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Abstract

Recently we proposed “quantum language” (or, “the linguistic Copenhagen interpretation of quantum me-

chanics”, “measurement theory”) as the language of science. This theory asserts the probabilistic inter-

pretation of science (= the linguistic quantum mechanical worldview), which is a kind of mathematical

generalization of Born’s probabilistic interpretation of quantum mechanics. In this preprint, we consider

the most fundamental problems in philosophy of science such as Hempel’s raven paradox, Hume’s problem

of induction, Goodman’s grue paradox, Peirce’s abduction, flagpole problem, which are closely related to

measurement. We believe that these problems can never be solved without the basic theory of science with

axioms. Since our worldview has the axiom concerning measurement, these problems can be solved easily.

Hence there is a reason to assert that quantum language gives the mathematical foundations to science.*2
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1 Introduction

This preprint is prepared in order to reconsider ref. [19]: S. Ishikawa, “Philosophy of science for scientists;

The probabilistic interpretation of science”, JQIS, Vol. 3, No.3 , 140-154 . In particular, Section 3 ( Hempel’s

raven paradox) will be discussed more right compared to that of ref. [19].

1.1 Philosophy of science is about as useful to scientists as ornithology is to birds

We think that philosophy of science is classified as follows.

(A1) Criticism about science, The relation between society and science, History of science, etc.

(Non-scientists may be interested in these mainly, thus it is called “philosophy of science for the general

*1 Department of Mathematics, Faculty of Science and Technology, Keio University, 3-14-1, Hiyoshi, Kouhoku-ku Yokohama,

Japan. E-mail: ishikawa@math.keio.ac.jp
*2 For the further information of quantum language, see my homepage ( http://www.math.keio.ac.jp/∼ishikawa/indexe.html)
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public” in this paper)

(A2) Study on mathematical foundations of science, i.e., research on mathematical properties common to

various sciences, that is, a kind of unified theory of science

(This is called “philosophy of science for scientists” in this paper)

The part (A1) is a large part of the philosophy of science. And it is certain that many valuable results have

been produced in the study (A1) ( e.g., Popper’s falsificationism (cf. Remark 28 later)). On the other hand,

it is generally considered that the study (A2) was not so productive in spite that the part (A2) (e.g., Hempel’s

scientific explanation (cf. refs. [1, 2])) was expected to be the core of philosophy of science. For example,

Prof. Richard Feynman, one of the most outstanding physicists in the 20th century, said that ”Philosophy of

science is about as useful to scientists as ornithology is to birds”. If he used the word “philosophy of science”

to mean “philosophy of science for scientists”, we can agree with his claim. That is, we also consider that

the part (A2) is still undeveloped. Thus, our purpose of this paper is to complete “philosophy of science for

scientists” in (A2).

This will be done by using quantum language (mentioned in Section 2), which has two fundamental concepts

“measurement” and “causality” ( that are common to various sciences). And in Sections 3-6, we show that

famous unsolved problems (i.e., Hempel’s raven paradox, Hume’s problem of induction, Goodman’s grue

paradox, Peirce’s abduction, flagpole problem ) in philosophy of science can be solved in quantum language.

2 Review: Quantum language (= Measurement theory (=MT) )

2.1 Quantum language is the language to describe science

Recently, in refs. [3]-[18], we proposed quantum language (or, “the linguistic Copenhagen interpretation of

quantum mechanics”, “measurement theory (=MT)”), which is a kind of the language of science. This is not

only characterized as the metaphysical and linguistic turn of quantum mechanics but also the quantitative

turn of Descartes=Kant epistemology and the dualistic turn of statistics. Thus, the location of this theory

in the history of scientific worldviews is as follows:

(cf. refs. Ishikawa 2012a; Ishikawa 2017a Ishikawa 2018b):
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Figure 1: [The location of quantum language in the history of scientific worldviews ]

statistics
system theory 9© dualism(=measurement)−−−−−−−−−−−−−−−−→

(B3)
10©

(Descartes, Locke may belong to substance dualism)
the linguistic worldview ( dualism, idealism )

the realistic worldview (monism, realism)

Fig. 1 says that quantum language (=the linguistic Copenhagen interpretation) has the following three
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aspects

(B1) the linguistic Copenhagen interpretation is the true figure of so-called Copenhagen interpretation ( 7©
in Fig. 1), cf. refs. [3, 6, 7, 13, 16], particularly, Heisenberg’s uncertainty relation was proved in [3],

and the von Neumann-Lüders projection postulate ( i.e., the meaning of the wave function collapse)

was clarified in [13],

(B2) the scientific final goal of dualistic idealism (i.e., Descartes=Kant philosophy) ( 8© in Fig. 1),

cf. refs. [8, 14, 15, 17], particularly, the mind-body problem was clarified in [15], also, the paradox of

brain in bat (cf. [20]) was solved in [17].

(B3) statistics (= dynamical system theory) with the concept “measurement” (10© in Fig. 1),

cf. refs. [4, 5, 6, 10, 11]. Thus, quantum language gives the answer of “Why statistics is used in

science?”

Hence, it is natural to assume that

(B4) quantum language proposes the probabilistic interpretation of science (= the linguistic quantum me-

chanical worldview), and thus, it is just the language to describe science. Thus, we assert that science

is built on dualism ( ≈ [“observer”+“matter”]≈ measurement ) and idealism ( ≈ metaphysics ≈
language).

which is the most important assertion of quantum language. Also, we assume that to make the language to

describe science is one of main purposes of philosophy of science.

As criticism of philosophy of science, there is criticism that scientific philosophy is not very useful for

scientists ( as mentioned in Section 1). We agree to this criticism. However, as mentioned in the above (B1)

and (B3), we say that quantum language is one of the most useful theories in science, and thus it should be

regarded as a kind of unified theory of science.

Remark 1. Since space and time are independent in quantum language, the theory of relativity ( and further,

the theory of everything: 5© in Fig. 1 ) cannot be described by quantum language. We think that the theory

of relativity is too special, an exception. It is too optimistic to expect that all scientific propositions can be

written in quantum language. However, we want to assert the (B4), that is, quantum language is the most

fundamental language for almost all familiar science. We believe that arguments without a worldview do

not bring about the success of philosophy of science.

2.2 No scientific argument without scientific worldview

It is well known that the following problems are the most fundamental in philosophy of science:

(C) Hempel’s raven paradox, Goodman’s grue paradox, Hume’s problem of induction, Peirce’s abduction,

the flagpole problem etc.

In Sections 3∼6, we clarify these problems under the linguistic quantum mechanical worldview (B4), since

we believe that there is no scientific argument without scientific worldview (or, without scientific language).

That is, the above are not problems in mathematics and logic. And we conclude that the reason that these

problems are not yet clarified depends on lack of the concept of measurement in philosophy of science.

2.3 Mathematical Preparations

Following refs. [6, 7, 8, 18] (all our results until present are written in ref. [18]), we shall review quantum

3

KSTS/RR-19/002 
September 12, 2019 
(Revised November 1, 2019)



language, which has the following form:

Quantum language

(= measurement theory)

= measurement
(Axiom 1)

+ causality
(Axiom 2)

+
�� ��linguistic ( Copenhagen ) interpretation

(how to use Axioms 1 and 2)

(1)

which asserts that “measurement” and “causality” are the most important concepts in science.

Consider an operator algebra B(H) (i.e., an operator algebra composed of all bounded linear operators on a

Hilbert space H with the norm ‖F‖B(H) = sup‖u‖H=1 ‖Fu‖H ), and consider the triplet [A ⊆ N ⊆ B(H)] (

or, the pair [A,N ]B(H)), called a basic structure. Here, A(⊆ B(H)) is a C∗-algebra, and N (A ⊆ N ⊆ B(H))

is a particular C∗-algebra (called a W ∗-algebra) such that N is the weak closure of A in B(H).

The measurement theory (= “quantum language” = “the linguistic Copenhagen interpretation”) is classified

as follows.

