguistic interpretation]
= ’ pure measurement ‘ + ’ Causality‘—k ’Linguistic interpretation
(cf. §2.7) (cf. §10.3) (cf. §3.0)
a kind of spell(a priori judgment) the manual to use spells

(B2) :’ mixed measurement theory ‘

(=quantum language)

[(mixed)Axiom (™) 1] [Axiom 2] [quantum Tinguistic interpretation|
= ’ mixed measurement ‘ + ’ Causality ‘—i— ’Linguistic interpretation
(cf. [§89.1) (cf. §10.3) (¢f. §30)
a kind of spell(a??)riori judgment) the manual to use spells
[Axiom 2]
In this chapter, we devote ourselves to the last theme | Causality |, which is common to both (B;) and
(cf. §10.3)

(B2).
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10.1 The most important unsolved problem—what is
causality?

The importance of “measurement” and “causality” should be reconfirmed in the following famous

maxims:
(Cy) There is no science without measurement.
(C9) Science is the knowledge about causal relationship.

They should be also regarded as one of the linguistic interpretation in a wider sense.

10.1.1 Modern science started from the discovery of “causality.”

When a certain thing happens, the cause always exists. This is called causality. You should just

remember the proverb of
“smoke is not located on the place which does not have fire.”
It is not so simple although you may think that it is natural. For example, if you consider

This morning I feel good. Is it because that I slept sound yesterday? or is it because I go to

favorite golf from now on?

you may be able to understand the difficulty of how to use the word “causality”. In daily conversation,
it is used in many cases, mixing up “a cause (past)”, “a reason (connotation)”, and “the purpose and
a motive (future).”
It may be supposed that the pioneers of research of movement and change are
Heraclitus(BC.540 -BC.480): “Everything changes.”
Parmenides (born around BC. 515): “Movement does not exist.”
(Zeno’s teacher)
though their assertions are not clear. However, these two pioneers (i.e., Heraclitus and Parmenides )
noticed first that “movement and change” were the primary importance keywords in science(= “world

description”) , i.e., it is

[The beginning of World description |

Heraclitus(BC.540 -BC.480)
=[The discovery of movement and change | =
Parmenides(born around BC. 515)

However, Aristotle(BC384-BC322) further investigated about the essence of movement and change,
and he thought that
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all the movements had the “purpose.”

For example, supposing a stone falls, that is because the stone has the purpose that the stone tries
to go downward. Supposing smoke rises, that is because smoke has the purpose that smoke rises
upwards. Under the influence of Aristotle, “Purpose” continued remaining as a mainstream idea of
“Movement” for a long time of 1500 years or more.

Although “the further investigation” of Aristotle was what should be praised, it was not able to
be said that “the purpose was to the point.” In order to free ourselves from Purpose and for human
beings to discover that the essence of movement and change is “causal relationship”, we had to wait

for the appearance of Galileo, Bacon, Descartes, Newton, etc.
Revolution to “Causality” from “Purpose”

is the greatest history-of-science top paradigm shift. It is not an overstatement even if we call it

“birth of modern science”.

the birth of world description the birth of modern science

13 7
purpose .
Movement > Causality

7
(Heraclitus, Parmenides, Zeno) Aristotle :( About 1500 years) ( Galileo, Bacon, Descartes, Newton)

#Note 10.1. I cannot emphasize too much the importance of the discovery of the term: ”causal-
ity”. That is,

cience is the discipline about phenomena can be represented by the term ”causality”.
Sci is the discipli bout ph b ted by the t 7 lity”
(i.e., ”No smoke without fire” )

Thus, I consider that the discovery of ”causality” is equal to that of science.

10.1.2 Four answers to “what is causality?”

As mentioned above, about “what is an essence of movement and change?”, it was once settled
with the word “causality.” However, not all were solved now. We do not yet understand “causality”

fully. In fact,

Problem 10.1. Problem:
“What is causality?”

is the most important outstanding problems in modern science.
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Answer this problem!

There may be some readers who are surprised with saying like this, although it is the outstanding

problems in the present. Below, I arrange the history of the answer to this problem.

(a) [Realistic causality]: Newton advocated the realistic describing method of Newtonian me-
chanics as a final settlement of accounts of ideas, such as Galileo, Bacon, and Descartes, and he

thought as follows. :

“Causality” actually exists in the world. Newtonian equation described faithfully this

“causality”. That is, Newtonian equation is the equation of a causal chain.

This realistic causality may be a very natural idea, and you may think that you cannot think in
addition to this. In fact, probably, we may say that the current of the realistic causal relationship

which continues like
“Newtonian mechanics— Electricity and magnetism—; Theory of relativity— ---”
is a scientific flower.

3

However, there are also other ideas, i.e., three “non-realistic causalities” as follows.

(b) [Cognitive causality|: David Hume, Immanuel Kant, etc. who are philosophers thought as

follows. :

We can not say that “Causality” actually exists in the world, or that it does not exist in
the world. And when we think that “something” in the world is “causality”, we should

just believe that the it has “causality”.

Most readers may regard this as “a kind of rhetoric”, however, several readers may be convinced in
“Now that you say that, it may be so.” Surely, since you are looking through the prejudice “causality”,

you may look such. This is Kant’s famous “Copernican revolution”, that is,
“recognition constitutes the world.”

which is considered that the recognition circuit of causality is installed in the brain, and when it is
stimulated by “something” and reacts, “there is causal relationship.” Probably, many readers doubt
about the substantial influence which this (b) had on the science after it. However, in this book, I

adopted the friendly story to the utmost to Kant.

264 For further imformation see my homepage



http://www.math.keio.ac.jp/~ishikawa/indexKSTS5.html

KSTS/RR-19/003
December 26, 2019

Chap. 10 Axiom 2—causality

(¢) [Mathematical causality(Dynamical system theory)]: Since dynamical system theory
has developed as the mathematical technique in engineering, they have not investigated “What

is causality?” thoroughly. However,

In dynamical system theory, we start from the state equation (i.e., simultaneous ordinary

differential equation of the first order) such that

d%(t) = va(w1(t), wa(?), L wn(t),t) (10.1)

and, we think that

(#) the phenomenon described by the state equation has “causality.”

This is the spirit of dynamical system theory (= statistics ). Although this is proposed under the
confusion of mathematics and world description, it is quite useful. In this sense, I think that (c¢) should

be evaluated more.

(d) [Linguistic causal relationship (MeasurementTheory)]: The causal relationship of mea-

surement theory is decided by the |Axiom 2 (causality; §10.3) of this chapter. If T say in detail,:

Although measurement theory consists of the two Axioms 1 and 2, it is the Axiom 2 that
is concerned with causal relationship. When describing a certain phenomenon in quantum
language (i.e., a language called measurement theory) and using |Axiom 2 (causality; §10.3)

, we think that the phenomenon has causality.

Summary 10.2. The above is summarized as follows.

(a) World is first

(b) Recognition is first

(c) Mathematics(buried into ordinary language) is first

(d) Language (= quantum language) is first

Now, in measurement theory, we assert the next as said repeatedly:

Quantum language is a basic language which describes various sciences.

Supposing this is recognized, we can assert the next. Namely,
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10.1 The most important unsolved problem—what is causality?

In science, causality is just as mentioned in the above (d).

This is my answer to “What is causality ?”. I explain this in detail in the following.

#Note 10.2. Consider the following problems:
(#1) What is time (space, causality, probability, etc.) ?

There are two ways to answer.

(a): To show the definition of XX
(#2) The answer of ”What is XX 77
(b): To show how to use the term ”XX”

In this note, the answer to the question () is presented from the linguistic point of view (b).
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10.2 Causality—Mathematical preparation

10.2.1 The Heisenberg picture and the Schrodinger picture

First, let us review the general basic structure (c¢f. §2.1.3]) as follows.

s (A): General basic structure and State spaces ~

GP(A*) C G™UAY) C A
C*-pure state C*-mixed state
Tdual

. o LIGI]

subalgebra-weak-closure subalgebra
l pre-dual
(10.2)
&"(A,) CA,
W*-mixed state
NG J

Remark 10.3. [A, C A*] : Consider the basic structure [A C A]pp). For each p € A,, F € A(C
A C B(H)), we see that

. (P F) | < CIF s = CIFILA (103)

Thus, we can consider that p € A*. That is, in the sense of (10.3)), we consider that
A, CA*
When p(€ A,) is regarded as the element of A*, it is sometimes denoted by p. Therefore,

- (p, F)ﬁ — <ﬁ, F)A (VF € A(C A)) (10.4)

Definition 10.4. [Causal operator (= Markov causal operator)] Consider two basic structures:
[.Al g Zl g B(Hl)] and [.AQ g ZQ g B(Hg)]

A continuous linear operator ®1 2 : Ay — A is called a causal operator(or, Markov causal operator
, the Heisenberg picture of “causality”), if it satisfies the following (i)—(iv):

(i) FQGZQ F220:> CI)lgFQzO
(i) P12ly, = Iz (where, I (€ Ay) is the identity)

(iii) there exists the continuous linear operator (®12)x : (A1)« — (A2)« such that

® . <p1,<I>172F2>Zl = . ((@1,2)*;)1,1?2)22 (Vp1 € (A1)u,VFs € As)  (10.5)
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(b)  (®12)«(E"((A1)4)) € & ((A2).) (10.6)
This (®1,2)« is called the pre-dual causal operator of @ 5.

(iv) there exists the continuous linear operator @7, : A7 — A5 such that

@) o (0 ®12F) ;= 0 (9051 F2) (V1 =1 € (A)L(S A,V € A2) (107)
(b)  (®12)"(67(A1)) © 6™ (A3) (10.8)
This @7, is called the dual operator of @1 5.

In addition, the causal operator ®1 2 is called a deterministic causal operator , if it satisfies that

(©12)"(6"(A7)) € &"(A3) (10.9)

ANote 10.3. [ Causal operator in Classical systems| Consider the two basic structures:
[Co(21) C L™(, v1)|(my) and [Co(22) C L(Qa, 12)] p(my)
A continuous linear operator ®1 9 : L>(€Q3) — L*°(£21) called a causal operator, if it satisfies
the following (i)—(iii):
(1) foeL®(Q), fo20= P12/220
(ii) ®12le = 1; where, 1x(wg) =1 Vwi € Qi k = 1,2)

(iii) There exists a continuous linear operator (®12). : LY(1) — LY(Q2) (and (®12). :
LY, () — LY (2) ) such that

/Q [®12f2)(w1) p1(wi)vi(dwr) = A fa(w2) [(P1,2)xp1](w2)v2(dws)

(Vp1 € LY (1), Vfo € L=(Q))

This (®1,2)« is called a pre-dual causal operator of @ .

(iv) There exists a continuous linear operator ® 5 : M(Q1) — M(Q2) (and @7 5 : My1(021) —
M4+1(922) ) such that

Lqu?h¢mF9meﬂ:WMM(QhﬁU&>%mﬂ (Vp1 = p1 € M(Q),VF, € Co())

where, pi1(D) = [pp1(wi)vi(dwr) (VD € Bg,). This (P12)* is called a dual causal
operator of @1 5.

In addition, a causal operator ®1 7 is called a deterministic causal operator, if there exists
a continuous map ¢1 2 : {21 — 2 such that

[@12f2](w1) = fa(dr2(wr))  (Vf2 € C(Qa),Ywi € Q1) (10.10)

This ¢12 : Q1 — € is called a deterministic causal map. Here, it is clear that

Q1 =~ SP(Co(1)") 2 0wy, q)—*> 5¢12(w1) € GP(Ch(22)") ~ Qo
12
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Pyaf / \ fo

Ql QQ

w1 = d12(w1)

Figure 10.1: Deterministic causal map ¢1 2 and deterministic causal operator ®1 o

Theorem 10.5. [Continuous map and deterministic causal map] Let (21, Bgq,,v1) and (Q2, Bq,, 12)

be measure spaces. Assume that a continuous map ¢ 2 : {1 — €2 satisfies:
Dy € Bo,, va(D2) =0 = wi(¢y5(Da)) =0.

Then, the continuous map ¢ : Q1 — {2y is deterministic, that is, the operator ®; 9 : L*(22, 1) —

L>(Qy,v1) defined by (10.10) is a deterministic causal operator.

Proof. For each p; € LY(Q4,11), define a measure uz on (€22, Bg,) such that

i2(Dy) = / pi(wi) mi(dwr)  (VDs € Bay)
b1 3(D2)

Then, it suffices to consider the Radon-Nikodym derivative (cf. [93]) [®12]«(p1) = dpa/dve. That is

because
Dy € Bg,, 12(D2) =0 — Vl((ﬁl_é(DQ)) =0 = p2D2)=0 (10.11)

Thus, by the Radon-Nikodym theorem, we get a continuous linear operator [®1 2], : L'(Q1,11) —
Ll (QQ, Vg) . O

Theorem 10.6. Let &1 : L>(Qy) — L>°(€;) be a deterministic causal operator. Then, it holds
that

D12(f2- 92) = P12(f2) - P12(g92)  (Vf2, Vg2 € L7(8))

Proof. Let fy, g2 be in L>(Q3). Let ¢12 : Q1 — Q2 be the deterministic causal map of the

deterministic causal operator ®1 2. Then, we see

[@12(f2 - g2)l(w1) = (f2 - g2)(P1,2(w1)) = fa(P1,2(w1)) - g2(P1,2(w1))
=[@12(f2)](w1) - [P1,2(92)](w1) = [P12(f2) - P12(g2)](w1)  (Vwi € 1)

This completes the theorem. O

269 For further imformation see my homepage



http://www.math.keio.ac.jp/~ishikawa/indexKSTS5.html

KSTS/RR-19/003
December 26, 2019

10.2 Causality—Mathematical preparation

10.2.2 Simple example—F'inite causal operator is represented by
matrix

Example 10.7. [Deterministic causal operator, deterministic dual causal operator, deterministic causal
map | Define the two states space €1 and Qg such that Q; = Q9 = R with the Lebesgue measure v.

Thus we have the classical basic structures:
[Co(%) € L®(Q,v) € BILA(Q,v))] (k= 1,2)
Define the deterministic causal map ¢12 : {21 — {22 such that
wy = dro(w) =3(w1)*+2  (Vw; € Q1 =R)
Then, by (10.10), we get the deterministic dual causal operator @7 5 : M(£21) — M(£22) such that
DY 20wy = O3(y)242  (Vwr € )

where 4.y is the point measure. Also, the deterministic causal operator®; o : L>(Q2) — L*°(€2;) is

defined by

[@12(f2)](w1) = faB(w1)® +2)  (Vf2 € Co(Q2),Vwr € )

Example 10.8. [Dual causal operator, causal operator] Recall Remark 2.13] that is, if Q (=
{1,2,...,n}) is finite set ( with the discrete metric dp and the counting measure v,), we can con-

sider that
Co(Q) = L>®(Q,v) = C", M(Q) = LY(Q,v) =C", M (Q) = L (2 v)
For example, put Q1 = {w},w? wj} and Oy = {wi, w3}. And define p;(€ M,;1(91)) such that
p1 = a10,1 + G202 + a30,3 (0= ai,a2,a3 = 1,a1 +azx+az=1)
Then, the dual causal operator ® 5 : M1(€21) — M41(€22) is represented by

T,Q(Pl) =(c1101 + croa9 + c13a3)6w% + (c2101 + c22a2 + 023a3)5w§
2

0 £1,Y ey =1)
=1

and, consider the identification:M () ~ C3, M(Qs) ~ C2, That is,

aq
M(Ql) > 041(5&)% + OQ(SM% + 043(5 3 — ag | € (CS

“1 (identification)
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b1 2
M(Q 0 ° -
( 2) = 61 w% + BQ w% (jden<tiﬁ—ca>,ti0n) |:/32:| €

Then, putting

1 5(p1) = Prd,y + B2d,1 = [gl] :
2

Qg
p1 = Oq(sw% + agfsw% + a35w% = |ao
a3

write, by matrix representation, as follows.

(03]
ﬁ1] _ [611 c12 613]

* —
i2(p1) [52 C21 €22 €23

Next, from this dual causal operator ®7, : M(£21) — M(Q2), we shall construct a causal operator

@19 : Cp(Q2) = Co(Q1). Consider the identification:Cy (1) = C3, Cp(s) ~ C2, that is,

Co(€1) > f . ?EZ% eC?  Co() > f — [f2(w5)} e C?
01 ' (identification) fi (w%’) 7 o ? (identification) fo(w3)

Let fa € Co(€2), f1 = ®12f2. Then, we see

fi(w]) cin e 1
fiwd)| = fi=P12(f2) = |12 ca2 HQEZ%H
fi(w?) c13 €23 22

Therefore, the relation between the dual causal operator®] , and causal operator®; o is represented

as the the transposed matrix.

Example 10.9. [ Deterministic dual causal operator, deterministic causal map, deterministic causal op-
erator |  Consider the case that dual causal operator @7, : M(21)(=C3) — M(Q2)(~C?) ha s the

matrix representation such that
ai
b1 0 1 1
* _ _
1,2(/)1) - |:b2:| - |:1 0 0:| az
as

In this case, it is the deterministic dual causal operator. This deterministic causal operator ®; s :

Co(Q2) = Co(q) is represented by

fi(wi) 0 1
fl(‘*é) =fi=®12(fo) = |1 0 [ﬁzggéi]
fi(w?) 10 22

with the deterministic causal map ¢1,2 : €1 — €22 such that

Pr2(wl) =ws, dr2(wi) =wy,  ra(wl) =w;
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10.2.3 Sequential causal operator — A chain of causalities

Let (T, <) be a finite treell i.e., a tree like semi-ordered finite set such that “6; < t3 and ty < t3”
implies “t1 < t9 or to < t1”. Assume that there exists an element tg € T, called the root of T, such
that t9 <t (Vt € T') holds.

Put T2 = {(t1,t2) € T* : t; < to}. An element to € T is called a root if to < ¢ (Vt € T') holds.
Since we usually consider the subtree T3, ( C T') with the root tg, we assume that the tree has a root.
In this chapter, assume, for simplicity, that 7" is finite (though it is sometimes infinite in applications).

For simplicity, assume that T is finite, or a finite subtree of a whole tree. Let T' ( = {0,1,..., N})
be a tree with the root 0. Define the parent map = : T\ {0} — T such that 7(t) = max{s € T': s < t}.
It is clear that the tree (T' = {0,1,..., N}, < ) can be identified with the pair (T' = {0,1,..., N}, 7 :
T\ {0} — T). Also, note that, for any ¢ € T \ {0}, there uniquely exists a natural number h(t)
(called the height of t ) such that 7®)(t) = 0. Here, 72(t) = n(n(t)), 73(t) = w(x2(t)), etc. Also,
put {0,1,...,]\7}2< = {(m,n) | 0 < m < n < N}. In Fig. 10.2, see the root ty, the parent map:

m(ts) = w(ts) = to, w(ta) = w(ts) = t1, w(t1) = 7(te) = w(t7) = to

™
) b, L t3
/ ‘77\ ty
- "

>0
t() \ \
™ ts
\ t6
s t,?

Figure 10.2: Tree: (T = {to,t1,....,t7}, 7 : T\ {to} = T)

Definition 10.10. [Sequential causal operator; Heisenberg picture of causality] =~ The family {®;, 4, :
J— I J— [} I
Az, — Atl}(tl,tQ)eTg ( or, { A it Atl}(tl,tQ)eTg ) is called a sequential causal operator, if it

satisfies that
(i) For each t (€ T), a basic structure [A; C A; C B(H;)] is determined.

(ii) For each (t1,t2) € T2, a causal operator @y, 4, : Ay, — Ay, is defined such as @y, 1, s, 1, = Py, 41y

(Y(t1,t2), V(ta,t3) € Té) Here, ®;¢ : A; — A, is the identity operator.

'In Chapter [14, we discuss the infinite case
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Mg
_ 3
b
o Doy Ay
}Al P15
_ \7
Ao\ﬁ As
Dy 6

Figure 10.3: Heisenberg picture( sequential causal operator)

Definition 10.11. (i): [pre-dual sequential causal operator : Schrodinger picture of causality ] The
sequence {(® 1)« 1 (At )s — (ﬁh)*}(tl,tQ)eTg is called a pre-dual sequential causal operator of
{®4, 4, 0 Aty — Ztl}(tl,tQ)eTé

(ii): [Dual sequential causal ;Jperator : Schrodinger picture of causality | A sequence {®}, ,, : A}, —

AL H e t)er2 18 called a dual sequential causal operator of {®y, 4, : Ap, — ﬁh}(tl,tg)eTi'

(P23)s 71 P 4 A
(@1,2) /M? /Z s o7, M
I 1,2 E— A
(®0,), (O (e (Ao By, A g M
o) 2 (P 5) , Q’f 5
x _ 0 e A3
‘I)O,6)*(-A6)* (‘AS) 0,6 -AG >
(Po7)* (), o A
(i):pre-dual sequential causal operator (ii):dual sequential causal operator

Figure 10.4: Schrodinger picture ( dual sequential causal operator)

Remark 10.12. [The Heisenberg picture is formal; the Schrodinger picture is makeshift ] The
Schrédinger picture is intuitive and handy. Consider the Schrodinger picture{®j, , : Aj —
Al tn)er2 - For C*-mixed state py, (€ 6™ (A])) (Le., a state at time ty),
e C*-mixed state p;, (€ 6™ (Ajf,)) (at time t2(> 1)) is defined by
ta — éz]_,tgptl

However, the linguistic interpretation says “state does not move”, and thus, we consider that

the Heisenberg picture is formal

the Schrodinger picture is makeshift
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10.3 Axiom 2 —Smoke is not located on the place which
does not have fire

10.3.1 Axiom 2 (A chain of causal relations)

Now we can propose Axiom 2 (i.e., causality), which is the measurement theoretical representation

of the maxim (Smoke is not located on the place which does not have fire ):

s ‘ (C): Axiom 2 (A chain of causalities) ‘ ~

(Under the preparation to this section, we can read this)
For each t(€ T="“tree”)), consider the basic structure:
A; C A, C B(H,)]

Then, the chain of causalities is represented by a sequential causal operator {®;, ;, : A, —

‘Atl}(tl,tz)GTé'

\§ /

ANote 10.4. Axiom 2 (causality) as well as Axiom 1 (measurement) are a kind of spells. There
are several spells concerning "motion”. For example,

(#1) [Aristotle]: final cause

(f2) [Darwin]: evolution theory (survival of the fittest)
(#3) [Hegel]: dialectic (Thesis, antithesis, synthesis)
(#4) law of entropy increase

(#1)—(f3) are non-quantitative, but (f4) is quantitative. Everybody agrees that these ((f1)—(44))
move the world.

10.3.2 Sequential causal operator—State equation, etc.
In what follows, we shall exercise the chain of causality in terms of quantum language.

Example 10.13. [State equation] Let 7' =R be a tree which represents the time axis. (Don’t
mind the infinity of 7. Cf. Chapter [14l) For each t(€ T), consider the state space €, = R"
(n-dimensional real space). And consider simultaneous ordinary differential equation of the

first order

dd%(t) ; Vg (w1 (t), wa(t), ,wn(t), 1) (10.12)
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which is called a state equation . Let ¢y, 4, : 4y — 4y, (t1 < t2) be a deterministic causal
map induced by the state equation (10.12). It is clear that ¢, (Dt 1o (Wr ) = Oty 15 (why) (Wi, €
4, ,t1 Sty S t3). Therefore, we have the deterministic sequential causal operator {®; ;, :

LOO(Qt2> - Loo(Qtl)}(tth)ETé .

Example 10.14. [Difference equation of the second order] Consider the discrete time 7" =
{0,1,2,...} with the parent map 7 : 7'\ {0} — T such that n(t) =¢t—1 (Vt = 1,2,...). For
each t(€ T'), consider a state space € such that ; = R ( with the Lebesgue measure). For
example, consider the following difference equation, that is, ¢ : 2 x ;1 — ), satisfies as

follows.
Wi = P(wr, Wir1) = wp + wep1 + 2 (VteT)

Here, note that the state w;2 depends on both w;,; and w; (i.e., multiple markov property).
This must be modified as follows. For each t(€ T') consider a new state space Qt = x Q=

R x R. And define the deterministic causal map 5,5,“1 : ﬁt — §t+1 as follows.

(Wig1, Wig2) = Grpr1 (W, wir1) = (Wig1, Wi + Wer1 + 2)

(V(wt, thrl) S ﬁt,Vt S T)

Therefore, by Theorem [10.5, the deterministic causal operator (5t7t+1 : Loo(ﬁt_i'_l) — L°°(§~2t) is
defined by

[‘5t,t+1ﬁ](wta Wii1) = ]Ft(wt+17 we + wiy1 + 2)

(V(we, wes1) € Qu, Vfi € L%(Qup), VE € T\ {0}))

Thus, we get the deterministic sequential causal operator {(ﬁf)t,tﬂ : L“(ﬁtH) — L‘X’((Zt)}tg\{o}.

#Note 10.5. In order to analyze multiple markov process and time-lag process, such ideas in
Example [10.14] are needed.
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10.4 Kinetic equation (in classical mechanics and quan-
tum mechanics)

10.4.1 Hamiltonian ( Time-invariant system)

In this section, we consider the simplest kinetic equation in classical system and quantum
system.

Consider the state space € such that = R?, that is,

R? = R, x R,={(q,p) = (position , momentum ) | ¢,p € R} (10.13)

Hamiltonian H(q,p) is defined by the total energy, for example, as the typical case (m:

particle mass), we consider that

[Hamiltonian (= H(q,p))]
2

=|kinetic energy(= Zp_m)] + [potential energy(= V' (q))] (10.14)

10.4.2 Newtonian equation(=Hamilton’s canonical equation)

Concerning Hamiltonian H(q, p), Hamilton’s canonical equation is defined by

dp _ _ H(ap)
dt 0q
Hamilton’s canonical equation = (10.15)
dg _ H(q.p)
dt op
And thus, in the case of (10.14)), we get
dp _ _H(ap) _ _ OV(a,p)
dt dq Oq
Hamilton’s canonical equation = (10.16)
dg _ 0M(gp) _ p
dt op m
which is the same as Newtonian equation. That is,
d*q OV(q,p)
m—— = [Mass] x [Acceleration] = —————*(= Force
L= Mass] x [ | =~ S (= Foree)

Now, let us describe the above (10.16) in terms of quantum language. For each t € T' = R,
define the state space €2; by

Q=0 =R*=R, x R,={(q,p) = (position , momentum ) | ¢,p € R} (10.17)
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and assume Lebesgue measure v.

Then, we have the classical basic structure:

[Co(Q) € L*() € B(L* ()] (Vt€T =R)

The solution of the canonical equation (10.16) is defined by
Qtl > Wiy — ¢t1,t2 (th) = Wi, S QtQ (1018)

Since (10.18) determines the deterministic causal map, we have the deterministic sequential

causal operator {®;, 1, 1 L(,) = L>(,) }4y.40)er2 such that
[P0 (fe)l(wrn) = fro (Pt 0 (wr)) (Wi, € L), Vior, €yt < 1) (10.19)

10.4.3 Schrédinger equation (quantizing Hamiltonian)

The quantization is the following procedure:

total energy £/ hva_tla
quantumization
ization? { momentum ho
quantization P ntamiation, V-104 (10.20)
position ¢ —q
L quantumization

Substituting the quantumization (10.20) to the classical Hamiltonian:

_ _r
E=3(qp) =5+ V()
we get
0 h 0 h* 02
And therefore, we get the Schrodinger equation:
u(t,q) h 0 R
hv—1—— = (g, \/—_—w—q)U(t, q) = %a_q?“@’ q) + V(gu(t,q) (10.22)

Putting u(t,-) = u; € L*(R) (Vt € T = R) we denote the Schrodinger equation (10.22) by

1

g
1

U =

2 Learning the (10.20) by rote, we can derive Schrédinger equation (10.22). However, the meaning of
“quantumization” is not clear.
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10.4 Kinetic equation (in classical mechanics and quantum mechanics)

Solving this formally, we see

up = eﬁyjtuo (Thus, the state representation is |u)(us| = |ehiﬁtuo)<eﬁffltuo| ) (10.23)

where, uy € L*(R) is an initial condition.

Now, put Hilbert space H; = L*(R) (Vt € T' = R), and consider the quantum basic structure:

[€(L*(R)) € B(L*(R)) € B(L*(R))]
The dual sequential causal operator {<I>t1 b Ir(Hy) — ‘J‘r(Ht,A,)}(tth)eTé is defined by
B, (p) = e T BT pei T BT vy € Tr(H,,) = (B(H,,)). = C(Hy)Y)  (10.24)
And therefore, the sequential causal operator {®, +, : B(Hy,) — B(Htl)}(thh)g% is defined by
By, 1, (A) = emv T2 ger 27 (A € B(H,)) (10.25)
Also, since
@7, 4,(6"(C(Hy,)") € 6°(C(Hy,)),

the sequential causal operator {®, 1, : B(Hy,) — B(Hy )}, t)erz is deterministic. Since we

deal with the time-invariant system, putting ¢ = to — t1, we see that (10.25) is equal to

At q)t<A0) = eﬁr Aoehr (1026)

And thus, we get the differential equation:

dd, _ —H e%tAgehLﬁtﬂL ot

— —H t H t
_— = =1 —1
dt h\/_ h/—1 0 fin/—1

H 1
A A = AH —HA 10.27
h — t + Ay W1 h —_1< t t> ( )

which is just Heisenberg’s kinetic equation. In quantum language, we say that

e Heisenberg’s kinetic equation is formal, and Schrodinger equation is makeshift,

though the two are usually said to be equivalent.
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10.5 Exercise:Solve Schrodinger equation by variable sep-
aration method

Consider a particle with the mass m in the box (i.e., the closed interval [0,2]) in the one
dimensional space R. The motion of this particle (i.e., the wave function of the particle) is

represented by the following Schrodinger equation

o 292
1 _ in H = LX(R
ihg (a:t) 2m8q2w(q,t) +Vol9)v(g;t)  (in (R))
where
_J 0 (0<¢<2)
Vole) = { oo ( otherwise )
Vo(q)
—— 00
U(g, )
. R
0 2 4
Figure 10.5: Particle in a box
Put

¢(q,t) =T()X(q) (0<¢<2)

And consider the following equation:

h?9?

_W¢<Q7t>'

0
h— t) =
iha #(¢;1)
Then, we see

Tt)  2mX(q)

it X”(Cé) — K(= constant ).

Then,

&(q, 1) = T()X(q) = Cy exp(i k) (01 exp(in/2mE [h q) + Co exp( — in/2mK Jh q).)
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10.5 Exercise:Solve Schrodinger equation by variable separation method

Since X (0) = X (2) = 0 (perfectly elastic collision), putting K = "28”%, we see

P(q,t) =T(t)X(q) = Czexp(

m

in?mlht

) sin(nmq/2) (n=1,2,..).

Assume the initial condition:

¥(q,0) = ¢y sin(mwq/2) + cosin(2wq/2) 4 c3sin(37q/2) + - - - .

where [, [¢(q,0)[?dg = 1. Then we see

Y(q,t)

im?ht
=cy exp( -

)sin(mwq/2) + ¢y exp(l

A2 ht 92 ht
T )sin(2mwq/2) + ¢3 exp(l T
m

)sin(3mq/2) + - - .

And thus, we have the time evolution of the state by

Pt

280

[ 0) (@0 (€ &(Tr(H)) € B(H)) (Vt > 0)
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10.6 Random walk and quantum decoherence

10.6.1 Diffusion process

Example 10.15. [Random walk]  Let the state space Q be Z = {0,4+1,+2,...} with the
counting measure v. Define the dual causal operator ®* : M 1(Z) — M_1(Z) such that

0i—1 4+ 0ix1

®*(0;) = 5

(1€Z)

where §()(€ M;1(Z)) is a point measure. Therefore, the causal operator ® : L*(Z) — L>(Z)
is defined by

o(F)(i) = LU= Y ’; Fi+D  wper=@)viez

and the pre-dual causal operator ®, : L'(Z) — L'(Z) is defined by

fli—=1)+F(i+1)
2

[©.()](6) = (Vf € LY(Z),Vi € Z)

Now, consider the discrete time 7" = {0,1,2,..., N}, where the parent map 7 : T\ {0} —» T’
is defined by 7(t) =t —1 (t = 1,2,...). For each t(€ T'), a state space €, is define by Q, = Z.
Then, we have the sequential causal operator {®«) (= ®) : L=(Q:) = L>(Qr)) hrer\ {0}

10.6.2 Quantum decoherence: non-deterministic causal operator

Consider the quantum basic structure:
[C(H) € B(H) € B(H)]
Let P = {P,}>2, be the spectrum decomposition in B(H), that is,

P, is a projection (i.e., P, = (P,)? ), and, Z P, =1

Define the operator (¥p), : Tr(H) — Tr(H) such that

(Tp).(fuy(ul) =D [Pau)(Pou|  (Yu € H)
Clearly we see
(, (Up),(|u)(u|)v Z\Pu (P,ul)v Zy NP ?2>0  (Yu,v € H)
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10.6 Random walk and quantum decoherence

and,

Tr((We)(|u) (ul))

=Te()  |Pou)(Paul) = Y D Wew, Paw)l = Y |1 Paul® = [lul®  (Vu € H)

n=1 n=1 k=1

where {e;}72, is CONS in H.
And so,

(We)u (T, (H)) € Trya(H)

Therefore, Wp(= ((¥p).)*) : B(H) — B(H) is a causal operator, but it is not deterministic.

In this note, a non-deterministic (sequential) causal operator is called a quantum decoherence.

Remark 10.16. [Quantum decoherence] For the relation between quantum decoherence and
quantum Zeno effect, see § [I1.5. Also, for the relation between quantum decoherence and
Schrodinger’s cat, see § [11.5l

In tis note, we assume that the don-deterministic causal operator belongs to the mixed
measurement theory. Thus, we consider that quantum language (= measurement theory ) is

classified as follows.

( ‘ classical system : Fisher statistics
ure e
p (A })’P quantum system : usual quantum mechanics
1
(A) measurement theory
(=quantum language) ced t classical system : including Bayesian statistics, Kalman filter
mixe he
( A )YI quantum system : quantum decoherence
\ 2

282 For further imformation see my homepage



http://www.math.keio.ac.jp/~ishikawa/indexKSTS5.html

KSTS/RR-19/003
December 26, 2019

Chap. 10 Axiom 2—causality

10.7 Leibniz-Clarke Correspondence: What is space-time?

This section is published in the following:

e ref. [60]: S. Ishikawa; Leibniz-Clarke correspondence, Brain in a vat, Five-minute hypoth-
esis, McTaggart’s paradoz, etc. are clarified in quantum language
Open Journal of philosophy, Vol. 8, No.5 , 466-480, 2018, DOI: 10.4236/0jpp.2018.85032
(https://www.scirp.org/Journal/PaperInformation.aspx?PaperID=87862)

e ref. [61]; S. Ishikawa; Leibniz-Clarke correspondence, Brain in a vat, Five-minute hypoth-
esis, McTaggart’s paradoz, etc. are clarified in quantum language; [Revised version] ; Keio
Reseach report; 2018; KSTS/RR-18/001, 1-15 (https://philpapers.org/rec/ISHLCB)
(http://www.math.keio.ac.jp/academic/research_pdf/report/2018/18001.pdf)

The problems (“What is space?” and “What is time?”) are the most important in modern
science as well as the traditional philosophies. In this section, we give the quantum linguis-
tic answer to these problems. As seen later, our answer is similar to Leibniz’s relationalism
concerning space-time. In this sense, we consider that Leibniz is one of the discoverers of the

linguistic Copenhagen interpretation

10.7.1 “What is space?” and “What is time?”)

10.7.1.1 Space in quantum language
( How to describe “space” in quantum language)

In what follows, let us explain “space” in measurement theory (= quantum language ).

For example, consider the simplest case, that is,
(A) “space” =R, ( one dimensional space)

Since classical system and quantum system must be considered, we see

(B1): a classical particle in the one dimensional space R,

(B)

(B2): a quantum particle in the one dimensional space R,

In the classical case, we start from the following state:
(¢,p) = (“position”, “momentum”) € R, x R,

Thus, we have the classical basic structure:
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10.7 Leibniz-Clarke Correspondence: What is space-time?

(Cl) [CO(Rq X Rp) - LOO(RQ X Rp) - B(Lz(Rq X Rp)]
Also, concerning quantum system, we have the quantum basic structure:
(C2) [C(L*(Ry) € B(L*(Ry) € B(L*(R,)]

Summing up, we have the basic structure

(Cy): classical [Co(R, x R,) C L=®(R, x R,) C B(L*(R, x R,)]
(C) [ACAC B(H))
(Ca): quantum [€(L*(R,) € B(L*(R,) C B(L*(R,)]

Since we always start from a basic structure in quantum language, we consider that

How to describe “space” in quantum language

< How to describe [(A):space] by [(C):basic structure] (10.28)

This is done in the following steps.

Assertion 10.17. [The linguistic Copenhagen interpretation concerning ”space”|
How to describe “space” in quantum language

(D;) Begin with the basic structure:
A CACBH)

(Dy) Next, consider a certain commutative C*-algebra Ag(= Cy(£2)) such that

Ay CA

(D3) Lastly, the spectrum Q (=~ &P(A,)) is used to represent “space”.