(D) measurement theory
(= quantum language)

=


(D1): quantum system theory (when A = C(H))

(D2): classical system theory (when A = C0(Ω))

The Hilbert space method for the mathematical foundations of quantum mechanics is essentially due to von

Neumann (cf. ref. [21]). He devoted himself to quantum (D1). On the other hand, in most cases, we devote

ourselves to classical (D2), and not (D1). However, the quantum (D1) is convenient for us, in the sense that

the idea in (D1) is often introduced into classical (D2).

When A = C(H), the C∗-algebra composed of all compact operators on a Hilbert space H, the (D1) is

called quantum measurement theory (or, quantum system theory), which can be regarded as the linguistic

aspect of quantum mechanics. Also, when A is commutative (that is, when A is characterized by C0(Ω), the

C∗-algebra composed of all continuous complex-valued functions vanishing at infinity on a locally compact

Hausdorff space Ω (cf. refs. [22, 23, 24])), the (D2) is called classical measurement theory.

Also, note that, when A = C(H), i.e., quantum cases,

(E1) A∗(= C(H)∗) = Tr(H) (=trace class), N = B(H), N∗ = Tr(H) (i.e., pre-dual space),

thus,
Tr(H)

(
ρ, T

)
B(H)

= Tr
H
(ρT ) (ρ ∈ Tr(H), T ∈ B(H)).

Also, when A = C0(Ω), i.e., classical cases,

(E2) A∗(= C0(Ω)
∗) =M(Ω) i.e., “the space of all signed measures on Ω”, N = L∞(Ω, ν)(⊆ B(L2(Ω, ν))),

N∗ = L1(Ω, ν), where ν is some measure on Ω (with the Borel field BΩ, thus, L1(Ω,ν)

(
ρ, T

)
L∞(Ω,ν)

=∫
Ω
ρ(ω)T (ω)ν(dω) (ρ ∈ L1(Ω, ν), T ∈ L∞(Ω, ν)) (cf. ref. [23]).

In Sections 3∼6 later, we devote ourselves to a compact space Ω with a probability measure ν (i.e., ν(Ω) = 1)

and thus, C0(Ω) is simply denoted by C(Ω).

Let A(⊆ B(H)) be a C∗-algebra, and let A∗ be the dual Banach space of A. That is, A∗ = {ρ | ρ is a

continuous linear functional onA }, and the norm ‖ρ‖A∗ is defined by sup{|ρ(F )| | F ∈ A such that ‖F‖A(=
‖F‖B(H)) ≤ 1}. Define the mixed state ρ (∈ A∗) such that ‖ρ‖A∗ = 1 and ρ(F ) ≥ 0 for all F ∈ A such that

F ≥ 0. And define the mixed state space Sm(A∗) such that

Sm(A∗)={ρ ∈ A∗ | ρ is a mixed state}.

A mixed state ρ(∈ Sm(A∗)) is called a pure state if it satisfies that “ρ = θρ1 + (1 − θ)ρ2 for some ρ1, ρ2 ∈
Sm(A∗) and 0 < θ < 1” implies “ρ = ρ1 = ρ2”. Put

Sp(A∗)={ρ ∈ Sm(A∗) | ρ is a pure state},

which is called a state space. It is well known (cf. ref. [23]) that Sp(C(H)
∗
) = {|u〉〈u| (i.e., the Dirac

notation) | ‖u‖H = 1}, and Sp(C0(Ω)
∗
) = {δω0 | δω0 is a point measure at ω0 ∈ Ω}, where

∫
Ω
f(ω)δω0(dω)

= f(ω0) (∀f ∈ C0(Ω)). The latter implies that Sp(C0(Ω)
∗
) can be also identified with Ω (called a spectrum

4

KSTS/RR-19/002 
September 12, 2019 
(Revised November 1, 2019)



space or simply spectrum) such as

Sp(C0(Ω)
∗
)

(state space)

3 δω ↔ ω ∈ Ω
(spectrum)

In this paper, Ω and ω(∈ Ω) is respectively called a state space and a state.

In Axiom 1 later, we need the value of A∗

(
ρ,G

)
N , where ρ ∈ Sp(A∗), G ∈ N . In quantum cases, we see

that A∗

(
ρ,G

)
N =

Tr(H)

(
ρ,G

)
B(H)

. Thus, the value of A∗

(
ρ,G

)
N is clearly determined. However, in classical

cases ( i.e., A∗

(
ρ,G

)
N = M(Ω)

(
ρ,G

)
L∞(Ω,ν)

), we have to prepare the following definition.

(E1) [Essentially continuous in general cases] An element F (∈ N ) is said to be essentially continuous at

ρ0(∈ Sp(A∗)), if there uniquely exists a complex number α such that

• if ρ (∈ N∗, ‖ρ‖N∗ = 1, ρ ≥ 0) converges to ρ0(∈ Sp(A∗)) in the sense of weak∗ topology of A∗,

that is,

ρ(G) −−→ ρ0(G) (∀G ∈ A(⊆ N )),

then ρ(F ) converges to α.

(E2) [Essentially continuous in quantum cases (i.e., C(H) ⊆ B(H) = B(H))] An element F (∈ B(H)) is

said to be essentially continuous at |e〉〈e| ( e ∈ H, ||e||H = 1), if there uniquely exists a complex

number α such that

• if ρ (∈ Tr(H), ‖ρ‖Tr(H) = 1, ρ ≥ 0) converges to |e〉〈e| in the sense of weak∗ topology of Tr(H),

that is,

Tr(H)

(
ρ,G

)
C(H)

−−→
Tr(H)

(
|e〉〈e|, G

)
C(H)

(= 〈e,Ge〉H) (∀G ∈ C(H)(⊆ B(H))),

then
Tr(H)

(
ρ, F

)
B(H)

converges to αω0 .

(E3) [Essentially continuous in classical cases] An element F (∈ L∞(Ω, ν)) is said to be essentially con-

tinuous at δω0(∈ Sp(M(Ω))) ( i.e., at ω0(∈ Ω)), if there uniquely exists a complex number αω0 such

that

• if ρ (∈ L1(Ω, ν), ‖ρ‖L1(Ω,ν) = 1, ρ ≥ 0) converges to δω0(∈ Sp(M(Ω))) in the sense of weak∗

topology ofM(Ω), that is,

ρ(G)(=

∫
Ω

G(ω)ρ(ω)ν(dω)) −−→
∫
Ω

G(ω)δω0(dω)(= G(ω0)) (∀G ∈ C0(Ω)(⊆ L∞(Ω, ν))),

(2)

then ρ(F )(=
∫
Ω
F (ω)ρ(ω)ν(dω)) converges to αω0 .

Define F̂ (∈ L∞(Ω)) such that

F̂ (ω) =

 αω ( if F is essentally continuos at ω)

F (ω) (otherwise)

Let D ∈ BΩ. Define χD ∈ L∞(Ω, ν) such that

χD(ω) =

 1 ( if ω ∈ D)

0 (otherwise)

Then define D̂ such that {ω ∈ Ω | χ̂D(ω) = 1}

Assumption 2. (i): When we consider F (∈ L∞(Ω, ν)), we always assume that F satisfies that F = F̂ .

(ii): When we consider D(∈ BΩ), we always assume that D satisfies that D = D̂.
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The following definition is due to E.B. Davies (cf. ref. [25]).

The following definition is due to E.B. Davies (cf. ref. [25]).

Definition 3. [Observable] An observable O =(X,F , F ) in N is defined as follows:

(i) [σ-field] X is a set, F(⊆ 2X ≡ P(X), the power set of X) is a σ-field of X, that is, “Ξ1,Ξ2, ... ∈ F ⇒
∪∞n=1Ξn ∈ F”, “Ξ ∈ F ⇒ X \ Ξ(≡ {x | x ∈ X,x /∈ Ξ} ≡ Ξc, i.e., the complement of Ξ) ∈ F”.