For example,
(E1) in the classical case (Cy):
[Co(R, x R,) € L™(R, x R,) € B(L*(R, x R,))]
we have the commutative Cy(RR,) such that
Co(R,) C L¥(R, x R,)

And thus, we get the space R, as mentioned in (A)
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(E3) in the quantum case (Cs):
[C(L*(R,) € B(L*(R,)) € B(L*(R))]
we have the commutative Cy(RR,) such that
Co(R,) C B(L*(R,))
And thus, we get the space R, as mentioned in (A)

10.7.1.2 Time in quantum language
( How to describe “time” in quantum language)

In what follows, let us explain “time” in measurement theory (= quantum language ).

This is easily done in the following steps.

Assertion 10.18. [The linguistic Copenhagen interpretation concerning ”time”]
How to describe “time” in quantum language

(F1) Let T be a tree. (Don’t mind the finiteness or infinity of 7. Cf. Chapter [14l) For each
t € T, consider the basic structure:

[A, C A, C B(H,)]

(F3) Next, consider a certain linear subtree T'(C T'), which can be used to represent “time”.

10.7.2 Leibniz-Clarke Correspondence

The above argument urges us to recall Leibniz-Clarke Correspondence (1715-1716: cf. [1]),
which is important to know both Leibniz’s and Clarke’s (=Newton’s) ideas concerning space

and time.

(G) [The realistic space-time]
Newton’s absolutism says that the space-time should be regarded as a receptacle

of a “thing.” Therefore, even if “thing” does not exits, the space-time exists.

On the other hand,

(H) [The metaphysical space-time]
Leibniz’s relationalism says that
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10.7 Leibniz-Clarke Correspondence: What is space-time?

(Hy) Space is a kind of state of “thing”.

(Hz) Time is an order of occurring in succession which changes one after another

Therefore, I regard this correspondence as

Newton (= Clarke)| <«+—

V-5 (linguistic view)

(realistic view)

which should be compared to

Ticn] ¢ [Bon]

(realistic view) (linguistic view)

(also, recall Note [4.3)).
Again, we emphasize that Leibniz’s relationalism in Leibniz-Clarke correspondence is clari-

fied in quantum language, and it should be regarded as one of the most important parts of the

linguistic Copenhagen interpretation of quantum mechanics.

#Note 10.6. Many scientists may think that
Newton’s assertion is understandable, in fact, his idea was inherited by Einstein. On the
other, Leibniz’s assertion is incomprehensible and literary. Thus, his idea is not related to
science.

However, recall the classification of the world-description (Figure [1.1)):

(space-time in physics)

@ : Newton, Clarke --’realistic space—time‘
(realistic world view) “What is space-time?”

;

(successors: Einstein, etc.)

(space-time in measurement theory)

’ linguistic space-time

(i.e., spectrum, tree)

: Leibniz
li 1
(linguistic world view) “How should space-time be represented?”

1n which Newton and Leibniz respectively devotes himself to () and (2). Although Leibniz’s

assertion is not clear, we believe that

e Leibniz found the importance of “linguistic space and time” in science

Also, it should be noted that

(#1) Newton proposed the scientific language called Newtonian mechanics,
on the other hand,
Leibniz could not propose a scientific language

After all, we conclude that

(#2) the cause of philosophers’ failure is not to propose a language

Talking cynically, we say that
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(#3) Philosophers continued investigating “linguistic interpretation” (=“how to use Axioms 1
and 2”) without language (i.e., Axiom 1(measurement:§2.7)) and Axiom 2(causalityi§10.3)).

ANote 10.7. I want to believe that “realistic” vs. “linguistic” is always hidden behind the great
disputes in the history of the world view (cf. ref. [52]). That is,

realistic world view‘ e ’hnguistic world view‘
o (idealistic)

For example,

Table 10.1 : The realistic world view vs the linguistic world view

Dispute \ R vs. L R:= the realistic world view L:= the linguistic world view
Greek philosophy Aristotle Plato
Problem of universals] Nominalisme(William of Ockham) Realismus(Anselmus)
Space-times Clarke( Newton) Leibniz
Quantum mechanics Einstein (c¢f. [14]) Bohr (cf. [5])

It is usally said that the Problem of universals is not easy to understand. The reason is that
the two problems ( i,e., ”Trialism in Table 3.1 and "realistic view or linguistic view” in [Table
10.1)) were simultaneously discussed and confused in the history.
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10.8 Brain in a vat, Five-minute hypothesis, McTag-
gart’s paradox, etc.

This section is published in the following:

(Aq) ref. [60]: S. Ishikawa; Leibniz-Clarke correspondence, Brain in a vat, Five-minute hypoth-
esis, McTaggart’s paradox, etc. are clarified in quantum language
Open Journal of philosophy, Vol. 8, No.5 , 466-480, 2018, |DOI: 10.4236/0jpp.2018.85032
(https://www.scirp.org/Journal/PaperInformation.aspx?PaperID=87862)

(Ag) ref. [61]; S. Ishikawa; Leibniz-Clarke correspondence, Brain in a vat, Five-minute hypoth-
esis, McTaggart’s paradoz, etc. are clarified in quantum language; [Revised version] ; Keio
Reseach report; 2018; KSTS/RR-18/001, 1-15 (https://philpapers.org/rec/ISHLCB)
(http://www.math.keio.ac.jp/academic/research_pdf/report/2018/18001.pdf)

Before we mention the main section 10.8.3, we review Section 10.8.1 ( the linguistic Copen-
hagen interpretation (mentioned in Chapter 4)) and Section 10.8.2 ( Review; main assertions

of quantum language).

10.8.1 Review; The linguistic Copenhagen interpretation (= the manual to use
Axioms 1 and 2)

Assume that Axiom 1 [ Measurement | (in Section 2.7) and Axiom [ Causality | ( in Section 10.3
) are known. Now [ will review a little the linguistic Copenhagen interpretation (mentioned in
Chapter 4). Since so-called Copenhagen interpretation is not firm (cf. ref. [24] ), we propose the
linguistic Copenhagen interpretation in what follows. In the above, Axioms 1 and 2 are kinds
of spells, (i.e., incantation, magic words, metaphysical statements), and thus, it is nonsense to
verify them experimentally. Therefore, what we should do is not “to understand” but “to use”.
After learning Axioms 1 and 2 by rote, we have to improve how to use them through trial and
error.

We can do well even if we do not know the linguistic Copenhagen interpretation (= the
manual to use Axioms 1 and 2). However, it is better to know the linguistic Copenhagen
interpretation , if we would like to make progress quantum language early. I believe that the
linguistic Copenhagen interpretation is the true Copenhagen interpretation (cf. ref. [24]).

In Figure 10.1 (mentioned later), I remark:

(B1) ®: it suffices to understand that “interfere” is, for example, “apply light”.

(»): perceive the reaction.

288 For further imformation see my homepage



https://www.scirp.org/Journal/PaperInformation.aspx?PaperID=87862 
https://www.scirp.org/Journal/PaperInformation.aspx?PaperID=87862
https://philpapers.org/rec/ISHLCB
http://www.math.keio.ac.jp/academic/research_pdf/report/2018/18001.pdf
http://www.math.keio.ac.jp/~ishikawa/indexKSTS5.html

KSTS/RR-19/003
December 26, 2019

Chap. 10 Axiom 2—causality

That is, “measurement” is characterized as the interaction between “observer” and “measuring

object (= matter)”. However,
(By) in measurement theory (=quantum language), “interaction” must not be emphasized.

Therefore, in order to avoid confusion, it might better to omit the interaction “x) and ()" in
Figure 10.1.
After all, we think that:

(Bs) it is clear that there is no measured value without observer (i.e., “I”, “mind”). Thus, we

consider that measurement theory is composed of three key-words:

’measured value |, observable (= measuring instrument ) , ,
(I, observer, mind) (body(= sensory organ), eye, ear, compass (e.g., polar star) ) (matter)
(10.29)

The essence of the manual is as follows:

observer [observable] system

(I(=mind)) [(=measuring instrument){matter, measuring object)
measured value] [state]

L_®interfere

»
P

<
<

| ) perceive reaction

eV N Y
|
|
|
l

| |
| |
| | |
I I I

Figure 10.1: (=Figure 3.1)[Descartes Figure|: Image of “measurement(=®+))” in mind-
matter dualism

The linguistic Copenhagen interpretation says that

(C;) Only one measurement is permitted. Thus, Axiom 1 can be used only once.
And therefore, the state after a measurement is meaningless since it can not be measured
any longer. Thus, the collapse of the wavefunction is prohibited (cf. ref. [51]; projection
postulate ). We are not concerned with anything after measurement. Strictly speaking,
the phrase “after the measurement’” should not be used. Also, the causality should be
assumed only in the side of system, however, a state never moves. Thus, the Heisenberg

picture should be adopted, and thus, the Schrodinger picture should be prohibited.
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(Cg) “Observer” (=“I") and “system” are completely separated. Hence, the measurement
Mz(O :=(X,TJ, F), S|,) does not depend on the choice of observers. That is, any proposi-
tion (except Axiom 1) in quantum language is not related to “observer” (=“I"), therefore,
there is no “observer’s space and time” in quantum language. And thus, it does not have

tense (i.e., past, present, future).
(Cs3) there is no probability without measurements (Bertrand’s paradox in Section 9.12) )

(C4) Leibniz’s relationalism concerning space-time. See Section 10.7.

and so on. We consider that the above (C;) is closely related to Parmenides’ saying (born
around BC. 515 in ancient Greek)[ There are no “plurality “,but only “one”] and Kolmogorov’s

extension theorem (c¢f. [67]). For details, see ref. [56].

Remark 10.19. ["Who measured?” is not essential] ”Who measured?” is not essential. An

observer may be satisfactory for anyone. For example consider the following cases:
(#1) Jack measures Tom’s body temperature.
(#2) A doctor measures Tom’s body temperature.
(#3) Tom’s body temperature is measured.
(H4) An observer measures Tom’s body temperature
(#5) T measure Tom’s body temperature.
(#6) Tom measures Tom’s body temperature.
(#7) I measure my body temperature ( when I am Tom)

The above are all the same. See the above (fs) and (f7), which may be misleading, since
(Cy) says that "observer” and ”system” are completely (or, almost completely) separated. The
meaning of "separation” will be clarified in Section 10.8.3; Brain in a Vat. Also, identification

of "observer” and ”1” in (Cy) may be misleading. Thus, we may say that
(b) any statement in quantum language should be expressed without using ”1” if it is possible.

In this sense, quantum language is quite different from Descartes philosophy.
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Remark 10.20. [Experiment verification] —Experiment verification must be possible also for
any statement in quantum language. For example, " Apple falls down a tree” can carry out
experiment verification. Thus, this is a statement in quantum language. On the other hand,
the statement ”Now I am here” can not carry out experiment verification. Thus, this is not a

statement in quantum language.

10.8.2 Review; Main assertions of quantum language

10.8.2.1 The history of world description

Figure 10.21. (=Figure [L.1) [The location of quantum language in the history of world-
description (cf. refs.[35], 56]) |

r~~~~ the realistic world view (monism, realisin)-~~-- i
! |
| relativity \ (unsolved) |
i (monism) — [theory | ——(®) ® theory (?f i
Parmenides \ } @ ——peverything |
Socrates | (realism) quantum (quantum phys.) !
(0):Greek Schola. L — | mechanics 30 g J
phllosophy —> . r 7_7_7_7:::17_7_7::::7_7_7_7:::7_7_7_1;_;1:5; 27_7::::7_7_7_7:::7_7_7_7::: Q
Plato sticism : (dualism) Eh ? @\ :
Aristotle [ (=MT) |
1 Descartes (linguistic view) : |
[ Y quantum \
.| Locke,... ® linguistic language language !
—= | Kant philosophy ———— !
: i ; (language) !
! (idealism) .
I . . I
| statistics laneuage |
; system theory &@’ :
: (Descartes, Locke may belong to substance dualism)
L

---- the linguistic world view ( dualism, idealism-)- -

Figure 1.1: The history of the world-view

In refs. [50, [52], T asserted that the following four are equivalent:
(Do) to propose quantum language (cf. @ in Figure [10.21))

(D) to clarify so-called Copenhagen interpretation of quantum mechanics (¢f. @) in Figure
10.21)

(D2) to find the final goal of the dualistic idealism (cf. (®) in Figure [10.21])

(D3) to reconstruct statistics in the dualistic idealism (c¢f. @ in Figure [10.21])
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10.8.2.2 The Copernican Revolution

In Figure 10.21 “M” should be called “the linguistic CR(=Copernican Revolution)”

(D1)
in the sense below:
(substance dualism) a priori 4+ a posteriori
: idealism -
’ Descartes(dualism) ‘ ’ Kant (dualism) ‘

- : . recognitive CR
(the world is previous, recognition is later) SHILY

(recognition is previous, the world is later)
llinguistic turn

(realism) Axioms+Copenhagen interpretation

idealism(~language)

’ quantum mechanics(dualism) ‘ ’ quantum language (dualism) ‘

linguistic CR

(the world is previous, language is later) (language is previous, the world is later)

Kant’s Copernican revolution (i.e., the above recognitive CR (cf. ref. [66])) should be praised
as the discovery of “idealism”, though the true discovery may be due to the above linguistic
CR.

10.8.2.3 Philosophy made progress

In the above Figure [10.21), let us focus on the history of the dualistic idealism in the linguistic

world view such as

— — —_ ’Wittgenstein‘ (10.30)

Note that physics obviously made progress in Figure [10.21, on the other hand, the (10.30)’s

progress is not clear.
In ref. [52], we asserted that, if “(philosophical) progress” is defined by “approaching quantum

language”, then

(E) the (10.30)) does not only imply time series but also progress, that is,

dualism dualism dualism
— — —— | Wittgenstein | ——— | Quantum language‘
startin oint progress progress ideali progress progress - -
&P ldealism language idealism(~language)
(if “progress” is defined by “approaching quantum language”) (10.31)

Here,
e Plato: the founder

e Descartes: the discoverer of dualism (though the true scientific discovery is due to N.
Bohr (¢f. [5])). Also, Berkeley’s saying: “To be is to be perceived” is essential to idealism
(cf. ref. [52]).
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e Kant: the discoverer of idealism (in the sense of the above Section 10.8.3)
o Wittgenstein: he emphasized the importance of language.

This is natural since we assume [(Ds); quantum language is the final goal of the dualistic
idealism|. That is, we consider that the (10.31)) is the history which gropes after the language
in which science is written. Also, for the linguistic approach to the mind-body problem, see

ref. [54], i.e.,

e [shikawa,S., A Final solution to mind-body problem by quantum language, Journal of
quantum information science, Vol. 7, No.2 , 48-56, 2017, [DOT: 10.4236/jqis.2017.72005
(http://www.scirp.org/Journal/PaperInformation.aspx?PaperID=76391)

Remark 10.22. [Brain science?] As mentioned in ref. [52], we do not agree with the following

"progress”;
dualism dualism
Plato| ——— |Descartes | ——— |Kant | ——— | Husserl —)’brain science‘
Starting point progress progress idealism progress progress

That is because we think that

e philosophy should be metaphysics, and thus it isn’t in the immature state of the science.
10.8.2.4 Quantum language is the language to describe science
Also, since the (D) says that

“statistics” U “quantum information theory” U “dualistic idealism”
(® in Figure [10.21)) (@ in Figure 10.21) (® in Figure [10.21))

C “quantum language”

it is natural to assume that
(F) quantum language is the language to describe science, that is,
proposition in quantum language

<= scientific proposition (=experiment verifiable proposition)

which is the most important assertion of quantum language. Also, we assume that this (i.e., to

make the language to describe science) is the true purpose of the philosophy of science.
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Remark 10.23. [The theory of relativity] Note that the theory of relativity cannot be described
by quantum language. However, we want to assert the (F'). We think that the theory of relativity

( and more, the theory of everything ) is too special, an exception.

10.8.3 What we cannot speak about in quantum language

In this section we clarifies the following well-known philosophical statements:

(G) “brain in a vat problem”, “the Cogito proposition”, “five-minute hypothesis”, “only the

present exists”, “McTaggart’s paradox” and so on.

which are “what we cannot speak about in quantum language”, that is, non-scientific proposi-

tions.

10.8.3.1 Brain in a vat argument

Suppose (cf. ref. [81]);

(Hy) a mad scientist has removed your brain,
and placed it into a vat of liquid to keep

it alive and active. The scientist has also

connected your brain to a powerful com-

puter, which sends neurological signals to

the brain in the way the brain normally
receives them. Thus, the computer is able

to send your brain data to fool you into

believing that you are still walking around

in your body.
Then, you may say;
(Hy) “Am I a brain in a vat?” Or, “Can I check whether I am a brain vat or not?”

Note that the question (Hy) is related to “I”. Or, precisely, “observer”=*I" “system (=mea-
suring object)”=*I", thus, “observer” and “system” are not separated. Thus, the linguistic
Copenhagen interpretation (Cs) says that this (Hs) is not a statement in quantum language.

Thus, the (Hs) is not scientific, that is, there is no experiment to verify the statement (Hy).

294 ’ For further imformation see my homepage ‘



http://www.math.keio.ac.jp/~ishikawa/indexKSTS5.html

KSTS/RR-19/003
December 26, 2019

Chap. 10 Axiom 2—causality

Remark 10.24. [Experiment verification] — Since we receive several questions for the above

argument in ref. [60], we add the following. If you are Tom, (Hy) is the same as
(H3) “Can Tom himself check whether Tom is a brain vat or not?”

Here, “observer”="“Tom”, “system (=measuring object)”=“Tom”, thus, “observer” and “sys-
tem” are not separated. Thus, this is not the statement in quantum language. This is obvious

compared to the following.
(Hy) “Can Jack check whether Tom is a brain vat or not?”

which is the statement in quantum language.

10.8.3.2 The Cogito proposition

It is well known that Descartes proposed the Cogito proposition “I think, therefore I am”, as
the first principle of philosophy since he believed that this proposition has no room for doubt.
That is, Descartes think that

(I;) T confirm “I think, therefore I am”

However, this is doubtful. Note that the proposition (I;) is related to “I”. Or, precisely,
“observer”=“I" “system (=measuring object)”=*I", thus, “observer” and “system” are not
separated. Thus, the linguistic Copenhagen interpretation (Cs) says that this (I) is not a
statement in quantum language. Thus, the (I;) is not scientific, that is, there is no experiment

to verify the statement (Iy).
Remark 10.25. Since we receive several questions for the above argument in ref. [60], we add
the following. As brain death determination,

(Is) A doctor confirms “Tom thinks, therefore Tom is alive”

In this case, we see that “observer”=“doctor”, “system (=measuring object)”=“Tom”. Hence
“Tom thinks, therefore Tom is alive” is the proposition in quantum language. For the more

precise argument, see Section 8.4 [Cogito — I think, therefore I am].
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10.8.3.3 What is “I”?
Descartes proclaimed that he discovered “I”. Then, we have the natural question:

What is “I(discovered by Descartes)”?

If (E) is true (i.e., — ‘Quantum language ‘), this question can be answered

progress
as follows. In quantum language, several words (“I”(=“observer”), “observable”, “matter”,

“measurement”, etc.) are undefined such as point, line, plane etc. in Hilbert’s geometry (i.e.,

The Foundations of Geometry (1899)). D. Hilbert said that

e The elements, such as point, line, plane, and others, could be substituted by tables, chairs,

glasses of beer and other such objects.

For example, the readers should note that the term “measurement” is used trickily in the

quantum linguistic answer of Monty-Hall problem (cf. ref. [37]).

10.8.3.4 Five-minute hypothesis
The five-minute hypothesis, proposed by B. Russell (cf. ref. [85]), is as follows.

(J1) The universe was created five minutes ago. Or equivalently, the universe was created ten

years ago.

Now we show that this (J;) is not the statement in quantum language as follows (i.e., The first

answer (i) and the second answer (ii))

The first answer (i): Note that this hypothesis (J1) is related to “tense”. Thus, the linguistic
Copenhagen interpretation (Cz) says that this (J1) is not a statement in quantum language.
Thus, the (J;) is not scientific, that is, there is no experiment to verify the statement (J;).

The second answer (ii): There may be another understanding as follows. If we consider that
[“observer” € “the universe”], the proposition (J;) cannot be described in quantum language.
That is because the linguistic Copenhagen interpretation (Cs) says that “observer” (=“I"

) and “measuring object” (=“the universe”) have to be completely separated. ( Also, see
Remark [10.26] (b) later.)

Some may want to relate this hypothesis to skepticism (c¢f. ref. [85]), However we do not

think that this direction is productive.

Remark 10.26. (a): Also, the above (J;) should be compared to the following (J2)

(J2) The universe was created in A.D. 2008. ( Or equivalently, now is A.D. 2018, and the

universe was created ten years ago.)
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This (J3) can be denied by experiment, that is, it is different from the fact. Thus, this is a
proposition in quantum language.

(b): If the (Jo) is a proposition in quantum language, the hypothesis [“observer” € “the universe” |
in (J;) may be doubtful. We may not understand the meaning of [“observer” € “the universe”|

completely. Thus, the second answer (ii): may be doubtful.

10.8.3.5 Only the present exists

It is well known that St. Augustinus (AD.354-AD.430) said that

e the past does not exist because of its being already gone, that the future does not ewist

because of its not coming yet, and that the present really exists.
Here, consider
(K) “Only the present exists”

Note that this proposition (K) is related to “tense”. Thus, the linguistic Copenhagen interpre-
tation (Cy) says that this (K) is not a statement in quantum language. Thus, the (K) is not

scientific, that is, there is no experiment to verify the (K).

10.8.3.6 McTaggart’s paradox

In ref. [71], McTaggart asserted “the Unreality of Time” as follows.
The sketch of McTaggart’s proof

(Ly) Assume that there are two kinds of times. i.e., “observer’s time ( A-series)” and “objec-
tive time (B-series)”. (Note that this assumption is against the linguistic Copenhagen
interpretation (Cy).)

(Ls) After all, the contradiction is obtained
Therefore, by the reduction to the absurd, we get;

(Ly) A-series does not exist (in science).

About this proof, there are various opinions also among philosophers. Although I can not
understand the above part (Ly) ( since the properties of A-series are not clear), I agree to him if
his assertion is (Lg) (cf. ref. [35]). That is, I agree that McTaggart noticed first that observer’s

time is not scientific.
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10.8.3.7 Is “What we cannot speak about we must pass over in silence” true?

It should be noted that “what we cannot speak about” depends on language. As mentioned in
the above, the Cogito proposition “I think, therefore I am” is “what we cannot speak about in
quantum language”. However, thanks to Descartes said “I think, therefore I am”, dualism was

developed. This fact may imply that
(M) “What we cannot speak about we must pass over in silence” is not true.

However, we think that Descartes’ success is accidental luck. Or, we may consider that the
true discoverer of dualism is N. Bohr, the leader of the Copenhagen school (c¢f. [5]). Since
Wittgenstein (cf. ref. [02]) said “The limits of my language mean the limits of my world.”, he
had should propose “my language”. We are sure that it will fall into a play on words by the

argument without “my language”.

10.8.4 Conclusion

Dr. Hawking said in his best seller book [ ref.[19]; A Brief History of Time: From the Big Bang
to Black Holes, Bantam, Boston, 1990]:

e Philosophers reduced the scope of their inquiries so much that Wittgenstein the most
famous philosopher this century, said “The sole remaining task for philosophy is the
analysis of language.” What a comedown from the great tradition of philosophy from

Aristotle to Kant!

We think that this is not only his opinion but also most scientists’ opinion. And moreover, we
mostly agree with him. However, we believe that, if “the analysis of language” was rewritten
to “the creation of language”, then Dr. Hawking would not have been critical to philosophy.
That is because the task of phycisists is just the creation of language, i.e., the language called
Newtonian mechanics, the language called the theory of relativity, etc.

Also, since Wittgenstein (cf. ref. [92]) said “The limits of my language mean the limits of
my world.”, he had should propose “my language”. We are sure that the argument without
“my language” will fall into a play on words.

In this paper, we introduced quantum language, and in the framework of quantum language,

we discussed the followings:

(N) “brain in a vat argument”, “the Cogito proposition”, “five-minute hypothesis”, “only the

present exists”, “McTaggart’s paradox”, and so on.
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And we showed that the above propositions in (N) are not in quantum language, that is, these

are not scientific. Or equivalently, we have no experiment to verify the above propositions in

(N).
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Chapter 11

Simple measurement and causality

Until the previous chapter, we studied all of quantum language, that is,

(ﬁl):’ pure measurement theory ‘

(=quantum language)
[(pure)Axiom 1] [Axiom 2| |lquantum linguistic interpretation)

= ’ pure measurement ‘ + ’ Causality ‘—i— ’Linguistic interpretation
(cf 2.0 (¢f §10.3) (cf. §3.0)

a kind of spell(a priori judgment) the manual to use spells

(#2) :’ mixed measurement theory ‘

(=quantum language)
[(mixed)Axiom (™) 1] [Axiom 2| [quantum Tinguistic interpretation]

= ’mixod measurement ‘ + ’ Causality ‘—|— ’Linguistic interpretation
(cf. §9.0) (cf. §10.3) (¢f. §30)

a kind of spell(a priori judgment) the manual to use spells

However, what is important is
» to exercise the relationship of measurement and causality
Since measurement theory is a language, we have to note the following wise sayings:

e experience is the best teacher, or custom makes all things

11.1 The Heisenberg picture and the Schrodinger pic-
ture

11.1.0.1 State does not move— the Heisenberg picture —

We consider that

“only one measurement” — “state does not move”
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That is because

(a) In order to see the state movement, we have to take measurement at least more than

twice. However, the “plural measurement” is prohibited. Thus, we conclude “state does

not move”

We want to believe that this is associated with Parmenides’ words:

There i1s no movement

which is related to the Heisenberg picture. This will be explained in what follows.

Theorem 11.1. [Causal operator and observable] Consider the basic structure:
[Ar C Ay € B(H)]  (k=1,2)

Let @y : Ay — A; be a causal operator, and let_Og = (X, 3, F,) be an observable in As.
Then, ®,5,05 = (X, J, ®12F3) is an observable in As.

Proof. Let Z (¢ F). And consider the countable decomposition {Z;,Z,,...,=,,...} of =2

<i.e., =E=UE,Z2.€Fn=1,2,..),Z,NnNZ, =0 (m+#n) > Then we see, for any

3
—_

(A1) <P1, @1,2F2(U En)>7h = (A1) ((‘Pm)*ph FQ(U En))ﬁ2

n=1 n=1
= (A1)s (((1)1,2)*P17 FQ(En)>ﬁ2 = Z (A1)e (,01, ¢1,2F2(En)>22
n=1 n=
Thus,®, 205 = (X, F, 1 5F3) is an observable in A O

Let us begin from the simplest case. Consider a tree T = {0,1}. For each t € T', consider

the basic structure:
A C A CB(H,)]  (t=0,1)
And consider the causal operator ®; : ﬁl — Zo. That is,
R (I)O 1 —

Therefore, we have the pre-dual operator (®¢). and the dual operator @ ;:

(Ao). N (A1) Ay —— A (11.2)
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If &g, : A; — A is deterministic, we see that
Ao D 6"(Ag) 3 p —— By1p € G(A}) C A (11.3)
0,1

Under the above preparation, we shall explain the Heisenberg picture and the Schrodinger
picture in what follows.

Assume that
(A;) Consider a deterministic causal operator ®g; : Ay — A,.
(Ay) astate pg € GP(Af) : pure state

(A3) Let Oy = (X1,J1, F1) be an observable in A;.

Explanation 11.2. [the Heisenberg picture].
The Heisenberg picture is just the following (a):

(al) To identify an observable O; in A; with an 10, in Ao . That is,

—= ®o,1
®y10, O,

(in Ao) identification (in A;)

Therefore,

(a2) a measurement of an observable Oy (at time ¢ = 1) for a pure state py (at time ¢ = 0)
€ GP(Af) is represented by

Mﬁo (@07101, S[Po])

Thus, Axiom 1 ( measurement: [§2.7) says that

(a3) the probability that a measured value belongs to =(€ F) is given by
a3 (P, @01 (F1(D)) 7, (11.4)

Explanation 11.3. [the Schrédinger picture]. The Schrodinger picture is just the
following (b):

(b1) To identify a pure state &, po(€ GP(A})) with po(€ GP(Af)), That is,

@*
Aj D BP(Af) 3 pg ———— O 1po € GP(A}) C A;
identification ’

Therefore, Axiom 1 ( measurement: [§2.7)) says that
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(b2) a measurement of an observable O; (at time ¢t = 1) for a pure state py (at time ¢t = 0)
€ GP(A7) is represented by

le (O]-’ S[‘I’Sylpo})
Thus,
(a3) the probability that a measured value belongs to =Z(€ ) is given by
A (‘DS,mo, F1<E))Z1 (11.5)

which is equal to
A <Po, @0,1(F1(E))>ﬁ0 (11.6)

In the above sense (i.e., (IL.5) and (11.6) ), we conclude that, under the condition (A;),
the Heisenberg picture and the Schrodinger picture are equivalent

That is,

MzO((I)O’th S[po]) (identification) Mﬁl (017 S[cps’lpd) (117)
(Heisenberg picture) (Schrodenger picture)

Remark 11.4. In the above, the conditions (A;) is indispensable, that is,
(A;) Consider a deterministic causal operator ®q; : A — Ap.

Without the deterministic conditions (A;), the Schrédinger picture can not be formulated
completely. That is because ®f,po is not necessarily a pure state. In this sense, we consider
that

the Heisenberg picture is formal

the Schrodinger picture is makeshift
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11.2 Wave function collapse ( i.e., the projection postu-
late ) does not occur, but we look at somthing just
like this.

The lingistic interpretation says that the post measurement state is meaningless. However,
considering a tricky measurement, we can realize the wave function collapse. In this section,

we shall explain this idea in the following paper:

e [51] S. Ishikawa, Linguistic interpretation of quantum mechanics; Projection Postulate,
Journal of quantum information science, Vol. 5, No.4 , 150-155, 2015,
DOI: 10.4236/jqis.2015.54017
(http://www.scirp.org/Journal/PaperInformation.aspx?PaperID=62464)) Or see the
following preprint;

(http://www.math.keio.ac.jp/academic/research_pdf/report/2015/15009.pdf)

11.2.1 Problem: The von Neumann-Luiders projection postulate

Let [C(H), B(H)]pm) be a quantum basic structure. Let A be a countable set.
Consider the projection valued observable Op = (A, 2*, P) in B(H). Put

Py=P({\}) (VAeA) (11.8)
Axiom 1 (measurement; §2.7) says:

(A1) The probability that a measured value A (€ A) is obtained by the measurement Mp(z)(Op
:=(A, 2%, P), S},)) is given by

Tr, (pPao)(= (u, Pagu) = | P,ull®),  ( where p = |u)(ul) (11.9)

Also, the von Neumann-Liiders projection postulate ( in the Copenhagen interpretation, cf.

[89, [70]) says:

(A2) When a measured value Ao (€ A) is obtained by the measurement Mgy (Op :=(A, 2%, P),
S[p]), the post-measurement state ppogst is given by

o PA0|U> <U|P)\o

= 11.10
ppOSt HP/\O'U/HZ ( )
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And therefore, when a next measurement M) (Op :=(X,J, F) 1) is taken (where

’ S[ppost
Op is arbitrary observable in B(H)), the probability that a measured value belongs to
=(€ F) is given by

P)\OU
[ Pagul|’

F(z)-0Y >) (11.11)

TTH(ppoStF(E))< = | Paoull

Problem 11.5. In the linguistic interpretation, the phrase: “post-measurement state” in the
(As) is meaningless. Also, the above (=(A;)+(Asz)) is equivalent to the simultaneous measure-
ment Mg (Or x Op, Sy,), which does not exist in the case that Op and Op do not commute.

Hence the (As) is meaningless in general. Therefore, we have the following problem:
(B) Instead of the Op x Op in Mp()(Or x Op, Sj;), what observable should be chosen?

In the following section, I answer this problem within the framework of the linguistic inter-

pretation.

11.2.2 The derivation of von Neumann-Liiders projection postulate
in the linguistic interpretation

Consider two basic structure [€(H ), B(H)|pm) and [C(HRK ), B(HR K)|pusk)- Let {P\| X €
A} be asin Section 11.2.1, and let {e)} ea be a complete orthonormal system in a Hilbert space

K. Define the predual Markov operator W, : Tr(H) — Tr(H ® K) by, for any u € H,

Vo (lu)(ul) = | Y (Pau@en))(Y_(Pu®e) (11.12)

AEA AEA
or
U (|u)(ul) = Y |Pyu@ ex)(Pu® ey (11.13)
AEA

Thus the Markov operator ¥ : B(H ® K) — B(H) ( in Axiom 2) is defined by ¥ = (W,)*.
Define the observable Og = (A, 2%, G) in B(K) such that

GHAY) = lex)(eal (A eA)

Let Op = (X, 3, F) be arbitrary observable in B(H). Thus, we have the tensor observable
Or®0g = (X x A,FX2) F®G) in B(H® K), where X 2" is the product o-field.

Fix a pure state p = |u)(u| (v € H, ||lul||g = 1). Consider the measurement Mp(g)(V(Op ®
O¢), Sjp)- Then, we see that
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(C) the probability that a measured value (z, A) obtained by the measurement Mg (¥ (Op ®
O¢), Si,)) belongs to = x {Ag} is given by

T, [(Ju) () (F(E) @ GHA}] = 1, ([u)ul, U(F(E) @ G{A}))
=rvmero (Le([)(ul), F(2) ® GEMD) gugr) = Traex (Ye(Ju)(u) (F(E) @ G({A}))]
=T [(| ) (Pru® ex)) (Y (Pru® ex)])(F(E) ® exg)ex|)]

AEA AEA
:<P)\Ou, F(E)P)\Ou> (VE < ?)

( In a similar way, the same result is easily obtained in the case of (7)).

Thus, we see the following.
(Dy) if 2= X, then

Tr, [(Ju) () W(F(X) @ G({Xo}))] = (Pagu, Pryu) = || Prgul? (11.14)

(D2) in case that a measured value (x, \) belongs to X x {\}, the conditional probability such
that x € = is given by

P)\O'LL
[Pru]

<P/\OU,F(E)P)\OU> ( _ < P/\Ou

F(= = 11.1

where it should be recalled that O is arbitrary. Also note that the above (i.e., the projection
postulate (D)) is a consequence of Axioms 1 and 2.

Considering the correspondence: (A) < (D), that is,

Mz (Op, Sip) (or7 meaningless Mg (O x Op, S|y) ) & M) (Y (O ® Og), Sip),

namely,

(11.9) < (11.14), (11.11) < (11.15)

there is a reason to assume that the true meaning of the (A) is just the (D). Also, note the
taboo phrase “post-measurement state” is not used in (Dy) but in (As). Hence, we obtain

the answer of Problem 1 (i.e., ¥(Or ® O¢) ).

Postulate 11.6. [Projection postulate] In the sense of the (Dy), the statement (As) is often

used. That is, we often say:
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(E) When a measured value Ay (€ A) is obtained by the measurement Mpg)(Op :=(A, 2%, P),
Sip)), the post-measurement state ppost is given by

p _ P>\0|u> <U|P>\0
POt [ Py ul?

(11.16)
Remark 11.7. So called Copenhagen interpretation may admit the post-measurement state

(cf. [24]). Thus, in this case, readers may think that the post-measurement state is equal to
Pxglu) (ulPxg

t5az - which is obtained by the (D) ( since Op is arbitrary). However, this idea would not
0

be generally approaved. That is because, if the post-measurement state is admitted, a series
of problems occur, that is, “When is a measurement taken?”, “When does the wave function
collapse happen?”, or “How fast is the wave function collapse?”, which is beyond Axioms 1 and
2. Hence, the projection postulate is usually regarded as “postulate”. On the other hand, in
the linguistic interpretation, the projection postulate is completely clarified, and therefore, it
should be regarded as a theorem. Recall the Wittgenstein’s words: “The limits of my language

”

mean the limits of my world”, or “What we cannot speak about we must pass over in silence.
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11.3 de Broglie’s paradox(non-locality=faster-than-light)

In this section, we explain de Broglie’s paradox in B(L%*(R)) (c¢f. §2.10tde Broglie’s paradox
in B(C?)).
Putting q = (q1, ¢2, ¢3) € R?, and
02 9* 0D
Vi= S+ 5+
of " oF " o

consider Schrodinger equation (concerning one particle):

'hﬁw( t) = _—FLQV2+V( t)|¢(a,t) (11.17)
o\ T o 4 4 '

where, m is the mass of the particle, V' is a potential energy.
In order to demonstrate in the picture, regard R?® as R. Therefore, consider the Hilbert

space H = L?(R, dq). Putting H; = H (t € R), consider the quantum basic structure:

[C(H) € B(H) € B(H)]

Equation 11.8. [Schrodinger equation]. There is a particle P (with mass m) in the box (that
is, the closed interval [0,2](C R)). Let py, = [t4,)(Vr,] € SP(C(H)*) be an initial state
(at time ) of the particle P. Let p;, = |¢) (4] (to < t < t1) be a state at time ¢, where
vy = (-, t) € H = L*(R, dq) satisfies the following Schrodinger equation:

initial state:) (-, tg) = vy,

(11.18)
. _ K2 72
ihg(a.t) = |5+ V(a.D](a,)

Consider the same situation in §10.5, i.e., a particle with the mass m in the box (i.e., the

closed interval [0, 2]) in the one dimensional space R.

Vo(q)

¥(q,1)

- R
Figure 11.1(1)
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Now let us partition the box [0, 2]] into [0, 1]] and [1,2]. That is, we change V;(q) to Vi(q),

where

(11.19)

¢2(q7 t)  ~

»

1/}1 (qat
0 1 2 Figure 11.1(2)

Next, we carry the box [0,1] [resp. the box [1,2]] to New York (or, the earth) [resp. Tokyo
(or, the polar star)].