(ii) [Countable additivity] F is a mapping from F to N satisfying: (a): for every Ξ ∈ F , F (Ξ) is a non-

negative element in N such that 0 ≤ F (Ξ) ≤ I, (b): F (∅) = 0 and F (X) = I, where 0 and I is the

0-element and the identity in N respectively. (c): for any countable decomposition {Ξ1,Ξ2, . . . ,Ξn, ...}
of Ξ

(
i.e., Ξ,Ξn ∈ F (n = 1, 2, 3, ...), ∪∞n=1Ξn = Ξ, Ξi ∩ Ξj = ∅ (i 6= j)

)
, it holds that F (Ξ) =∑∞

n=1 F (Ξn) in the sense of weak∗ topology in N .

In classical case, an observable (X,F , F ) in L∞(Ω, ν) is said to be continuous observable, if F (Ξ) is essentially

continuous on Ω (∀Ξ ∈ F).

2.4 Axiom 1 [Measurement] and Axiom 2 [Causality]

Quantum language (1) is composed of two axioms (i.e., Axioms 1 and 2) as follows. With any system S, a

basic structure [A ⊆ N ⊆ B(H)] can be associated in which the measurement theory (A) of that system

can be formulated. A state of the system S is represented by an element ρ(∈ Sp(A∗)) and an observable is

represented by an observable O =(X,F , F ) in N . Also, the measurement of the observable O for the system

S with the state ρ is denoted by MN (O, S[ρ])
(
or more precisely, MN (O :=(X,F , F ), S[ρ])

)
. An observer

can obtain a measured value x (∈ X) by the measurement MN (O, S[ρ]).

The Axiom 1 presented below is a kind of mathematical generalization of Born’s probabilistic interpretation

of quantum mechanics. And thus, it is a statement without reality.

Now we can present Axiom 1 in the W ∗-algebraic formulation as follows.

Axiom 1 [ Measurement, the probabilistic interpretation of science ]. The probability that a measured

value x (∈ X) obtained by the measurement MN (O :=(X,F , F ), S[ρ]) belongs to a set Ξ(∈ F) is given by

ρ(F (Ξ)) if F (Ξ) is essentially continuous at ρ(∈ Sp(A∗)).

This axiom gives answers to ”What is probability?” and ”What is measurement?”.

Remark 4. (i): In quantum cases (i.e, the cases that ρ ∈ Sp(Tr(H))) ⊆ Tr(H), F (Ξ) ∈ B(H)), the

probability ρ(F (Ξ))(=
Tr(H)

(
ρ, T

)
B(H)

= Tr
H
(ρT )) is always defined (cf. (E1)). That is, the F (Ξ) is

always essentially continuous at any ρ ∈ Sp(Tr(H))). On the other hand, in the classical cases (i.e.,

the cases that ω ∈ Ω, F (Ξ) ∈ L∞(Ω, ν)), it is not guaranteed that F (Ξ) is essentially continuous at ω

(∈ Ω)). Thus, put Fω0 = {Ξ ∈ F : F (Ξ) is essentially continuous at ω0 }. If Fω0 = F , the measure-

ment ML∞(Ω,ν)(O :=(X,F , F ), S[ω0]) makes the sample probability space (X,F , [F (·)](ω0)), which is usual

in statistics. Thus, roughly speaking, statistics starts from “sample probability space”, on the other hand,

quantum language starts from “measurement”.

(ii): In quantum cases, Axiom 1 is well known as Born’s probabilistic interpretation of quantum mechanics.

In classical case, it is natural to ask “Why does probability appear?”. For the answer of this question, see

Chapter 1 (Section 1.3) page 12 in ref. [18]: Example: measurement of “Cold or Hot”.

(iii): Axiom 1 is the quantitative realization of the spirit: “there is no science without measurements”. And,

we think that Axiom 1 means the probabilistic interpretation of science since it is a kind of mathematical

generalization of Born’s probability interpretation of quantum mechanics.

Example 5. [Exact measurement, exact observable] Consider a basic structure [C(Ω) ⊆ L∞(Ω, ν) ⊆
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B(L2(Ω,BΩ, ν))]. Define the exact observable Oe = (X(= Ω),F(= BΩ), Fe) in L∞(Ω, ν) such that

[Fe(Ξ)](ω) = 1 (ω ∈ Ξ ∈ F), = 0 (ω /∈ Ξ ∈ F).

Let ω0 ∈ Ω. Thus, we have the exact measurement ML∞(Ω,ν)(Oe = (X,F , Fe), S[ω0]). Then we have the

following statement

• Let D(⊆ X = Ω) be any open set such that ω0 ∈ D. Then Axiom 1 says that the probability that

the measured value x(∈ X) obtained by the measurement ML∞(Ω,ν) (Oe = (X,F , Fe), S[ω0]) belongs

to D is given by 1.

This implies that x = ω0, since D is arbitrary open set such that ω0 ∈ D. Also, it should be noted that Fe(Ξ)

is not essentially continuous at ω0 if ω0 ∈ ∂(Ξ), i.e., the boundary of Ξ. Thus, (X,F , [Fe(·)](ω0)) is not always

a probability space. However, note that there exists a probability space (X,F , µ) such that [Fe(Ξ)](ω
0) =

µ(Ξ) (∀Ξ(∈ F) such that ω0 /∈ ∂(Ξ) ), though the uniqueness is not guaranteed. The probability space

(X,F , µ) is often called the sample space of the measurement ML∞(Ω,ν)(Oe = (X,F , Fe), S[ω0])

Next, we explain Axiom 2. Let [A1,N1]B(H1) and [A2,N2]B(H2) be basic structures. A continuous linear

operator Φ1,2 : N2 (with weak∗ topology) → N1(with weak∗ topology) is called a Markov operator, if it

satisfies that (i): Φ1,2(F2) ≥ 0 for any non-negative element F2 in N2, (ii): Φ1,2(I2) = I1, where Ik is

the identity in Nk, (k = 1, 2). In addition to the above (i) and (ii), we assume that Φ1,2(A2) ⊆ A1 and

sup{‖Φ1,2(F2)‖A1 | F2 ∈ A2 such that ‖F2‖A2 ≤ 1} = 1.

It is clear that the dual operator Φ∗
1,2 : A∗

1 → A∗
2 satisfies that Φ∗

1,2(S
m(A∗

1)) ⊆ Sm(A∗
2). If it holds

that Φ∗
1,2(S

p(A∗
1)) ⊆ Sp(A∗

2), the Φ1,2 is said to be deterministic. If it is not deterministic, it is said to

be non-deterministic. Also note that, for any observable O2 :=(X,F , F2) in N2, the (X,F , Φ1,2F2) is an

observable in N1.

Definition 6. [Sequential causal operator; Heisenberg picture of causality] Let (T,≤) be a tree like

semi-ordered set such that “t1 ≤ t3 and t2 ≤ t3” implies “t1 ≤ t2 or t2 ≤ t1”. The family {Φt1,t2 :

Nt2 → Nt1}(t1,t2)∈T 2
5
is called a sequential causal operator, if it satisfies that

(i) For each t (∈ T ), a basic structure [At ⊆ Nt ⊆ B(Ht)] is determined.

(ii) For each (t1, t2) ∈ T 2
5, a causal operator Φt1,t2 : Nt2 → Nt1 is defined such as Φt1,t2Φt2,t3 = Φt1,t3

(∀(t1, t2), ∀(t2, t3) ∈ T 2
5). Here, Φt,t : Nt → Nt is the identity operator.

Now we can propose Axiom 2 (i.e., causality). (For details, see ref. [18].)

Axiom 2[Causality]; For each t(∈ T=“tree like semi-ordered set”)), consider the basic structure:

[At ⊆ Nt ⊆ B(Ht)]

Then, the chain of causalities is represented by a sequential causal operator {Φt1,t2 : Nt2 →
Nt1}(t1,t2)∈T 2

5
.

When parameters t1, t2 (t1 < t2) are regarded as time, we usually consider that a causal operator Φt1,t2 :

Nt2 → Nt1 represents “causality”. Thus, this axiom gives an answer to ”What is causality?”. That is, we

consider that, if Axiom 2 is used in the quantum linguistic representation of a phenomenon, causality exists

in the phenomenon.

2.5 The linguistic Copenhagen interpretation (= the manual to use Axioms 1 and 2)

It is well known (cf. ref. [26] ) that the Copenhagen interpretation of quantum mechanics has not been

established yet. For example, about the right or wrong of the wave function collapse, opinions are divided
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in the Copenhagen interpretation. Thus, the Copenhagen interpretation is often called “so-call Copenhagen

interpretation”. However, we believe that the linguistic Copenhagen interpretation of quantum language (B)

(i.e., both quantum (B′
1) and classical (B′

2)) is uniquely determined. For example, for the quantum linguistic

opinion about the wave function collapse, see ref. [13] or §11.2 in ref. [18]. As mentioned in (B1), we believe

that the linguistic Copenhagen interpretation is the true figure of so called Copenhagen interpretation.

Now we explain the linguistic Copenhagen interpretation in what follows. In the above, Axioms 1 and 2 are

kinds of spells, (i.e., incantation, magic words, metaphysical statements), and thus, it is nonsense to verify

them experimentally. Therefore, what we should do is not “to understand” but “to use”. After learning

Axioms 1 and 2 by rote, we have to improve how to use them through trial and error. We may do well

even if we do not know the linguistic Copenhagen interpretation (= the manual to use Axioms 1 and 2).

However, it is better to know the linguistic Copenhagen interpretation, if we would like to make progress

quantum language early. We believe that the linguistic Copenhagen interpretation is the true Copenhagen

interpretation, which does not belong to physics.

Figure 2: [Descartes Figure]: Image of “measurement(= x©+ y©)” in mind-matter dualism

•

observer
(I(=mind))

system
(matter, measuring object)

�
-

[observable]
[(=measuring instrument)]

(body)

[measured value]
x©interfere

y©perceive reaction

[state]

The essence of the manual is as follows: In Fig. 2, we remark:

(F1) x©: it suffices to understand that “interfere” is, for example, “apply light”.

y©: perceive the reaction.

That is, “measurement” is characterized as the interaction between “observer” and “measuring object (=

matter)”. However,

(F2) in measurement theory (=quantum language), “interaction” must not be emphasized.

Therefore, in order to avoid confusion, it might better to omit the interaction “ x© and y©” in Fig. 2.

After all, we think that:

(F3) it is clear that there is no measured value without observer (i.e., “I”, “mind”). Thus, we consider

that measurement theory is composed of three key-words: “measured value”,“observable”,“state” (cf.

§ 3.1(p.63) in [18]).

measured value
(I, observer, mind)

, observable (= measuring instrument )

(body(= sensory organ), thermometer, eye, ear, compass )

, state
(matter)

,

Hence, quantum language is based on dualism, i.e., a kind of mind-matter dualism.

The linguistic Copenhagen interpretation says that

(G1) Only one measurement is permitted. And therefore, the state after a measurement is meaningless

since it cannot be measured any longer. Thus, the collapse of the wavefunction is prohibited (cf. ref.

[13]; projection postulate ). We are not concerned with anything after measurement. Strictly speaking,

the phrase “after the measurement” should not be used. Also, the causality should be assumed only

in the side of system, however, a state never moves. Thus, the Heisenberg picture should be adopted,

and thus, the Schrödinger picture should be prohibited.
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(G2) “Observer”(=“I”) and “system” are completely separated in order not to make self-reference propo-

sitions appear. Hence, the measurement MN (O :=(X,F , F ), S[ρ]) does not depend on the choice of

observers. That is, any proposition (except Axiom 1) in quantum language is not related to “ob-

server”(=“I”), therefore, there is no “observer’s space and time” in quantum language. And thus, it

does not have tense (i.e., past, present, future).

(G3) there is no probability without measurements ( cf. Bertrand’s paradox (in § 9.12 of ref.[18]))

(G4) Leibniz’s relationalism concerning space-time ( e.g, time should be regarded as a parameter), (cf. ref.

[17]).

(G5) A family of measurements { MNi(Oi :=(X1,Fi, Fi), S[ρi]) : i = 1, 2, 3, ...} is realized as the par-

alell measurement M⊗∞
i=1Ni

(⊗∞
i=1Oi :=(×∞

i=1 X1,�∞
i=1Fi, ⊗ ∞

i=1Fi), S[⊗∞
i=1ρi]

) (cf. Definition 8

later). For details about the tensor product “⊗ ∞
i=1”, see ref. [18].

and so on.

Remark 7. (i): In ref. [3] (1991), we proposed the mathematical formulation of Heisenberg’s uncertainty

relation. However，so-called Copenhagen interpretation is not firm (cf. ref. [26]). Thus, in order to

understand our work (i.e., Heisenberg’s uncertainty relation) deeply, we proposed the linguistic Copenhagen

interpretation (= quantum language) as the true Copenhagen interpretation. For details of Heisenberg’s

uncertain relation, see §4.3 in ref. [18].

(ii): We consider that the above (G1) is closely related to Kolmogorov’s extension theorem (cf. ref. [27]),

which says that only one probability space is permitted. For details, see §4.1 in ref. [18].

(iii): The formula (1) says that scientific explanation is to explain phenomena in terms of “measurement”(

Axiom 1 ) and “causality” (Axiom 2). If we are allowed to use the famous metaphor of Kant’s Copernican

revolution, to do familiar sciences is to see this world through colored glasses of measurement and causality

(cf. [17]), or to use the metaphor of Wittgenstein’s saying, the limits of quantum language are the limits

of familiar science. Therefore, the explanation problem of scientific philosophy is automatically clarified in

quantum language.

(iv): Violating the linguistic Copenhagen interpretation (G2), we have many paradoxes of self-reference type

such as “brain in a vat”, “five-minute hypothesis”, “I think, therefore I am”, “McTaggart’s paradox”. Cf.

ref. [17] or §10.8 in ref. [18].

(v): We want to understand that Zeno’s paradox is not a problem concerning geometric series or spatial

division, but the problem concerning the worldview. That is, “Propose a certain scientific worldview, in

which Zeno’s paradox should be studied !” That is because we think that there is no scientific argument

without scientific language (≈ scientific worldview). And our answer (cf. § 14.4 in ref. [18]) is “If Zeno’s

paradox is a problem in science, it should be studied in quantum language”. That is because our assertion

is “Quantum language is the language of science”. Also, Monty Hall problem, two envelope problem, three

prisoners problem etc. are not only mathematical puzzles but also profound problems in quantum language

(cf. refs. [11, 18]).

As the further explanation of parallel measurement in the linguistic Copenhagen interpretation (G5), we

have to add the following definition.

Definition 8. [Parallel measurement (cf. [18])] Though the parallel measurement can be defined in both

classical and quantum systems, we, for simplicity, devote ourselves to classical systems as follows. Let

[C(Ω) ⊆ L∞(Ω.ν) ⊆ [B(L2(Ω, ν))] be a classical basic structure, where we assume, for simplicity, that Ω

is compact space and ν is a measure such that ν(Ω) = 1 and ν(D) > 0 (∀open set D ⊆ Ω). Consider

a family of measurements {ML∞(Ω,ν)(Oi := (Xi,Fi, Fi), S[ωi]) | i = 1, 2, ..., N}. However, the linguistic

Copenhagen interpretation (G1) says “Only one measurement is permitted”. Therefore, instead of the family

of measurements, we consider the parallel measurement
⊗N

i=1 ML∞(Ω,ν)(Oi := (Xi,Fi, Fi), S[ωi]), which is
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defined by

N⊗
i=1

ML∞(Ω,ν)(Oi := (Xi,Fi, Fi), S[ωi])

=M
L∞(×N

i=1 Ω,
⊗N

i=1 ν)
(⊗ N

i=1Oi := (
N

×
i=1

Xi, � N
i=1Fi, ⊗ N

i=1Fi), S[(ω1,ω2,...,ωN )])

where×N
i=1 Ω is the finite product compact space of Ωs,

⊗N
i=1 ν is the finite product probability of νs. Also,

� N
i=1Fi (⊆ P(×N

i=1 Xi)) is the infinite product σ-field, i.e., the smallest σ-field that includes

{ N

×
i=1

Ξi| Ξi ∈ Fi

}
And further, define the observable

⊗N
i=1 Fi in L∞(×N

i=1 Ω,
⊗N

i=1 ν) which satisfies that

[(⊗ N
i=1Fi)((

N

×
i=1

Ξi)](ω1, ω2, ..., ωN ) =
N

×
i=1

[Fi(Ξi)](ωi) ∀Ξi ∈ Fi, ωi ∈ Ω

Then, Axiom 1 [measurement] says that

(H) the probability that a measured value obtained by the parallel measurement
⊗N

i=1 ML∞(Ω,ν)(Oi :=

(Xi,Fi, Fi), S[ωi]) belongs to×N
i=1 Ξi is given by×N

i=1[Fi(Ξi)](ωi), if Fi(Ξi) is essentially continuous

at ωi (∀i = 1, 2, ..., N).