New York Tokyo
a(q, 1)
V1(q, 1)
0 1 a+1 a+2

Figure 11.1(3)
Here, 1 < a. Solving the Schrodinger equation (IT.18]), we see that

¢1('= tl) + ¢2<'>t1) = Uto,t1¢t0

where Uy, 4, + L*(Ry,) — L?*(Ry,) is the unitary operator. Define the causal operator ®,;, :
B(LQ(Rt2)) - B(LQGRH)) by

(I)toﬂfl (A) = Utz,tlAUto,tl (VA € B(LQ(th)))
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Put T' = {to,t1}. And consider the observable O = (X = {N,T.E},2X F) in B(L*(Ry,))
(where “N”=New York, “T”=Tokyo, “E”=elsewhere ) such that

[F({N}>]<q>:{ L 0sq<l [F({T})}(c_n:{

0 elsewhere
[FEED(@) =1 [FENDI() = [FETH(a)-

Hence we have the measurement Mp(r2 (g, )) <<I>t0,t10, S[\wmwto‘]).

1 a+1<g<a-+2
0 elsewhere

Y

Conclusion 11.9.
In Heisenberg picture, we see, by Axiom 1 ( measurement: [§2.7)), that

N
(A7) the probability that a measured value | 7' | is obtained by the measurement
E

M (L2 () (‘bto,tl 0, S[\¢to><wt0\]> is given by

(ttg> @, F({N D) = Jy [11(a. 1) g
<ut07 (ptOAtlF({T})utO) - faajl |1/}2<Q7 tl)qu
<ut07 (I)t0~t1F({E})uto> =0

Also, In Schrodinger picture, we see Axiom 1 ( measurement: [§2.7)), that

N
(As) the probability that a measured value | 7' | is obtained by the measurement
E

Ma(r2(r,y) (0» 5[<I>z0,t1<mo><wto|)1> is given by

Tr (I)zto,t1<|1/}to><wto‘) ’ F<{N})) = <Ut0,t1wt07F({N})Uto,tlwt0> = fol ‘wl(% t1)|2dq
Tr( @7, ([11) (Vo) 'F({T})> = (Utg.ts V1o, F({T}) Uty 1, %1,) = faa:f |12 (g, t1)]dg
T (@7, 1, (i) al) - FUED) ) = (Ut FUEN Uigs ) = 0

Note that the probability that we find the particle in the box [0,1] [resp. the box [a +
1,a+ 2]] is given by [; |v1(q,t1)|*dg [resp. [ [¥2(g, t1)|*dg]. That is,

(A1)=(A2)

Remark 11.10. In the above, assume that we get a measured value “N”, that is, we open the
box [0,1] at New York. And assume that we find the particle in the box [0,1]. Then, in the

sense of Postulate [11.6, we say that at the moment the wave function v, vanishes. That is,
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New York Tokyo
) “Vanish’
V1(q, 1
0 1 a+1 a+2

Figure 11.1(4) (The wave function after measurement)

where

/ (g, )
¢1(Q>tl) - Hw/1<>tl)H

Thus, we may consider “the collapse of wave function” such as

V1(-t1) + Pa(-, ) » () (11.20)

the collapse of wave function

Also, note that New York [resp. Tokyo} may be the earth [resp. the polar star}. Thus,

e the above argument (in both cases (A;) and (Ay)) implies that there is something faster

than light.

This is called “the de Broglie paradox”(¢f. [I3 87]). This is a true paradox, which is not

clarified even in quantum language.
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11.4 Quantum Zeno effect; watched pot effect

This section is extracted from

e Ref. [43]: S. Ishikawa; Heisenberg uncertainty principle and quantum Zeno effects in the

linguistic interpretation of quantum mechanics  (arXiv:1308.5469 [quant-ph] 2014 )

11.4.1 Quantum decoherence: non-deterministic sequential causal
operator

Let us start from the review of Section[10.6.2] (quantum decoherence). Consider the quantum

basic structure:
[€(H) C B(H) € B(H)]

Let P = [P,]22, be the spectrum decomposition in B(H), that is,
P, is a projection, and, Z P,=1
n=1
Define the operator (Vp), : Tr(H) — Tr(H) such that

(Up),(Ju)(u]) = Z|Pu (P,u| (Vu e H)

Clearly we see

(, (Up),(|u)(u|)v Z|Pu (P,u|)v i' v, | PP >0 (Yu,v e H)
and,
Te(( W), () )
=Tr<§;|Pnu><Pnu|> - iiuem u ZHP =l (e )
And so. _ o
(U (T97(H)) € Tr ()
Therefore,

(8) Vp(= ((¥p).)*) : B(H) — B(H) is a causal operator, but it is not deterministic.
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In this note, a non-deterministic (sequential) causal operator is called a quantum deco-

herence.

Example 11.11. [Quantum decoherence in quantum Zeno effect ¢f. [40]]. Further consider a
causal operator (V5?), : Tr(H) — Tr(H) such that

1HAL 1HAt

(T5")«(Ju)(ul) = [e™ "7 uh(e™ " ul  (Vu € H)

where the Hamiltonian H (c¢f. (10.22)) ) is, for example, defined by

Let P = [P,]22, be the spectrum decomposition in B(H), that is, for each n, P, € B(H) is

a projection such that

iPn =1
n=1

Define the (Up), : Tr(H) — Tr(H) such that

o0

(We)«(Ju)(ul) = Y |Pau){Pyul  (Vu € H)

n=1
Also, we define the Schrodinger time evolution (V4?Y), : Tr(H) — Tr(H) such that

_iHAt KAt

nuy(e” noul (VYu€ H)

(U5 (lu) (ul) = |e

where H is the Hamiltonian (10.21)). Consider ¢ = 0,1. Putting At =
can define the (@éf\{))* : Tr(Hy) — Tr(H;) such that

H:H():Hl,we

L
N

(@) = (™). (Tp) )N

which induces the Markov operator q)éff) : B(H;) — B(H,) as the dual operator @é{\{) =
((@éﬁ))*)*. Let p = [¢)(¢| be a state at time 0. Let Oy :=(X,F, F') be an observable in B(H,).

Then, we see

P=[¥) (¥l

B(Hy) o B(H,)
20,1 0; :=(X,7,F)

Thus, we have a measurement:
N
M) (B6) O1. )

(‘or more precisely, I\/IB(HO)(CDE){\PO =(X, 9, @gﬁ)F), Siiwyw)) )- Here, Axiom 1 ([§2.7) says that
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(A) the probability that the measured value obtained by the measurement belongs to Z(€ JF)
is given by

Te(|y) (y] - By F(E)) (11.21)

Now we shall explain “quantum Zeno effect” in the following example.

Example 11.12. [Quantum Zeno effect] Let ¢ € H such that ||¢| = 1. Define the spectrum

decomposition
P =[P(=[0){]), (=1 = 7)) (11.22)
And define the observable Oy :=(X,J, F') in B(H;) such that
X = {xy, 22}, F=2
and

F({z1}) = [0)@l(= ), F({z2}) = I = [){0l(= P),

Now we can calculate (IT.2I))(i.e., the probability that a measured value x; is obtained) as

follows.

([IL.21) = (&, (T¢™)(We)) ™ (J0) (])0)
> (0, e~ iR ) (), ernp) [V

~ (1= (IR — 16, (0P =1
(N — o0) (11.23)

Thus, if N is sufficiently large, we see that
N
M) (P63 Ot S ) ~ Mis(aag) (P10, Sty o)
(where ®; : B(H;) — B(H)) is the identity map)

= M) (O1, Sy )

Hence, we say, roughly speaking in terms of the Schrédinger picture, that

the state |¢)) (1| does not move.
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Remark 11.13. The above argument is motivated by B. Misra and E.C.G. Sudarshan [75].
However, the title of their paper: “The Zeno’s paradox in quantum theory” is not proper. That

is because

(B) the spectrum decomposition P should not be regarded as an observable (or moreover,

measurement).

The effect in Example [11.12] should be called “brake effect” and not “watched pot effect”.
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11.5 Schrodinger’s cat, Wigner’s friend and Laplace’s
demon

11.5.1 Schrodinger’s cat and Wigner’s friend

Let us explain Schrédinger’s cat paradox in the Schrodinger picture.

Problem 11.14. [Schrédinger’s cat]

(a) Suppose we put a cat in a cage with a radioactive atom, a Geiger counter, and a poison
gas bottle; further suppose that the atom in the cage has a half-life of one hour, a fifty-
fiftty chance of decaying within the hour. If the atom decays, the Geiger counter will
tick; the triggering of the counter will get the lid off the poison gas bottle, which will

kill the cat. If the atom does not decay, none of the above things happen, and the cat

|
poison gas

Geiger countet

@ radioactive ftom

Figure 11.2: Schrodinger’s cat

will be alive.

Here, we have the following question:

(b) Ts the cat dead or alive after 1 hour (= 60% seconds ) ?
Of course, we say that it is half-and-half whether the cat is alive. However, our problem

is

Clarify the meaning of “half-and-half”

ANote 11.1. [Wigner’s friend]: Instead of the above (b), we consider as follows.
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(b’) after one hour, Wigner’s friend look at the inside of the box, and thus, he knows whether
the cat is dead or alive after one hour. And further, after two hours, Wigner’s friend
informs you of the fact. How is the cat ?

This problem is not difficult. That is because the linguistic interpretation says that ”the moment
you measured” is out of quantum language. Recall the spirit of the linguistic world-view (i.e.,
Wittgenstein’s words) such as

The limits of my language mean the limits of my world
and

What we cannot speak about we must pass over in silence.

11.5.2 The usual answer

Answer 11.15. [The first answer to ProblemI1.14(i.e., the pure state, projection postulate )].
Put q = (qu1, q12, 13, 421, 422, 423, - - - » G Gn2, Gn3) € R*". And put

0? 0? 0?
V2 =
’ aqi21 * 8%22 - 8%'23

Consider the quantum system basic structure:

(C(H) € B(H) C B(H)] ( where, H = L*(R*",dq) )

And consider the Schrodinger equation (concerning n-particles system):

ihgu(a,t) = [ i 52V 4+ V(a,t)] v(a,)
(11.24)

o(q) = ¥(q,0) : initial condition

where, m; is the mass of a particle P;, V is a potential energy.
If we believe in quantum mechanics, it suffices to solve this Schrédinger equation (I1.24)). That

is,

(A1) Assume that the wave function ¢(-,60%) = Upgp2tbo after one hour (i.e., 60* seconds) is
calculated. Then, the state pgo2 (€ T, (H)) after 60% seconds is represented by

Pe02 = |w602><¢602‘ (11-25>

(where, vgp2 = %0('»602))-

Now, define the observable O = (X = {life, death}, 2%, F') in B(H) as follows.
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(Ag) that is, putting

Vhfe(g H) = {u € H | “ the state |||>T|2|” & “cat is alive”}

Vieath (S H) = the orthogonal complement space of Ve
={ue H|(uv)=0 (Vv € Vjs)}

define F'({life})(€ B(H)) is the projection of the closed subspace Vj;f, and F({death}) =
I — F({life}),

Here,

(A3) Consider the measurement Mp)(O = (X, 2%, F), Sipgoz)). The probability that a mea-
[ life : : L
sured value | death ] is obtained is given by

- ({hfe})> = (Weoe, F({life} )iboz) = 0.5
_—— F({death}))B(H) — (ee2, F({death})vepe) = 0.5

Therefore, we can assure that

1
Yo = 5 (Wlife + Vdeath) (11.26)
(where, ¢ife € Viifes [Vnifell =1 ¥death € Vdeath: 1¥deatnll = 1)

Hence. we can conclude that

(A4) the state (or, wave function) of the cat (after one hour ) is represented by (I1.26]), that
is,

“Fig. (1) + “Fig (t2)’

V2
Fig. ($1) = e Fig. (ﬂz Ydeath
|
‘poikon gas
|
poiso gas click!
. Geiger countey Gelger counte
@ radioactive ftom l ‘ radloactlve tom

Figure 11.3: Schrodinger’s cat(half and half)
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And,

(A5) After one hour (i.e, to the moment of opening a window), It is decided “the cat is dead”

or “the cat is vigorously alive.” That is,

« » 1
half-dead ( = 5 (Wtife + ¥Ydeath? (V1ife + ¢death|)>

in the sense of Postulate [I1.6] ( precisely speaking, by the misunderstanding of Postulate
11.6)),

“alive” (= |V1510) (V1ife )

to the moment of opening a window

the collapse of wave function

“dead” (= [¥geath) (Vdeathl)

11.5.3 The answer by quantum decoherence

Answer 11.16. [The second answer to Problem11.14 (i.e., decoherence)].

In quantum language, the quantum decoherence is permitted. That is, we can assume that

(B1) the state pg,. after one hour is represented by the following mixed state

, 1
Peoz = B <|¢life><¢life| + |¢death><¢death|)

That is, we can assume the decoherent causal operator ®q g2 : B(H) — B(H) such that
(®o,602)«(P0) = Plo2

Here, consider the measurement Mg (0O = (X, 2%, F), Syplq2]), or, its Heisenberg picture
Mp () (Po,6020 = (X, 2%, g 602 F), Sipp]). Of course we see:

life
death
M) (o020 = (X, 25 D¢ g2 ), Sipp]) is given by

(By) The probability that a measured value [ } is obtained by the measurement

Tr(H) \ P0; ‘1’0,602F({hfe})> B = (Vgoe F({life})1gp2) = 0.5
— cbo,GOQF({death}))B(H) — (0, F({death})goe) = 0.5

Also, “the moment of measuring” and “the collapse of wave function” are prohibited in the

linguistic interpretation, but the statement (Bs) is within quantum language. O
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Summary 11.17. [Schrédinger’s cat in quantum language|
Here, let us examine

Answer11.15] :(A5) v.s. Answerl11.16 :(B>)

(Cy) the answer (As) may be unnatural, but it is an argument which cannot be confuted,

On the other hand,

(Cy) the answer (By) is natural. but the non-deterministic time evolution is used.

Since the non-deterministic causal operator (i.e., quantum decoherence) is permitted in quan-
tum language, we conclude that

(C3) Answer11.16:(B,) is superior to Answer11.15:(A,)

For the reason that the non-deterministic causal operator (i.e., quantum decoherence) is
permitted in quantum language, we add the following.
e If Newtonian mechanics is applied to the whole universe, Laplace’s demon appears.

Also, if Newtonian mechanics is applied to the microworld, chaos appears. This kind

of supremacy of physics is not natural, and thus, we consider that these are out of “the

limit of Newtonian mechanics”

And,

e when we want to apply Newton mechanics to phenomena out of “the limit of Newtonian
mechanics”, we often use the stochastic differential equation (and Brownian motion). This

approach is called “dynamical system theory”, which is not physics but metaphysics.

Newtonian mechanics‘ Ol%t of'th'e limits dynamical system theory; statistics‘
physics linguistic turn etaphysics

In the same sense, we consider that quantum mechanics has “the limit”. That is,
e Schrodinger’s cat is out of quantum mechanics.

And thus,

e When we want to apply quantum mechanics to phenomena out of “the limit of quantum

mechanics”, we often use the quantum decoherence. Although this approach is not physics

but metaphysics, it is quite powerful.

— out of the limits
quantum mechanics > | quantum language

linguistic turn motaphysics

physics
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ANote 11.2. If we know the present state of the universe and the kinetic equation (=the theory of
everything), and if we calculate it, we can know everything (from past to future). There may be
a reason to believe this idea. This intellect is often referred to as Laplace’s demon. Laplace’s
demon is sometimes discussed as the realistic-view over which the degree passed. Thus, we

consider the following correspondence:

Schrodinger’s cat in Answer [I1.15

Laplace’s Demon —
quantum mechanics

Correspondence

Newtonian mechanics
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11.6 Wheeler’s Delayed choice experiment: “Particle or
wave?” is a foolish question

This section is extracted from
48] S. Ishikawa, The double-slit quantum eraser experiments and Hardy’s paradoz in the quantum
q 4 Yysp q

linguistic interpretation, jarxiv:1407.5143|quantum-phl,( 2014)

11.6.1  “Particle or wave?” is a foolish question

In the conventional quantum mechanics, the question: “particle or wave?” may frequently appear.
However, this is a foolish question.
On the other hand, the argument about the “particle vs. wave” is clear in quantum language. As

seen in the following table, this argument is traditional:

Table 11.1: Particle vs. Wave in several world-views (cf. Table 2.1], Table 3.1

’ World-views \ P or W H Particle(=symbol) \ Wave(= mathematical representation ) ‘
Aristotle hyle eidos
Newton mechanics point mass state (=(position, momentum))
Statistics population parameter
Quantum mechanics particle state (=~ wave function)
Quantum language system (=measuring object) state

In the table 11.1, Newtonian mechanics (i.e., mass point <> state) may be easiest to understand. Thus,
“particle” and “wave” are not confrontation concepts.

Concerning “particle or wave”, we have the following statements:

(A1) “Particle or wave” is a foolish question.

(A2) Wheeler’s delayed choice experiment is related to the question “particle or wave”

If so, it may be interesting to answer the following:

(A3) How is Wheeler’s delayed choice experiment described in terms of quantum mechanics?

This is the purpose of this section. And we answer it in the conclusion (H).
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11.6.2 Preparation

Let us start from the review of Section 2.10] (de Broglie paradox in B(C?))
Let H be a two dimensional Hilbert space, i.e., H = C2. Consider the basic structure

[B(C?) € B(C?) € B(C?)]

Let f1, fo € H such that

Put

Thus, we have the state p = |u){(u| (€ &P(B(C?))).
Let U(€ B(C?)) be an unitary operator such that

U= Ll) ei2/2:|
and let ® : B(C?) — B(C?) be the homomorphism such that
®(F)=U*FU  (VF € B(C?)
Consider two observable O; = ({1,2},2{12} F) and O, = ({1,2},2{2} | G) in B(C?) such that

F{1}) = [f)(hAl, - F(2}) = [f2)(f]

and

G{1}) = lg)(nl,  G({2}) = [g2) (92|

where

_htf _h-f
g1 \/5 ) 92 \/i
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11.6.3 de Broglie’s paradox in B(C?) (No interference)

half mirror 1

u=5(i+/2) '._. course 1 %fl mirror 1
Photon P .
course 2 %fQ %fl
Volg V-1
\ 2 f2

A Z 222y Da(= (If2)(fe]))
mirror 2 (photon detector)

L,

Dy (= ([f1)(f1l])

v/ (photon detector)

Figure 11.4(1). [D; + D;]=ObservableO

Now we shall explain, by the Schrédinger picture, Figure 11.4(1) as follows.
The photon P with the state u = %( fi+ f2) ( precisely, p = |u)(u| ) rushed into the half-mirror
L,

(By) the fi part in u = - (f1 + fo) passes through the half-mirror 1, and goes along the course 1.

V2
And it is reflected in the mirror 1, and goes to the photon detector D;.
(By) the fo part in u = %( f1+ f2) rebounds on the half-mirror 1 (and strictly saying, the fo changes
to v/—1f2, we are not concerned with it ), and goes along the course 2. And it is reflected in

the mirror 2, and goes to the photon detector Ds.

This is, by the Heisenberg picture, represented by the following measurement:
Mp(c2)(®O0y, S|y) (11.27)

Then, we see:

a measured value 1
a measured value 2

[ ritahon] = i 2] = 1] s

(C) the probability that [ } is obtained by Mpc2)(®0y, S|) is given by

Remark 11.18. [Projection postulate] By the analogy of Section 11.2 ( The projection postulate ),

O] (€ C?), we have

Figure 11.4(1) is also described as follows. That is, putting e; = [é} and ey = [ 1
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11.6 Wheeler’s Delayed choice experiment: “Particle or wave?” is a foolish question

the observable Op = ({1,2},2{12} E) in B(C?) such that F({1}) = |ei)(e; and E({1}) = |e1)(e;.

Hence,

half mirror 1

u=ys () - course 1 J5fi®er mirror 1
Photon P "
course 2 %fg@&g %,ﬁ@el
Ef V-1
' 2®e Ja®ez
\\ 72 V2= Y Da(= (05 ® lea){ea])
mirror 2 (photon detector)
%f1®61

Di(= (05 @ lex){en]))

Y
et (photon detector)

Figure 11.4(1"). [D; + D2]=0; ® Op

Thus, using the Schrodinger picture, in the above figure we see:

1
time evolution V2

/=1
fi®er + 72f2®€2

u=—=(i+ ) =

which may imply that spacetime and quantum entanglement are related.

11.6.4 Mach-Zehnder interferometer (Interference)

Next, consider the following figure:
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half mirror 1

u=5(fit+f2) .. course 1 %fl irror 2
Photon P "
course 2 %fg %fl
E‘f - 0
' 2
A = - Y Da(= (l91) (1))
mirror 1 half mirror 2 - (photon detector)
%f 1— %fQ

D1 (= (lg2)(921))

\J (photon detector)

Figure 11.4(2). [D; + D2]=ObservableO,
Now we shall explain, by the Schrédinger picture, Figure 11.4(2) as follows.

The photon P with the state u = %(f 1+ f2) ( precisely, p = |u)(u| ) rushed into the half-mirror
L

(D1) the f; part in u = %(ﬁ + f2) passes through the half-mirror 1, and goes along the course 1.
And it is reflected in the mirror 1, and passes through the half-mirror 2, and goes to the photon

detector Dy.

(D2) the fo part in u = %( f1+ f2) rebounds on the half-mirror 1 (and strictly saying, the fo changes
to v/ —1f2, we are not concerned with it ), and goes along the course 2. And it is reflected in

the mirror 2, and further reflected in the half-mirror 2, and goes to the photon detector Ds.

This is, by the Heisenberg picture, represented by the following measurement:
Mg c2) (2Oy, S),)) (11.29)

Then, we see:

a measured value 1

(E) the probability that [ a measured value 2

} is obtained by MB((CZ)(q)QOg, S|p)) is given by

(au)-Der-

11.6.5 Another case

Consider the following Figure 11.4(3).
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11.6 Wheeler’s Delayed choice experiment: “Particle or wave?” is a foolish question

half mirror 1

u=-"L(fi+f2) =, 1 Lrf mirror 2
2 A - Y Di(=(f)()
Photon P - (photon detector)
course 2 %fg
vl .
N\ Nk .
N\ "
mirror 1 half mirror 2
L5
Ds(= (f2)(f2))
V(photon detector)

Figure 11.4(3). [D2 + D;] =ObservableO;

Now we shall explain, by the Schrédinger picture, Figure 11.4(3) as follows.
The photon P with the state u = %( fi1+ f2) ( precisely, p = |u)(u| ) rushed into the half-mirror

(F1) the f1 part in u = %( f1 + f2) passes through the half-mirror 1, and goes along the course 1.
And it reaches to the photon detector D;.

(F2) the fo part in u = %( fi1+ f2) rebounds on the half-mirror 1 (and strictly saying, the fo changes
to v/—1fa, we are not concerned with it ), and goes along the course 2. And it is again reflected

in the mirror 1, and further reflected in the half-mirror 2, and goes to the photon detector Ds.
This is, by the Heisenberg picture, represented by the following measurement:
Mp(c2)(®°Oy, S)) (11.30)

Therefore, we see the following:

measured value 1

(G) The probablhty that [measured value 2

] is obtained by the measurement Mpc2)(®2Oy, S,)) is
given by

(UUw, F({2))UUw)

[Tr@-@?F({l}))} _ [<UUu,F<{1}>UUu>] _ [|<UUu,f1>|2] _ [5]

Tr(p - B2F({2})) (U, f2)] ~ |3

Therefore, if the photon detector D does not react, it is expected that the photon detector Do

reacts.
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11.6.6 Conclusion

The above argument is just Wheeler’s delayed choice experiment. It should be noted that the
difference among Examples in §11.5.3 (Figure 11.4(1))— §11.5 (Figure 11.4(3)) is that of the observables

(= measuring instrument ). That is,

§11.5.3 (Figure 11.4(1)) ®0;
Heisenberg picture

§11.5.4 (Figure 11.4(2)) 20,
Heisenberg picture

§11.5.5 (Figure 11.4(3)) ®20¢

Heisenberg picture

Hence, it should be noted that

(H) Wheeler’s delayed choice experiment —“after the photon P passes through the half-mirror 1,
one of Figure 11.4(1), Figure 11.4(2) and Figure 11.4(3) is chosen” — can not be described

paradoxically in quantum language.

However, it should be noted that the non-locality paradox (i.e., “there is some thing faster than light”)

is not solved even in quantum language.

#Note 11.3. What we want to assert in this book may be the following:

(#) everything (except “there is some thing faster than light”) can not be described paradox-
ically in terms of quantum language
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11.7 Hardy’s paradox: total probabilty is less than 1

In this section, we shall introduce the Hardy’s paradox (cf. ref.[I8]) in terms of quantum language®.

Let H be a two dimensional Hilbert space, i.e., H = C2. Let fi, f2, 91,92 € H such that

1 0 fit /e fi—/f
flzf{:|:0:|7 f2:f£:|:1:|7 gl:gi: \/i ) 9229/2: 1\/§
Put
_fitfor
Consider the tensor Hilbert space H ® H = C?> ® C? and define the state p such that
. + 1+ f .
U—U®U,—f1ﬂf2®f1\/§f27 p:’u®ul><u®ul‘

As shown in the next section (e.g., annihilation (i.e., f; @ f; + 0), etc.), define the operator P :

C2 ® C? - C% ® C2 such that
Pla1 fi® fi+ofi® fo+ a0 fo® fi + aofo® fo) = —a12f1 @ fo — a2 fo ® fi + anfo® fo
Here, it is clear that

P a1 fi® fi+aiafi @ fa+ a1 fo® fi + aoafo ® fo) = auafi @ fo + ag1fo @ fi + asafo @ fo

hence, we see that P? : C? ® C? — C? ® C? is a projection.

Also, define the causal operator ¥ : B(C2? @ C?) — B(C2? @ C?) by
U(A)=PAP (A€ B(C*®C?)
Here, it is easy to see that ¥ : B(C2 @ C2) — B(C? ® C?) satisfies

(A1) U(A*A) >0 (VA e B(C2®C?))

i)

(A2) (1) = P?

Since it is not always assured that W(I) = I, strictly speaking, the ¥ : B(C2? ® C?) — B(C? @ (C?) is

a causal operator in the wide sense.

IThis section is extracted from

(#) [8] S. Ishikawa, The double-slit quantum eraser experiments and Hardy’s paradox in the quantum lin-
guistic interpretation, larxiv:1407.5143|quantum-phl,( 2014)

330 ’ For further imformation see my homepage,



http://arxiv.org/abs/1407.5143
http://www.math.keio.ac.jp/~ishikawa/indexKSTS5.html

KSTS/RR-19/003
December 26, 2019

Chap. 11 Simple measurement and causality

11.7.1  Observable O, ® O,

Consider the following figure

Positron P’ %( 1+ 1)

— 1 ,
“.Y course 2 % 7 mirror 2
half mirror 1’
course 1/ Ly Ef/
half mirror 1 V2ol V2 i2

L(frtf2)m, 1 L irror 2 Dy (= (lg1)(d11))
2 ny COUISE \/ifl ?S (Detector)
N

Electron P " \ if no annihilation,ﬁ, 4
i \1' half mirror 2/ )
= mirror alf mirror
course 2 V2 2 if no annihilation,
L5
VI Di(= (l92)(92]))
" Yy . 1 2/\92
\\ R " - ) \J (Detector)
mirror 1 half mirror 2 | Da(= (|g1)(911))
(Detector)
Y

D1(= (|g2)(92
VIETT

Figure 11.5(1). Electron P and Positron P’ are annihilated at ®

In the above, Electron P and Positron P’ rush into the half-mirror 1 and the half-mirror 1’ respec-

tively. Here, “half-mirror” has the following property:

o|cn=1 o] ca=10

pass through half-mirror
0
vl cn-n

0
HIGSEE
be reflected in half-mirror, and x+/—1

Assume that the initial state of Electron P [resp. Positron P’] is 81f1 + Bafe [resp. B1f1 + B5f3).
Then, we see, by the Schrodinger picture, that

(Bfr+ Baf2) @ (BLf1 + Bofs) = BiB1f1 @ f1 + BiBof1 @ fo+ B2f1f2 @ f1 + BaBofo ® fo

_
(half-mirror)
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BiBLAL® fl+V=1B8183f1 @ fo + V=1BB1f2 @ fi — B2Baofo ® f5

(annihilation(i.e., f1 ® f{ =0))

V=1B185F1 @ f5 + V=138 f2 @ f1 — B2fBofo @ [}

(second half-mirror)

— B1Bofr ® f — BaBrfo ® f1+ BaBafo ® f

The above is written by the Schrodinger picture U, : Tr(C2 @ C2) — Tr(C2 ® C2). Thus, we have
the Heisenberg picture (i.c., the causal operator ) ¥ : B(C2 @ C2) — B(C2 ® C2) by ¥ = (T,)*.

Define the observable 699 = ({1,2} x{1, 2}, 2112x{1.2} flgg) in B(C2®C?) by the tensor observable
Oy ® Oy, that is,

Hyy({(L, DY) = g1 @ giM{g1 @ a1l,  Hyg({(1,2)}) = 91 ® g2) (g1 @ g2,
Hyg({(2,1)}) = g2 ® g1) (g2 @ g1l,  Hyy({(2,2)}) = |g2 ® g2) {92 ® g0

Consider the measurement:

MB((C2®(C?)(\IJOggaS[ﬁ]) (11.31)
Then, the probability that a measured value (2,2) is obtained by M B(@@Cg)(\fl@, S(p) is given by

(u @, PHag({(2,2)})P(u® u))
((f1—f2) @ (fi— f2), 1® fo+ fo @ f1+ fa @ f2)|?
16
(i fi—[i®@fa—f2®fi+ @ fo, iIQfo+ @i+ fo®@ )2 1

16 16

Also, the probability that a measured value (1, 1) is obtained by MB(C2®C2)(€[}699, Sip)) is given by

(u® u, PHgg({(1,1)}) P(u ® u))

A+ RO i+ f)A®fat Lh®fit+ f2® )
16
(hofi+heh+thofi+f®f, hof+hoh+thof) 9

16 16

Further, the probability that a measured value (1, 2) is obtained by M B((C?®(C2)<(I}6gga S(p)) is given by

(u® u, PHyg({(1,2)}) P(u®u))

i+t )@ (fi—fo) i®fot 2@ fi+ f2@ fo)?
16
(hofh-hehthofi-fef hofh+heoh+thof) 1

16 16
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Chap. 11 Simple measurement and causality

Similarly,
(u® u, PHgg({(2,)})Plu®u)) = —

Remark 11.19. Note that

1+9+1+1—3<1
16 16 16 16 4

which is due to the annihilation. Thus, the probability that no measured value is obtained by the

measurement MB(@@@)(\TJG, S(z) s equal to 1.

11.7.2 The case that there is no half-mirror 2’

Consider the case that there is no half-mirror 2/, the case described in the following figure:

Positron P’ %(f{ + f5)

= . ,
.Y course 2/ % 15 mirror 2
half mirror 1’
course 1/ | ! Ef/
e o ﬂgl T o )
Vs " L irror 2 D (—
75 (f1t+f2) -, _course 1 Hh Q(Detecltor;
Electron P b \ \ if no annihilation,%f{
rror 1 )
N mirror
conmse 2 V2 /s if no annihilation,
s
7 Di(= (If2(f2])
Y Ny - .. 1 / :
mirror 1 half mirror 2 Ds(= (|g1){g1]))

(Detector)

Pl el

Figure 11.5(2). Electron P and Positron P’ are annihilated at ®

Define the observable Ggf = ({1,2} x{1, 2}, 2{1.2bx{1.2} ﬁgf) in B(C?®C?) by the tensor observable
04 ® Oy, that is,

~

Hyp({(LD)Y) = |g1 @ fi){gr @ fil,  Hyp({(1,2)}) = |1 ® fo) (g1 ® fol,
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Hyp({(2,1))) = [92® fidlg2 @ fil,  Hyp({(2,2)}) = lg2 ® fo) (g2 ® fo

Since the causal operator W : B(C? ® C?) — B(C? ® C?) is the same, we get the measurement:

MB((C?®(C2)(\IJng>S[/’ﬂ) (11.32)
Then, the probability that a measured value (2,2) is obtained by M B(@@Cz)(@ég £+5[p)) 1s given by

(u®u, PHyp({(2,2))P(u® u))

:|<(f1—f2)®f2»f1®f2+f2®f1+f2®f2>|2 _0
8

Also, the probability that a measured value (1, 1) is obtained by M B(@@Cg)(@ﬁg f>S[p) is given by

(u@u, PHyy({(1,1)})P(u® u))
WA+ RO NS fat @i+ f)? 1

8 8

Further, the probability that a measured value (1, 2) is obtained by MB((C2®(C2)(<I\I6gf7 S(p)) is given by

(u®u, PHyp({(1,2)})P(u ® u))
i+ )@ f2, L@ fat @ fi+ fa® fo)]? 4

16 8

Similarly,

(u@u, PHyp({(2,1)})P(u® u))
WA-f)OM NS+ @h+ff)? 1

8 8

Remark 11.20. It is usual to consider that “Which way pass problem” is nonsense. It should be
noted that, in the Heisenberg picture, the observable (= measuring instrument ) does not only include

detectors but also mirrors.
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11.8 quantum eraser experiment
Let us explain quantum eraser experiment(cf. [90]). This section is extracted from

(4) [48] S. Ishikawa, The double-slit quantum eraser experiments and Hardy’s paradox in the quantum

linguistic interpretation, arxiv:1407.5143|quantum-ph|,( 2014)

11.8.1 Tensor Hilbert space

Let C? be the two dimensional Hilbert space, i,e., C? = { El] | 21,29 € (C}. And put
2

ol e

Here, define the observable O, = ({—1,1},2{-L1 F,) in B(C?) such that

r =3 ] Baem=5 |4 T

Here, note that

1

Fo({1her = glerten), El{1hes = S(er+e2)

F({=1De = gler—e2), Fa({-1De = 3l—e1+¢)

Let H be a Hilbert space such that L2(R). And let O = (X, J, F') be an observable in B(H). For

example, consider the position observable, that is, X = R, F = Bg, and

(e ZeT)

relw-{, LZE)

Let u; and us (€ H) be orthonormal elements, i.e., |[u1|lg = ||uzllg =1 and (u;,u2) = 0. Put
U = a1u1 + au

where a; € C such that |ay|? + |ae]? = 1.

Further, define ¢ € C> @ H ( the tensor Hilbert space of C? and H) such that
Y = are1 ®uy + agex @ ug

where a; € C such that |ag]? + |as|? = 1.

335 For further imformation see my homepage,



http://arxiv.org/abs/1407.5143
http://www.math.keio.ac.jp/~ishikawa/indexKSTS5.html

KSTS/RR-19/003
December 26, 2019

11.8 quantum eraser experiment

11.8.2 Interference

Consider the measurement:
Mb(c2em) Oz © O, Sy ) (11.33)
Then, we see:

(A1) the probability that a measured value (1,z)(€ {—1,1} x X) belongs to {1} x = is given by

(W, (F({1}) ® FI(E))¥)
=(a1e1 ® up + agex ® ug, (Fr({1} ® F(2)))(a1e1 ® u + ages ® ug))
(a1e1 @ up + ager @ ug, aq(er + e2) @ F(Z)ur + az(er + e2) @ F(E)ug)

1
2
1 _ — _ — _ —_

- (|a1\2<u1, F(E)u) + |as|? (uz, F(E)us) + @ras(u, F(E)us) + a1a2<uQ,F(:)u1>>

=5 (1Pt F(@un) + oo, F(E)u) + 2{Real part](@raz(un, F(E)e))

where the interference term (i.e., the third term) appears.

Define the probability density function p; by

B e FEW
L= S (R

Then, by the interference term (i.e., 2[Real part](ajaz(u1, F(E)us)) ), we get the following graph.

b1

Figure 11.6(1): The graph of p;

Also, we see:

(A2) the probability that a measured value (—1,z)(€ {—1,1} x X) belongs to {—1} x E is given by

¥, (Fe({—1}) ® F(8))¢)
={a1e1 @ U1 + ages @ ug, ( ({ 1} X F(E)))(oqq X up + ager ® U2)>

/\/\

=-(a1e1 ®up + azex ® uz, ai(er — e2) ® F(Z)ug + ag(—e1 + e2) ®@ F(Z)uz)

(]al\ <U1, F(E)U1> + \a2]2<uQ, F(E)'LL2> — a1042<ul, F(E)U2> - Ozlag<'LL2, F<E>U1>>

l\DM—‘[\DM—‘[\DM—*

(|a1\ (ur, F(E)ur) + |ao|*(us, F(E)uz) — 2[Real part] (@ asu1, F(E)uQ>))
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where the interference term (i.e., the third term) appears.

Define the probability density function po by

W (B((-1)) ® FE)Y)
[ rataria = @ (-1 © DY)

(V2 e€T)

Then, by the interference term (i.e., —2[Real part](@;ao(ui, F(Z2)uz)) ), we get the following graph.

P2

Figure 11.6(2): The graph of ps

11.8.3 No interference
Consider the measurement:
Mp(c2am) (Or © O, i) (u)) (11.34)
Then, we see

(A3) the probability that a measured value (u,z)(€ {1,—1} x X) belongs to {1,—1} x Z is given by

(¥, @ F(2))Y)
=(a1e1 @ u1 + azes @ ug, (I @ F(2))(a1e1 @ ug + ages ® uz))
=(a1e1 ® u1 + ager ® ug, e ® F(E)uy + azea ® F(Z)ug)

=lan|*(ur, F(E)ur) + |azf* (uz, F(E)us)

where the interference term disappears.

Define the probability density function ps by

T

p3(q)dg = (b, (I @ F(E))¢) (VE € )

Since there is no interference term, we get the following graph.
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P3 =p1 + P2

b1

Figure 11.6(3): The graph of ps = p1 + p2
Remark 11.21. Note that

(As) = (A1)+(A2)

no interference interferences are canceled

This was experimentally examined in [90].
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Chapter 12

Realized causal observable in general
theory

Until the previous chapter, we studied all of quantum language, that is,

( (ﬁl):’ pure measurement theory‘

(=quantum language)
|(pure)Axiom 1| [Axiom 2] |[quantum Tinguistic interpretation)

= ’pure measurement ‘ + ’ Causality ‘—F ’ Linguistic interpretation

(cf [§2.7) (cf. §10.3) (¢f. §3.1)
a kind of spell(a priori judgment) the manual to use spells

(f2) :’ mixed measurement theory ‘

(=quantum language)

[(mixed)Axiom (™) 1] [Axiom 2] [quantum linguistic interpretation]
1= ’mixed measurement ‘ + ’ Ca,usality‘—i— ’Linguistic interpretation
(cf. §9.1) (cf. §10.3) (c¢f. §31)

a kind of spell(a priori judgment) the manual to use spells

As mentioned in the previous chapter, what is important is

» to exercise the relationship of measurement and causality
In this chapter, we discuss the relationship more systematically.

12.1 Finite realized causal observable

In dualism (i.e., quantum language), [Axiom 2/ (Causality) is not used independently, but is always

used with [Axiom 1| (measurement), just as George Berkeley (A.D. 1685- A.D.1753) said :

(A1) To be is to be perceived.

#Note 12.1. Note that Berkeley’s words is opposite to Einstein’s words:
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(#3) The moon is there whether one looks at it or not.

in Einstein and Tagore’s conversation.

In this chapter, we devote ourselves to finite realized causal observable. ( For the infinite realized

causal observable, see Chapter [14.) The readers should understand:

e ‘“realized causal observable” is a direct consequence of the linguistic interpretation, that is,

Only one measurement is permitted.

Now we shall review the following theorem:
Theorem 12.1. [=Theorem [I1.1:Causal operator and observable] Consider the basic structure:
Ar C AL C B(Hy)]  (k=1,2)

Let @15 : Ay — Aq be a causal operator, and let Oy = (X,F, Fy) be an observable in As. Then,
®1 202 = (X, T, P 2F>) is an observable in Aj.

Proof. See the proof of Theorem [I1.1 O

In this section, we consider the case that the tree ordered set T'(¢g) is finite. Thus, putting
T(to) = {to,t1,...,tn}, consider the finite tree (T'(tp), =) with the root tg, which is represented
by (T={to,t1,...,tn},7: T\ {to} — T') with the the parent map 7. .

Definition 12.2. [(finite)sequential causal observable]  Consider the basic structure:
[Ar CAp C B(Hy)]  (t € T(to) = {to,t1, - ,tn})

in which, we have a sequential causal operator {®;, 4, : Ai, — ﬁh}(tl,tg)eTi (¢f. Definition [10.10

) such that

(i) for each (t1,t2) € T2, a causal operator @ 4, : Ay, — Ay, satisfies that @y 4, s, 1, = Dy, 1,

(V(t1,t2), V(t2,t3) € T2). Here, @y, : Ay — Ay is the identity.

_ 2 [As: 0
[A2:O2]/[3 3]

s
_ Do [As : Oy
P . g

B ol D,
[Ao = Oo] :@ [Ag : Og] As - Osl
P07 [A7: 0]

Figure 12.1 : Simple example of sequential causal observable
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For each t € T, consider an observable O;=(X;, F;, F}) in A;. The pair [{O;}ier, {1, ¢ Ap, —
ﬁtl}(tm)eTg ] is called a sequential causal observable, denoted by [O7] or [O7,)]. That is, [O]

= {Ot}ter, {®ty 1, + A, — ﬁtl}(tl,tQ)ETé ]. Using the parent map 7 : T\ {to} — T, [Or] is also

— Prp —
denoted by [OT] = [{Ot}teT; {.At & Aﬂ(t)}teT\{tO})].

Now we can show our present problem.

Problem 12.3. We want to formulate the measurement of a sequential causal observable[Or]| =
{O¢}ter, { Pty 1y + Aty — ‘Atl}(tl,tg)ETé ] for a system S with an initial state pg, (€ GP(Af)).

How do we formulate this measurement?

Now let us solve this problem as follows. Note that the linguistic interpretation says that
only one measurement (and thus, only one observable) is permitted

Thus, we have to combine many observables in a sequential causal observable[Or| = [{O¢}rer, { P4, 4, :

Ap, — ﬁh}(tl,tz)eTg ]. This is realized as follows.

Definition 12.4. [Realized causal observable]

— D —
Let T'(tg) = {to,t1,...,tn} be a finite tree. Let [OT(tO)] = [{O¢ }ier, {(I)Tr(t),t s Ay ﬁ) .Aﬂ(t) }tET\{to}
| be a sequential causal observable. R R
For each s (€ T'), put Ts = {t € T | t = s}. Define the observable Os=(X cr, X1, X er.F;, Fy) in
Ag such that

. 0, (if s € T\ 7(T))
0. — ) (12.1)
Osx(Xier1((s) Lr(1)O0r) (if s € n(T))

(In quantum case, the existence of 63 is not always guaraAnteed)/.\ And further, iteratively, we get the
observable Oto = (XtET Xt, & tGngty Fto) in ‘Ato- Put Oto == OT(to)'

The observable 6T(t0) = (Xyier Xi, X yer Ty, ﬁto) is called the (finite) realized causal observable of
the sequential causal observable[O7 ()] = [{Ot}ter; {Pr(s)e : Ay — ﬁﬁ(t)}teT\{to} ]

Summing up the above arguments, we have the following theorem:
In the classical case, the realized causal observable OT(tO) = (Xyer Xt, X terFe, Fy,) always exists.
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ap
ANote 12.2. In the above (I12.1)), the product “x” may be generalized as the quasi-product “x”.
However, in this note we are not concerned with such generalization.

Example 12.5. [A simple classical example |  Suppose that a tree (7" = {0,1,...,6,7},7) has an
ordered structure such that 7(1) = 7(6) =7(7) =0, 7(2) =7(5) =1, 7(3) = 7 (4) = 2.

P23 L>(Q3): 0
o, [L(02):0y [L>(Q3) : O3]

e oy @0 o4

Bo1 [L°(91) : O4] ﬁr 24
[L>() : O] ‘Eﬁ L(0) : O] L>(Q5) : Os)
o7 [L>(827) : O7]

Figure 12.2 : Simple classical example of sequential causal observable

Consider a sequential causal observable [Or] = [{O¢ }er, {L”(Qt)q)’f_(f” L (Qr()) beer\{0})]- Now,
we shall construct its realized causal observable (A)T(to) = (Xyer Xt, X e, EO) in what follows.

Put
0,=0;, andthus F,=F (t=23,4,5,6,7).
First we construct the product observable Oy in L*>°(Q3) such as
Os = (X5 x X3 x X4, Fo XT3 X Fy, F)  where I = Fy X (t:>§4q)2’tﬁt)’

Iteratively, we construct the following:

D01

L®(Q) L®(Q,)P L®(Q)
Fy X ®ggFg X ®orFy Fy X @, 5F5

ﬁO D01 F\l Dq2 ﬁg
(F()X‘I>()ﬁﬁ6><¢‘()77ﬁ7><¢‘(),1ﬁl) (F1><<I>175ﬁ5><<191,2ﬁ2) (F2X¢273ﬁ3><¢'gy4ﬁ4)

That is, we get the product observable 61 = (Xilet, X ?:13",;,]31) of Oy, @17262 and @1,565, and

finally, the product observable

~ 7 7 ~ ~
O() = (Xt:0Xt7 g t:OS:taFO(: F() X (t_?<6 7(130,tFt))
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of Og, @07161, @07666 and @0,767. Then, we get the realization of a sequential causal observable
i ~
[{O¢}trer, {L°(%) T L(Q(t)) }eer\{0}]- For completeness, Fp is represented by
ﬁo(EoXE.1XEQXE3XE4XE5XE.6XE7)]
:FO(EO) X ‘1)0’1 (Fl(El) X @175F5(E5) X @1’2 (FQ(EQ) X @2’3F3(Eg) X @274F4(E4)))

X ¢0,6(F6(E6)) X (13077(F7<E7)) (122)

(In quantum case, the existence of 60 in not guaranteed). O

Remark 12.6. In the above example, consider the case that O; (¢t = 2,6,7) is not determined. In
this case,it suffices to define O; by the existence observable OgeXi):(Xt, {0, X:}, Ft(eXi)). Then, we see
that

ﬁo(EoXElXX2X53><E4XE5XX6><X7)
:F()(Eo) X @0,1 (Fl(El) X ‘13175F5(E5) X (I)LQ (‘13273F3(Eg) X (1)2’4F4(E4))> (123)

This is true. However, the following is not wrong. Putting 77 = {0,1,3,4,5}, consider the [Op/] =

[{Oi}terr, {Pey 15+ L(Re5) = L(Qy) b4y 1) (1)
(XtGT’ Xt, & tET’?ta F\é) is defined by

|. Then, the realized causal observable (A)T/(O) =

7

Fé(EO X 21 X 53 X 24 X 55) = Fo(E())

X (1)071 (Fl(El) X (13175F5(E.5) X (1)174F4(E4) X @173F3(Eg) X @1’4F4(E4)) (124)

which is different from the true (12.2). We may sometimes omit “existence observable”. However, if

we do so, we omit it on the basis of careful cautions.

Thus, we can answer Problem [12.3] as follows.

Problem 12.7. [=Problem [12.3] (written again)
We want to formulate the measurement of a sequential causal observable[Or] = [{Ot}ier, {®, 1, :
Aty = At } (1) 4)er2 ] for a system S with an initial state py, (€ &P (A7)

How do we formulate the measurement 7

Answer: If the realized causal observable 6t0 exists, the measurement is formulated by

measurement Mﬁto (019, Sipy,])

Thus, according to Axiom 1 ( measurement: [§2.7)), we see that
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(A) The probability that a measured value (z:)ier obtained by the measurement Mﬁto((A)T, Sipeo])
belongs to @(e X ;erd;) is given by

A (Pto, F\to(é))ﬁt (12.5)

0

The following theorem, which holds in classical systems, is frequently used.

Theorem 12.8. [The realized causal observable of deterministic sequential causal observable in classical

systems | Let (T'(tp), < ) be a finite tree. For each ¢ € T'(ty), consider the classical basic structure
[Co(€2) € L=(4, 1) € B(L?(Q, 1))

Let [Or] = [{Othter, { Pt tn + L(Qy) — L(Q)} i, 4p)er2 | be deterministic causal observable.
Then, the realization 6t0 = (Xier Xy, W yerF, ﬁto) is represented by

~

Oto = >< q)to,tot
teT

That is, it holds that
[Ery (X E)(wi) = X [B01F4 (E0)](wio) = X [F(Z0)] (10 4010)
teT teT teT

(tho S QtO,VEt S Stt)

Proof. It suffices to prove the simple classical case of Example[12.5. Using Theorem [10.6l repeatedly,
we see that

F\o = F() X ( >< (I)O,tﬁt)
t=1,6,7

:FO X ((1)071}/7’\1 X q)0,6ﬁ6 X (1)077}/7’\7) = FO X (q)O,lﬁl X (I)O,6F6 X (I)O’7F7)

:( X <1>o,tFt) X (Do Fy) = ( X @o,tFt) x Do,1(F1 x (

D41 F}))
t=0,6,7 t=0,6,7 t=2,5

:( X ‘I)o,tFt> X g ( X (I)l,tﬁt) = ( X q)O,tFt) X q’o,l(@l,zﬁz X 1 5F5)
=0,1,6,7 =25 =0,1,6,7

:( X (I)O,tFt) X <I>0,1(‘1)1,2132) = ( X (I)O,tFt> X @1 (Pr2(Fp x (X (I)Q,tﬁt)))
t=0,1,5,6,7 t=0,1,5,6,7 t=3.4

7
= X &g Fy
t=0

This completes the proof. O
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12.2 Double-slit experiment and projection postulate
12.2.1 Interference

For each t € T' = [0, 00), define the quantum basic structure
[C(H:) € B(H:) € B(Hy)],

where Hy; = L?(R?) (Vt € T).
Let ug € Hyp = L?(R?) be an initial wave-function such that (kg > 0, small o > 0):

2 2

1 . x 1
s exp (zkox — 202) vy exp ( - @),

where the average momentum (p?, pJ) is calculated by

B 1O, (v,
(9, p9) /wx dj .00, /% fy(y 0, y) = (ko 0).

That is, we assume that the initial state of the particle P is equal to |ug){uo|-

UO(xa y) ~ 1/}96(337 0)¢y(y,0) =

Picture 12.9. MB(HO)((I)O,tQOQ = (]R, BR, (I>O,t2F2), S[|u0><u0|})

t=11 t =t

Figure 12.3(1) Potential V (z,y) = oo on the thick line, = 0 (elsewhere)

Thus, we have the following Schrodinger equation:

L0 hQ 82 h2 62
Zha’dt(xyy) - fHUt(%?J); J_C — _%w - %W + V( )

Let s,t be 0 < s < t < oo. Thus, we have the causal relation: {®s; : B(H¢) — B(Hj) }o<s<t<oo

where

H(t—s) H(t—s)

O A=e w Ae” @ (VA € B(H;) = B(L*(R?)))

345 ’ For further imformation see my homepage,



http://www.math.keio.ac.jp/~ishikawa/indexKSTS5.html

KSTS/RR-19/003
December 26, 2019

12.2 Double-slit experiment and projection postulate

Thus, (®os, )«(uo) = ul + ul in Picture 12.9.

Let Oz = (R, Bg, F2) be the position observable in B(L?(R?) such that
1 (z,y) eRxE

[FEN(z,y) = xs(y) =
0 (z,y) eRxR\ZE

Hence, we have the measurement Mp(g,)(®o,t,02 = (R, Br, Po,t,F2), S[jug) uol))- Axiom 1 ( measure-

ment: [§2.7) says that

(A) the probability that a measured value a € R by Mp(0)(P0,t,0, Sjug) (uo|) belongs to (—oo,y] is
given by
y
(o, (B0, F (=0, ))0) = [ pr(w)iy

ANote 12.3. Precisely speaking, we say as follows. Let A, € be small positive real numbers. For
each k€ Z={k|k=0,£1,42,43,,,,,}, define the rectangle Dy such that

Do = {(x,y) € R* | z < b},

Dp={(z,y) eR*|b<z,(k—1A<y<kA}, k=123,..

Dp={(z,y) eR*|b<z kA <y<(k+1A}, k=-1,-2-3, ..
Thus we have the projection observable 08 = (7,27, F$) in L?(R?) such that

[F({kD)(,y) =1 ((,9) € D), =0 ((z,y) eR*\Dy) (k€ Z)
Then it suffices to consider

e for each time t,, =t +ne(n = 0,1,2, ...), the projection observable O% is measured in the

sense of Projection Postulate [11.6L

12.2.2 Which-way path experiment

Picture 12.10. Which-way path experiment: A measured value by Mp(r2(m2))(®os (¥(Oc @

D,.6,02)), Sfjug) (uo))) belongs to {1} x (—o0,]
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t=1 t =19

Figure 12.3(2) Potential V' (x,y) = oo on the thick line, = 0 (elsewhere)

Next, let us explain the above figure. Define the projection observable O; = ({1,]}, 2}, Fy) in
B(L?(R?)) such that

A ={ 5 ¥2)

[FL{ID(,y) = 1= [F({TH](x, y)

According to Section 11.2 ( Projection postulate ), consider the CONS {ej,es} (€ C2). Define the
predual operator W, : Tr(L?(R?)) — Tr(C? ® L?(R?)) such that

Wo(fu)(ul) = [(ex @ Fu({1})u) + (e2 ® Fi({1})u))((ex @ Fi({T})u) + (e2 @ F1({{})u)]

Then we have the causal operator ¥ : B(C? ® L?(R?)) — L?(R?) such that ¥ = (¥,)*. Define the
observable Og = ({1, 1}, 2"} @) in B(C?) such that

G{1}H) = lex){eal,  G({I}) = [ea)(ez]

Hence we have the tensor observable Og ® ®y, 1,02 in B(C? ® L?(R?)), and hence, the measurement

Mpr2®2))(Po.t, (¥(Oc @ @ty.1,02)); S[jug) (uol))- Then, Axiom 1 ( measurement: [§2.7) says that

(B) the probability that a measured value (A, y) € {1, 1} xR by Mp(r2(r2))(®o.t, (¥ (Oc@Pt, ,02)), S[jug) (uol])
belongs to {1} x (—o0,y] is given by

(s @l (el =5 [ palwhdy

347 ’ For further imformation see my homepage,



http://www.math.keio.ac.jp/~ishikawa/indexKSTS5.html

KSTS/RR-19/003
December 26, 2019

12.2 Double-slit experiment and projection postulate

#Note 12.4. Precisely speaking, in the above case, it suffices to consider the following procedure
(1) and (ii):

(i) for time ¢y, the projection observable O; is measured in the sense of Projection Postulate
11.6

(ii) for each time t,, = t2 +ne(n =0,1,2,...), the projection observable 02A is measured in the
sense of Projection Postulate [11.6L
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12.3 Wilson cloud chamber in double slit experiment

In this section, we shall analyze a discrete trajectory of a quantum particle, which is assumed
one of the models of the Wilson cloud chamber ( i.e., a particle detector used for detecting ionizing
radiation). The main idea is due to. [27, 28] (1991, 1994, S. Ishikawa, et al.)].

12.3.1 Trajectory of a particle is non-sense

We shall consider a particle P in the one-dimensional real line R, whose initial state function is
u(r) € H = L*(R). Since our purpose is to analyze the discrete trajectory of the particle in the
double-slit experiment, we choose the state u(z) as follows:

1/vV2,2 € (=3/2,-1/2) U (1/2,3/2)
u(x) = (12.6)
0, otherwise

1/v/2

Y

-3/2 -1/2 0 1/2 3/2 x

Figure 12.4 The initial wave function u(x)

Let Ay be a position observable in H, that is,
(Agv)(x) = zv(x) (Vx € R, (for v e H=L*(R)

which is identified with the observable O = (R, Bg, E 4,) defined by the spectral representation: Ag =

fR xEa,(dz).

We treat the following Heisenberg’s kinetic equation of the time evolution of the observable A,
(—00 < t < 00) in a Hilbert space H with a Hamiltonian H such that H = —(h?/2m)0?/0z? (i.e., the
potential V(z) = 0), that is,

dA
—ihd—tt =HA; — AH, —oco<t< oo, where Ag=A (12.7)

The one-parameter unitary group U, is defined by exp(—itA). An easy calculation shows that
A = Ut*AUt = Ut*ZL‘Ut =r+ ——— (128)
i
Put t =1/4, h/m = 1. And put

1d .
A= Ay(=2), B=A =2+ E%) =Ui)4AoU1ja = @g,17240
Thus, we have the sequential causal observable

position observable: Ag position observable: Ag

m — B(Hy)4)

Po,1/4

initial wave function:ug
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However, Ao(= A) and @ ;,4A0(= B) do not commute, that is, we see:

1d 1d .
AB—BA:az(x—i-E%)—(:c+£%)x:z/4750

Therefore, the realized causal observable does not exist. In this sense,

the trajectory of a particle is non-sense

12.3.2 Approximate measurement of trajectories of a particle

In spite of this fact, we want to consider “trajectories” as follows. That is, we consider the
approximate simultaneous measurement of self-adjoint operators {A, B} for a particle P with an
initial state u(z).

Recall Definition 4.13, that is,

Definition 12.11. (=Definition 4.13)). The quartet (K s, g, §) is called an approximately simulta-
neous observable of A and B, if it satisfied that

(A1) K is a Hilbert space. s € K, ||s||x =1, A and B are commutative self-adjoint operators on a
tensor Hilbert space H ® K that satisfy the average value coincidence condition, that is,

(u®s,g(u®s)> = (u, Au), (u®s,Blu®s)) = (u, Bu) (12.9)
(Vu € H, |Jullg = 1)

Also, the measurement Mp(gg i) (0 7% 05,9 [;;us]) is called the approximately simultaneous measure-
ment of MB(H)(OA7 S[pu]) and MB(H)(OBa S[pu])7 where

Pus =u@s)(u®@s|  ([s}k =1)
And we define that

(Ag) A%S (=(A-A®I)(u®s)|) and A%s (= (B—=B®I)(u®s)||) are called errors of the
1 2

approximate simultaneous measurement measurement Mp (g ) (07 x 0g, S[ﬁus])

Now, let us constitute the approximately observable (K, s, A\, §) as follows.
Put

K=IL*R,), s(y) == (?)1/4 exp ( B w1\2y12>

where w; is assumed to be w = 4, 16, 64 later. It is easy to show that ||s[|L2m,) =1 (Le., [|s|x =1
) and

(s,As) = (s,Bs) =0 (12.10)
And further, put

A=ARI+2IRA

E:B@I—%I@B
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Note that the two commute (i.e., AB = BA ). Also, we see, by (12.10),

@8 Au®s) =(u®s, (AR 1 +2I® A)(u® s)) = (u, Au) (12.11)
(W@ s Au®s)) =(ues (BoT—2I® A)(u®s)) = (u, Bu) (12.12)
(Yu € H,i=1,2)

Thus, we have the approximately simultaneous measurement Mp g x)(0 7% Og, Sj5,,]), and the errors
are calculated as follows:

b= A% = (A A@ D(ues)| =201 @ A)(us)| = 2| As| (12.13)
01/4 = Af:&; =||(B-BaNu®s)|=(1/2)|(I & B)(uas)| = (1/2)|Bs]| (12.14)
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By the parallel measurement ®],€V:1 Mprek) (03 % Og, Sj5,.)), assume that a measured value:

(.2, (@2.29), -+, (@, o))

is obtained. This is numerically calculated as follows.

W =4

LR
i-l,u’-l

Figure 12.5: The lines connecting two points (i.e., z and 7)) (k =1,2,...)

Here, note that dg(= d;/4) and dp are depend on w.

ANote 12.5. For the further arguments, see the following refs.
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(#1) [27]: S. Ishikawa, Uncertainties and an interpretation of nonrelativistic quantum theory,
International Journal of Theoretical Physics 30, 401-417 (1991)
doi: 10.1007/BF00670793

(#2) [28]: Ishikawa, S., Arai, T. and Kawai, T. Numerical Analysis of Trajectories of a Quantum
Particle in Two-slit Experiment, International Journal of Theoretical Physics, Vol. 33, No.
6, 1265-1274, 1994
doi: 10.1007/BF00670793
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12.4 Two kinds of absurdness — idealism and dualism

This section is extracted from ref. [42].
Measurement theory (= quantum language ) has two kinds of absurdness. That is,

linguistic world-view

idealism- - -
The limits of my language mean the limits of my world
() Two kinds of absurdness
dualism - - - Descartes=Kant philosophy

The dualistic description for monistic phenomenon
In what follows, we explain these.

12.4.1 The linguistic interpretation — A spectator does not go up
to the stage

Problem 12.12. [A spectator does not go up to the stage]
Consider the elementary problem with two steps (a) and (b)

(a) Consider an urn, in which 3 white balls and 2 black balls are. And consider the following trial

e Pick out one ball from the urn. If it is black, you return it in the urn If it is white, you
do not return it and have it. Assume that you take three trials.

(b) Then, calculate the probability that you have 2 white ball after (a)(i.e., three trials)

Answer Put Ny = {0,1,2,...} with the counting measure. Assume that there are m white balls
and n black balls in the urn. This situation is represented by a state (m,n) € N3. We can define the

dual causal operator ®* : M1 (N2) — M,1(N3) such that

(1) + 0 (when m #0)
* _ m+nY(m—1,n) m+n (m,n)
" Omm) { 8(0,n) (when m =0). (12.15)
where (. is the point measure.
Let T' = {0,1,2,3} be discrete time. For each ¢t € T, put Q; = N3. Thus, we see:

3 2
s0e2 + 55<372>>

2 2
- 5
19 12)+ 22)) + 5(5

4
5(2 2+ 5 5(32))

8 (052) = @W(

| o

2
d(2,2) t 55(3,2))>

_@(3
5
(354
0

1 2 27 2 2 4 3 2
10(35(0 2) + 35(1 2)) + %(15(1,2) + 15(2,2)) + %(55(2,2) + 55(3,2))
1 47 183 8
=1p%02 * 1ggfa» + %5(2,2) + 355(3,2) (12.16)
Define the observable O = (Ng, 20, F) in L>°(€23) such that
= . 1 (m,n)GExNogﬁg
rEimn={ e
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Therefore, the probability that a measured value “2” is obtained by the measurement M Lm(Ng)(q)?’O,
S[(372)]) is given by

BEEIE2 = [ PEDIE)@ T (o)) = 500 (1217)

Q3
O
The above may be easy, but we should note that

(c) the part (a) is related to causality, and the part (b) is related to measurement.
Thus, the observer is not in the (a). Figuratively speaking, we say:

A spectator does not go up to the stage

Thus, someone in the (a) should be regard as “robot”.

ANote 12.6. The part (a) is not related to “probability”. That is because The spirit of measure-
ment theory says that

there is no probability without measurements.

although something like “probability” in the (a) is called “Markov probability”.

12.4.2 1In the beginning was the words—F'it feet to shoes

Remark 12.13. [The confusion between measurement and causality ( Continued from Exampld2.31))]
Recall Exampld2.31] [The measurement of “cold or hot” for water]. Consider the measurement
Moo () (Och, Sp)) where w = 5( °C). Then we say that

(a) By the measurement Mo q)(Och, Sju(=5)), the probability that a measured value

(= empty set) 0

={c elongs to a se {c} s oqual to | FUHEDIB) =1

z(€ X = {c,h}) belongs t t It aual o | o0 = L
{c,h} 1

Here, we should not think:
“5°C” is the cause and “cold” is a result.

That is, we never consider that

(b) 5 °Cl—

(cause) (result)

That is because Axiom 2 (causality; §10.3)| is not used in (a), though the (a) may be sometimes
regarded as the causality (b) in ordinary language.
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12.4 Two kinds of absurdness — idealism and dualism

ANote 12.7. However, from the different point of view, the above (b) can be justified as follows.
Define the dual causal operator ®* : M([0, 100]) — M({c, h}) by

[@70,](D) = fe(w) - 6c(D) + fu(w) -on(D)  (Vw € [0,100], VD C {e, h})
Then, the (b) can be regarded as “causality”. That is,
(f) “measurement or causality” depends on how to describe a phenomenon.

This is the linguistic world-description method.

Remark 12.14. [Mixed measurement and causality | Reconsider Problem [0.5(urn problem:mixed
measurement). That is, consider a state space 2 = {wi,w2}, and define the observable O =
({w, b}, 21w F) in L°(Q) in Problem [0.5. Define the mixed state by p™ = pd., + (1 — p)du,.
Then the probability that a measured value z ( € {w,b}) is obtained by the mixed measurement
Moo () (O, Sy (p™)) is, by (9.3), given by

P({z}) =/Q[F({$})](w)pm(dw) = plF({z})](w1) + (1 = p)[F({z})](w2)

- { 08p+04(1—p) (whenz=w)

| 02p+0.6(1—p)) (whenxz=10) (12.18)

Now, define a new state space Qp by Qo = {wo}. And define the dual (non-deterministic) causal oper-
ator ®* : M41(Q0) = M4+1(Q2) by ®*(6w,) = Pduwy + (1 — p)du,. Thus, we have the (non-deterministic)
causal operator ® : L>°(€2) — L*°(Qp). Here, consider a pure measurement My (o.)(®0, Sj,,)). Then,
the probability that a measured value z ( € {w, b}) is obtained by the measurement is given by

P({z}) = [®(F({z}))/(wo) = /Q[F({:L“})](W)pm(dw)

B { 08p+04(1—p) (whenz=w)
] 0.2p+0.6(1 —p)) (whenz=1b)

which is equal to the (12.18). Therefore, the mixed measurement My (q)(O, Sj,j(10)) can be regarded
as the pure measurement Mo () (®O, Si))-

#Note 12.8. In the above arguments, we see that
(1) Concept depends on the description

This is the linguistic world-description method. As mentioned frequently, we are not concerned
with the question “what is ()()?”. The reason is due to this (). “Measurement or Causality”
depends on the description. Some may recall Nietzsche’s famous saying:

There are no facts, only interpretations.

This is just the linguistic world-description method with the spirit: “Fit feet (=world) to shoes
(language)”.
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Chap. 12 Realized causal observable in general theory

ANote 12.9. In the book “The astonishing hypothesis” ([L1] by F. Click (the most noted for
being a co-discoverer of the structure of the DNA molecule in 1953 with James Watson)), Dr.
Click said that

(a) You, your joys and your sorrows, your memories and your ambitions,your sense of personal
identity and free will,are in fact no more than the behavior of a vast assembly of nerve cells
and their associated molecules.

It should be note that this (a) and the dualism do not contradict. That is because quantum
language says:

(b) Describe any monistic phenomenon by the dualistic language (= quantum lan-
guage )!

Also, if the above (a) is due to David Hume, he was a scientist rather than a philosopher.
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Chapter 13

Fisher statistics (II)

Measurement theory (= quantum language ) is formulated as follows.

[Axiom 1] [Axiom 2] [quantum Tinguistic interpretation]|
° ’measurement theory‘ := | Measurement |+ ’ Causality H ’Linguistic interpretation
(=quantum language) (cf. [§82.7) (cf. §10.3) (cf. §3.1)
a kind of spell(a priori judgment) manual to use spells

In Chapter 5 (Fisher statistics (I)), we discuss “inference” in the relation of “measurement”. In
this chapter, we discuss “inference” in the relation of “measurement” and “causality”. Thus,
we devote ourselves to regression analysis. This chapter is extracted from the following;:

(#) Ref. [33]: [S. Ishikawa, “Mathematical Foundations of Measurement Theory,” Keio Uni-
versity Press Inc. 2006.

13.1 “Inference” = “Control”

It is usually considered that

e statistics is closely related to inference
e dynamical system theory is closely related to control

However, in this chapter, we show that
“inference” = “control”

In this sense, we conclude that statistics and dynamical system theory are essentially the same.

13.1.1 Inference problem(statistics)
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13.1 “Inference” = “Control”

Problem 13.1. [Inference problem and regression analysis]

Let Q = {w1, w2, ...,w100} be a set of all students of a certain high school. Define h : Q — [0, 200]
and w : Q — [0,200] such that:

h(wy) = “the height of a student w,” (n=1,2,...,100)
w(wy) = “the weight of a student w,” (n=1,2,...,100)

(13.1)
For simplicity, put, N = 5. For example, see Table 13.1.

Table 13.1: Height and weight

Height- Weight \_Student
Height (h(w) cm)
Weight(w(w) kg)

w1 w2 w3

w4y ws
150 | 160 | 165 | 170 | 175
65 | 55 | 75 | 60 | 65

200
Assume that:

(a1) The principal of this high school knows the both functions h and w. That is, he knows the exact
data of the height and weight concerning all students.

Also, assume that:

(ag) Some day, a certain student helped a drowned girl. But, he left without reporting the name.
Thus, all information that the principal knows is as follows:

(i) he is a student of his high school.

(ii) his height [resp. weight] is about 170 cm [resp. about 80 kg].

Now we have the following question:

(b) Under the above assumption (a;) and (ag), how does the principal infer who is he?

This will be answered in Answer [13.51
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13.1.2 Control problem(dynamical system theory)

Adding the measurement equation g : R® — R to the state equation, we have dynamical system
theory(13.2). That is,

(i) : dfl—gt) =v(w(t),t,e1(t),B) ---( state equation)

’ dynamical system theory ‘ = (initiak.(0)=a) (13.2)

(ii) : z(t) = g(w(t),t, ea(t)) -+ ( measurement)

where a, B are parameters, e (t) is noise, ez(t) is measurement error.

The following example is the simplest problem concerning inference.

Problem 13.2. [Control problem and regression analysis] We have a rectangular water tank filled with

water.

F

L(t)

|

Figure 13.1: Water tank

Assume that the height of water at time ¢ is given by the following function h(t):

dh
o Bo, then h(t) = ap + Bot, (13.3)

where o and [y are unknown fixed parameters such that ag is the height of water filling the tank at
the beginning and [y is the increasing height of water per unit time. The measured height h,,(t) of

water at time ¢ is assumed to be represented by
hm(t) = ao + Bot + e(?),

where e(t) represents a noise (or more precisely, a measurement error) with some suitable conditions.

And assume that we obtained the measured data of the heights of water at ¢t = 1,2, 3 as follows:
hm(1) =1.9, hp(2) =3.0, hy,(3)=4.7. (13.4)

Under this setting, we consider the following problem:
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13.1 “Inference” = “Control”

(c1) [Control]: Settle the state (ag, o) such that measured data (13.4) will be obtained.
or, equivalently,
(co) [Inference]: when measured data (I3.4)) is obtained, infer the unknown state (ayg, Bo).

This will be answered in Answer [13.6l

Note that

(c1)=(c2)

from the theoretical point of view. Thus we consider that

(d) Inference problem and control problem are the same problem. And these are

characterized as the reverse problem of measurements.

Remark 13.3. [Remark on dynamical system theory (cf. [33]) ] Again recall the formulation (13.2)

of dynamical system theory, in which

(#) the noise e1(t) and the measurement error ey(t) have the same mathematical structure (i.e.,

stochastic processes ).

This is a weak point of dynamical system theory. Since the noise and the measurement error are
different, I think that the mathematical formulations should be different. In fact, the confusion
between the noise and the measurement error frequently occur. This weakness is clarified in quantum

language, as shown in Answer [13.6.
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13.2 Regression analysis

According to Fisher’s maximum likelihood method (Theorem?.0) and the existence theorem of the

realized causal observable, we have the following theorem:

Theorem 13.4. [Regression analysis (cf. [33]) ] Let (T={to,t1, ..., tn}, 7 : T\ {to} = T) be a
tree. Let Op =( X er X, X terFt, Fi,) be the realized causal observable of a sequential causal
observable [{O¢}rer, {Pr(r)e : L) — L(Qr(1)) bter\{to) |- Consider a measurement

MLOO(QtO)(aT:(é(T X, Kyerdy, Fyy), )

Assume that a measured value obtained by the measurement belongs to 2 (e X terJ¢). Then, there
is a reason to infer that

[*]:wto

where wy, (€ Q) is defined by

[Fo (E))(wy) = max [F, (2)](w)

W€y,

The poof is a direct consequence of |Axiom 2 (causality; §10.3) and Fisher maximum likelihood
method (Theorem [5.6). Thus, we omit it.
It should be noted that

(#) regression analysis is related to |[Axiom 1 (measurement; 62.7) and [Axiom 2
(causality; §10.3)

Now we shall answer Problem(I3.1] in terms of quantum language, that is, in terms of re-
gression analysis (Theoren(I3.4)).

Answer 13.5. [(Continued from Problem13.I(Inference problem))Regression analysis] Let (7=
{0,1,2}, 7 : T\ {0} — T') be the parent map representation of a tree, where it is assumed that

(1) =7(2)=0

Put Qp = {wi,ws,...,ws}, Q5 = interval[100,200], Qy = interval[30,110]. Here, we consider
that

QoDwp -+ a state such that “the girl is helped by a student w,,” (n=1,2,...,5)

For each t (€ {1,2}), the deterministic map ¢o; : Qy — € is defined by ¢o1 = h(height
function), ¢p2 = w(weight function). Thus, for each ¢ (€ {1,2}), the deterministic causal
operator O, : L®(€;) — L>®(€) is defined by

[@orfi](w) = filos(w))  (Vw € Qo, VS € L7())

363 ’ For further imformation see my homepage,



http://www.math.keio.ac.jp/~ishikawa/indexKSTS5.html

KSTS/RR-19/003
December 26, 2019

13.2 Regression analysis

Po1_L=()

‘CD\LOO(QQ)

0,2

L>($p)

For each t = 1,2, let O¢, =(R, Bg, G5,) be the normal observable with a standard deviation
o; > 0in L>°(€). That is,

_ (z—w)?

2t dr (V2 € Bg,Vw € Q)

[Go, (B)](w) = \/ﬁ

Thus, we have a deterministic sequence observable [{Og,, }1=1,2, {®o : L=() — L>() }i=1,2]-
Its realization Op = (R?, Fge, ﬁo) is defined by

~

[F0(ZE1 X Eg)](w) = [20,1Go (W) - [20,2G o | (W) = [Goy (E1)](¢0,1(w)) * [Gory (E2)](¢0,2(w))

(VEl,EQ € ‘BR, Yw € Qy = {UJl,LdQ,. .. ,w5})

Let N be sufficiently large. Define intervals =, =y C R by

=1 = |165 L 165 + L 65 — L 65 + !
—1 — N7 N ) ‘—'2 — N7 N
The measured data obtained by a measurement M Lw(QO)(©T, Sp) 1s

(165, 65) (€ R?)