Remark 9. The above finite parallel measurement can be generalized to the case that the index set Λ is

infinite. That is,⊗
λ∈Λ

ML∞(Ω,ν)(Oλ := (Xλ,Fλ, Fλ), S[ωλ])

=M
L∞(×λ∈Λ Ω,

⊗
λ∈Λ ν)

(⊗ λ∈ΛOλ := (×
λ∈Λ

Xλ, � λ∈ΛFλ, ⊗ λ∈ΛFλ), S[(ωλ)λ∈Λ])

The existence of the parallel measurement is guaranteed in both classical and quantum systems. Cf. §
4.2 in ref. [18]. It is not so difficult to extend the above finite parallel measurements to infinite parallel

measurements for mathematicians. However, in this paper, we are not concerned with the infinite parallel

measurement. That is because our concern is not mathematics but foundations of philosophy of science.

Here we add the following definition.

Definition 10. [Implication: cf. refs. [4, 18]] Consider a basic structure:

[A ⊆ N ⊆ B(H)]

Let O1 = (X1, F1, F1) and O2 = (X2, F2, F2) be observables in N . Let O12 = (X1×X2, F1 � F2, F12)

be an observable such that F1(Ξ1) = F12(Ξ1×X2) and F2(Ξ2) = F12(X1×Ξ2) (∀Ξ1 ∈ F1,Ξ2 ∈ F2). Let

ρ ∈ Sp(A∗), Γ1 ∈ F1, Γ2 ∈ F2. Then, if it holds that

ρ(F 12(Γ1×(X2 \ Γ2))) = 0

this is denoted by

[O1; Γ1] =⇒
MN (O12,S[ρ])

[O2; Γ2] or, equivalently, [O1;X1 \ Γ1] ⇐=
MN (O12,S[ρ])

[O2;X2 \ Γ2]

That is because the probability that a measured value (x1.x2) obtained by the measurement MN (O12 :=

(X1×X2, F1 �F2, F12), S[ρ]) belongs to Γ1 × (X2 \ Γ2) is equal to 0.
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Remark 11. [Syllogism] Using Definition 10, we showed that

• Syllogism always holds in classical systems (cf. ref. [4])

• Syllogism does not always hold in quantum systems (cf. ref. [9], § 8.7 in ref. [18])

2.6 Inference; Fisher’s maximum likelihood method

We begin with the following notation:

Notation 12. [ML∞(Ω,ν)(O, S[∗])]: Consider a measurement ML∞(Ω,ν) (O:=(X,F , F ), S[ω0]) formulated in

the basic structure [C(Ω) ⊆ L∞(Ω, ν) ⊆ B(L2(Ω, ν))]. Here, note that

(I1) in most cases that the measurement ML∞(Ω,ν) (O:=(X,F , F ), S[ω0]) is taken, it is usual to think that

the state ω0(∈ Ω) is unknown.

That is because

(I2) the measurement ML∞(Ω,ν)(O, S[ω0]) may be taken in order to know the state ω0.

Therefore, when we want to stress that we do not know the state ω0, the measurement ML∞(Ω,ν)

(O:=(X,F , F ), S[ω0]) is often denoted by ML∞(Ω,ν) (O:=(X,F , F ), S[∗])

Theorem 13. [Inference; Fisher’s maximum likelihood method (cf. ref. [5] or §5.2 in ref. [18]] For simplicity,

assume that X is finite set. Assume that the measured value x(∈ X) is obtained by the measurement

ML∞(Ω,ν) (O:=(X, 2X , F ), S[∗]). Then, the unknown state [∗] can be inferred to be ω0(∈ Ω) such that

[F ({x})](ω0) = max
ω∈Ω

[F ({x})](ω)

Proof. It is an easy consequence of Axiom 1 (cf. §5.2 in ref. [18]).

Remark 14. [ Inference and Control cf. §5.2 in ref. [18]] The inference problem is characterized as the

reverse problem of measurements. That is, we consider that

(J1) (state ω0, observable O)
ML∞(Ω,ν) (O:=(X, 2X , F ), S[ω0])−−−−−−−−−−−−−−−−−−−−−−−−−→

measurement (Axiom 1)
measured value x0

On the other hand

(J2) (measured value x0, observable O)
ML∞(Ω,ν) (O:=(X, 2X , F ), S[∗])−−−−−−−−−−−−−−−−−−−−−−−−→
inference ( reverse Axiom 1)

state ω0

Thus, (J1) and (J2) are in reverse problem.

Also, we note, from the mathematical point of view, that inference problem (J3) and control problem (J4)

are essentially the same as follows.

(J3) [Inference problem; statistics]: when measured value x0 is obtained, infer the unknown state ω0!

and

(J4) [Control problem; dynamical system theory]: Settle the state ω0 such that measured value x0 will be

obtained!

Thus, we think, from the theoretical point of view, that statistics and dynamical system theory are essentially

the same. Thus, we consider that statistics (= dynamical system theory) is the mathematical representation

of classical mechanical worldview. On the other hand, quantum language is regarded as the mathematical

representation of quantum mechanical worldview.

11

KSTS/RR-19/002 
September 12, 2019 
(Revised November 1, 2019)



3 Hempel’s raven paradox in the linguistic quantum mechanical worldview

3.1 What is Hempel’s raven paradox?

Although all results mentioned in this paper hold in both classical and quantum systems, we, for simplicity,

devote ourselves to classical systems.

In this section we discuss Hempel’s raven paradox (cf. ref. [1]) in the linguistic quantum mechanical

worldview. There may be no consensus among philosophers on the problem “What is Hempel’s raven

paradox?”. Some people may even think there is no paradox in Hempel’s raven problem. Thus, we mention

our opinion about “What is Hempel’s raven paradox?” in what follows.

Let U be the universal set of all birds. Let B(⊆ U) be a set of all black birds. Let R(⊆ U) be a set of all

ravens. Thus, the statement: “any raven is black” is logically denoted by

(K1) “Any raven is black” : (∀x )[x ∈ R −→ x ∈ B] i.e., R ⊆ B ⊆ U,

This is logically equivalent to the followings:

(K2) “Every non-black bird is a nonraven” : (∀x )[x ∈ U \B −→ x ∈ U \R] i.e., U \B ⊆ U \R
(K3) “Non-black raven does not exist”: (¬∃x) [x ∈ R ∩ (U \B)]

However, if the three are equivalent, then we have the following questions (i.e., raven problem):

(K4) Why is the actual verification of (K2) much more difficult than the actual verification of (K1)?

(K5) Why can the truth of “(K1): any raven is black” be known by (K2), i.e., without seeing a raven also

at once?

(K6) Is it possible to experimentally verify “Any raven is black”?

These may be so called Hempel’s raven problem. However, now we think that the most essential problem

concerning Hempel’s raven paradox is as follows:

(K7) What is the true meaning of “Any raven is black”?

In order to consider this problem, we must prepare the measurement theoretical formulation of ornithology,

under which the meaning of “Any raven is black” will be clarified in the following sections.

Remark 15. (i): In Section 3 of ref. [19]: S. Ishikawa, Philosophy of science for scientists; The probabilistic

interpretation of science, JQIS, Vol. 3, No.3 , 140-154 , we discussed Hempel’s raven problem (K4)-(K6).