Thus, measured value belongs to Z; X Zy. Using regression analysis ( Theorem [I3.4)) is charac-
terized as follows:

(#) Find wy (€ ) such as

[Fo({Z1 % Z3)](wo) = max[Fo({Z1 x Z»)](w)

wef)

Since N is sufficiently large,

(z1 = h(w))® (22 —w(w))
() = max ————— //GXP — |dxidxs
weN 2 20- 20.2
0 \/(27)%0i03 2L i 3
(165 — h(w))? (65 — w(w))?
= maxexp [— 207 — 702 ]
165 — h(w))* = (65 — 2
== min [( 2(w)) + ( u;(w)) ] ( for simplicity, assume that o = o5)
weN 20’1 20—2
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165 — 170)2 5 — 2
(165 0)2 —; (6 60) is obtained
5]

—When w4, minimum value

—The student is wy

Therefore, we can infer that the student who helps the girl is wjy. O

Now, let us answer Problem [13.2] in terms of quantum language (or, by using regression
analysis (Theorem(I3.4))).

Answer 13.6. [(Continued from Problem [13.2(Control problem))Regression analysis] In Problem
132, it is natural to consider that the tree T' = {0, 1,2, 3} is discrete time, that is, the linear
ordered set with the parent map = : T\ {0} — T such that 7(t) =t —1 (t = 1,2,3). For
example, put

Qo =10, %[0, 2, 2 =10, 4 %[0, 2, =10, 6]x[0,2, =10, 8 x[0, 2]

For each t = 1,2, 3, define the deterministic causal map ¢y : Qrey — Q¢ by (13.3)), that is,

¢o1(wo) = (v + B, 5) (Vwo = (o, B) € Qo = [0, 1] x [0, 2])
P12(w1) = (a+ 3, B) (Vi = (o, 8) € Q1 = [0, 4] x [0, 2])
Pa3(wa) = (v + B, 5) (Vws = (a, B) € Qy = [0, 6] x [0, 2])

Thus, we get the deterministic sequence causal map {¢w(t),t Qe — Qt}t€{1,2,3}, and the

deterministic sequence causal operator {®r ), : L®(€) = L>(Qr 1)) bteqr,2,33- That is,

(Po,1f1)(wo)=fi(do1(wo)) (Vfi € L=(),Vwy € )
(Pr2fo)(wi)=fa(@r2(w1)) (Vfe € L7(Q), Vi € )
(Po5f3)(we)=f3(pa3(w2)) (Vfz € L7(Q3),Vw; € Qo).

[lustrating by the diagram, we see

L2°(Q) €28 [2(Q) €42 [o0(0) €22 L°(Q)

And thUS, ¢072(w0) = ¢172(¢071(W0)), ¢073(WO) = ¢2,3(¢1,2(¢0,1(W0))), Therefore, note that @072 =
Qo1 Pro, Poz=Po1-Pro- Pos.

i{’()/L‘X’(Ql)
L2(Q0) P02 L(Qy)

‘tb\Loo(Qg)

0,3
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Let R be the set of real numbers. Fix ¢ > 0. For each ¢t = 0,1,2, define the normal
observable O,=(R, Bg, G,) in L>*(S);) such that

=) [(w ex (== a)Q x
Go(ENe) = <55 [ o=y
(V= € Bg,Vw; = (o, ) € Qt_[o, 2t + 2] x [0, 2]).

Thus, we have the deterministic sequential causal observable [{O;}i—1.23, {®r()s : L2(%) —

L(Qrr)) heer,2,3]-
And thus, we have the realized causal observable O7 = (R3, Fgs, Fy) in L=(p) such that (

using Theorem [12.8))

[Fo(E1 % Za % Ey))(wo) = [®o1(Go(E1)P1a(Go(Z2)P23(Go(E5)))) ] (wo)
=[®0,1G4(E1)](wo) -+ [P02Go(E2)](wo) - [Po,3Go(E3)](wo)
=[G+ (E1)](do,1(wo)) - [Go(Z2)](P02(w0)) - [Go(Z3)](do3(wo))
(V=1, 22,23 € B, Ywy = (o, 8) € Qo = [0, 1] x [0, 2])

Our problem (i.e., Problem [13.2) is as follows,

(#1) Determine the parameter (o, ) such that the measured value of My q)( Or, Sp) 1s
equal to (1.9,3.0,4.7)

For a sufficiently large natural number N, put

_ 1 1] 1 1] _ 1 1
=) = 1.9—N,1.9+N},H2_[3.0 N,3.0+N],H3_[4.7 AT

Fisher’s maximum likelihood method (Theorem [5.6))) says that the above (f) is equivalent

to the following problem

(f2) Find (o, B) (= wo € Q) such that

[Fo(Z1 x Z5 x Z3)](a, B) = %%§[ﬁ0(51 X Zp X Z3)]

Since N is assumed to be sufficiently large, we see

(1) = (anﬂl)aE%O[Fo(ul X g X Z3)](a, B)

1 [ (=1= (@+8)%+(xo— (a+zza>> +(x3— <a+3m>2}
—> max e 202
Oéﬂ)GQo ‘/271-0-2

Z1XEgXE3
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Xdl’ldxgdl'g
— max exp(—J/(20°
Joax p(—J/(20%))
=—> min J
(Q7B)GQO

where

J=(19— (a+B8))>+ (3.0 — (a+28))> + (4.7 — (a + 3B))>

(Z2{}=0,2{"}=0and thus,)

(19— (a+B) + (3.0 — (a+28)) + (4.7 — (@ +38)) =0
:>{ (a+p =0

(1.9 — ) +23.0—(a+28))+3(4.7— (e + 30)
= (o, f) =(0.4,1.4)
Therefore, in order to obtain a measured value (1.9, 3.0, 4.7), it suffices to put
(o, ) = (0.4, 1.4)

Remark 13.7. For completeness, note that,

e From the theoretical point of view,

“inference” = “control”

Thus, we conclude that statistics and dynamical system theory are essentially the same.
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Chapter 14

Realized causal observable in classical
systems

As mentioned in the previous chapters, what is important is
e to exercise the relationship of measurement and causality

In this chapter, we discuss the relationship more systematically. That is, we add the further
argument concerning the realized causal observable. This field is too vast, thus, we mainly
concentrate our interest to classical systems, particularly, Zeno’s paradox. That is,

(b) to describe the flying arrow ( the best work in Zeno’s paradoxes ) in terms of quantum
language (cf. refs.[40, 42])

We believe that this is the final answer to Zeno’s paradox.

14.1 Infinite realized causal observable in classical sys-
tems

In what follows, we shall generalize the argument ( concerning the finite realized causal
observable in Chapter [I2) to infinite case. In the case of infinite trees, it is impossible to

discuss quantum system deeply. thus, in this chapter,

we devote ourselves to classical systems

I This chapter is extracted from

[40]: S. Ishikawa, “Zeno’s paradozes in the Mechanical World View,” [arXiv:1205.1290v1 [physics.hist-ph],
(2012)

[42]): S. Ishikawa, Measurement Theory in the Philosophy of Science, [arXiv:1209.3483 [physics.hist-ph]
2012, (177 pages)
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14.1 Infinite realized causal observable in classical systems

Let (T, <) be an infinite tree, i.e., an infinite tree like semi-ordered set such that
“tq é t3 and to é 3" = “t4 é ty Or 1o é t”

Put Té = {(t1,t3) € T? : t; < ty}. An element t, € T is called a root if to < t (Vt € T)
holds. If T" has the root ty, we sometimes denote T" by T'(ty). T"(C T) is called lower bounded
if there exists an element t;(€ T) such that t; <t (Vt € T').  Therefore, if T has the root,
any 7"(C T') is lower bounded. We always assume that 7" is complete, that is, for any 77(C T')
which is lower bounded, there exists an element Infr(7")(€ T') that satisfies the following (i)
and (ii):

(i) Infp(T") =t (Vt € T")
(ii) If s =t (Vt € T"), then it holds that s < Infy(7")

/1]

Let (T'(to), £ ) be an infinite tree with the root ty. For each t € T, consider the classical

basic structure:
[C()(Szt) g LOC(Qt, Vt) g B(LQ(Qt. Vt))}

Also, for each t € T, define the separable complete metric space X;, and the Borel field By,
and further, define the observable O;=(Xy, F;, Fy) in L>(€, 14). That is, we have a sequential

causal observable:

[©T(to)} = [{O¢}ter, {q)tl,tQ D L(Quy, v,) — Ly, Vt1)}(t1,t2)6T§]

Now let us construct the realized causal observable in what follows:

Here, define, Po(T) (= Po(T'(to)) € P(T)) such that

Po(T (to))
={T' C T | T is finite, tg € T" and satisfies Inf»S = Inf7S (VS CT")}

Let T'(ty) € Po(T(to)). Since (T"(ty), <) is finite, we can put (T'={to,t1,...,tx}, 7 : T'\

{to} — T"), where 7 is a parent map.

Review 14.1. [The review of Definition[12.4]. Let T"(= T"(ty)) € Po(T). Consider the sequen-
tial causal observable [{O;}ier, {Preye : L2, 1) = L(Qrr), V() beer\fto} - For each s
(€T, putting Ty = {t € T" | t = s}, define the observable Oy=(Xe1, Xt, Xier, Ft, Fs) in
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L*>(€y, 1) such that

O (seT'\n(T") and)

O
Il

~ (14.1)
OSX( X (I)W(t),tot> (S < 7T(T/) and )
temr=1({s})

And further, iteratively, we get 6t0:(><t€T, X, Xiyer .?Ft,ﬁ’to), which is also denoted by
OT’:(XteT/ X, Xier fft,FT')-

In classical cases, the existence is guaranteed by Definition [12.4 )

For any subsets 71 C To( C T), define the natural map 7p, 1, : Xier, Xo —> Xyer, Xt by

X Xy 3 (z)ier, = (Te)en € t>< Xy

teTs €Ty

It is clear that the observables { 6T/:(><teT/ Xi, Xierr fft,ﬁp) | T € Po(T) } in

L*>(Qy,, 11, ) satisfy the following consistency condition, that is,

e for any 71, Ty (€ Py(T)) such that T} C Ty, it holds that

Fr, (750, (Eny)) = Fr,(Zn) (VEZn € X )

teT

Then, by Theorem [1.1]] Kolmogorov extension theorem in measurement theory |, there uniquely

exists the observable 6T = (XteT X, Wier T, ﬁT) in L*>°(€y,, 14,) such that:

~

Fr(r!o(Em)) = Fp(Ep)  (VEp € X5, VT € Po(T))

This observable 6T = (Xyer Xi, Wier T, ﬁT) is called the realization of the sequential causal

observable [Or)] = [{Os}er, { Pty o+ L(Quy, 11,) = L (Qy v) Yoy tayer2 |

Summing up the above argument, we have the following theorem in classical systems. This

is the infinite version of Definition [12.4l

Theorem 14.2. [The existence theorem of an infinite realized causal observable in classical
systems] Let T be an infinite tree with the root t,. For each ¢ € T, consider the basic
structure:

[Co(%) C L=(Q, 1) € B(L*(Q, 1))

Also, for each t € T, define the separable complete metric space X;, the Borel field
(X, F) and an observable O,=(X;, F;, F}) in L=(£, ;). And, consider the sequential causal
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14.1 Infinite realized causal observable in classical systems

observable[Orgy)] = [{O}rer; {Pr s+ Ly, 14,) — LOO(Qtl,l/tl)}(tm)eT; ]. Then, there

uniquely exists the realized causal observable 6T = (XteT X, W erT, ﬁT) in L®(Qyy, ),
that is, it satisfies that

~

Pr(r7'r(Ep)) = Fr(Zr)  (VEp € BTy, VI € Po(T)) (14.2)
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14.2 1Is Brownian motion a motion or a measured value?

14.2.1 Brownian motion in probability theory

There is a reason to consider that
(A) Brownian motion should be understood in measurement theory.

That is because Brownian motion is not in Newtonian mechanics. As one of applications of

Theorem [14.2, we discuss the Brown motion in quantum language.

Let us explain the above figure as follows.

LL)0<

(

Definition 14.3. [The review of Brownian motion in probability theory [67]].
Let (A, Fp, P) be a probability space. For each A € A, define the real-valued continuous
function B(-, A) : T(=[0,00)) — R such that, for any to =0 < t; <ty < -+ < tp,

P{Xe A | B(tg,\) €E, € Br (k=1,2,...,n)})

:/El ((/:(/: k>”<1 G =i — w1 )dwn)dw 1) - ) doy (14.3)

where, wy € R, dwy, is the Lebesgue measure on R, and G 4(q) = ﬁexp [— %_ﬂ
The B(-,\) : T(=[0,00)) — R is called the Brownian motion.
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14.2.2 Brownian motion in quantum language

Now consider the diffusion equation:

Opilq)  9*pi(q) L
) (Vge RVt e T=R, = [tp =0,00) )

By the solution p;, we get predual operator {[®;, ;] : L(R,dq) — L'(R,dq)} as follows. That
is, for each p;, € L*(R, m), define

o0

([(I)thtz]*(ptl)) (Q) = Pta (Q) = / Pty (y)Gm(q - y)m(dy) (‘v’q € va(tlv t2) € Té)

For simplicity, we put (£;.Bgq,, dw;) = (2, B, dw) = (R,, Br,,dq). And thus, for each t € T,

consider the classical basic structure:
[Co(Q) © L%(, dwr) C B(L* (%, dwy))]
Putting ®;, 1, = ([Pr,.1,]+)", we get the sequential causal operator
(@11, 1 LRy, der,) — L2y dey) | (1, ta) € T2}

For each ¢ € T, consider the exact observable O\ = (Q, Bo, F(&)) in L®(Q, dw). Thus, we
get the sequential causal exact observable [O7] = [{O™ }Ver: {®y,4, | (f1,t2) € T?}]. The
existence theorem of the infinite classical realized causal observable (Theorem [14.2)) ;ays that
Or has the realized causal observable Oy, = (7, B(Q7), F,) in L=(2, dw).

Assume that
(B)  a measured value @ (= (w;)ier € Q7) is obtained by MLOO(Q)(GtO, Sfso])-

Let 7" = {to,t1,t,- -+ ,t,} be a finite subset of T, where tg = 0 < t; < ty < -+ < t,. Put

= X;‘FE/TEt (e BEJF) where =Z; = Q (V¢ ¢ T"). Then, by Axiom 1 (measurement; §2.7) , we see

(i

!/

the probability that @W( = (w;)ier) belongs to the set = = XtTeTEt is given by
o~ T
[Fro (X yer=e)] (wo)

where

:/51 ((/: (/: X1 Gy (0 — w1 ) )dwn ) <+ )y (14.4)

= n—1 =tn
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which is equal to the (14.3).
Thus, we see that

probability theory

quantum language

<B(t’ ‘)>teT

teT

Brownian motion

measured value

#&Note 14.1. Thus, the following assertion has a reason in some sense:

e The Brownian motion B(¢,A) is not a motion but a measured value. Some may recall

Parmenides’ saying:

(#) There are no “plurality”, but only “one”. And therefore, there is no movement.

which is the same as the essence of the linguistic interpretation.

That is, the spirit of quantum language says that

(#) Describe “plurality” as if only “one”.

(#) Describe moving one as if not moving.
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14.3 The Schrodinger picture of the sequential deter-
ministic causal operator

14.3.1 The preparation of the next section (§14.4: Zeno’s paradox)

The linguistic interpretation |(§3.1) says that
a state does no move,

which is called the Heisenberg picture (i.e., a state does not move, and, an observable moves).
This is formal. On the other hand, we sometimes use the Schrodinger picture (i.e., a state
moves, and, an observable does not move), which is handy and makeshift.

In this section, we explain something about the Schrodinger picture in classical deterministic
systems.

This section is the preparation of the next section (Zeno’s paradoxes).

Let (T'(to), £ ) be an infinite tree with the root ty. For each t € T, consider the classical

basic structure:

[Co(Q) € L®(Q, 1) € B(L*(Q, 11))]

Definition 14.4. [State changes — the Schrodinger picture] Let {®y, 4, : L®(Qy, 11,) —
L% (), Vi) } i a0)er2 be a deterministic causal relation with the deterministic causal maps
Gurts + Uy — Uy (V(t1,t2) € T2). Let wy, € O, be an initial state. Then, the {¢y, ((wi,) }er

(o1, {04y, +(wry) Jrer 18 called the Schrédinger picture representation.

The following is the infinite version of Theorem(I2.8.

Theorem 14.5. [Deterministic sequential causal operator and realized causal observable | Let
(T'(ty), <) be an infinite tree with the root to. Let [Or] = [{Other, {Prp, © Ly, 11,) —
L4y, v4,) Yt t)er2 | be a deterministic sequential causal observable. Then, the realization

6t0 = (Xier X, X ;eTfft, ﬁto) is represented by

~

Oto - >< (I)to,tot
teT

That is, it holds that

)
X
it
£
!
7

T[‘I’to,tFt(Et)](wto) = X [F(Z)](Prot(wro))

teT
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(tho - QtO,VEt - ?t)
Proof. The proof is similar to that of Theorem12.8 O

Theorem 14.6. Let [Oruy)] = {0\ }rer, {®r sy + Ly, 4,) = LDy, 4,) Yy m)er | be
a deterministic sequential causal exact observable, which has the deterministic causal :maps
Gtyty - Uy = Q, (V(t1,t2) € Té) And let 6t0 = (Xier Xy, Xier Ty, ﬁT) be its realized causal
observable in L*(Qy,, 4,). Assume that the measured value ()7 is obtained by M Loo(gto)(@T

= (Xyer Xi, Xier T, ﬁo), Slury))- Then, we surely believe that

Ty = (bto,t (wto) (Vt € T)
Thus, we say that, as far as a deterministic sequential causal observable,

(a) exact measured value (z;)ier = the Schrodinger picture representation (¢, ¢(wi,))ter

Proof. Let D = {ty,ts,...,t,}(C T) be any finite subset of 7. Put = = XféTEt =
(Xiep Er) x (Xyerp Xy), where Z; € Xy(= ) is an open set such that ¢y (ws,) € Z

(Vt € D). Then, we see that

o~

—_
—

—

(b) the probability that the measured value (z;);er belongs to = = XQTEt is equal to 1.

That is because Theorem [14.5] says that

n

(FrE) @) = ( X (@ P& (Ey) ) (1)

k=1

=( X FOD(g1 (2,)) ) (@) = X e,y (B 1)) = 1
k=1 k=1 'k

Thus, from the arbitrariness of =;, we surely believe that

(©) (@t)ier = Prot(wry) (vteT)

ANote 14.2. Note that “(b) <(c)” in the above. That is, (b) is the definition of (c).

Thus, we have the following corollary, which is the generalization of Theorem [3.15.
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Corollary 14.7. [System quantity and exact observable].  For each t € T(ty), consider
the exact observable Oge"a) = (X, T, F&) (= (Q4, By, X)) in L=®(, ;) and a system quantity
gt — Ron Q. Let O = (R, Bg, G;) be the observable representation of the quantity g; in
L>(€y). Assuming the simultaneous observable Oiexa) x Of, define the sequential deterministic

causal observable:

[Or)] = [{O™ x O }rer, {®ry 1y = LRy, 1) — LOO(Qtthl)}(tl,tg)eTé ]

Let ér 1, = D1y — Qi (V(t1,t2) € T2) be the deterministic causal map. Let 6t0 = (Xier(XixR),
&tg(fft X Bg), ﬁto) be the realized causal observable. Thus, we have the measurement
M Lw(QtO)(GtO, Slwg))- Let (74, y¢)ier be the measured value obtained by the measurement

M Loo(QtO)<6t0, Siwry))- Then, we can surely believe that

Ty = ¢to,t(wto) and y; = 9t(¢to,t(wto)) (vteT)

Remark 14.8. [Why doesn't Newtonian mechanics have measurement?]. Newtonian mechan-

ics and quantum mechanics are formulated as follows:

;

! ing ! ;
| Newtoinan mechanics| = _ Nothing Causality

(Newtonian equation)

’ quantum mechanics ‘ = | Measurement +

\ (Born’s quantum measurement) (Heisenberg (and Schrodinger) equation)

(#)

Thus, the following question is natural:
(#2) Why doesn’t Newtonian mechanics have measurement ?

Some may think that the reason is due to Theorem [14.6 (or, Corollary [14.7] ), which says that
we need only ¢y, .(wy,) and not z;. However, this answer is superficial. The question (#2) is

significant in the light of Einstein’s words:
(#3) The moon is there whether one looks at it or not.

in Einstein and Tagore’s conversation. This should be compared with Berkley’s words “To be

is to be perceived”. We believe that the (f3) is the same as (84) (= (f5) ):
(#4) Physics should exist without measurement

(#5) The concept of "measurement” is metaphysical and not physical
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14.4 Even Zeno’s paradoxes can be soloved—Flying ar-
row is at rest

First we explain what Zeno’s paradox means, one of the oldest paradoxes in science.

14.4.1 What is Zeno’s paradox?

Although Zeno’s paradox has some types (i.e., “flying arrow”, “Achilles and a tortoise”,
“dichotomy”, “stadium”, etc.), I think that these are essentially the same problem. And
I think that the flying arrow expresses the essence of the problem exactly and is the first
masterpiece in Zeno’s paradoxes. However, since “Achilles and the tortoise” may be more

famous, I will also describe this as follows.

Paradox 14.9. [Zeno’s paradox]

[Flying arrow is at rest]

e Consider a flying arrow. In any one instant of time, the arrow is not moving. Therefore,
If the arrow is motionless at every instant, and time is entirely composed of instants,

then motion is impossible.

[Achilles and a tortoise]

e [ consider competition of Achilles and a tortoise. Let the start point of a tortoise (a late
runner) be the front from the starting point of Achilles (a quick runner). Suppose that
both started simultaneously. If Achilles tries to pass a tortoise, Achilles has to go to the
place in which a tortoise is present now. However, then, the tortoise should have gone
ahead more. Achilles has to go to the place in which a tortoise is present now further.

Even Achilles continues this infinite, he can never catch up with a tortoise.

T
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In order to explain
“What is Zeno’s paradox?”
we have to start from the following Figure. That is, we assert that

Zeno’s paradox can not be understood without the following figure:

Figure 14.10. [=Figure[l.1: The location of quantum language in the history of world-description

(cf. ref.[35]) ]

roTTTTTTTTT the realistic view——""""""""""""""-- 7
! |
} relativity \ (unsolved) }
i (monism) — |theory | —@®) ® theory (?f i
Parmenides wE ® ——qeverything |
Socrates | (realism) quantum (quantum phys.) |
©:Greek | ¢, o L — | mechanics ——@) J
phﬂosophy ey 77777777777777777777777777Fi_i_i::17_7_7:::7_7_7:::7_7_7_7:: 1
Plato sticism . lapguage @ \ |
Aristotle (dualism) : (=MT) :
Descartes (linguistic view) ’ !
TP | quantum |
Locke,... linguistic , ) !
® : language —{language
— | Kant philosophy ———— .
i i ! (language) !
(idealism) | l
statistics la: age :
system theory &@‘ !
I
I

L-- the linguistic view- - -

Figure 1.1: The history of the world-view

It is clear that

(A) Descartes=Kant philosophy and the philosophy of language have no power to describe
Zeno’s paradox [14.9.

However, we have the following problems:
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(B1) How do we describe Zeno’s paradox [14.9 in terms of Newtonian mechanics?
(By) How do we describe Zeno’s paradox 14.9]in terms of quantum mechanics?
(B3) How do we describe Zeno’s paradox [14.9in terms of the theory of relativity?

(B4) How do we describe Zeno’s paradox [14.9/in terms of statistics (i.e., the dynamical system

theory) 7
(Bs) How do we describe Zeno’s paradox [I1.9]in terms of quantum language?
And, finally, we have
(C) What is the most proper world description for Zeno’s paradox [14.97
We assert that
(D) “to solve Zeno’s paradox [[1.9" <= “to answer the above (C)”
and conclude that

(E) The answer of the above (C) is just quantum language

Therefore, it suffices to answer the above (Bg), that is,

Problem 14.11. [The meaning of Zeno’s paradox]

Describe “flying arrow” and “Achilles an a tortoise” in (classical) quantum
language!

14.4.2 The answer to (By4): the dynamical system theoretical answer
to Zeno’s paradox

Before the answer of Problem [14.11, we give the answer to the Problem (B,), i.e., the
dynamical system theoretical answer. However, in order to do it, we have to start from the

formulation of dynamical system theory in what follows
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14.4.2.1 The formulation of dynamical system theory

Although statistics and dynamical system theory have no clear formulations, as mentioned
in Chapter [I3, we have the opinion that statistics and dynamical system theory are the same
things. At least, the following formulation (i.e., the formulation of dynamical system theory in

the narrow sense) should belong to statistics.

Formulation 14.12. [The formulation of dynamical system theory in the narrow sense]

Dynamical system theory is formulated as follows.

’Dynamical system theory‘ = ’ (D:State equation ‘ + ’ ®:Measurement equation‘ (14.5)

D: ’State equation‘ is as follows. Let T" = R be the time axis. For each t(€ T), consider

the state space €; = R" (n-dimensional real space). The state equation (Chap.I3|[I3.2)) is

defined by the following simultaneous ordinary differential equation of the first order

0 = v ), wat), e, ), )

’ State equation‘ _ %(t) = U2(w1 (t)a w2(t>7 ce 7wn(t)a 62@)? t) (146)

where €, (t) is a noise (k= 1,2,--- ,n).

®: ’Measurement equation‘ is as follows. Consider the measured value space X = R™ (m-

dimensional real space). The measurement equation (Chap.[13(13.2)) is defined by

21(t) = gi(wi(t), wa(t), - .., wa(t), m(t),1)
x2<t) = gQ(Wl(t)7w2(t)7 s 777n(t>7 772(t)7 t) (147)

Im(t) = gm(wl(t)v WQ(t)a S 777n(t)7 nn(t)> t)

’ Measurement equation ‘ =

where g(= (91,92, + ,9n)) : @ x R? — X is the system quantity and n(t) is a noise (k =
1,2,---,m). Here, x(t)(= (z1(t), z2(t), -+ , z,(t))) is called a motion function.

14.4.2.2 The dynamical system theoretical answer to Zeno’s paradox

Answer 14.13. [The dynamical system theoretical answer to “flying arrow (in
Paradox [14.9)”]
Let q(t) be the position of the flying arrow at time ¢. That is, consider the motion function

q(t).

382 For further imformation see my homepage,



http://www.math.keio.ac.jp/~ishikawa/indexKSTS5.html

KSTS/RR-19/003
December 26, 2019

Chap. 14 Realized causal observable in classical systems

e Note that the following logic (i.e., Zeno’s logic ) is wrong:

e for each time ¢, the position ¢(t) of the flying arrow is determined.
—
the motion function ¢ is a constant function

Thus, Zeno’s logic is wrong.

[The dynamical system theoretical answer to “Achilles and a tortoise (in Paradox
14.9)”] For example, assume that the velocity v, [resp. vs| of the quickest [resp. slowest]
runner is equal to v(> 0) [resp. yv (0 < v < 1)]. And further, assume that the position
of the quickest [resp. slowest] runner at time ¢ = 0 is equal to 0 [resp. a (> 0)]. Thus, we
can assume that the position £(¢) of the quickest runner and the position 7(¢) of the slowest
runner at time ¢ (> 0) is respectively represented by

£(t) = vt
{ n(t) = yvt+a (14.8)

e Calculations

The formula (I4.8)) can be calculated as follows (i.e., (i) or (ii)):
[(i): Algebraic calculation of (14.8))]:
Solving &(sg) = n(sp), that is,

VSg = YUSy + a

we get so = oy That is, at time sy = ﬁ, the fast runner catches up with the slow

runner.
[(ii): Tterative calculation of (14.8))]:
Define t;, (kK =0,1,...) such that, t, = 0 and

ther =yt +a (k=0,1,2,...)

Thus, we see that t;, = ((11:7,;6))7? (k=0,1,...). Then, we have that

~(A=9a 1 =9"a
(&(tr),n(te) = ( -~ ' 1—7 )

(1fwlf7) (14.9)

1
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as k — oo. Therefore, the quickest runner catches up with the slowest at time sq = ﬁ
[(iii): Conclusion]: After all, by the above (i) or (ii), we can conclude that
(f) the quickest runner can overtake the slowest at time sy = ﬁ
q1, éh
s
: i @) =tta
(1% ‘ l :
T R S gt ;
(1-+%)
I > S
o bm" T ......
Dq(t) = ot
0 a (11—’72))a ((11—73))CL gl ) ot
(o) Co) o ER) R )
The graph of q;(t) = vt, q2(t) =yvt+a

14.4.2.3 Why isn’t the Answer [14.13] authorized?

We believe that the Answer [14.13]is not the wrong answer of Zeno’s paradox. If so, we have

to answer the following question:
F) Why isn’t the Answer [14.13] accepted as the final answer of Zeno’s paradox?
( y
We of course believe that

(G1) the reason is due to the fact that statistics (=dynamical system theory) is not

accepted as the world-view in Figure
Or equivalently,
(G1) the linguistic world-view is not accepted as the world-view in Figure [14.10.
If so, the readers note that

(H) the purpose of this note is to assert that the linguistic world view should be

authorized in Figure [14.10l

384 [For further imformation see my homepage|



http://www.math.keio.ac.jp/~ishikawa/indexKSTS5.html

KSTS/RR-19/003
December 26, 2019

Chap. 14 Realized causal observable in classical systems

14.4.3 Quantum linguistic answer to Zeno’s paradoxes

Before reading Answer [14.14] ( Zeno’s paradox(flying arrow) ), confirm our spirit:

(I) The theory described in ordinary language should be described in a certain world de-
scription. That is because almost ambiguous problems are due to the lack of “the world-

description method”.
Therefore,

(J) it suffices to describe “motion function ¢(¢) in Answer [14.13 (flying arrow)” in terms
of quantum language. Here, the motion function should be a measured value, in which

the causality is concealed.

This will be done as follows.

Answer 14.14. [The answer to ProblemI4.11] or [Answer to Problem[14.9: Zeno's paradox(flying
arrow) (cf. ref. [40, 42])] In Corollary 14.7, putting

q(t) = yi(= 9:(Pro,t(Wro)))

we get the time-position function ¢(t).

Although there may be several opinions, we consider that the followings (i.e., (K;) and (K3))

are equivalent:
(K;) to accept Figure I4.10t[The history of the world-view]

(Kg) to believe in Answer [14.14] as the final answer of Zeno’s paradox

ANote 14.3. I think that “the flying arrow” is Zeno’s best work. If readers agree to the above
answer, they can easily answer the other Zeno’s paradoxes. Also, it should be noted that Zeno
of Elea (BC. 490-430) was a Greek philosopher (about 2500 years ago). Hence, we are not
concerned with the historical aspect of Zeno’s paradoxes. Therefore, we think that

(#) “How did Zeno think Zeno’s paradoxes?” is not important from the scientific point of view.
and
(#) What is important is “How do we think Zeno’s paradoxes?”

Also, for the quantum linguistic space-time, see §10.7l ( Leibniz-Clarke correspondence). I doubt
great philosophers’ opinions concerning Zeno’s paradoxes.
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Chapter 15

Least-squares method and Regression
analysis

Although regression analysis has a great history, we consider that it has always continued being

confused. For example, the fundamental terms in regression analysis (e.g., “regression”, “least-

squares method”, “explanatory variable”, “response variable”, etc.) seem to be historically

conventional, that is, these words do not express the essence of regression analysis. In this

chapter, we show that the least squares method acquires a quantum linguistic story as follows.

describe by

The least squares method‘ Regression analysis
- quantum language -
(Section [T5.1) (Section [15.2))

tural - -
SN ’ Generalized linear model‘

generalization (Section [15.4)

In this story, the terms “explanatory variable” and “response variable” are clarified in terms of
quantum language. As the general theory of regression analysis, it suffices to devote ourselves
to Theorem [13.4l However, from the practical point of view, we have to add the above story

(Br"

15.1 The least squares method

Let us start from the simple explanation of the least-squares method. Let {(a;,x;)}"; be

a sequence in the two dimensional real space R2. Let ¢(#152) : R — R be the simple function

such that

R>ar x=¢P%(q) =pa+ B €R (15.1)

IThis chapter is extracted from

o Ref. [46]: S. Ishikawa; Regression analysis in quantum language  (|arxiv:1403.0060[math.STI,( 2014) )
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where the pair (3, 82)(€ R?) is assumed to be unknown. Define the error o by

o*(B1, B2) = %Z(iﬂz — ¢(ﬁ1’ﬁ2)(ai))2< = %Z(% — (Bra; + /30))2> (15.2)

Then, we have the following minimization problem:

Problem 15.1. [The least squares method)].

Let {(a;,2:)}i_, be a sequence in the two dimensional real space R?.
Find the (8o, 1) (€ R?) such that

n

o*(Bo, 1) = min 02(51,52)( = min L Z(ﬂfz — (Bra; + 50))2> (15.3)

(B1,B2)ER? (B1,82)€ER? 1

1=

where (B, 51) is called “sample regression coefficients”.

This is easily solved as follows. Taking partial derivatives with respect to [y, 51, and

equating the results to zero, gives the equations (i.e., “likelihood equations”),

90*(B1, B2) _ <

do’(f, - .
% = ;(.le — 50 — Blai)ai = 0, (Z = 1, cevy n) (155)
Solving it, we get that
5 Saz o _ Sax _ ~ 1 & A A ng
pr = 5. Bo=7— ZG, 6% (= - ;(% — (Pra; + ﬂo))2> = Sgz — 5 (15.6)
where
a:—a1+---+an’ i:—x1+".+xn, (15.7)
n n
I C k) e . ) SIS C k) b . ) (15.8)
n n
o — (a1—&)(ml—f)+---+(an—d)(a:n—f). (15.9)
n

Remark 15.2. [Applied mathematics]. Note that the above result is in (applied) mathematics,
that is,

e the above is neither in statistics nor in quantum language.

The purpose of this chapter is to add a quantum linguistic story to Problem [I5.1] (i.e., the

least-squares method) in the framework of quantum language.
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15.2 Regression analysis in quantum language

Put T={0,1,2,--- ,i,--- ,n}. And let (T, 7 : T\ {0} — T) be the parallel tree such that

i)=0 (Vi=12--.n) (15.10)
.
o 2

Figure 15.1: Parallel structure

#Note 15.1. In regression analysis, we usually devote ourselves to “classical deterministic causal
relation”. Thus, Theorem [12.§8] is important, which says that it suffices to consider only the
parallel structure.

For each ¢ € T', define a locally compact space €2; such that

Qg = R® = {5: {gﬂ . Bo. B GR} (15.11)
Qi:R:{ui : uieR} (=12 ,n) (15.12)

where the Lebesgue measures m; are assumed.

Assume that
wER  (i=1,2--,n), (15.13)

which are called ezplanatory variables in the conventional statistics. Consider the deterministic

causal map ¥, : Qo(= R?) — Q;(= R) such that

Qo =R>3 B = (Bo,51) = Ya,(Bo, 1) = Bo + fra; = ; € 2 =R (15.14)
which is equivalent to the deterministic causal operator ¥, : L>(€;) — L>(£)) such that

[Wa,(fi)l(wo) = fi(ta,(w0)) (Vfi € L7(h), Vo € Qo, Vi€ 1,2,-- ,n) (15.15)

389 ’ For further imformation see my homepage, ‘



http://www.math.keio.ac.jp/~ishikawa/indexKSTS5.html

KSTS/RR-19/003
December 26, 2019

15.2 Regression analysis in quantum language

Figure 15.2: Parallel structure (Causal relation ¥,,)

Thus, under the identification: a; < V,,, the term “ezplanatory variable” means a kind of

causal relation ¥, .

For each i = 1,2,--- ,n, define the normal observable O;,=(R, Br, G, ) in L>=(;(= R)) such
that
- 1 (z — p)? -
Gy (E)](1) = —— [ exp [— = ]dx (VE € Bg,Vu € %(=R)) (15.16)

(v/2m0?)
where o is a positive constant.
Thus, we have the observable Of'=(R, Bg, ¥,.G,) in L>=(2y(= R?)) such that

_ — 1 (z — (Bo + aih))?
0 (G @D = [Co@NN0a0) = s [ oo [ 52  Jar 1547

(1

{1

(V= € Bg, VB = (B0, B1) € (= RQ)

Hence, we have the simultaneous observable X, O%=(R", Bgn, X, ¥V, G,) in L=(Q(=
R?)) such that

n n

(X 0,,Go)(X Z](5) = (mc )EIB))

z 1 xz (60_’_@161))
27rc72 / /exp 552 } T dz,

z 1_‘1

P(Bo,pr,o) (T1, Tay -+ Ty )dTy - - - Ay (15.18)

4

yl \

=1

(V X 5 € Ban V6 = (fo. 1) € (= B2)

i=1
Assuming that o is variable, we have the observable O = (R"(: X), Brn (=), F) in L>(Q x
R, ) such that

[F(X Z))(8,0) = [(X WoG)(X Z)I(8) (Vs € By, ¥(8,0) € R*(= Q) xRy)  (15.19)
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Problem 15.3. [Regression analysis in quantum language|
L1

o)
Assume that a measured value z = ) € X = R” is obtained by the measurement

Tn
Moo (oxry) (O = (X, F, F), S((80,81,0)]). (The measured value is also called a response vari-
able.) And assume that we do not know the state (8, 81, 0?).
Then,

e from the measured value x = (x, 29, ...,2,) € R", infer the 5y, f1, 0!

That is, represent the (89, f1,0) by (Bo(z), B1(x),6(2)) (i.e., the functions of z).