However, now we consider that the arguments about (K4)-(K6) in ref. [19] were not sufficient since the

argument concerning (K7) was not sufficient. Hence, in this paper, we are eager to investigate the problem

(K7) sufficiently.

(ii): Also, in this paper we consider that

“any raven is black” = “every raven is black” = “all ravens are black”.

following the rule of mathematics.

3.2 The measurement theoretical formulation of ornithology

We think that Hempel’s raven paradox raises the question of “What is ‘Any raven is black’?”. For this,

we must prepare the measurement theoretical formulation of ornithology

Since a state is a quantity expression of a property of an object, we have the following definitions.
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Definition 16. Let U be a ( finite) set of all birds. Put B = {u ∈ U | u is a black bird}, and put

R = {u ∈ U | u is a raven}. Further put

U = {u1, u2, ..., u][U ]}, B = {b1, b2, ..., b][B]}, R = {r1, r2, ..., r][R]}.

And define B(⊇ B) by B \B = {u ∈ U | u is located between the black birds and the non-black birds}, and
define R(⊇ R) by R \ R = {u ∈ U | u is located between the ravens and the non-ravens}. Thus, it holds

that B ⊆ B ⊆ U and R ⊆ R ⊆ U .

Definition 17. [(i): Universal state space]: Consider the basic structure:

[C0(Ω) ⊆ L∞(Ω, ν) ⊆ B(L2(Ω, ν))] (3)

where Ω ( called a universal state space or in short, state space) is assumed to be the state space that includes

the states of all the considered objects. In this paper it suffices to consider that Ω is the state space in which

the states of all birds are expressed. Here Ω is a locally compact space with the Borel field BΩ, ν is measure

such that ν(D) > 0(∀ open set D ⊆ Ω) and ν({ω}) = 0(∀ω ∈ Ω).

[(ii): State map]: Any bird u (∈ U) has a state ω̃(u)(∈ Ω). Here the state map ω̃ : U → Ω is injection (i.e.,

one to one ). Note that ω̃(U) is not necessarily dense in Ω.

[(iii): Raven observable, Black bird observable]: Here we consider two continuous observables (i.e., Black

bird observable, Raven observable) OB = ({1, 0}, 2{1,0}, FB), OR = ({1, 0}, 2{1.0}, FR) in L∞(Ω, ν). Also,

put

ΩB := {ω ∈ Ω | [FB({1})](ω) = 1}, ΩR := {ω ∈ Ω | [FR({1})](ω) = 1}

which is respectively called a black bird state class and a raven state class . Also, put

ΩB\B := {ω ∈ Ω | 0 < [FB({1})](ω) < 1}, ΩU\B := {ω ∈ Ω | [FB({1})](ω) = 0},
ΩR\R := {ω ∈ Ω | 0 < [FR({1})](ω) < 1}, ΩU\R := {ω ∈ Ω | [FR({1})](ω) = 0},

Thus, OB = ({1, 0}, 2{1,0}, FB) has the following form.

[FB({1})](ω) = 1 ( if ω ∈ ΩB), 0 < [FB({1})](ω) < 1 ( if ω ∈ ΩB\B),

[FB({1})](ω) = 0 ( if ω ∈ ΩU\B), [F ({0})](ω) = 1− [FB({1})](ω) (∀ω ∈ Ω) (4)

Also, OR = ({1, 0}, 2{1,0}, FR) is similarly defined ( see Fig. 3 below).

Figure 3: [Raven state class ΩR, black bird state class ΩB ]

Now we propose the following declaration.
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Declaration 18. [The mathematical formulation of ornithology]: We assume that the state map ω̂ : U → Ω

satisfies

“ω̃(u) ∈ ΩB”⇔ “u ∈ B”, “ω̃(u) ∈ ΩB\B”⇔ “u ∈ B \B”, “ω̃(u) ∈ ΩU\B”⇔ ”u ∈ U \B”,

“ω̃(u) ∈ ΩR”⇔ “u ∈ R”, “ω̃(u) ∈ ΩR\R”⇔ “u ∈ R \R”, “ω̃(u) ∈ ΩU\R”⇔ ”u ∈ U \R” (5)

Remark 19. (i): There may be several opinions about Definition 16. That is, “U is the set of all birds”

may be as ambiguous as “UD is the set of all dinosaurs”. In order to read this paper, it suffices to consider

that the U may be a gathering of birds as far as we know. Also, upper argument may include contradiction.

For example, “ω̃(u) ∈ ΩR” ⇔ “u ∈ R” in Declaration 18 should be regarded as the definition of “raven”.

However, the word :“raven” is already used in Definition 16. In order to resolve this contradiction, names

such as “the set of all birds” etc. should be given after Declaration 18.

(ii): Everything’s nature of birds is expressed in state space Ω. Therefore, it is natural to consider that the

above definitions (i.e., OB , OR, etc. ) were decided by specialists of ornithology. In fact the classification

of birds is one of their jobs. Also, the characterization of OB , OR, etc. may be changed by the development

of ornithology. That is, we consider that progress of ornithology is equal to precise-izing of the declaration.

This will be shown in Declarations 22 and 27 later.

Exercise 20. Under the Declaration 18, Axiom 1 says:

(L1) for each ui ∈ U , the probability that the measured value 1 [ resp. 0] is obtained by the measurement

ML∞(Ω,ν)(OR = ({1, 0}, 2{1,0}, FR), S[ω̃(ui)]) is equal to [FR({1})](ω̃(ui)) [ resp. [FR({0})](ω̃(ui)) ].

(L2) for each ui ∈ U , the probability that the measured value 1 [ resp. 0] is obtained by the measurement

ML∞(Ω,ν)(OB = ({1, 0}, 2{1,0}, FB), S[ω̃(ui)]) is equal to [FB({1})](ω̃(ui)) [ resp. [FB({0})](ω̃(ui)) ].

Let ORB = ({1, 0}× {(0, 1)}, 2{{1,0}×{(0,1)}, FR ×FB) be the product observable of OR = ({1, 0}, 2{1,0}, FR)

and OB = ({1, 0}, 2{1,0}, FB). Then we see:

(L3) for each ui ∈ U , the probability that the measured value (1, 1) [ resp. (1, 0), (0, 1).(0.0)] is obtained

by the measurement ML∞(Ω,ν)(ORB = ({1, 0} × {(0, 1)}, 2{{1,0}×{(0,1)}, FR × FB), S[ω̃(ui)]) is equal

to [FR({1})](ω̃(ui)) · [FB({1})](ω̃(ui)) [ resp. [FR({1})](ω̃(ui)) · [FB({0})](ω̃(ui)), [FR({0})](ω̃(ui)) ·
[FB({1})](ω̃(ui)), [FR({0})](ω̃(ui)) · [FB({0})](ω̃(ui)) ].

The exercise of the representation using parallel measurements is left to readers.

3.3 A priori proposition: “Any small black bird is black”

Next consider the following figure:
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Figure 4: [Raven state class ΩR, black bird state class ΩB ,small black bird state class ΩSB ]

That is, we add the small black bird observable:

Definition 21. Define SB by the set of all small black birds. Of course it is clear that SB ⊆ B. And further

consider the observable OSB = ({0, 1}, 2{0,1}, FSB) ( called the small black bird observable) in L∞(Ω, ν).

Also, put

ΩSB := {ω ∈ Ω | [FSB({1})](ω) = 1}, ΩSB\SB := {ω ∈ Ω | 0 < [FSB({1})](ω) < 1},
ΩU\SB := {ω ∈ Ω | [FSB({1})](ω) = 0},

Now we can propose the following declaration, which is more general than Declaration 18.