Answer.
Taking partial derivatives with respect to £y, 31, 02, and equating the results to zero, gives

the log-likelihood equations. That is, putting
L(ﬁo, 517 0_27 X1, Lo, axn) = lOg (p(ﬁo,,ﬁl,a)(xlv Loy« axn)>a

(where “log” is not essential), we see that

n

oL

95, 0 = ; (zi — (Bo + aiBr)) =0 (15.20)

oL -

a5, =0 = Zai(l‘i — (Bo+aip1)) =0 (15.21)
=1

oL 1 O

F5=0 =g+ 3012 (i = Bo — Pra;)” = 0 (15.22)

Therefore, using the notations (15.7)-(15.9)), we obtain that

bo(w) =T — Bi(w)a =7 — 2a, fi(x) == (15.23)

Saa Saa

and

=Sgx — 25(1:105ﬂ + Saab(‘$ﬁ)2 = Sgx — Sﬂ (1524)
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Note that the above (15.23) and (15.24) are the same as (15.6). Therefore, Problem [15.3

(i.e., regression analysis in quantum language) is a quantum linguistic story of the least squares

method (Problem [15.1]).
Remark 15.4. Again, note that

(A) the least squares method (15.6) and the regression analysis (15.23) and (15.24) are the

salne.

Therefore, a small mathematical technique (the least squares method) can be understood in a

grand story (regression analysis in quantum language). The readers may think that

(B) Why do we choose “complicated (Problem [15.3))” rather than “simple (Prob-
lem [15.9))”7

Of course, such a reason is unnecessary for quantum language! That is because

(C) the spirit of quantum language says that
“Everything should be described by quantum language”

However, this may not be a kind answer. The reason is that the grand story has a merit
such that statistical methods (i.e., the confidence interval method and the statistical hypothesis

testing ) can be applicable. This will be mentioned in the following section.
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15.3 Regression analysis(distribution , confidence inter-
val and statistical hypothesis testing)

As mentioned in Problem[15.3/( regression analysis), consider the measurement M, xr,)(O
(X(=R"), T, F), Siigo,p1.00)
For each (f,0) € R? x Ry, define the sample probability space (X, F, Pig)), where
Ppo)(E) = [FEN(Bo, bro)  (VE€T)
Define L*(X, Ps,)) (or in short, L*(X)) by
L*(X) = {measurable function f: X — R | [/ | f(2)[*Ps.0y(d2)]/? < o0} (15.25)

Further, for each f,g € L*(X), define E(f) and V(f) such that

/f Poo(dz), /|f PIFPgo(da). (15.26)

Our main assertion is to mention Problem [I5.3 (i.e., regression analysis in quantum lan-
guage). This section should be regarded as an easy consequence of Problem [I5.3] ( regression

analysis). For the detailed proof of Lemma [15.5] see standard books of statistics (e.g., ref. [§]).

Lemma 15.5. Consider the measurement My (o,xr,)(O = (X, T, F), S|4,8.,0)) in Problem

15.3 ( regression analysis). And assume the above notations. Then, we see:

(A) (1): V(B =21+ 2),  (2):V(h) =21,

aa

N

(Ag) [Studentization]. Motivated by the (A;), we see:

T — V(Bo = o) ot T V(B — Br)
o Vol + @ sm) /62 5

where t,,_5 is the student’s distribution with n — 2 degrees of freedom.

~ tho (15.27)

For the proof. see ref. [§].

Let Moo (0o(=r2)xr,)(O = (X(=R"),F, F), S(8,,6.,0)]) be the measurement in Problem [15.3
( regression analysis). For each k = 0,1, define the estimator Ey X(=R") = Ox(=R) and
the quantity 7 : Q(=R? x R, ) — Ox(= R) as follows.

Eo(x)(= po(z)) =T — jﬁa, Ey(z)(= fi(x)) = jﬂ, 7o(Bo, Br,0) = Bo.  m1(Bo, Br,0) = B,
(15.28)
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(V<ﬂ07 61, 0) € RQ X R_;’_)

Let a be a real number such that 0 < a < 1, for example, « = 0.05. For any state
w=(8,0)( € Q=R*xR,), define the positive number 1%, ( > 0) by (6.9), (6.15), that is,

NS (= 00,") = nf{n > 0: [F({fw € X : dg, (Bx(w), m(w)) > n})](w) < a} (15.29)

where, for each ), 0 (€ ©y), the semi-distance dg_in O is defined by

V1|05 —64 (if k = 0)
0 62(14+a?/saa)
dg, (67, 0;) = 001 (15.30)
—_&;/Sa: (if k= 1)

Therefore, we see, by Lemma [15.5 that

inf{n>0:[F{zreX : \/% > n)(w) < a} (f k=0)

Mok = ) (15.31)
inf{n > 0: [F({zeX : LAl > WH(w) <a} (ifk=1)

52(z)/saa
= t,_o(a/2) (15.32)
Summing up the above arguments, we have the following proposition:

Proposition 15.6. [confidence interval]. Assume that a measured value € X is obtained by
the measurement My xr,)(0 = (X, T, F), S(5,,5.,0)])- Here, the state (5o, 51,0) is assumed

to be unknown. Then, we have the (1 — «)-confidence interval I ;;a in Corollary [6.0] as follows.

1" = {m(w)(€ ) = db, (Ex(z), m(w)) < 15"}

l1-a _ _ . |Bo (=) —Bol < L —
1 = { B = mlw)(€ O) : T < ta(a/2)} (it k= 0)
_ (15.33)
l-a _ _ . _Bi@-p] A
1 ={p =mw)(€6): NEETTE toa(a/2)} (R =1)

Proposition 15.7. [Statistical hypothesis testing]. [Hypothesis test]. Consider the measurement
Moo (oxiy) (O = (X, T, F), Sy5,,8,,0)])- Here, the state (8o, 31,0) is assumed to be unknown.

Then, according to Corollary 6.0, we say:
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(B1) Assume the null hypothesis Hy = {f6p}(C ©9 = R). Then, the rejection region is as

follows:
RyY = Eg M (RyS") = N {z(€ X) : d§,(Eo(z), mo(w)) = n5}
weQ such that mo(w)eHy
_ {x ex . V@bl tH(a/z)} (15.34)

\/@(1 + @/ 50a)

(B2) Assume the null hypothesis Hy = {61 }(C ©; = R). Then, the rejection region is as

follows:
RyY = BB = N {z(€ X) : d§, (B (2), mi(w)) = n5}
weQ such that = (w)eHN
- {x X M > tn,Q(a/2)} (15.35)
UT(JC)“/SM)
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15.4 Generalized linear model

Put T =4{0,1,2,--- ,i,--- ,n}, which is the same as the tree (15.10), that is,

(i) =0 (Vi=1,2,---,n) (15.36)
.
o 0

Figure 15.3: Parallel structure

For each 7 € T, define a locally compact space €2; such that

Bo
Qo =R™ = {5 = 5:1  Bo B B ER} (15.37)
B
Qizmz{ui :uieR} (i=1,2,-- ,n) (15.38)
Assume that
a; €R (i=1,2,---,n, j=1,2,--- m,(m+1<n)) (15.39)

which are called explanatory variables in the conventional statistics. Consider the deterministic

causal map v, : Qo(= R™™) — Q,(= R) such that

QO :Rm+1 9/8: (/807/617”' aﬁm) '_>¢aio(50a61a"' 76771) :ﬁo—’_ZﬁjaU = K € Q’L =R
j=1

(15.40)
(i=1,2,---,n)
Summing up, we see
- - — -— _1 a a/ .. a/ m_ — -
50 wah (B()’ ﬁl; e 7ﬁm> 1 a;i a;z e (1; /BO
Bl | Yea(Bo B B | 0 2|
B = 6'2 — | Yas. (o, /Blv v Bm) | = 1 ay aso -+ Gy |’ /?2 (15.41)
_ﬁm_ _¢an. (507 517 o 7ﬂm)_ _1 Gpnl Qpy -+ anm_ _5m_
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which is equivalent to the deterministic Markov operator ¥, : L>(£2;) — L*(£2) such that
[\Ijai- (fl)](wo) = fi(wai. (WU)) (vfl € LOO(QZ)> Vwy € Qo,Vi €12, 7”) (1542)

Thus, under the identification: a;; < ¥, the term “explanatory variable” means a kind of

causality.

Yoo 1= R))

xv\ L®(2,(= R))

Figure 15.4: Parallel structure(Causal relation ¥,,,)
Therefore, we have the observable Of*=(R, Bg, ¥,.,G,) in L=(Qq(= R™!)) such that

(@ — (Bo + 22554 aiiB)))

202

= = = ——1 exp | —
[ (G 2))8) = (o (N3 = s [ e

2
dx

[

(15.43)
(VZ € Bg, VB = (Bo, b1, -+ » Bm) € Qo(= R™))

Hence, we have the simultaneous observable X_, Of*=(R", Bgn, X;_, V,..G,) in L=(Qo(=

R™1)) such that

X
=
8
)
<
X
1

N6) = X ([20.G)E](5))

T /.Zf [ewl- T G+ S0y
)n

202

}da:l e day, (15.44)

(vi{i Zi € Bre, VB = (Bo, b1, , Bm) € Qo(=R™))

Assuming that o is variable, we have the observable O = (R”(: X), Bra (=), F) in L>(Qp x
R, ) such that

n

[F(X Z0)(8,0) = [(X WauGo)(X Z0)(B) (¥ X Zi € By V{5, 0) € R™ (= D) x Ry)

=1 =1

(15.45)
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Thus, we have the following problem.

Problem 15.8. [Generalized linear model in quantum language]

T
L2 . .

Assume that a measured value z = ) € X = R” is obtained by the measurement
Ty

Moo (oxr,) (O = (X, T, F), Si(80,81, ,pmio)])-  (The measured value is also called a response

variable.) And assume that we do not know the state (8o, 31, , Bm, 02).

Then,

e from the measured value x = (z1, 29, ...,2,) € R", infer the Sy, B, , B, 0!

That is, represent the (8o, 81, , Om, ) by (Bo(x), Bl(x), o Bu(x),6(x)) (ie., the functions
of z).

The answer is easy, since it is a slight generalization of Problem [I5.3. Also, it suffices to
follow ref. [8]. However, note that the purpose of this chapter is to propose Problem [I5.8 (i.e,
the quantum linguistic formulation of the generalized linear model) and not to give the answer

to Problem [15.8l

Remark 15.9. As a generalization of regression analysis, we also see measurement error model

(cf. §5.5 (117 page) in ref. [33]), That is, we have two different generalizations such as

D: ’generalized linear model‘

’ Regression analysis ‘ _

— (15.46)
generalization ® : ’measurement error model‘

However, we believe that the (D is the main street.
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Kalman filter (calculation)

The Kalman filter [65] [69] is located as in the following (f):

+ causality

Fisher’s maximum likelihood method regression analysis

usually deterministic
() : Statistics

+ causality

Bayes’ method Kalman filter

non-deterministic

Thus, I can not emphasize too much the importance of the Kalman filter. Though Kalman filter
belongs to Bayes’ statistics, this fact may not be a common sense. This present state is due
to the confusion between Fisher’s statistics and Bayes’ statistics. I hope that such confusion
should be clarified by the above (f) (based on quantum language). This chapter is extracted
from the following paper:

e S. Ishikawa, K. Kikuchi: Kalman filter in quantum language, |arXiv:1404.2664 [math.ST]
2014.

16.1 Bayes=Kalman method (in L*({),m))

Recall Theorem [9.1T(Bayes’ theorem), particularly, the Bayes operator (9.5). This will be

generalized as Bayes=Kalman operator as follows.

Let ty be the root of a tree T'. For each t € T', consider the classical basic structure:
[Co() C L®(Q4,ms) € B(L*(,m4))]

Let [Or] = [{O:( = (X, T, F2)) beer, {72 0 L2(Q,) — LOO(QM)}(tl,tQ)ET% ] be a sequential
causal observable with the realization (A)t0 = (Xyer X, XWierGs, ﬁ}o) in L>2(£y,).

For example,
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16.1 Bayes=Kalman method (in L*>°(2,m))

¢23[L«193);0ﬂ

/
@24 [L2°(824) : Oy

‘%/71 |2 . Q15
L2(S0) = O] " 10() - \f >
q)OG

e/
L
~ $

[L>®(€Q7) : O]

Figure 16.1 : Simple classical example of sequential causal observable
For each t € T, consider another observable O} = (Y;, G, Gy) in L>(9;,m;), and the simul-
taneous observable O x O) = (X; x Y, T, W G, F;, x Gy) in L™, m;). And let [OF] =
[{OtX( = (Xt X th 9:75 IX 9,5, Ft X Gt))}t€T7 {(Dtl’tz . LOO<Qt2) — Loo(Qtl)}(tth)eT% ] be a Sequential
causal observable with the realization (Stxo = (Xyer(Xy x V), M yer(F; X G,), PAItO) in L>°(Qy,).

For example,

Qo1 [L¥(Q): OF]

A

[L(€0) : O] [L>(Q6) : O]

K
o
>

%
o
~ $

[L>(§2) - O7]
Figure 16.2 : Simple classical example of sequential causal observable

Thus we have the mixed measurement My Qto)(OtXO, Spg(20)), where zp € LY (€Q,). Assume
that we know that the measured value (z,y) (= (()wer, (Y)ter,) € (Xier Xi) X (Xier Yy))
obtained by the measurement Mz« (q, ) (OtO,S*](zo)) belongs to (XerZy) X (Xier V) (€
(RyerTF;) B (KyerGy)). Then, by Axiom™ 1/(§9.1), we can infer that

(A) the probability Py, .=, ((Gi(I'\))ier) that y belongs to X,er I'y(€ Myer,) is given by

Py rerz ((Ge(L4) )ter)
_Joy i (R ier 20 X (R er L)) (o) z0(i) o)
Jog [Hio (Xier Z¢) X (Xier Yy)(wo) 20(wo) mo(dwo)

(VI, € G, t € T).

(16.1)
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Let s € T be fixed. Assume that
I''=Y; (Vte T such that t # s)

Gy(Ty) = Prrerz,((Gi(Ty))ier), we see that P
That is, there uniquely exists 22 € L%, (s, m;) such that

Thus, putting Py e L1 (Q,ms).

tETEt< teT=t

~

Proarz ((GuT) = 1 (GE GulD)) e,y = [ [T 0)28 ()

s

for any observable (Y;, Gs, Gs) in L>®(€),). That is because the linear functional ISX

teTEt -

L>(Q) — C (complex numbers) is weak* continuous. After all,

(B) we can define the Bayes-Kalman operator [B%zO(XtET =)+ LL () = LY, () such
that

(pretest state) [BS (Xier Er)] (posttest state)

R : 2 (16.2)

Bayes-Kalman operator

(€L (24)) (€LY (92))

which is the generalization of the Bayes operator (9.5).

Remark 16.1. We have frequently discussed the Bayes=Kalman filter, for example, in [33] [36].
However, these arguments are too theoretical. In this chapter, we devote ourselves to the

numerical aspect of the Kalman filter.
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16.2 Problem establishment (concrete calculation)

In the previous section, we study the general theory of Kalman filter. In this section,
we devote ourselves to the calculation of Kalman filter in the case of a linear ordered tree

T =1{0,1,2,--- ,n} such that the parent map = : 7'\ {0} — T is defined by 7(k) = k — 1:

™

0+ 1+ 92+ 0 .. n—1+«"-—n

Figure 16.3: Linear ordered tree
For each k € T, consider the classical basic structure:
[Co() © L=(Q, my) C B(L“(Qk,mk,))]( = [Co(R) C L®(R, dw) C B(LA(R, dw))])

where dw is the Lebesgue measure on R.

Consider the sequential causal observable [Or] = [{O;}er, {®7H © L®(Q) —
L®(Q-1)}r=12, » ], and assume the initial state zo € L (0, mo).
Thus, we have the following situation:
initial state zg - L ) - )
dYs bl Hs—1:s Hs:s pn—Ln
| L2(Q,mg) | < | L%(Q,ma) [ -+ L>(Qs,my) L>(Qp, )
OOZ(XO:TFOFO) 01:(X17371F1) Os:(X57§st) OnZ(Xn,grnFn)
or, equivalently,
initial state zg
<I)0’1 cI>1,2 <I)s—l,s <I>S,s+1 <pn—l,n
Ll(Qo,mo) - Ll(Ql,ml) ... Ll(Qs,ms) - R Ll(Qn,mn)
00:(X07?01F0) 01:(X17§17F1) os:(X31331Fs) On:(XnvSFnyFn)
In the above, the initial state zo(€ L1, (Q0,my)) is defined by
1 wo — fo)?
20(wp) = exp[—g] (Vwp € Qo) (16.3)

2
204

V2mog

where it is assumed that g and oy are known.
Also, foreacht € T'={0,1,--- ,n}, consider the observable O, = (X;, F;, F}) = (R, Bg, F})
in L>(£, m;) such that

(flft — Gy — dt)2

F,(= exp|—
[t t \/ﬂqt p[ 2%2

|dxy = /_ fo(wp)dxy (V24 € Fy, Yy € )
B (16.4)

where it is assumed that ¢;, d; and ¢; are known (¢t € T').
And further, the causal operator ® 1 : L>(Q,) — L>°(;_;) is defined by

(Wt — QiWi—1 — bt)2

exp[—
\/27Trt pl 2r2
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(V-};t < LOO(Qt,mt), VWt_l S Qt—l)

where it is assumed that a;, b; and r; are known (¢ € T').
Or, equivalently, the pre-dual causal operator ®.~'*: L1, (Q,_1) — L1 ,(€,) is defined by

(Wt — QW1 — bt)2 ~

(D142, ] (wy) \/%Tt exp|— 207 1Ze-1(wi—1)dw; 4 (16.6)
(Vzt_l € L+1(Qt_1,mt_1), Vw, € )
Now we have the sequential causal observable
[O1] = [{Os}rer, {1+ L=®(Q) — L¥(Qu-1)}r=12,
Let Op ( X "o Xy, X F, F) be its realization. Then we have the following problem:
Problem 16.2. [Kalman filter; calculation]
Assume that a measured value (g, Zo, -+, 2,) (€ X|_, X;) is obtained by the measure-

ment Mo (q) (60, Su(20)). Let s(€ T') be fixed. Then, calculate the Bayes-Kalman
operator [B%O(XteT{xt})](zo) in (16.2]), where

B3, (X {z)](e0) = 2 = lim (B (X Z0)](0)

That is,

measured value:(zo,z1,..., Tn)
L11<Qo) > 2 - y 20 € L}rl(Qu‘?)
By (X ier{a})
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16.3 Bayes=Kalman operator Bgo( Xier{z})

16.3 Bayes=Kalman operator B (Xicr{z:})
Oo

In what follows, we solve Problem [16.2. For this, it suffices to find the z, € L () such that

im fQO FO Xt 0Z¢) X I's)[(wo) 20(wo)dwo
Ei—ar (t€T) f [FO(Xt o =) (wo) 2o (wo)dwy

- / (Go(T))(ws) ze(w)dw, (VT € F)

Let us calculate z; = [B%O(XteT{xt})}(zo) as follows.

t=0

/Q Fo((X Z)) x T)](ws) 20(wo)dect

= 10y (70> FO(( X Zp) X T9)) e

t=0
® (Fo(Z0)20) F1((X Ze) X T4)) e (16.7)

t=1

_L1(91><

(A) and, putting zop = Fy(Z0)z0 (or, exactly, its normalization, i.e., Zp = limz,_4, %)
51 = F1<El)q)2’1(zo), 52 = Fg(Eg)@i’Q(%), e, 5571 = FS,1<ES,1)(I)S 28— 1(25 2) we see
that
(16 7) Il ><CI)2 1(’5()), Fl((t>:<1 :t) x I )>L°O(Ql)
_LI(Q )<(p}<72(/2\/1)7F2((t>:<2 :t> X F )>L°°(QQ)
—Ll(QS+1)< is+1(g3>7 FS+1((t:>S<+1 ) x ' ))LOO(QSJrl)
:L1(98)<(I)i ' 8(58—1)7 FS<<t>:<S Et) x T )>L<><>(Q )
:LI(QS) <q)i_l7s<zs—1)v FS(ES)GS(FS)(I)878+1F8+1(t:>S<+1 Et)>L°°(Qs)
oo ((FEIR 1 F( X Z) (817(Ei) ). Cul)) e, (16.8)
Thus, we see
o (RE)eT (XL E)) x (@5 )
[B 00l {ze}))(20) = _ lim (16.9)

Er—axe (t€T) fQo [Fo( >< =0 Et>] (WO) 20 (u}o)du}[)
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Chap. 16 Kalman filter (calculation)

16.4 Calculation: prediction part

16.4.1 Calculation: z, = & "*(Z,_;) in (16.9)

We prepare the following lemma.

Lemma 16.3. It holds that

00 z— By)? —D)? z—BD)?
(B1) f—oo \/217A eXp[_( 2A2y) ]\/%c eXp[_(y202) Jdy = \/ﬂ\/A£+B2(J2 exp|— 2(542+BZ)02)]

Aw—B)? Cw—D)? 2p2 2p2 ABF?4+CDE? 2
(B2) eXP[—%] eXP[—%] ~ eXp[—%(%)@ - W) ]

where the notation “~” means as follows:

“f(w) = g(w)” <= “there exists a positive K such that f(w) = Kg(w) (Vw € Q)"

Proof. It is easy, thus we omit the proof.

We see, by (16.3) and (A), that

_ . F(Z0)2
Zo(wg) = lim
0( 0) Eo—xo fR F(EQ)ZodwO
~ 1 (l’o — CowWoy — d0)2 1 (WO — /1’0)2
R~ exp|— 5 ] exp|— |
V2mqo 245 V2rmog 20
1 (wo — Fio)?
N———expl———= ]
V21o, 200
where
oo 0% o + 522wy — d ) (16.11)
0f = —5——, = o5(=) (2o —dy — ¢ )
0 @+ 2o Ho = Mo 0 2 0 0 oo
Further, the (B;) in Lemma [16.3] and (16.6]) imply that
z1(wi) = [0 2] (wr)
o (w1 —arwo — b1)?, 1 (wo — fio)?
= exp|— exp|— — dw
—0 \/277'7”1 p[ 27’% ]\/ 7T50 p[ 2 (2) ] 0
1 (w1 — )
B V21o; exp| 20,2 ]
where
ol = alog +717,  p1=aifio + by (16.13)

Thus, we see, by (Bs) in Lemma [16.3] that

Zi1(wi_) = lim PE)aa
-1y =_ o fR F(Zi-1)z-1dwi_4

(16.10)

(16.12)
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16.4 Calculation: prediction part

~ 1 exp[— (Te1 — cwig — dyy)? 1 exp|— (we—1 — Mt71)2]
V2mqs—q 247 4 V2mop_y 207,
1 (wWie1 — fl—1)”
N——eXp|——————— 16.14
V2mo, bl 207 | ( )
where
— G707 _ 2 G+ G0 A — G — 607
-1~ =01
! %271 + 0371‘71&271 ! %24 + 0371‘71&271
2 2
2 101
=0, (1—
el %24 + 07%71‘7?73
~ o G
-1 = p—1 + 01:2_1(;2—1)(%—1 = Ce-1f4-1) (16.15)
t—1
Further, we see, by (B;) in Lemma [16.3] that
zi(we) = [®T M2 1] (wr)
* 1 (Wt — Qi1 — bt)2 1 (wtfl - ﬁt71)2
R exp|— exp|— — dw;_
/_oo V2rr bl 2r¢ V216 bl 207, Ik
1 (Wt - #t)Q
~ exp|———— 16.16
V2o pl 204 ] ( )
where
O't2 = a?&f_l —+ T'tz, Mt = (lt/jt,1 -+ bt (1617)

Summing up the above (16.10)—(16.17), we see:
20 — 301 o pt—2t-1 o1 — pt—1t Tea1 @s—1os
= = o] oy [P
(I6.11) (16.13) (@615) _ (16.17)

10,00 20,00 H1,01 Ht—1,0¢—1 Tt_1,0¢—1 Ht,0t Hs,0s

And thus, we get

zg = O51(Z,) (16.18)

in (16.9).
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Chap. 16 Kalman filter (calculation)

16.5 Calculation: Smoothing part

16.5.1 Calculation: (F( PSR (X st _t)> in (16.9)

Put
ra 1 (In — CphWn — dn)2
zn\Wn ) = exXp|—
Pl = g T g
- (Ctwn — (zn — dn))?, _ 1/ \?
~ exp] 7 ] = exp| §<unwn vn>] (16.19)

where it is assumed that ¢,, d,, and g, are known (¢t € T'). And thus, put

~ n ~ n - dn
Uy = C—, Uy = a (16.20)
dn Qn

And further, Lemma [16.3] implies that the causal operator ®=1 : L>(€Q,) — L*(_;) is
defined by

fror(wimr) = (@7 ) (wi)

(wt — QW1 — bt)2 (atwt - ﬁt)Q
exp|— exp|———|dw
\/%T‘t p[ 2rt2 ] p[ 9 ] t
v, 1+ b)\2 1 2
A exp|— ( Yt ut(atwt ! ;2t>) | = exp[—= (ut_lwt_l - ’Ut_1> ] (16.21)
1+ riu? 1+ r2u; 2
where
Clt/’ljt btat - ?)/t
U] = ——F——, V] = —F—— 16.22
N A e 162
And also, Lemma [I6.3] implies that
~ Coo1Wi—1 + de1 — x4-1)? Up W1 — Vy_1)?
fxtil(wt_l) _ eXp[—( t—1Wt—1 2t 1 t 1) ]eXp[—( t—1Wt—1 t ].) ]
2q;_4 2
eXp[ 1 (Ct 1 + ut IQt 1 ) <w Ct—l(dt—l - tt—l) + ut—lvt—lqg—l)Q]
~ -z t—1 —
2 ) iy +uP a7y
1/ N2
~ exp[—§ (ut,lwt,l — Utfl) ] (1623)
where
2 2 2 _ d L — 1t B _ 2
atfl — \/Ct—l + ut—lqt—I’ ,'l\]/tfl — Ct 1( t—1 ;, 1) _|— Zt 1;}t 1qt—]. (1624)
qi—1 qi—1 \/thl T U195
Summing up the above (16.19))-(16.24), we see:
1,55 Zs q)t 2,t—1 SRR it Rk q,r 1.t Un_1,Un— UnOn
e e 0] B e e BT e [ omm)

W1
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16.5 Calculation: Smoothing part

And thus, we get

(RE)@ P (X1 E0)

foo lim (16.25)
By (b€ {s.s+1, HF (2,) D% SR L ( ><t . _t)) || oo (922
n (16.9)
After all, we solve ProblemlI0.2( Kalman Filter), that is,
Answer 16.4. [The answer to Problem16.2(Kalman Filter)]
(A) Assume that a measured value (zq,Zo,- - ,2,) (€ X|_,X;) is obtained by the mea-

surement My (o) (Oy. S(20)). Let s(€ T) be fixed. Then, we get the Bayes-Kalman
operator [BY (Xier{z:})](20), that is,
to

}V.xs (ws) - 2s(ws)
BZ (X {z: D]z ) (ws) = = = 25 (ws Yw,s € ()
(1B, (X {a})]z0 ) () T (o) oy, ) (e @)

where z, in (16.18) and f,, in (16.25) can be iteratively calculated as mentioned in this
section.

Remark 16.5. The following classification is usual
(By) Smoothing: in the case that 0 < s <n
(By) Filter: in the case that s =n

(B3) Prediction: in the case that s = n and, for any m such that no < m < n, the existence
observable (X, Fn, Fi) = ({1},{0,{1}}, ) is defined by F,,(0) =0, F,,({1}) = 1,
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Chapter 17

Equilibrium statistical mechanics and
Ergodic Hypothesis

In this chapter, we study and answer the following fundamental problems concerning classical
equilibrium statistical mechanics:

(A) Is the principle of equal a priori probabilities indispensable for equilibrium statistical me-
chanics?

(B) Is the ergodic hypothesis related to equilibrium statistical mechanics?

(C) Why and where does the concept of “probability” appear in equilibrium statistical me-
chanics?

Note that there are several opinions for the formulation of equilibrium statistical mechanics.
In this sense, the above problems are not yet answered. Thus we propose the measurement
theoretical foundation of equilibrium statistical mechanics, and clarify the confusion between
two aspects (i.e., probabilistic and kinetic aspects in equilibrium statistical mechanics), that is,

we discuss
the kinetic aspect (i.e, causality) --+ in Section [17.1
the probabilistic aspect (i.e., measurement) --- in Section [17.2

And we answer the above (A) and (B), that is, we conclude that
(A) is “No”, but, (B) is “Yes”.

and further, we can understand the problem (C).

“

This chapter is extracted from the following: [38] S. Ishikawa, “ and Equilibrium Statistical
Mechanics in the Quantum Mechanical World View,” World Journal of Mechanics, Vol. 2, No.
2, 2012, pp. 125-130. |doi: 10.4236/wim.2012.22014.

17.1 Equilibrium statistical mechanical phenomena con-
cerning Axiom 2 (causality)
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17.1 Equilibrium statistical mechanical phenomena concerning Axiom 2 (causality)

17.1.1 Equilibrium statistical mechanical phenomena

Hypothesis 17.1. [ Equilibrium statistical mechanical hypothesis |. Assume that about
N(=~10* =~ 6.02 x 10 ~ “the Avogadro constant”) particles (for example, hydrogen
molecules) move in a box with about 20 liters. It is natural to assume the following phe-

nomena (1) — (9):

(O Every particle obeys Newtonian mechanics.

(@ Every particle moves uniformly in the box. For example, a particle does not halt in a
corner.

(3 Every particle moves with the same statistical behavior concerning time.

(@ The motions of particles are (approximately) independent of each other.
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(17.1)

In what follows we shall devote ourselves to the problem:

(D) how to describe the above equilibrium statistical mechanical phenomena @ —

@ in terms of quantum language ( =measurement theory).

17.1.2 About (») in Hypothesis [17.1

In Newtonian mechanics, any state of a system composed of N( a2 10*%) particles is repre-

sented by a point (¢,p) (= (position, momentum) = (¢in, G2n, ¢3n, P1n; P2n> Pan)ne1 ) in a phase
(or state) space RV, Let H : R®Y — R be a Hamiltonian such that

ﬂ{((qln, G2ns @3n> Pin, Pons p3n)fl\;1) = momentum energy -+ potential energy
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Chap. 17 Equilibrium statistical mechanics and Ergodic Hypothesis

pkn N
U(@in; Gn; Gn)nr)- 17.2
Z Z 2 x particle’s mass]+ (a1, G2n; G3n)n=1) (17.2)

n=1 k=1,2,3

Fix a positive £ > 0. And define the measure v, on the energy surface Q. (= {(¢,p) €
RN | H(q,p) = E}) such that

v, (B) = /B |VH(q,p)| tdmen—1 (VB € Bq, , the Borel field of )

where

N
OH
IVH(q,p)| = Z 3p;m )2+ (@)2}]1/2

and dmgyn_; is the usual surface Lebesgue measure on §),. Let {¢f } _o<t<co be the flow on the
energy surface €2, induced by the Newton equation with the Hamiltonian J{, or equivalently,
Hamilton’s canonical equation:

dgpn, 0K dprn B OH

dt  Open dt  Oqen’
(k=1,2,3, n=1,2,...,N).

(17.3)

Liouville’s theorem (cf.[68]) says that the measure v, is invariant concerning the flow
{F} —co<t<oo. Defining the normalized measure 7, such that 7, = ﬁ, we have the nor-
malized measure space (Q,,Bq_,7,).

Putting A = Cy(2,) = C(Q,) (from the compactness of €2, ), we have the classical basic

structure:
[C(Q,) € L™(Q,,v,) € B(L*(y,v,))]

Thus, putting 7 = R, and solving the (I7.4), we get w, = (q(t),p(t)), d.. = VE_4,,
D 10w, = 04y, 4y(wr,) (VWi € ), and further we define the sequential deterministic causal

operator {®, 4, : L=(2,) = L¥(Qy) }y 1) e (cf. Definition [10.4).

17.1.3 About (@) in Hypothesis 17.1

Now let us begin with the well-known ergodic theorem (cf. [68]). For example, consider one

particle P,. Put
Sp, = {w € Q, | astate w such that the particle P, stays around a corner of the box }

Clearly, it holds that Sp, C Q,. Also, if ¥7(Sp,) C Sp, (0 =Vt < c0), then the particle Py

must always stay a corner. This contradicts (2). Therefore, (2) means the following:
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17.1 Equilibrium statistical mechanical phenomena concerning Axiom 2 (causality)

@’ [Ergodic property]: If a compact set S(C Q,,S # 0) satisfies ¢F(S) C S (0 £Vt < 00),
then it holds that S = 2,.

The ergodic theorem (cf. [68]) says that the above (@)’ is equivalent to the following equality:

/f w) = jim 1 [ s (174)

—00

(statc) space average) (time average)

(Ya e R,Yf € C(Q,), Vwy € Q)

After all, the ergodic property @) (< (17.4]) ) says that if 7" is sufficiently large, it holds that

f, g [T o (17.5)

Put m,.(dt) = 2. The probability space ([, a+T), Bla,as1], M) (or equivalently, ([0, 7], Bjor,
m,) ) is called a (normahzed) first staying time space, also, the probability space (€2, Bo_,7,)
is called a (normalized)second staying time space. Note that these mathematical probability
spaces are not related to “probability” (Recall the linguistic interpretation |(53.1)| :there is no

probability without measurement).

17.1.4 About (3 and (@) in Hypothesis [17.1

Put Ky = {1,2,..., N(=10*)}. For each k ( € Ky), define the coordinate map 7 : Q,( C
RY) — RS such that

ﬂ-k(w) = Trk(q?p> :ﬂ-k((chnv Q2n, QSn7p1n7p2nap3n>rjyzl)

=(q1k, 92k» G3k> D1k P2k, D3k) (17.6)

for all w = (¢,p) = (qin, G2n> Gns Pins P2ns Pan)iey € 2y (T ROV,
Also, for any subset K ( € Ky= {1,2, ..., N (=102)}), define the distribution map DY
: Q, (C RY) — M7 (R®) such that
Dy = K > bmaw (V(g.p) € Q,( CRN))
KeK

where f[K] is the number of the elements of the set K.
Let wo(€ ) be a state. For each n (€ Ky), we define the map X“° : [0,7] — RS such
that

X0 (t) = ma(pf (wo)) (VL €0,T7]). (17.7)
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Chap. 17 Equilibrium statistical mechanics and Ergodic Hypothesis

And, we regard {X“°}_, as random variables (i.e., measurable functions ) on the probability

space ([0, T, Bjo,r1,M,). Then, 3 and (@ respectively means

@ {X@}N  is a sequence with the approzimately identical distribution concerning time. In

other words, there exists a normalized measure p, on R® (i.e., p, € M7, (R®)) such that:

L ({t € 0.T] © X(1) € E p, (E) (17.8)
(VE € ‘BRG,TL: 1,2,...,N>

@' {X«}N_is approzimately independent, in the sense that, for any Ko C {1,2, ...,
N(210%")} such that 1 < #[Ky] < N ( that is, @QO ), it holds that

m.({t €[0,T] : X;°(t) € (€ Bgs), k € Ko})

zké( m,({t €[0,T] : X7°(t) € Zx(€ Bre)}).

Here, we can assert the advantage of our method in comparison with Ruelle’s method

(cf.[84]) as follows.

Remark 17.2. [About the time interval [0,T]]. For example, as one of typical cases, consider
the motion of 10** particles in a cubic box (whose long side is 0.3m). It is usual to consider
that “averaging velocity” =5 x 10*m/s, “mean free path”’=10""m. And therefore, the collisions

rarely happen among #][Kj] particles in the time interval [0,7], and therefore, the motion is

“almost independent”. For example, putting #[K,] = 10'°, we can calculate the number of
times a certain particle collides with Ko-particles in [0,T] as (1077 x 185)=1 x (5 x 10%) x T
~ 5 x 107° x T. Hence, in order to expect that (3) and (@’ hold, it suffices to consider that
T ~ 5 seconds. ///

Also, we see, by (I7.7) and (I7.5)), that, for Ko(C Ky) such that 1 < ${Ky] < N,

m.({t €[0,T] : X;*(t) € Zx(€ Bro),k € Ko})
=m,.({t € [0,T] : mp(VF (wo) € Zx(€ Bre), k € Ko})

7, ({t € [0,7] : ¥ (wi) € (meera) (X Z0)})

€0

Q

5E(((7Tk)kef<o)_1(k>< )

=(7, 0 ((Wk)keKo)fl)(kX Ek)- (17.9)
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17.1 Equilibrium statistical mechanical phenomena concerning Axiom 2 (causality)

Particularly, putting Ky = {k}, we see:

m,({t €[0,T] : Xp*(t) € EP= (7, 0 m, ' )(E)
(VE € Breo). (17.10)
Hence, we can describe the 3) and (@) in terms of {m} in what follows.

Hypothesis 17.3. [®) and @ |]. Put Ky = {1,2, ..., N(=10?")}. Let H, E, v
Q, — R® be as in the above. Then, summing up @ and @), by (17.9) we have:

E) VEa T -

(E) {m : Q, — RC}Y | is approximately independent random variables with the identical

distribution in the sense that there exists p, (€ M7 (R%)) such that

® p, (= “product measure” )~ v, o ((my)rex,) - (17.11)

ke Ky

for all Ko C Ky and 1 £ #][Ky] < N.

Also, a state (¢, p)(€ Q) is called an equilibrium state if it satisfies D%\f)%l)n

17.1.5 Ergodic Hypothesis

Now, we have the following theorem (cf.[38]):

Theorem 17.4. [Ergodic hypothesis|. Assume Hypothesis [I7.3] ( or equivalently, 3) and (@) ).
Then, for any wy = (¢(0),p(0)) € ©2,, it holds that

(DY) E)~ M, ({t € [0,T] = X (1) € E})
(V2 € Bge, k= 1,2,..., N(=10*")) (17.12)

for almost all £. That is, 0 £ m,.({t € [0,7] : (I7.12) does not hold}) <« 1

Proof. Let Ky C Ky such that 1 < §[Ky] = Ny < N (that is, Wl(o]mOz 5ol Y. Then, from
Hypothesis A, the law of large numbers (¢f. [67]) says that
D "R v ot (%) (17.13)

for almost all time ¢. Consider the decomposition Ky = {Kx), K(2),..., Ky} (e, Ky =
Ulel Ko, KnNKgpy=0 (L #1) ), where §{Ky]~=Ny (Il =1,2,...,L). From (7.13)), it holds
that, for each k (=1,2,..., N (=10%*)),

L
q(t)p(t 1 (a(),p(t)
— le x Dyl 7]

=1
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Chap. 17 Equilibrium statistical mechanics and Ergodic Hypothesis

L

1

NZ | X pl=v,0om !t (~p,), (17.14)
=

—_

for almost all time ¢. Thus, by (17.10), we get (17.12)). Hence, the proof is completed.

We believe that Theorem [17.4lis just what should be represented by the “ergodic hypothesis”
such that

“population average of N particles at each ¢”

=“time average of one particle”.

Thus, we can assert that the ergodic hypothesis is related to equilibrium statistical mechanics
(cf. the (B) in the abstract). Here, the ergodic property @) (or equivalently, equality (I7.5]))
and the above ergodic hypothesis should not be confused. Also, it should be noted that the

ergodic hypothesis does not hold if the box ( containing particles ) is too large.

Remark 17.5. [The law of increasing entropy]. The entropy H(q,p) of a state (¢,p)(€ Q,) is
defined by

H(q,p) = klog[v, ({(d,p)) € Q, : D¥P~ DY)

where

k = [Boltzmann constant]/([Plank constant]*" N!)

Since almost every state in €2, is equilibrium, the entropy of almost every state is equal

klogv,(§2,). Therefore, it is natural to assume that the law of increasing entropy holds.
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17.2 Equilibrium statistical mechanical phenomena concerning Axiom 1 ( Measurement)

17.2 Equilibrium statistical mechanical phenomena con-
cerning Axiom 1 ( Measurement)

In this section we shall study the probabilistic aspects of equilibrium statistical mechanics.

For completeness, note that
(F) the argument in the previous section is not related to “probability”

since Axiom 1 (measurement; §2.7) does not appear in Section [I7.1. Also, Recall the linguistic
interpretation |(§3.1) : there is no probability without measurement.
Note that the (17.12)) implies that the equilibrium statistical mechanical system at almost

all time t can be regarded as:

(G) a box including about 10** particles such as the number of the particles whose states

belong to = ( € Bgs) is given by p, (=) x 10%.
Thus, it is natural to assume as follows.
(H) if we, at random, choose a particle from 10?* particles in the box at time ¢, then the
probability that the state (g1, 2, g3, p1, P2, p3) (€ R®) of the particle belongs to = ( € Bgs)
is given by p,(Z).

In what follows, we shall represent this (H) in terms of measurements. Define the observable

Op = (RS, Bgs, Fy) in L>°(2,,) such that

[Fo(2))(g,p) = [D%)](E)( _ Bk W;[(lzﬁ) € E}]>

(V2 € Bgs,¥(q,p) € Q,.( C RY)). (17.15)

Thus, we have the measurement Mo q,)(Op = (Rﬁ,BRs,FO),S[(;M%’%)]). Then we say, by

Axiom 1 (measurement; §2.7)|, that

(I) the probability that the measured value obtained by the measurement My (q,)(Og =
(Rﬁ’ Brs, FQ), S[%t@o’f’o)]
A says that [Fo(2)](¢e(q,,p,)) = px(Z) (almost every time t).

) belongs to =(€ Bgs) is given by p,(Z). That is because Theorem

Also, let WF : L>(Q,) — L>(£2,) be a deterministic Markov operator determined by the
continuous map ¢ : Q. — Q. (¢f. Section 17.1.2). Then, it clearly holds V7O, = O,.
And, we must take a Mpe(q_)(Oo, gty pte))) for each time ty,t9,... ¢, ..., ¢, However,
the linguistic interpretation |(§3.1)| :( there is no probability without measurement) says that it

suffices to take the simultaneous measurement MC(QE)( X p_; O, Sa0r p(o))]).
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Remark 17.6. [The principle of equal a priori probabilities |. The (H) (or equivalently, (I))
says “choose a particle from N particles in box”, and not “choose a state from the state space
2.7, Thus, as mentioned in the abstract of this chapter, the principle of equal (a priori)
probability is not related to our method. If we try to describe Ruele’s method [84] in terms of
measurement theory, we must use mixed measurement theory (cf. Chapter 9). However, this

trial will end in failure.

17.3 Conclusions

Our concern in this chapter may be regarded as the problem: “What is the classical me-

chanical world view?” Concretely speaking, we are concerned with the problem:
“our method” vs. “Ruele’s method [84] ( which has been authorized for a long time )”

And, we assert the superiority of our method to Ruele’s method in Remarks [17.2, [17.5 [17.6.
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Chapter 18
Reliability in psychological tests

In this chapter, we shall introduce a measurement theoretical approach to a problem of analyzing
scores of tests for students. The obtained score is assumed to be a sum of a true value and a
measurement error. It is also subject to a systematic error (=noise) depending on his/her health
or psychological condition at the test. In such cases, statistical measurements are convenient
since these two errors (i.e., measurement error and systematic error) in measurement theory can
be characterized in different mathematical structures. As a result, we show that

“reliability coefficient” = “correlation coefficient”

in a clear formulation.
This chapter is extracted from the following.

[63] K. Kikuchi, S. Ishikawa, “Psychological tests in Measurement Theory,” Far east
journal of theoretical statistics, 32(1) 81-99, (2010) ISSN: 0972-0863

18.1 Reliability in psychological tests

18.1.1 Preparation

In this section, let us consider reliability of psychological tests for a group of students. We
discuss examples from measurement theoretical characterization of tests to measure mathemat-
ical ability of students.

Let © :={61,0s,...,0,} be a set of students, say, there are n students 6;,0s,...,6,. Define
the counting measure v, on O such that v.({6;}) =1 (i = 1,2,...,n). The © will be regarded
as a state. For each 6; (€ ©), we define 15, (€ L} (©,1.)) by 15,(0) = 1 (if6 = 6;), =
0 (if @ # 6;). Recall that © can be identified with the {1y, | §; € ©} under the identification:
©30, <1y, €{ly| 00O}
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For simplicity, we shall begin with the test for one student 0; (€ ©). Let (Qg, Fo,,dw) be

the Lebesgue measure space where (Jx = R.

Example 18.1. (test in mathematics for a student ;) Let © := {0,6,,...,0,} be a state
space which is identified with the set of the students. The mathematical ability of the student
0; (¢ ©) is assumed to be represented by a statistical state ®,(1p,) (€ L1, (Qr,dw)) (i =
1,2,...,n) where @, : L'(0,1.) — L'(Qg,dw) is a pre-dual Markov causal operator of ® :
L>®(Qg,dw) — L®(0, 1,).

0=1{1,|0c0

Let O := (Xg, Tx,, F) be an observable in L>®(Qg, dw). Axiom™ 1 (§9.1) asserts that

(A) the probability that the score (measured value) of the student 6; (€ ©) obtained by the
statistical measurement Mo (o, 4w)(O, S (P(1p,))) belongs to a set = (€ Fy,) is given
by

o @18 P (= [ [FEI0):10)](0) ).

Qg

Remark 18.2. In the above, readers may have a question
(B) What is the unknown pure state [] in Sp, ?
Imaging the deterministic causal map v : © — (g, we may consider that
= 0(6) = | w10 ) do
R

Also, note that the [*] does not play an important role in this chapter since Bayes’ theorem

9.11] is not used.
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Chap. 18 Reliability in psychological tests

Remark 18.3. It should be kept in mind that the variance o? of the ability of §; (€ ©)

(i =1,2,...,n) is not constant, that is to say, we do not assume that o2 = 0J2- (Vi,V7):

otim [ o mf @)@ e (=12,...m), (18.1)
Qg
where p; is an expectation of ®,(1,):

» ;:/Q w[@u(1g)| (@) dw (i =1,2, ... n). (18.2)

18.1.2 Group measurement (= parallel measurement)

The above example is the test for a student 6; (€ ©). Keeping this in mind, we will next
consider the test for a group of n students. Let Qf = R", and let (Qf, Fon,dw™) be a n-
dimensional Lebesgue measure space. Furthermore, let O := (Xg, Fx,, F) and My, 4)(O,

S (®4(14,))) (i = 1,2,...,n) be as in above example. Here, we consider a parallel measurement

M o (2 @) (O, S (5)) where O := (X%, Fxz, F) is an observable in L>(Qg, dw"). If
[F(E1 % Zp X -+ X B (@1, w2, - wn) = [F(ED)](@1) - [F(Es)](wa) -+ [F(En)] (wn),
and
plwr,wa, o wn) = [Pu(Lg,)](wr) - [@4(1,)](w2) - - [Pu (L6, )] (wn),
then, the parallel measurement M Loo(Qﬁdwn)(a, S(p)) is denoted by
®0,c0M Lo (Qp,dw) (O, S (P (14,))).

In addition, we introduce the following notations concerning tensor product:

R L®(Qp,dw) = L®(Qp, dw™) and ®7_, L'(Qr,dw) = L' (Qf, dw™).

By the way, we introduce the test observable.

Definition 18.4. [Test observable] The O, = (Xg,Fx,, F;) is called a test observable in

L>®(Qg, dw), if F, satisfies the following no-bias condition:

/X z[Fr(dr)|(w) =w (Yw € Qg). (18.3)
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18.1 Reliability in psychological tests

Recall that the normal observable (¢f. Example 2.24] ) and the exact observable (cf.
Example 2.25] ).

For each 6, (€ ©), we use the notation Mgi to the test for 0; (€ ©) (the measurement of the
test observable O, for the statistical state ®,(1y,)):

MS) = M0y 40 (Or, Spay (@2 (15,))). (18.4)

Now we are ready to consider the test for a set of the n students in our measurement theory.

Definition 18.5. [Test, Group test] Let © := {01,6,,...,0,}, Xg = Qg = R and ®, :
LY,(0,v,) — L1 (O, dw) be as in ExampleI81l Let O, := (Xg, Fx,, F;) be a test observable
in L>®°(Qg, dw). The measurement Mpec(q, a.)(Or, Sp(Pi(1e,))) is called a test for a student
6; (€ ©) and symbolized by Mgz for short. And the measurement

9, coM o0 (25,4 (Or Sy (@4 (15,))) (o1 in short, @g,coMy)), (18.5)

is called a group test and symbolized by MgT for short.

Axiom™ 1 (§9.1)) says that

(C) the probability that the score  (z1,9,...,2,) (€ X§) obtained by the group test
®g,coM oo p.dw) (Or, Sp(Pi(1g,))) (or in short, M%T) belongs to the set X, Z; (€ Fxr)
is given by

5 g (@(16). Fr (G (= B(X 20 = X RE)). (186)

Here, (Xg, Fx,, ;) is a sample probability space of Mgi.

Let W : X% — R be a statistics (i.e., measurable function). Then, 8M§> [W], the expectation

of W, is defined by

Ene
Mg

[W]:/ W(l’1,$27~--7$n)ﬁl(dﬂf1dﬂf2“'d5€n>~

Xr Xr

Definition 18.6. Let O, := (Xg, Fx,, F;) be a test observable in L> (g, dw).

(i: Score of 0;) Let Mpoo(qy a0 (Or, Sp(P4(16,))) (or in short, I\/Ig)T) be a test for a student

0; (€ ©). Here, we consider the expectation of z; (€ Xg) and its variance.
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Chap. 18 Reliability in psychological tests

1. Av[MY)] = € [il;
2. Var[Mgz] =y [(% - AV[MS)TDQ}

(ii: Scores of n students) Let ®g,coMre (g .a)(Or, Sp(Pi(1g,))) (or in short, Mg ) be a group

test. Here, we consider the expectation of %(:Ul + x9 + - -+ + x,,) and its variance.
1
1. Av[Mg ] :== Emg [5(131 +ap 4+ xn)},

1 n
2. Var[Mg ] := EME?T [E Z(Jfk - AV[M%DQ]'
k=1

From the no-bias condition (I8.3)), we get
AVIME)] = AvME) ] = / [0, (1)) (w) dos = i, (18.7)
R
Av[Mg ] = ZAV = Av]| |\/|® = ZA M(Z Zu =: [, (18.8)
i=1
where Op := (Xg, Fxg, ) is an exact observable in L® (g, dw).

18.1.3 Reliability coefficient

When we suppose the group test, we can consider the reliability coefficient which can be

represented by a proportion of variance of mathematical abilities to obtained variance.

Definition 18.7. [Reliability coefficient] Let O, := (Xg, Fx,, F;) [resp. Op := (Xg, Fxp, F)]

be a test observable [resp. an exact observable] in L (Qg, dw). And, let
M%T = ®9¢€@ML°°(Q]R,dw) (O’ra S[*}((I)*(lﬂ)))
be a group test. The reliability coefficient RC[M%T] of the group test M%T is defined by

RCIME | = —\\izrrm ]] .

Now let us consider the measurement error. First, when the ability (true value) is w (€ Q),

the measurement error A, is as follows:

A= /X ey [FT(dx)](w)>1/ T (weq) (18.9)
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18.1 Reliability in psychological tests

Note that the error A, (Vw € Q) depends on w (€ Q) in general, that is, we do not assume
that A, = Ay (Vw,Vw' € Q). Next, for each 6; (€ ©), the error A; for the student 6; (€ ©) is
as follows:

A= (] AW dw)l/ i

Xr

_ (/ﬂ (/X (& — w)? [FT(dac)](w)>[<I>*(1gi)](w)dw>1/2 (i=1,2,...,n).  (18.10)

Finally, the group average of the student 6;’s error A; (i = 1,2,...,n) is as follows:
1 <& 1/2
A, = <E;A?> . (18.11)

From what we have seen, we can get the following theorem.

Theorem 18.8. (i: The variance Var[l\/lg)T]) Let Mgi i= Moo (0p,dw) (Or, Sy (P4 (1g,))) be the

measurement of test observable O, for the statistical state ®,(1y,). Then, we see
Var[Mgz] = Var[Mg)E] + A2 (18.12)

(ii: The variance Var[Mg ]) We consider the group test Mg := ®p,ceo Mgz =
®0,c0 Moo (0p.dw) (Ors S (Pi(1g,))). And, we obtain the following:

Var[Mg | = Var[Mg ]+ A2, (18.13)

Proof. Let p; be an expectation of ®,(1y,). Then, we see

VarMg = [ ([ (o= 1P o)) ) . (10 ) ) s

~ [ wmmr@des [ ([ @-w? F)) @) d

N / ( /X 2w — w)(w — i) [Folde))() ) [@(19,)] (@) dw
= Var[M{) ] + A2

From the above formula, it follows that the group average of Var[Mg)T] becomes

Varmg | = [ - / il /- - / R . Z@: B X [F(dn))() X [@.(10)] () des

=25 [ ([ @ mrr - P @) o)) s
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23 [ (e mami)e.oe
23 [ (2=t = 1 ) .l
:/Q/Q %Z(wi—ﬁ)QZ%[@ (1,)](w;) dw; + — ZAQ

i=1 =

= Var[Mg ]+ A2 0

18.2 Correlation coefficient: How to calculate the relia-
bility coefficient

Var[M®
In the previous section, we define the reliability coefficient RC[I\/I%T] = % However,
from the measured data (z1,x9,...,2,) (€ X§), we can not get the variance of mathematical

abilities of n students Var[Mg ] directly (though we can calculate the Var[Mg ]). Thus, we
focus on the problem how to estimate the reliability coefficient. Here we consider one typical

method, say the split-half method.

Split-half method: This method is appropriate where the testing procedure may in some
fashion be divided into two halves and two scores obtained. These may be correlated.
With psychological tests, a common procedure is to obtain scores on the odd and even

1tems.

Now we introduce the measurement theoretical characterizations of the split-half method.

Definition 18.9. [Group simultaneous test] Let © := {61,0,,...,0,}, Xg = Qg = R and
®, : L1,(0,v,) = L1, (Qr,dw) be as in Example 181l Let O, := (Xg,Fyx,, F;,) and O, :=
(Xr, Fxy, Fr,) be test observables in L>°(Qg, dw). The measurement

®9i69ML°°(Q[R,dUJ)(O7'1 X 07'2’ S[*](Cb*(l&')))v

is called a group simultaneous test of O, and O,, and it is symbolized by Mg X0, for short.

Axiom™ 1[(§9.1)| says that
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(A) the probability that the score ((zf, %), (x3.23),...,(z},22)) (€ X&") obtained by the

group simultaneous test ®g,coM (g d0) (07, X Ony, Siy(P(1y,))) (or in short, M%Tlxom)

belongs to the set X (Z} x 22) (¢ Fxzn) is given by

L1 (Qp,dw) <

@10, (Fry % Fo)(E % ZD) iy (= BUX(EL X ED)). (18.14)

X
6,€0

Here note that (X", F X2, ﬁg) is a sample probability space.
Let Wy : X2" — R be a statistics (i.e., measurable function). Then, g . [Ws], the
71 XU1g

expectation of W, is defined by

_ 1,2 .1 .2 1 ,.2\D 172 3.1 3 2 1 7.2
Eme . [(Wo] = Wi(xy,xf, 25,25, . .., ., x5) Py(dry doy dzy das - - - dx,, dx?).
71 X097y Xp

We use the following notations:

) 1
(i) AV(k)[Mngxom] = Eye [ﬁ lﬂ (k=1,2),

) VS o | = b [ Z( S AVOIME, o ] (= 12),
() CovM3, o= Engg [2D (!~ AVIME o)
=1
x (2 = AVIIME o )]

Definition 18.10. [Equivalency of test observables] We call that test observables O, :=
(Xr, Fxy, Fry) and O, == (Xg, Fx,, Fr,) in L®(Qg, dw) are equivalent if it holds

AL = AD (v e Qp), (18.15)

w w

where AL = ([ (z — w)? [F, (dz)](w))Y?  (see (I8.9)).

In case that test observables O, := (Xg, Fx,, Fr,) and O, := (Xg, Fxy, Fry) in L®(Qg, dw)
are equivalent and O,, x O, is a product test observable in L*>°(Qg, dw), it holds that

Var[M%Tl] = Vaur(l)[M%T1 XOTQ] = Var(2)[M%T1XoT2] = Var[M%TQ]. (18.16)

In consequence of these properties, we introduce the correlation coefficient of the measured

values (xl,zd ... zl) (€ XE) and (22,2%,...,22) (€ Xg) which are obtained by the group

rn rn

: ®
simultaneous test MOT1 X0y
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Theorem 18.11. [The reliability coefficient and the correlation coefficient in group simultaneous
tests] Let O, and O,, be equivalent test observables in L>(Qg, dw). And let O, x O,, be a
product test observable in L (g, dw). Let M%Tk = ®p,coM e (0 dw) (O, s

S (P (1g,))) (K = 1,2) and |\/|%T1X072 = ®g,coM (07, x O, S (P.(16,))) be group tests as
above notations. Then we see that

® ® COV[M%TI ><OT2]
RCM§_] = ROMG_ | = (18.17)

o \/Var[M%n] : \/Var[l\/[%v]'

Proof. From the (18.3), we get the following:

n

1
xonl = Eug o | D@t - AVOME o D)(@f — AVEIMG o )]

Or X0ry L) 4
=1

1 n
— /Q . /Q (/X . /X - Z(xll _ Av(l)[M%ﬁxOQ])(I? . AV(2)[M%ﬁxOT2D
R R R R i=1

n

X X [Fry (daj) Fry (da] )](wi)) Z,>:<1 [ (14;)}(ws) dews

_ %Z ( / R ( /X R /X (o} = AVIME, ) (07 — AVIMG, )

X [Py (do})] (@) [Fry(d2d)] (@) )[4 (19,)) () do)
SIS ([ ([ - g ) i)
< (@ = AVME,) [P (da?)])) 9. (10)] ) )

Cov[Mg

= %Z/Q (w — Av[MG 1)? [®.(1,)](w) dw = Var[Mg ]. (18.18)

Then, we see that

CovM3, 0] ValM3]  Var(M3,)
\/Var[Mgﬂ]~\/Var[M§Q] Var(l)[Mngxov] Val"(Q)[ngxoTz]'

(18.19)

18.3 Conclusions

In this chapter, we introduce the measurement theoretical understanding of psychological test

and the split-half method which estimate reliability. Measurement theoretical approach show
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the following correspondences:

split-half method +— group simultaneous test.
M%TIXOT2 = ®0i€@MLOO(Q]R7dUJ)(OTI X 07—2, S[*](q)*(19z>>>

And further, we show the well-known theorem:
“reliability coefficient” = “correlation coefficient”

in Theorem [18.11l.
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Chapter 19

How to describe “belief”

Recall the spirit of quantum language (i.e., the spirit of the quantum mechanical world view),
that is,

(#) every phenomenon should be described in quantum language.

Thus, we consider that even “belief” should be described in quantum language. For this, it

suffices to consider the identification:

“belief” = “odds by bookmaker”

This approach has a great merit such that the principle of equal weight holds.

This chapter is extracted from Chapter 8 in

Ref. [33]: [S. Ishikawa, “Mathematical Foundations of Measurement Theory,” Keio
University Press Inc. 2006.

19.1 Belief, probability and odds

For instance, we want to formulate the following “probability”:
(A) the “probability” that Japan will win the victory in the next FIFA World Cup.

This is possible (¢f. [33]), if “parimutuel betting (or, odds in bookmaker)” is formulated by
Axiom 1 ( mixed measurement ). The purpose of this chapter is to show it, and further, to

propose the principle of equal weight, that is,

(B) the principle that, in the absence of any reason to expect one event rather than another,

all the possible events should be assigned the same probability.
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whose validity has not been proven yet. It is one of the most important unsolved problems in

statistics.
In Chapter [9, we studied the mixed measurement: that is,

|(mixed)Axiom(™) 1] [Axiom 2]
mixed measurement theory‘ = ’ mixed measurement ‘ + | Causality
(=quantum language) (cf. [9.1]) (¢f. §10.3)

a kind of spells (a priori judgment)
[quantum linguistic interpretation]|
+ ’Linguistic interpretation‘ (19.1)
(of. @D

~
manual to use spells

The purpose of this chapter is to characterize “belief” as a kind of mixed measurement.

19.1.1 A simple example; how to describe “belief” in quantum lan-
guage

We begin with a simplest example (¢f. Problem [9.5]) as follows.

Problem 19.1. [= Problem [9.5; Bayes' method] Assume the following situation:

(C) You do not know which the urn behind the curtain is, U; or Us,, but the “probability”:
pand 1 —p.

Here, consider the following problem:

Assume that you pick up a ball from the urn behind the curtain.
(i): What is the probability that the picke((i) ball is a white ball ?

Uy

A

(0]@)
(0Je)
(0]e)
(o]0
o0

(ii): If the picked ball is white, what is the probability that the urn behind the curtain is Uy ?

Figure 19.1:( Mixed measurement)

Answer 19.2. (=Answer 9.13)
Put © = {w;,ws} with the discrete metric and the counting measure v., thus, note that
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Co(Q) = C(Q) = L*(Q,v). Thus, in this chapter, we devote ourselves to the C*-algebraic
formulation: Define the observables O = ({W,B}, 2{W:B} F) and Oy = ({U,,U,}, 2100U2},
Gy) in C(2) by

F{W})(wi) =038, F({B})(wi) = 0.2, F{W})(w2) = 0.4, F({B})(w2) = 0.6
Gu({Ui})(w1) = 1,Gu({U2})(w1) = 0, Gu({U1})(w2) = 0, Gy({Ua})(w2) = 1

Here “W” and “B” means “white” and “black” respectively. Under the identification: U; ~ w;
and Us &~ w9, the above situation is represented by the mixed state pggor(e M1(£2)) such that

pf:,mr POu; + (1 = p)buys

where J,, is the point measure at w. Thus, we have the mixed measurement:
MC(Q)(O X OU ({WB} {Ul UQ} Q{WB} {U1,U2} F X GU) S[* (ppmr)) (192)

Axiom(™ 1 gives the answer to the (i) in Problem [19.1] as follows.

(D) the probability that a measured value (z,y) obtained by the mixed measurement
@ (0 x Oy, S[*](ppmr)) belongs to {W} x {Uy, Us} is given by

2@ (PP FUW D))y = 0.8p + 0.4(1 — p).

Since a white ball is obtained, Answer [0.13] (=Bayes’ theorem ) says that a new mixed state
pi(€ M1(Q)) is given by

® _ F({W}>pf£30r 0.8p 0.4(1 — p)
et JoFUW D)) p2hr (dew) T 08p+04(1—p) T 08p+04(1—p)

5., (19.3)

Hence, the answer of the (ii) is given by

0.8p
0.8p + 0.4(1 — p).

M(Q)(p;osw v({U1}))c c@Q) =

By an analogy of the above Problem [19.1] ( for simplicity, we put: p = 1/4), we consider as
follows.

Assume that there are 100 people. And moreover assume the following situation (E) such
that, for some reasons,

(B) 25 people believe ( or vote) that [x] = U; (i.e., Uy is behind the curtain)
75 people believe ( or vote) that [«] = U, (i.e., Uy is behind the curtain)

That is, we have the following picture instead of Figure [19.1:
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19.1 Belief, probability and odds

Figure 19.2: Belief ( or voting )
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25 people believe that [x| = Uy, 75 people believe that [x] = Us.

Now, we have the following problem:
Problem 19.3. Consider Situation (E) and Situation (C) (p=1/4, 1 —p=3/4). Then,
(F;) Can Situation (E) be understood like Situation (C) ?
or, in the same sense,

(F,) Can Situation (E) be formulated in mixed measurement (i.e., Axiom™ 1)?  That is,
can Situation (E) be described in quantum language ?

19.1.2 The affirmative answer to Problem 19.3

Since 100 people know the situation of the urn (i.e., Figure [19.2, the assumption (E) ) implies
(G)(=Figure [19.3), that is,

(25 people (in 100 people) believe that [x] = U;
N { (G1): 20 people guess (or bet) that a white ball will be picked
(Gz): 5 people guess (or bet) that a black ball will be picked
75 people (in 100 people) believe that [x] = U,
. { (G3): 30 people guess (or bet) that a white ball will be picked
\ (Gy4): 45 people guess (or bet) that a black ball will be picked

(G) <

Figure 19.3: The odds in bookmaker

Ul(% wl)

0000e
O0000e

25 people believe that [x] = Uj. 75 people believe that [x] = Us.
(G1): 20 people guess that a white ball will be pickdds): 30 people guess that a white ball will be picked.
(G2): 5 people guess that a black ball will be pickefiG4): 45 people guess that a black ball will be picked.

Assume that a white ball is picked in the above figure. Then, the above (Gy) and (Gy) are
vanished as follows.
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Figure 19.4: A white 8all is picked
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0000® =": K
0000e

A

25 people believe that = U;. 75 people believe that [x| = U,.
peop peop
(G1): 20 people guess that a Whlte ball will be pickddsz): 30 people guess that a white ball will be picked.

—{Go):Hpeople guess that-a-black ballb-will be picke(fG1): 15 people guess that-a black ball-will he picked.

After all, we get the following figure:

Figure 19.5: After all, we get the new odds

Ul(% CUl)

0000® { }
0000® S 7

40 % people believe that [x| = Uy, 60 % people believe that [x] = Us.

Thus we see that

(prior state) (a white ball is picked) (post state)
Fig. 19.3| ——— Fig. [19.4 — | Fig. 19.5 (19.4)
15‘*’1"" Oy %5“’14'%5“’2

Considering the mixed measurement (i.e., the (19.2)) in the case that p = 1/4):

@ (0 x Oy = ({W,B} x {Uy, Uy}, 20V B0 o Gy, S (plhid)y) (19.5)

pprlor

we see that the above (19.4) is the same as the Bayesian result (19.3).
Note that the measurement (19.5)) is interpreted as

(H) choose one person from the 100 people at random, and ask him /her “Do you guess that a
white ball (or, a black ball) will be picked from the urn behind the curtain, and its urn
isU; or Uy 77

In what follows, let us explain it. Consider the product observable OxOy of O = ({W, B}, 2{W:B},
F) and Oy = ({Uy, Uy}, 21002} Gyy) in C(©) (where © = {6, 0s, ..., 0100 }) such that

[FEWDIO) = 4/5, [FABDI(O) = 1/5, (k=1,2,...,25)
[FU{WDI(60:) =2/5, [F{BW(6) =3/5, (k= 26,27, ...,100) (19.6)

433 ’ For further imformation see my homepage, ‘



http://www.math.keio.ac.jp/~ishikawa/indexKSTS5.html

KSTS/RR-19/003
December 26, 2019

19.2 The principle of equal odds weight

[Go({UN]O) = 1, [Go({U2D)](6r) =0, (k=1,2,...,25)
[Co({U))(6:) =0, [Gu({U2D](0) =1, (k =26,27,...,100) (19.7)

And put vy = (1/100) 32,2, 85, (€ M11(0)). Then, the above measurement (H) is formulated
by

Mcey(0 x Oy = ({W,B} x {U;, Up}, 2WEPTEY [ 5 Gy, Spy (1)) (19.8)
which is identified with the measurement (19.5) under the deterministic causal operator ® :

C(Q2) — C(O) such that ®*(dy, ) = 0w, (k =1,2,...,25), =4, (k = 26,27,...,100). That is, we
see, symbolically,

P

(H)=(19.8)): the Heisenberg picture (19.5): the Schrodinger picture

identification

Thus, as a particular case of the above arguments, we can answer Problem [19.3] such that
(I;) Situation (E) can be understood like Situation (C).
That is,

(I,) Situation (E) can be formulated in mixed measurement (i.e., Axiom™ 1).  In the same
sense, Situation (E) can be described in quantum language.

19.2 The principle of equal odds weight

From the above arguments, we see that

Proclaim 19.4. [The principle of equal weight] Consider a finite state space {2 with the discrete
metric, that is, Q = {wy,ws, ..., wy}. Let O = (X, F, F) be an observable in C(Q2). Consider a
measurement Mc(q) (O, Sp). If the observer has no information for the unknown state [*], there
is a reason to assume that this measurement is also represented by the mixed measurement

MC(Q) (Oa S[*} (pprior)) s where

1 n
Pprior = E Z 5&;,@‘ (199)
k=1
Explanation. In betting, it is certain that everybody wants to choose an unpopular wy.
Thus, I believe that everybody agrees with Proclaim [19.4. Also, it should be noted that
(J) the term “probability” can be freely used within the rule of Axiom 1 or Axiom(™ 1.

The reason that the justice of the (B: the principle of equal weight) is not assured yet is due
to the lack of the understanding of the (J).

#Note 19.1. In this book, we dealt with the following three kinds:
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(#1) the principle of equal weight in Remark [5.19
(#2) the principle of equal weight in Theorem [9.18
(#3) the principle of equal weight in Proclaim [19.4

which are essentially the same.

In order to promote the readers’ understanding of the difference between Theorem [9.18 and
Proclaim [19.4] we show the following example, which should be compared with Problem [5.14
and Problem [9.17

Problem 19.5. [Monty Hall problem (=Problem [5.14; The principle of equal
weight) |

You are on a game show and you are given a choice of three doors. Behind one door is a
car, and behind the other two are goats. You choose, say, door 1, and the host, who knows
where the car is, opens another door, behind which is a goat. For example, the host says that

(b) the door 3 has a goat.

And further, he now gives you a choice of sticking to door 1 or switching to door 2 7 What
should you do ¢

|

l é § |

door door door J |
No. 1 No. 2 No. 3 |

Figure 19.6: Monty Hall problem

Proof. It should be noted that the above is completely the same as Problem [5.14. However,
the proof is different. That is, it suffices to use Proclaim [19.4] and Bayes theorem (B;). That
is, the proof is similar to Problem [9.16] . ]
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Chapter 20

The mathematical foundations of
science: Probablistic interpretation of
science

In this chapter, we consider the most fundamental problems in philosophy of science such as
Hempel’s raven paradox, Hume’s problem of induction, Goodman’s grue paradox, Peirce’s ab-
duction, flagpole problem, which are closely related to measurement. We believe that these
problems can never be solved without the basic theory of science with axioms. Since our world-
view (ie.e, the quantum mechanical worldview) has the axiom concerning measurement, these
problems can be solved easily. Hence there is a reason to assert that quantum language gives
the mathematical foundations to science.

20.1 Hempel’s raven problem in the quantum mechani-
cal worldview

20.1.1 The conventional arguments about Hempel’s raven problem

In this section we improve our result mentioned in the Section 3 ”Hempel’s raven problem

(cf. refs. [21, 22]) 7 of our paper:

e Ref. [62]: Ishikawa, S., (2019) Philosophy of science for scientists; The probabilistic
interpretation of science, Journal of quantum information science, Vol. 9, No.3 ;| 140-154,

(https://www.scirp.org/Journal/paperinformation.aspx?paperid=95447)

First, let us review the traditional arguments concerning Hempel’s raven problem. Thus,

we start from the followings:
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(Ag) Let U be the set of all birds. Let B(C U) be a set of all black birds. Let R(C U) be a

set of all ravens.

Although these should be doubtful (since these are as ambiguous as “the set of all tyran-
nosaurs” ), we advance towards the next argument. The statement: “Every raven is black” is

logically denoted by
(A;) “Every raven is black” : (Vo )t e R— 2 € B] ie,RCBCU,
Also, this is logically equivalent to the following contraposition:
(Ag) “Every non-black bird is a nonraven” : (Vz )jr e U\ B — z € U\ R]
i.e., UNBCU\R
However, if these are equivalent, then we have the following problems (i.e., raven problem):
(As) Why is the actual verification of (Ay) much more difficult than the actual verification of

(A1)?

(A4) Why can the truth of “(A;): any raven is black” be known by (A,), i.e., without seeing

a raven also at once?

(As) Is it possible to experimentally verify “Every raven is black”?

These may be so called Hempel’s raven paradox. However, there is a reason to consider that
“the set of all ravens” is as ambiguous as “the set of all tyrannosaurs”. If so, that is, if the
above (Ag) is ambiguous, all other (A;)-(As) are also ambiguous. That is, (A3)-(As) are not
scientific problems.

Now we think that the most essential problem concerning Hempel’s raven problem is as

follows:
(B) What is the scientific meaning of “Every raven is black”?

In order to study this problem, we must prepare the measurement theoretical formulation of
ornithology, under which the meaning of “Every raven is black” will be clarified in this section.
We believe that the above problems can not be solved without measurement theory since the
above problems includes the terms “actual verification” and “experimentally verify” which are

closely related to measurement.

Remark 20.1. Just to be sure, in this paper we assume that the followings are the same:
“any raven is black” = “every raven is black” = “all ravens are black”.

This is the same as the usage in mathematics ( i.e., “any” = “every” = “all” = “V").
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20.1.2 The measurement theoretical formulation of ornithology

We think that Hempel’s raven problem raises the problem of “What is the scientific meaning
of ‘Every raven is black’?”. In order to answer this problem, we must prepare the measurement

theoretical formulation of ornithology

Definition 20.2. [Membership function ( = Fuzzy set )] Let € be a state space. A continuous
function m : Q — [0, 1] (i.e., the closed interval) is called a membership function. Assume that
the state (i.e., quantitative property ) of any bird can be expressed by a point in the state space
Q). Define the membership functions mp : @ — [0, 1] of black birds and the membership function
mpg : 0 — [0, 1] of ravens as follows. Suppose that there are 100 specialists of ornithology and

the following question is made them.
(C) Is this bird with the sate wy (€ ) a black bird or not?

The answer is as follows.

(D) 70 specialists say that this bird is a black bird.
30 specialists say that this bird is not a black bird.

Then the value of mp(w;) is defined by 0.7. For many birds with the state w; (i = 2,3,...N),
repeating the experiment in the same way, the value of mp(w;) (i = 2,3,...N) is determined.
And the membership function mp : Q — [0, 1] of black birds is defined by the interpolation
method ( which may be rather subjective ). Similarly we get the membership function mg :

2 — [0, 1] of ravens.

Definition 20.3. (i): [Raven state class, Black bird state class|: Put
Qp :={we Q| mp(w) =1}, Qp ={we Q| mgw) =1}

which is respectively called a black bird state class and a raven state class ( see Fig. 3 below).
(ii): [Raven, Black bird]: If the state of a certain bird belongs to Qg [ resp. Qg], this bird of a
certain is called a raven [ resp. a black bird |. It is not asked whether this bird exists really.
This bird may be extirpated like tyrannosaurs. Moreover, this bird may be a biology newly

made by genome edit.
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20.1 Hempel’s raven problem in the quantum mechanical worldview

(iii): [“Every raven is a black bird”]: We say “Every raven is black”, if it holds that Qg C Qp.
( see Fig. 5 later).

mpg

Figure 20.1: [Raven state class {2, black bird state class Qp]

Definition 20.4. [Raven observable, Black bird observable|: Using the above membership
functions, we define two observables (i.e., Black bird observable, Raven observable) Op =

({y,n}, 2" Fg), Op = ({y,n}, 2o Fr) in C(Q), such that

Fr({yD)(w) = mg(w)  Fr({n})](w) =1 —mp(w) (Vw € Q)

where “y” and “n” respectively means “yes” and “no”. Thus, a membership function can be

identified with a binary observable.