Declaration 22. [The mathematical formulation of ornithology (II)]: Assume Declaration 18 and Definition

21. And further, we assume that the state map ω̂ : U → Ω satisfies the following:

“ω̃(u) ∈ ΩSB”⇔ “u ∈ SB”, “ω̃(u) ∈ ΩSB\SB”⇔ “u ∈ SB \ SB” “ω̃(u) ∈ ΩU\SB”⇔ “u ∈ U \ SB”,

Also, note that “Any small black bird is black” is a priori proposition (i.e., this proposition is self-evident,

and thus, it does not need to be experimentally verified), which has the measurement theoretical representation

as follows:

ΩSB ⊆ ΩB (6)

Exercise 23. It is easy to see the followings:

(M1) for each ui ∈ SB, the probability that the measured value 1 is obtained by the measurement

ML∞(Ω,ν)(OB = ({1, 0}, 2{1,0}, FB), S[ω̃(ui)]) is equal to 1.

Or formally (cf. (G1): Only one measurement is permitted),

(M2) the probability that the measured value (1, 1, 1..., 1︸ ︷︷ ︸
][SB]

) is obtained by the parallel measurement

⊗
ui∈SB ML∞(Ω,ν) (OB = ({1, 0}, 2{1,0}, FB), S[ω̃(ui)]) is equal to 1.

The two say “When all the small black birds were observed, they were all black”.

Remark 24. It should be noted that we have three “Any small black bird is black”s, that is,

(N1) ΩSB ⊆ ΩB

(N2) SB ⊆ B

(N3) “When all the small black birds were observed, they were all black” in (M2)

We believe that (N1) is the true “Any small black bird is black”. That is because we think that we should

not depend on U so much by the reason that it was written in Remark 19. Thus, we assert that

“Any small black bird is black”
def

:⇐⇒ (N1):ΩSB ⊆ ΩB

3.4 A posteriori proposition: “Any raven is black”

Now we consider the proposition:“Any raven is black”. As mentioned in the above, we have three “Any

small black bird is black”s, that is,

(N′
1) ΩR ⊆ ΩB

(N′
2) R ⊆ B

(N′
3) “When all the ravens were observed, they were all black”
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By the same reason mentioned in the above Remark 24, we think that

“Any raven is black”
def

:⇐⇒ (N′
1):ΩR ⊆ ΩB

though it is a posteriori proposition (i.e., this proposition is not self-evident, and thus, it needs to be

experimentally verified).

Now we have the following theorem:

Theorem 25. It holds that

(N′
1):ΩR ⊆ ΩB =⇒ (N′

2): R ⊆ B

=⇒(N′
3):“When all the ravens were observed, they were all black”

Proof. Assume that ΩR ⊆ ΩB and R∩Bc 6= ∅ (i.e.,R ⊆ B does not hold). If u0 ∈ R∩Bc, then ω̃(u0) ∈ R

and ω̃(u0) ∈ Bc. This implies that ΩR ∩ ΩBc 6= ∅. This contradicts ΩR ⊆ ΩB . Thus, we see that (N′
1)=⇒

(N′
2).

Assume that :ΩR ⊆ ΩB and R ⊆ B. Then we see

(N′′
3) the probability that the measured value (1, 1, 1, ..., 1︸ ︷︷ ︸

][R]

) is obtained by the parallel measurement

⊗
ui∈R ML∞(Ω,ν) (OB = ({1, 0}, 2{1,0}, FB), S[ω̃(ui)]) is equal to 1.

which is the same as (N′
3).

Example 26. Here we show that

(O1) there exists the case such that (N′
1) does not hold (e.g., it holds that ΩR ∩ ΩB 6= ∅, ΩB \ ΩR 6= ∅,

ΩR \ΩB 6= ∅ ) but it holds that (N′
2 ):R ⊆ B and (N′

3):“When all the ravens were observed, they were

all black”.

Consider the state map ω̃ : U → Ω such that

ω̃(R) ⊆ ΩR ∩ ΩB and ω̃(B \R) ⊆ ΩB \ ΩR

Then we see

(O2) the probability that the measured value (1, 1, 1..., 1︸ ︷︷ ︸
][R]

) is obtained by the parallel measurement

⊗
ui∈R ML∞(Ω,ν) (OB = ({1, 0}, 2{1,0}, FB), S[ω̃(ui)]) is equal to 1.

which is the same as (N′
3).

This example says that

(P1) “When all the ravens were observed, they were all black” does not guarantee “All ravens are black”.

Or equivalently

(P2) we can not experimentally verify “ΩR ⊆ ΩB(i.e., any raven is black)”.

Thus, our present problem is as follows.

(P3) What should we do to be sure of “ΩR ⊆ ΩB”?

This will be answered in the following section 3.5.

3.5 Falsification test

In this section, we study the problem (P3), i.e., What should we do to be sure of “ΩR ⊆ ΩB”?. In order

to do it, we can use popper’s falsifiability (≈ statistical hypothesis testing) as follows.
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Assume the following fact ( which is regarded as one of the consequences of “All ravens are black ( i.e.,

ΩR ⊆ ΩB)”):

(Q1) It was found that one hundred ravens were black continuously.

What we can do is to reject the null hypothesis of the (Q1).

For instance, it is usual to assume the following null hypothesis:

(Q2) Non-black ravens can be observed at 3 time of a rate to 100 times.

Example (I): pure measurement

For example, this null hypothesis (Q2) is represented in quantum language as the measurement ML∞(Ω,ν)

(O′
B := (X, 2X , F ′

B), S[ω̃(r)]), (∀r ∈ R)) where

X = {1, 0}, [F ′
B({1})](ω) =

97

100
(if ω ∈ ΩR), [F ′

B({1})](ω) = 0 (if ω ∈ Ω \ ΩR),

[F ′
B({0})](ω) = 1− [F ′

B({1})](ω) (∀ω ∈ Ω)

which is a slight modification of the formula (4). And thus, we calculate, by Axiom 1 [measurement], that

(Q3) the probability that a measured value (1, 1, 1..., 1︸ ︷︷ ︸
100

) is obtained by the parallel measurement⊗
r∈{r1,r2,...,r100}⊆R ML∞(Ω,ν) (O′

B := (X, 2X , F ′
B), S[ω̃(r)]) is given by (97/100)100(< 0.048). That is,

the probability that (Q1) is realized ( i.e., we meet one hundred black ravens continuously ) is less

than 0.048 (> (97/100)100)).

Thus, we may reject the null hypothesis (Q2) since probability 0.048 is quite rare. That is, we couldn’t deny

“ΩR ⊆ ΩB (i.e., any raven is black )”.

Example (II): mixed measurement (cf. Chapter 9 in ref. [18])

Also the null hypothesis (Q2) is represented in quantum language as the nmixed measurement ML∞(Ω,ν)

(OB := (X, 2X , FB), S[∗](ν0)), where the mixed state ρ0 is defined by

ρ0(D) =
3ν((ΩR \ ΩB) ∩D)

100ν(ΩR \ ΩB)
+

97ν((ΩR ∩ ΩB) ∩D)

100ν(ΩR ∩ ΩB)
(∀D ∈ BΩ)

And thus, we calculate, by Axiom(m) 1 [ in Chapter 9 of ref. [18]: mixed measurement], that

(Q4) the probability that a measured value (1, 1, 1..., 1︸ ︷︷ ︸
100

) is obtained by the parallel mixed measurement

⊗100
i=1 ML∞(Ω,ν) (OB := (X, 2X , FB), S[∗](ρ0)) is given by (97/100)100(< 0.048). That is, the proba-

bility that (Q1) is realized ( i.e., we meet one hundred black ravens continuously ) is less than 0.048

(> (97/100)100)).

Thus, we may reject the null hypothesis (Q2) since probability 0.048 is quite rare. That is, we couldn’t deny

“ΩR ⊆ ΩB (i.e., any raven is black )”.

If many statistical hypothesis tests are cleared, we may believe in “ΩR ⊆ ΩB (i.e., any raven is black )”.

If so, we can propose the following new declaration:

Declaration 27. [The mathematical formulation of ornithology (III)]: Assume Declaration 22. Further, we

add “ΩR ⊆ ΩB (i.e., any raven is black )”.