Since we assume that any bird is characterized by a certain point in state space, it is natural

to consider that systematic ornithology is formulated as follows.

Formulation [I] [The measurement theoretical formulation of systematic ornithology [I]]:

(E1) Ravens are characterize by the membership function mg : 2 — [0, 1]. The definition
of ravens is given by a raven state class Qg as shown in Definition 20.3 (ii).

(E2) Black birds are characterize by the membership function mp : Q@ — [0,1]. The def-
inition of black birds is given by a raven state class {25 as shown in Definition [20.3

(ii).

Interpretation 20.5. [The probabilistic interpretation of membership functions] Membership
functions ( or, observables ) themselves are not related to probability. Thus we add the following
probabilistic interpretation to this formulation [I]: For example, again consider Definition 20.2]

and moreover, the statement (D). i.e.,
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(D) 70 specialists say that this bird with a state wy is a black bird.
30 specialists say that this bird with a state wy is not a black bird.

If we choose one person from the 100 specialists at random, the probability that he/she says that
this bird is black is given 0.7. Such a measurement is represented by the symbol M¢ ) (Op =
({y,n}, 20" Fr), Si,)). Therefore, we can use Axiom 1 ([§2.7) as follows.

(Fp) for a bird with a state wy(€ Qg), the probability that the measured value y | resp.
n] is obtained by the measurement Mcq)(Or = ({y,n}, 2™, Fr), Su,) is equal to

[Fr({y})](@(w)) [resp. [Fr({n})](w(w)) ]

(Fg) for a bird with a state wi(€ Qp), the probability that the measured value y | resp.
n] is obtained by the measurement Mc)(Op = ({y,n}, 28", Fp), Su,) is equal to

[E({y})](wr) [resp. [Fp({n})](w) ].

20.1.3 A priori proposition: “Any small black bird is black”

Next consider the following figure:

mpg

Figure 20.2: [Raven state class (g, black bird state class Qp,small black bird state class Qgp]

That is, we add the small black bird observable:

Definition 20.6. (i): [Membership function of small black birds|: Define the membership
function mgp : Q@ — [0, 1] of small black birds such as Definition 20.2l

(ii):[Small black bird state class] The small black bird state class Qgp is defined by {w €
Q| mgp(w) = 1}.
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(iii): [Small black bird]: If the state of a certain bird belongs to Qgp, this bird of a certain is
called a small black bird.
(iv): [“Every small black bird is black” |: We say “Every small black bird is black” if it holds
that

Qsp € Op

Note that this necessarily holds without actual verification since it is assumed that a small
black bird is defined by a black bird such that it is small. Thus, “Every small black bird is
black” is a priori proposition.

(v): [Small black bird observable]: And define Small black observable Ogp = ({y,n}, 2™} Fgp)
such that [Fsp({y})](w) = msp(w), [Fss({n})](w) = 1 —msp(w), (Vw € Q).

Thus, we have the new formulation, which is a development of Formulation [I] (i.e., The

measurement theoretical formulation of systematic ornithology [I]] ):

Formulation [IT] [The measurement theoretical formulation of systematic ornithology [I1I]]:

(G1) Ravens are characterize by the membership function mpg : Q — [0,1]. The definition
of ravens is given by a raven state class Qg as shown in Definition 20.3 (ii).

(G2) Black birds are characterize by the membership function mg : Q@ — [0,1]. The def-
inition of black birds is given by a raven state class Q25 as shown in Definition 20.3

(i).
(G3) Small black birds are characterize by the membership function mgp : 2 — [0, 1]. The

definition of small black birds is given by a raven state class {2gg as shown in Definition
20,6 (i).

(G4) It holds that Qgp C Qp, i.e., Every small black bird is black. This is a priori statement,
which is directly derived from Definition 20.6] (vi).

Exercise 20.7. It is easy to see that the above (G4):Qgp C Qp says that

(Hy) Let u;(i = 1,2, ..., N) be a small black bird with the state w;(€ Qsp), which is denoted by
wW(u;). For each small black bird wu;, the probability that the measured value y is obtained
by the measurement Mc(q)(Op = ({y,n}, 2™, Fg), Sz.y) is equal to 1.

According to the linguistic Copenhagen interpretation (F), the above (H;) is formally written

as follows.

(Hs) the probability that the measured value (y,y, v, ...,y) is obtained by the parallel measure-
S —

N
ment @Y, Moy (05 = ({y,n}, 2™, Fp), Stsu)) 1s equal to 1.
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20.1.4 A posteriori proposition: “Every raven is black”

20.1.4.1 A posteriori proposition can not be verified experimentally

In the previous section, we discussed “Qgp C Qp” (i.e., Every small black bird is black).
Since this is a priori statement, we can accept this statement without verification by experiment.

In this section we shall discuss the statement “Qgp C Qp” (i.e., Every raven is black), which
is not a priori proposition but a posteriori proposition.

As mentioned in Section 1, in this paper, we are not concerned with R (= “the set of
all small black birds”) and B (= “the set of all black birds”). That is because these are
ambiguous as “the set of all tyrannosaurs”. However, under the situation limited very, R and
B may be meaningful. Assume temporarily that R and B are meaningful in some sense. Put
R = {uy,us, ..., un}. Let w(u)(€ Qr) be the state of a raven u(€ R). Assume that Qr C Qp,

i.e., “Every raven is black”. Then we can calculate the following:

(I) the probability that the measured value (y,y, v, ..., y) is obtained by the parallel measure-
——

N
ment ®fi1 Mc) (O = ({y,n},Q{y’"},FB),S@(ui)]) is equal to 1. That is, when all the

ravens were observed, they were all black
The above shows that Qr C Qp = (I).

However, it should be noted that “Qr C Qp <= (I)” does not necessarily hold. That is
because a new raven may be discovered tomorrow, and thus, tomorrow’s R may be different
from today’s R. That is, even if we conform “When all the ravens were observed, they were all
black”, we can not prove Qp C Qp (i.e., “Every raven is black” ).

If so, we have the following problem:
(J) How can we be sure of Qp C Qp (i.e., “Every raven is black” )?

This will be answered in the following section.

20.1.4.2 Popper’s falsificationism in measurement theory

In this section, we study the problem (J), i.e., What should we do to be sure of “Qg C Qg”7.
In order to do it, we obey Popper’s falsificationism (cf, ref. [74]) such that

(K) “Qr € Qp” should be accepted, if many experiments which deny “Qg C Qp” are con-
ducted and “Qr C Qp” still cannot be denied.

For instance, we mention the following two tests ( [Test I] and [Test II])

[Test I]: In order to deny “Qr C Qp”,
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(L) we try to find a bird with the state wy such that wy € Qg \ {w | mp(w) = 0} ( See Figure
20.3 below)

This test is quite natural, and thus, we should try this first.

1 Mp

m
wo
g

~0; negligible

Figure 20.3: [wy € Qr \ {w | mp(w) =0}, po({w € Q|0 < mp(w) <1} Qr}) =0, ie.,
negligible. |

[Test II]: In order to deny “Qr C Qpg”,

(Mp) we try to confirm the hypothesis that there are non-black ravens by 3 percentages in 100
ravens. That is, we take the parallel mixed measurement &), Mc(oy(Op :=({y, n}, 2™ Fy),
Si(po)), where a mixed state py (€ &™(C(2)*)) satisfies po(Q2r) = 1 and po(Qr \ 2p) =
0.03. Here, we, for simplicity, assume that po({w € Q| 0 < mp(w) < 1} Qr}) = 0, i.e.,
negligible. ( See Figure 20.3 above.)

And assume that
(M;) as the result of the (My), we get that one hundred ravens were black continuously
which is written in temrs of quantum language as follows:

(My) By the parallel mixed measurement &), Mc) (05 :==({y,n}, 2", Fg), Si(po)), a mea-
sured value (y,v,v, ...,y) is obtained.
——

100

Then, we calculate, by Axiom™) 1 (mixed measurement) in Chapter [,
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(M;3) the probability that a measured value (y,y,v,...,y) is obtained by the parallel mixed
—

100
measurement

®X:2 Meoy (05 := ({y,n}, 2™ Fi), Spy(po)) is given by (97/100)'%°(< 0.048). That is,

the probability that (M) is realized ( i.e., we meet one hundred black ravens continuously
) is less than 0.048 (> (97/100)'%)).

Thus, if we believe (My), a very rare thing (i.e., (M3)) happened since probability 0.048 is quite
rare. Therefore, we should doubt the hypothesis (My). That is, we couldn’t deny “Qp C Qp
(i.e., any raven is black )”. When we can’t do such test many times and still deny “Qg C Qp

(i.e., any raven is black )”, according to Popper’s falsificationism, we will believe this.

If we believe in “Qp C Qp (i.e., any raven is black )”, we can propose the following new

formulation:
Formulation [III] [The measurement theoretical formulation of systematic ornithology [III]]:

(Ny) Ravens are characterize by the membership function mpg : © — [0, 1]. The definition
of ravens is given by a raven state class Qg as shown in Definition 20.3 (ii).

(N3) Black birds are characterize by the membership function mg : © — [0,1]. The def-
inition of black birds is given by a raven state class Q25 as shown in Definition 20.3

(ii).
(N3) Small black birds are characterize by the membership function mgg : 2 — [0, 1]. The

definition of small black birds is given by a raven state class 2gg as shown in Definition
20,6 (ii).

(Ny) It holds that Qgp C Qp, i.e., Every small black bird is black. This is a priori statement,
which is directly derived from Definition 20.6] (vi).

(N5) It holds that Qr C Qp, i.e., Every raven bird is black, This is a posteriori statement,
which is guaranteed in the sense of Popper’s falsificationism (or, statistical hypothesis
testing)

ogress
Thus we see the progress of ornithology (i.e., Formulation [I] Progys

P28 pormulation [111] ).

Formulation [II]
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mpg msp

Figure 20.4: [All ravens are black: ( Qr C Qp) |
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20.2 Hume’s problem of induction

20.2.1 Problem of Induction in the quantum mechanical world view

Although David Hume (1711-1776), British experimentalist, suspected the justification of in-
duction, in this section we show that the justification is easily solved in our worldview. If we
expect a scientific answer to Hume’s problem, we must start with the scientific definition of
“the uniformity principle of nature”, i.e., the following Definition 20.8 [ The uniformity prin-
ciple of nature]. Some may feel that the uniformity principle of nature (i.e., the condition in
Definition 20.8)) is too strong. However, we think that it is impossible to propose the different
quantitative definition of the uniformity principle of nature that leads to a result like Theorem
20.9 [Inductive reasoning] ( i.e., If similar measurements are performed, the similar measured

values are obtained ).

Definition 20.8. [The uniformity principle of nature] Let [C(Q2) C L>*(Q,v) C B(L*(Q,v))]
be a classical basic structure such that € is compact and v(€2) = 1. A family of measurements
{Mpoo () (05 = (X, T, F),S,) | i = —n,—n +1,...,—-1,0,1,2,..., N} is said to satisfy the
uniformity principle of nature (concerning ), if there exists a probability space (X, F, u) such

that
[Fi(2))(wi) = u(Z) V=2eF Vi=-n—n+1,..-1,012,....N

Under this definition, we assert the following theorem, which should be regarded as the funda-

mental theorem in philosophy of science.

Theorem 20.9. [Inductive reasoning, the quantum linguistic solution of Hume’s problem of
induction]. Let [C(Q2) C L>®(Q,v) C B(L*(2,v))] be a basic structure such that © is compact
and v(Q) = 1. Assume that a family of measurements {Mp~)(0; = (X, F, F), Sp) | i =

—n,—n+1,...,—1,0,1,2, ..., N} satisfies the uniformity principle of nature ( concerning ). Let
(T py T g1y ooy 1, L0, T, ey Ty ) € X i\i_n X be a measured value by the parallel measurement

QN Moo (Oi == (X, T, F;), Si,)). Then, we see that

bk | ox €5k = S L0 @)= [RE) W)

(EeF,i=-n-n+1,..,-1012.,N) (20.1)

where n is sufficiently large. Here £[0] is the number of elements in a set ©.
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Proof. Let Z; € F (i = —n, —n+1,...,—1,0,1,..., N). Axiom 1 ([§2.7)) says that the probability

that a measured value (z_,,,z_p41, ..., T_1, Zo, T1, ..., Txy) Obtained by the parallel measurement
®¢]\L_n Misw) (0i == (X,TF,F), Su,) belongs to Xfi_n =, is given by Xfi_n[F,(EZ)](wz)

N

i=—n

=X ﬁi_n 1(Z;). Thus, the sequence {z; can be regarded as independent random variables
with the identical distribution p. Hence, using the law of large numbers, we can immediately
get the formula (20.1). Also, this theorem is a direct consequence of the law of large numbers

for parallel measurements (cf. refs. [32], or § 4.2 in ref.[?]). O

Remark 20.10. (i): Recall that the law of large numbers (which is almost equivalent to

Theorem [20.9) says that
“frequency probability” = “the probability in Axiom 1 ([§2.7)” (cf. ref. [32])

though the probability in Axiom 1 ( [52.7) has the several aspects. Also, note that the law
of large numbers in statistics (¢f. ref. [67]) has already been accepted as the fundamental
theorem in science. Therefore, even if Theorem 20.9 ([Inductive reasoning|+(20.1)) is called
the fundamental theorem in philosophy of science, we don’t think it’s exaggerated. We believe
that our proposal (i.e., Theorem 20.9)) is completely true in our worldview. Thus, we think that
the solution of Hume’s problem of induction was practically already found as the law of large
numbers. In the framework of our worldview, we are convinced that the above is the definitive
solution to Hume’s problem. However, there may be another idea if some start from another
worldview. Hence, as described at the end of this paper, we hope that many philosophers
propose various mathematical foundations of scientific philosophy, in which Hume’s problem of
induction are discussed from the various viewpoints.

(ii): In Definition 20.8 [The uniformity principle of nature] and Theorem 20.9 [Inductive
reasoning], we consider the family of measurements {Mp~,)(0; = (X, T, F}),Su,) | ¢ =
—n,—n + 1,...,—1,0,1,2,..., N}. This may be too general. Usually, it suffices to consider
that {Mpe)(0; == (X, 3, F),Su) | i = —n,—n+1,...,-1,0,1,2,..., N}, ie., I = F
(—n < Vi < N).

(iii): Tt may be understandable to consider two measurements: &Q__ Moo, (0 := (X, T, F}),
Slwy)) and RN, Mi<uy (O := (X,3,F), Su,1)- The reason that we do not consider two mea-
surements is due to the linguistic Copenhagen interpretation (Gy), i.e., only one measurement

18 permitted.

Example 20.11. [Coin tossing]. Let us discuss the unfair coin tossing as the most under-

standable example of Theorem 20.9 [Inductive reasoning]. Consider a basic structure [C(€2) C
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L>=(Q,v) C B(L*(Q,v))]. Let {w;}X_, be a sequence in 2, where w; is the state of i-th coin

tossing (i = —n,—n+1,...,0,1,2,3,..., N). Let O = (X, 2%, F) be an observable in L>°(, v)
such that

X ={H,T},( where H: head, U: tail) ,

[FHHD(wi) = p({H}) =2/3, [FUTH|(wi) = pn({T}) =1/3
(Vi=-n,—n+1,..,—-1,0,1,2,..., N) (20.2)

That is, a family of measurements {Me(q,,)(0 := (X,2%, F),S,)) | i = —n,—n+1,...,—1,0,
1,2, ..., N} satisfies the uniformity principle of nature (concerning ). Let (z_p,, 211, ..., T_1, To,

z1,..,N) € X

=N

X be a measured value obtained by the parallel measurement ®fi_n Moo (,0)
(0 := (X, 2%, F), Su,), i.e., infinite coin throws. Here, Theorem 20.9 [Inductive reasoning] say

that it is natural to assume that, for sufficiently large n,

(Tms@omsts o 1,20) = (THHTHHHTT ... T HH) (20.3)
nj'i-l
( where the number of Hs ~ 2n/3, T's ~ n/3)

Then we can believe that we see that x; = H with probability 2/3 [ resp. x; = T with
probability 1/3] for each i = 1,2,..., N. It should be noted that even without knowing (20.2)),

we can conclude that if we know (20.3).

Remark 20.12. It should be noted that the above example shows that Theorem 20.9 [Inductive
reasoning] ( or equivalently, the law of large numbers), like Newton’s kinetic equation, has
the power to predict the future. This is the reason that Hume’s problem of induction keeps

attracting much researcher’s interest for a long time.

20.2.2 Grue paradox cannot be represented in quantum language

If our understanding of inductive reasoning ( mentioned in the above ) is true, we can solve the
grue paradox (cf. ref. [I7]). Let us mention it as follows.
Consider a basic structure [C'(Q2) C L>®(Q,v) C B(L*(Q,v))]. Let Q2,8 be the open subsets
of the state space © such that Q, N Q, = 0. And put Q, = Q\ (Q, UQ). Let O = (X =
{g,b,0},2%, F) be the observable in L>(£2,v) such that

FgDlw) =1 (we ), =0 (weQ\Q) [FY)(w) =1 (we), =0 (we\)
[F({op)](w) =1 = [F{gDl(w) = [F{t})](w) (weQ) (20.4)
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where “g”, “b”, “0” respectively means “green”, “blue”, “others”.

Let {€_pn,e_pni1,..s€_1,€0, €1, €2, ...,ex} be the set of (green) emeralds. And assume that w;(€
Q) is the state of emerald ¢; (i = —n,—n+1,..,-1,0,1,2,..., N).

A family of measurements {My(q,)(0; :== (X,2%, F), Si,,)) | i = —n, —n+1,...,-1,0,1,2,..., N}
clearly satisfies the uniformity principle of nature, that is, there exists an probability space
(X, 2%, 1) such that

[FE)(w) =puE) V=2€2¥Vi=-n,—n+1,..,-1,01,2,...N

where u({g}) = 1, u({b,0}) = 0.

N
Let (T, @ pity ey X1, 20, L1, -, TN) € X,

=N

measurement ®fi_n Mr@w) (O = (X,2%,F), Sp,)). We see, of course, that z; = ¢ (i =

X be a measured value obtained by the parallel

—n,—n+1,..,—1,0). And thus, we can believe, by Theorem 20.9 [Inductive reasoning], that
r1 = 2o = ... = xy = ¢g. For the sake of completeness, note that we can predict z; = x5 =
...=xy = g only by the data z_,, = z_,, .1 = ... = x¢p = ¢g. This is usual arguments concerning

Theorem [20.9] [Inductive reasoning).

On the other hand, Goodman’s grue paradox is as follows (cf. ref. [17]).

(A1) Define that Y has a grue property iff Y is green at time i such that ¢ < 0 and Y
is blue at time ¢ such that 0 < i. Suppose that we have examined the emeralds at
—n,—n + 1,... — 1,0, and found them to all be green (and hence also grue ). Then,
“so-called inductive reasoning” says that emeralds at 1,2, ..., N have the grue property

(and hence blue) as well as green. Thus, a contradiction is gotten.

However, we think that this (A;) cannot be described in quantum language. If we try to

describe the (A;), we may consider as follows.

(Ag) Let {e_n,e ni1,..,€-1,¢€0, €1, €9, ...,enx} be the set of emeralds. Let w;(€ €2) be the state
of emerald ¢; (i = —n,—n+1,...,—1,0), and let w;(€ §2)) be the state of emerald e; (i =
1,2,...,N). However, it should be noted that a family of measurements {Mp(q,)(0; :=
(X, 2%, F),Su,)) | i = —n,—n +1,...,—1,0,1,2,..., N} does not satisfy the uniformity

principle of nature. That is because

[F{gDl(wi) =1 (i=—-n,—n+1,...,0), [F{gD))(w;)) =0 (:=1,2,...,N)

Hence Theorem [20.9 [Inductive reasoning] cannot be applied.
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Or,

(As) Let {e_n, e ni1,..6-1,€0,€1,€2,...,en} be the set of emeralds. And let w;(€ €27) is the
state of emerald e; such that w = w; (i = —n,—n+1,...,—1,0,1,2,..., N). Let O; =
(X, 2% F;) be the observable (i = —n, —n+1, ..., —1,0,1,2, ..., N) such that O; is the same
as O(= (X ={g,b,0},2%,F)) in (20.4) (if i = —n, —n+1,...,—1,0), and O; = (X, 2X, F})
(£0,1,2,.., N) is defined by Fi({g}) = F({b}), F({b}) = F({g}), F{o}) = F({o}).
However, in this case, it should be noted that a family of measurements {Me ) (O; :=
(X,2%,F),SWw) | i = —n,—n +1,...,-1,0,1,2,..., N} does not satisfy the uniformity

principle of nature. That is because

[E({gD)(w:)
[E({gD)(w:)

[F({gD)(w:)
[F({0})](wi)

1 (t=-n,—n-+1,..,0),

0 (i=1,2,...,N)
Hence Theorem [20.9 [Inductive reasoning] cannot be applied.
Therefore Goodman’s grue paradox (A;) cannot be described in quantum language.

Remark 20.13. We believe that there is no scientific argument without scientific worldview.
Thus, we can immediately conclude that Goodman’s discussion (A;) is doubtful since his argu-
ment is not based on any scientific worldview. In this sense, the above arguments (Az) and (Asj)
may not be needed. That is, the confusion of grue paradox is due to lack of the understanding
of Hume’s problem of induction in the linguistic quantum mechanical worldview, and not lack
of the term “grue” is non-projectible (cf. ref. [I7]). Thus, we think that to solve Goodman’s

grue paradox is to answer the following:

(B) Propose a worldview! And further formulate Hume’s induction as the fundamental theo-
rem in the worldview! In this formulation, confirm that Goodman’s paradox is eliminated

naturally.

What we did is this.
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20.3 The measurement theoretical representation of ab-
duction

20.3.1 Deduction, abduction and abduction in “logic”

Let us explain deductuin, abduction and induction as follows:

A typical example of deduction is as follows: ( In the following, (A}) and (A}) are often omitted.

)

(A;) All the beans in this bag By are white: [bag By — “w” (~ white)]

(A7) All the beans in that bag By are white or black fifty-fifty (or generally, the ratio of white
beans to black beans is p/(1 — p) where 0 < p < 1):  [bag By — “w” (=~ white) or
“b” (= black)]

(Ag) This bean is from this bag By:  [bag B]

(A3) Therefore, this bean is white: [“w” (&~ white)]

It is, of course, obvious and ordinary.
On the other hand, C.S, Peirce (cf. ref. [73]) proposed abduction. The example of abduction

is as follows:
(A;) All the beans in this bag By are white: [bag By —» “w” (~ white)]

(A\’l) All the beans in that bag By are white and black fifty-fifty (or generally, the ratio of white
beans to black beans is p/(1 — p)):  [bag By — “w” (& white) or “b” (x black)]

(Ay) This bean (from By or By) is white: [“w” (~ white)]

(As) Therefore, this bean is from this bag By :  [bag B1]

This is wrong from the logical point of view. However, the abduction ( abductive reasoning
) is known as one of useful tools to find a best solution. Also, note that [(Ag)—(Aj3)] and
[(Ay)—>(A3)] are in reverse relation.

Further, induction ( inductive reasoning ) is as follows.

(A;) 1000p white beans and 1000(1 — p) black beans are mixed well in this bag Bs ( here,
0 < p < 1). Assume that we do not know the value p (0 < p < 1).

(As) When we took 20 beans out of this bag B, every bean was white.

(:&3) Therefore, the bean picked out from this bag B3 next can be presumed to be white.
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20.3.2 The measurement theoretical representation of deduction,
abduction and induction

In our world view (i.e., the quantum mechanical world view &~ the measurement theoretical
world view, the relation among deduction, abduction and abduction is characterized as follows.
First, we will show that the abduction [(A1)-(A3)] can be justified in quantum language. Con-
sider the state space © = {61,605} with the discrete topology, and the classical basic structure
[C(©) C L*(O,v) C B(L*©,v))], where v({6:1}) = v({f2}) = 1/2. Assume that

0, ~ the state of the bag B;, 6, ~ the state of the bag B,

Assume that 1000 white beans belong to bag By, and further, 1000p white beans and 1000(1—p)
black beans belong to the bag By ( where 0 < p < 1). Thus we have the observable O =
({w, b}, 2894 F) in L®(O,v) such that

[E({w})](61)
[F({w})](62)

1 [F({6})](01) = 0
p  [F{)]O)=1-p (0<p<1)

(A9l

where “w” and “b” means “white” and “black” respectively.
Thus, we have the measurement Mg ,)(0 := ({w, b}, 2lwb} ), Sp)s © = 1,2. For example,
Axiom 1 ([§2.7)) says that

B1) [measurement|: The probability that the measured value w is obtained by My« ,)(O :=
Ov)
({w, b}, 2008} F), Sp,) is equal to 1

This is the same as the deduction (i.e., (A1)—(Aj3)).
Next, under the circumstance that bags B; and By cannot be distinguished, we consider the

following inference problem:

(ﬁg) [inference problem|: When the measured value w is obtained by the measurement Mz ,)(0 =
({w, b}, 2008} F), S,), which do you infer, [] = 6 or [] = 6,7
Fisher’s maximum likelihood method Theorem [5.0] [Fisher’s maximum likelihood method]

says that [x] = 6y, since

max{F({w})](6h), F({w})](02)} = max{l,p} = 1= [F({w})](61)

This implies (As).
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Therefore, the above (Bs) is the measurement theoretical representation of abduction (i.e.,
(Kl)*(x/&:g)) For the sake of completeness, note that (B;) and (]§2) are in reverse problem (cf.

Problem [5.4). That is, we have the following correspondence:

[(A1),(57),(A2) —(A3)] +—— (B1): measurement
deduction simplified form Axiom 1 ([§2.7)
lreverse lreverse (20.5)
[(A1),(A)),(As) —(A5)] «—— (By): inference
abduction simplified form (Fisher’s maximum likelihood method)

Thus, the scientific meaning of abduction can be completely clarified in the translation from
logic to quantum language.

Lastly we should mention that

(B3) the above (A;)-(A3) (i.e., inductive reasoning) are already discussed in quantum language

( c¢f. Section 4).
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20.4 Flagpole problem

Sun

1m

2m

Figure 12.5: [Flagpole problem |

Let us explain the flagpole problem as follows. Suppose that the sun is at an elevation angle
a® in the sky. Assume that tana® = 1/2. There is a flagpole which is w) meters tall. The
flagpole casts a shadow w? meters long. Suppose that we want to explain the length of the

flagpole’s shadow. On Hempel’s model, the following explanation is sufficient.

(A7) 1. The sun is at an elevation angle a° in the sky.
2. Light propagates linearly.
3. The flagpole is wj) meters high.
Then,

4. The length of the shadow is w? = W)/ tan a® = 2wy

This is a good explanation of ”Why is that shadow 2w meters long?”

Similarly, we may consider as follows.

(Ag) 1. The sun is at an elevation angle a° in the sky.
2. Light propagates linearly.
3. The length of the shadow is w?
Then,

4. The flagpole is w(= (tan a®)w = w{/2) meters tall.

However, this is not sufficient as the explanation of "Why is the flagpole wd(= w}/2) meters

tall?”
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The confusion between (A;) and (Ajy) is due to the lack of measurement. In what follows,
we discuss it. For each time ¢ = 0,1, consider a basic structure [C(€;) C L®(Q4, 1) C
B(L*(Q4,1,))], where Qy = [0,1] is the state space ( in which the length of the flagpole is
represented ) at time 0 (where the closed interval in the real line R), Q; = [0,2] is the state
space ( in which the length of the shadow is represented ) at time 1 and the 14 is the Lebesgue
measure. Since the sun is at an elevation angle a° in the sky, it suffices to consider to the map
$o1 : Qo — y such that ¢g;1(wo) = 2wy (Vwy € ). Thus, we can define the causal operator
Do L®(Qy) — L®(€p) such that (Pg 1 f1)(wo) = fi(d(wo)) (Vfi € L), wo € ).

Let O, = (X, J, F.) be the exact observable in L>(Qy,14) (¢f. Example 2.33)). That is, it
satisfies that X = Oy, F = Bg, (i.e., the Borel field in ), [F.(2)](w1) =1 ( if wy €Z), =0
( otherwise).

Thus, we have the measurement Mpe (g 0)(®0,10. = (X, T, (13071Fe),5’[w8]). Then we have

the following statement

(By) [Measurement|; the probability that the measured value x(€ X) obtained by the mea-
surement Mz (0y.0) ($010e = (X, F, ®g 1 F2), Spg)) is equal to 2wy is given by 1.

which is the measurement theoretical representation of (A;). That is, we consider that the (A;)

is the simplified form ( or, the rough representation ) of (B;). Also,

(By) [Inference]; Assume that the measured value w?(€ X) is obtained by the measurement

M oo (99,00) (0,10 = (X, F, ®o 1), Siyy). Then, we can infer that [*] = wf/2

which is the measurement theoretical representation of (Ay). That is, we consider that the (As)
is the simplified form ( or, the rough representation ) of (Bs).

Thus, we conclude that “scientific explanation” is to describe by quantum language. Also,
we have to add that the flagpole problem is not trivial but significant, since this is never solved
without Axiom 1 ([52.7)( measurement) and Axiom 2 (causality; §10.3) (i.e., the answers to the

problems “What is measurement ?” and “What is causality ?”).
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Postscript: Linguistic Copenhagen
interpretation

21.1 Two kinds of (realistic and linguistic) world-views

In this lecture note, we assert the following figure:

Figure 21.1. [=Figure [[.IT} The location of quantum language in the history of world-description (cf.
refs. [35, 56]) ]

~~ =7~ the realistic world view (monism, realism) =~~~ T

| |

i relativity (unsolved) i

! (monism) theory |—® ® theory of i

i ’N @ —| everything I

Parmenides [ ewton (quantum phys.) :
Socrates | (realism) quantum ) : |

| . |

OGreek | gy, 1L 2l mechanics | ® ;
philosophy | ———()r-----===------=------H----- oo - oo oo A
sticism I language |

Plato I (dualism) —® !
Aristotle : Descartes (linguistic view) (=MT) :

! Locke,... linguistic laneuace quantum :

—— | Kant —4 philosophy N —|language |

: (idealism) (language) :

: statistics 1 |

! system theory %@ ’ !

(Descartes, Locke may belong to substance dualism)
L ---- the linguistic world view ( dualism, idealism J - - - -

Figure 20.1(= Figure 1.1): The history of the world-view

Most physicists feel that
(A1) quantum mechanics has both realistic aspect and metaphysical aspect.

And they want to unify the two aspects. However, quantum language asserts that
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(A2) Two aspects are separated, and they develop in the respectively different directions () and

in Figure 21.1l

21.2 The summary of quantum language

21.2.1 The big-picture view of quantum language

The big-picture view of quantum language

Measurement theory (= quantum language ) is classified as follows.

classical system : Fisher statistics
pure type .
(Bl) quantum system : usual quantum mechanics
(B) measurement theory
(=quantum language) mixed tvpe classical system : including Bayesian statistics, Kalman filter
(B2)yp quantum system : quantum decoherence

And the structure is as follows.

(Cl):’ pure measurement theory ‘

(=quantum language)

[(pure)Axiom 1] [Axiom 2] [quantum linguistic interpretation]
= ’ pure measurement ‘ + ’ Causality |+ ’Linguistic interpretation
(cf. [82.7) (¢f. §10.3) (cf. §31)

a kind of spell(a priori judgment) the manual to use spells

(Cq) :’ mixed measurement theory ‘

(=quantum language)

|(mixed) Axiom (™) 1] [Axiom 2| [quantum linguistic interpretation|

= ’ mixed measurement ‘ + ’ Causality |+ ’Linguistic interpretation
(cf. §9.0) (cf. 10.3) (cf. §3.0)

\ a kind of spell(a priori judgment) the manual to use spells

In the above,

(D;) Axioms 1 and 2 (i.e., kinds of spells) are essential

On the other hand, the linguistic interpretation (i.e., the manual to use Axioms 1 and 2) may not

be indispensable. However,

(D3) if we would like to make speed of acquisition of a quantum language as quick as possible, we

may want the good manual to use the axioms.

In this sense, this note is a manual book (=cookbook). Although all written in this note can be
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regarded as a part of the linguistic interpretation, the most important statement is

Only one measurement is permitted

Also, since we assert that quantum language is the final goal of dualistic idealism (= Descartes=Kant

philosophy) in Figurd2I Tl we think that

(E)

Many philosophers’ maxims and thoughts constitute a part of the linguistic interpretation

21.2.2 The characteristic of quantum language

Also, we see:

The characteristic of quantum language

(F1)

(F2)

(F5)

(Fe)

459

Non-reality (metaphysics ): Quantum language is metaphysics (= language), which asserts

the linguistic world-view.

The collapse of wave function does not occur: According to the linguistic interpretation
(i.e., only one measurement is permitted), we can not get information after the measurement.
That is, the collapse of wave function can not be found. However, the projection postulate

holds in the sense of Postulate [11.6l

Non-deterministic: Since we usually consider non-deterministic processes in classical system,
it is natural to assume non-deterministic processes (i.e., quantum decoherence) in quantum

language.

Dualism: The two concepts: “measurement” and “dualism” are non-separable. Thus, quan-

tum language says
(#) describe any monistic phenomenon in the dualistic language !

Non-locality, faster-than-light: Quantum language accepts “non-locality”. This is the only

one paradox in quantum language.
Many paradoxes and unsolved problems were solved:

(a) Paradoxes and unsolved problems due to a lack of quantum language:
What is probability? (Axiom 1 ([§2.7)( measurement))
What is causality? ( Axiom 2 (causality; §10.3) )

What is space-time? (§10.7t Leibniz-Clarke correspondence)
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21.3 Quantum language (=~ dualistic idealism ) is located at the center of science

Raven problem, Hume’s problem of induction, Abduction, flagpole problem (Chapter 20)
Zeno’s paradox (§14.4)

the principle of equal probability (Chapter [I7)

classical syllogizm (Chapter [J)

classical Bell’s inequlity (§ [4.5)

(b) Paradoxes and unsolved problems solved by descriptive power of quantum language:

Schrodinger’s cat ( due to projection postulate in § [I1.2))

(c) What we cannot speak about we must pass over in silence:
Heisenberg’s uncertainty principle (due to the thought experiment by ~-ray microscope)
(5 3)
Wigner’s friend (§ [11.5)
delayed choice experiment, “Particle or wave?” (§ [[1.6])

Five-minute hypothesis, Only the present exists, McTaggar’t paradox (§ [10.8])

(d) Self-reference statements are out of quantum language
Cogito proposition (§[8.4)
Barin in a vat (§[10.8)

(e) Everything should be spoken by quantum language: Chapters [l [6l [7, [13] [T5 [T0)],
Several problems in statistics (Fisher’s maximum likelihood method, Bayes method,
semi-distance (confidence interval, statistical hypothesis, ANOVA), regression analysis,

Kalman filter)
However we may want to say that

o Everything written on this report can be regarded as a solution of an
unsolved problem.

21.3 Quantum language (=~ dualistic idealism ) is located
at the center of science

Dr. Hawking said in his best seller book [ ref.[I9]; A Brief History of Time: From the Big Bang
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Chap. 21 Postscript: Linguistic Copenhagen interpretation

to Black Holes, Bantam, Boston, 1990]:

(G) Philosophers reduced the scope of their inquiries so much that Wittgenstein the most famous
philosopher this century, said “The sole remaining task for philosophy is the analysis of lan-

guage.” What a comedown from the great tradition of philosophy from Aristotle to Kant!

I think that this is not only his opinion but also most scientists’ opinion. And moreover, I mostly
agree with him. However, I believe that it is worth reconsidering the series in the linguistic world
view (D-®-®—10 in Figure 21.1). As mentioned in Section 10.8.4, I believe that, if "the analysis of
language” was rewritten to "the creation of language”, then Dr. Hawking would not have been critical
to philosophy. That is because the task of phycisists is just the creation of language, i.e., the language

called Newtonian mechanics, the language called the theory of relativity, etc.

It is a matter of course that quantum language is different from pure mathematics. Hence, in spite

of Lord Kelvin’s saying: Mathematics is the only good metaphysics , 1 assert that
(H) quantum language is located at the center of science
or
(I) quantum language is the language for science

That is, I believe, from the pure theoretical point of view, that quantum language will replace statistics
( since, in statistics, the concept of measurement is not exposed).

Recall two famous maxims concerning science:
(J1) There is no science without measurement
(J2) Sience is knowledge about causality.
Here, we see the following correspondences:
(J1) & Axiom 1 ( measurement ), (J2) < Axiom 2 ( causality )

which may imply the (I).

Since quantum language is not physics but language (= metaphysics), quantum language (=
the linguistic Copenhagen interpretation of quantum mechanics) is completely different from other
interpretations. Therefore, even if someone discovers the ”final” interpretation of quantum mechanics

in the realistic view (i.e., ® in Figure 21.11 ), quantum language is not affected by it.
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Although T don’t know whether quantum language is final in the linguistic view, I believe that it
is the greatest purpose of philosophy of science to pursue powerful scientific language

than quantum language.

I hope that my proposal will be examined from various view-points.

Shiro ISHIKAWA
December in 2019
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MZ(O, S (w)) :mixed measurement, 223
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