This is progress of ornithology (i.e., Declaration 18
progress
=⇒ Declaration 22

progress
=⇒ Declaration 27 ).
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Figure 5: [All ravens are black: Fig. 3
progress
=⇒ Fig. 4

progress
=⇒ Fig. 5 ]

Remark 28. Note that the above argument is popular as statistical hypothesis testing in statistics, though

statistics does not have the concept of “measurement”. In our worldview (i.e., linguistic quantum mechan-

ical worldview), we consider that Popper’s falsificationism (cf, ref. [28]) and statistical hypothesis testing

are almost the same. However his theory was supported by philosophers rather than scientists since his

proposal was not proposed under a certain scientific worldview. That is, Popper’s falsificationism belongs to

(A1):“philosophy of science for the general public”.
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4 Hume’s problem of induction

4.1 Problem of Induction in the linguistic quantum mechanical world view

Although David Hume (1711-1776), British experimentalist, suspected the justification of induction, in

this section we show that the justification is easily solved in our worldview. If we expect a scientific answer to

Hume’s problem, we must start with the scientific definition of “the uniformity principle of nature”, i.e., the

following Definition 29 [ The uniformity principle of nature]. Some may feel that the uniformity principle

of nature (i.e., the condition in Definition 29) is too strong. However, we think that it is impossible to

propose the different quantitative definition of the uniformity principle of nature that leads to a result like

Theorem 30 [Inductive reasoning] ( i.e., If similar measurements are performed, the similar measured values

are obtained ).

Definition 29. [The uniformity principle of nature] Let [C(Ω) ⊆ L∞(Ω, ν) ⊆ B(L2(Ω, ν))] be a classi-

cal basic structure such that Ω is compact and ν(Ω) = 1. A family of measurements {ML∞(Ω,ν)(Oi :=

(X,F , Fi), S[ωi]) | i = −n,−n + 1, ...,−1, 0, 1, 2, ..., N} is said to satisfy the uniformity principle of nature

(concerning µ), if there exists a probability space (X,F , µ) such that

[Fi(Ξ)](ωi) = µ(Ξ) ∀Ξ ∈ F , ∀i = −n,−n+ 1, ...,−1, 0, 1, 2, ..., N

Under this definition, we assert the following theorem, which should be regarded as the fundamental theorem

in philosophy of science.

Theorem 30. [Inductive reasoning, the quantum linguistic solution of Hume’s problem of induction]. Let

[C(Ω) ⊆ L∞(Ω, ν) ⊆ B(L2(Ω, ν))] be a basic structure such that Ω is compact and ν(Ω) = 1. Assume that

a family of measurements {ML∞(Ω,ν)(Oi := (X,F , Fi), S[ωi]) | i = −n,−n + 1, ...,−1, 0, 1, 2, ..., N} satisfies
the uniformity principle of nature ( concerning µ). Let (x−n, x−n+1, ..., x−1, x0, x1, ..., xN ) ∈×N

i=−n X be a

measured value by the parallel measurement
⊗N

i=−n ML∞(Ω,ν) (Oi := (X,F , Fi), S[ωi]). Then, we see that

]{k | xk ∈ Ξ, k = −n,−n+ 1, ...,−1, 0}
n

≈ µ(Ξ)(= [Fi(Ξ)](ωi))(
Ξ ∈ F , i = −n,−n+ 1, ...,−1, 0, 1, 2, ..., N

)
(7)

where n is sufficiently large. Here ][Θ] is the number of elements in a set Θ.

Proof. Let Ξi ∈ F (i = −n,−n+1, ...,−1, 0, 1, ..., N). Axiom 1 [measurement] says that the probability that

a measured value (x−n, x−n+1, ..., x−1, x0, x1, ..., xN ) obtained by the parallel measurement
⊗N

i=−n ML∞(Ω,ν)

(Oi := (X,F , Fi), S[ωi]) belongs to ×N
i=−n Ξi is given by ×N

i=−n[Fi(Ξi)](ωi) = ×N
i=−n µ(Ξi). Thus, the

sequence {xi}Ni=−n can be regarded as independent random variables with the identical distribution µ.

Hence, using the law of large numbers, we can immediately get the formula (7). Also, this theorem is a

direct consequence of the law of large numbers for parallel measurements (cf. refs. [5], or § 4.2 in ref.[18]).

Remark 31. (i): Recall that the law of large numbers (which is almost equivalent to Theorem 30) says that

“frequency probability” = “the probability in Axiom 1” (cf. ref. [5])

though the probability in Axiom 1 has the several aspects. Also, note that the law of large numbers in

statistics (cf. ref. [27]) has already been accepted as the fundamental theorem in science. Therefore, even if

Theorem 30 ([Inductive reasoning]+(7)) is called the fundamental theorem in philosophy of science, we don’t

think it’s exaggerated. We believe that our proposal (i.e., Theorem 30) is completely true in our worldview.

Thus, we think that the solution of Hume’s problem of induction was practically already found as the law
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of large numbers. In the framework of our worldview, we are convinced that the above is the definitive

solution to Hume’s problem. However, there may be another idea if some start from another worldview.

Hence, as described at the end of this paper, we hope that many philosophers propose various mathematical

foundations of scientific philosophy, in which Hume’s problem of induction are discussed from the various

viewpoints.

(ii): In Definition 29 [The uniformity principle of nature] and Theorem 30 [Inductive reasoning], we consider

the family of measurements {ML∞(Ω,ν)(Oi := (X,F , Fi), S[ωi]) | i = −n,−n + 1, ...,−1, 0, 1, 2, ..., N}. This

may be too general. Usually, it suffices to consider that {ML∞(Ω,ν)(Oi := (X,F , F ), S[ωi]) | i = −n,−n +

1, ...,−1, 0, 1, 2, ..., N}, i.e., F = Fi (−n ≤ ∀i ≤ N).

(iii): It may be understandable to consider two measurements:
⊗0

i=−n ML∞(Ω,ν) (O := (X,F , Fi), S[ωi])

and
⊗N

i=1 ML∞(Ω,ν) (O := (X,F , Fi), S[ωi]). The reason that we do not consider two measurements is due

to the linguistic Copenhagen interpretation (G1), i.e., only one measurement is permitted.

Example 32. [Coin tossing]. Let us discuss the unfair coin tossing as the most understandable example

of Theorem 30 [Inductive reasoning]. Consider a basic structure [C(Ω) ⊆ L∞(Ω, ν) ⊆ B(L2(Ω, ν))]. Let

{ωi}Ni=−n be a sequence in Ω, where ωi is the state of i-th coin tossing (i = −n,−n + 1, ..., 0, 1, 2, 3, ..., N).

Let O = (X, 2X , F ) be an observable in L∞(Ω, ν) such that

X = {H,T}, ( where H: head, U : tail) ,

[F ({H})](ωi) = µ({H}) = 2/3, [F ({T})](ωi) = µ({T}) = 1/3 (∀i = −n,−n+ 1, ...,−1, 0, 1, 2, ..., N)
(8)

That is, a family of measurements {ML∞(Ω,ν)(O := (X, 2X , F ), S[ωi]) | i = −n,−n + 1, ...,−1, 0, 1, 2, ..., N}
satisfies the uniformity principle of nature (concerning µ). Let (x−n, x−n+1, ..., x−1, x0, x1, ..., N) ∈×N

i=−n X

be a measured value obtained by the parallel measurement
⊗N

i=−n ML∞(Ω,ν) (O := (X, 2X , F ), S[ωi]), i.e.,

infinite coin throws. Here, Theorem 30 [Inductive reasoning] say that it is natural to assume that, for

sufficiently large n,

(x−n, x−n+1, ..., x−1, x0) = (T H H T H H H T T ..... T H H︸ ︷︷ ︸
n+1

) (9)

( where the number of Hs ≈ 2n/3, T s ≈ n/3)

Then we can believe that we see that xi = H with probability 2/3 [ resp. xi = T with probability 1/3] for

each i = 1, 2, ..., N . It should be noted that even without knowing (8), we can conclude that if we know (9).

Remark 33. It should be noted that the above example shows that Theorem 30 [Inductive reasoning] ( or

equivalently, the law of large numbers), like Newton’s kinetic equation, has the power to predict the future.

This is the reason that Hume’s problem of induction keeps attracting much researcher’s interest for a long

time.

Example 34. [Induction concerning raven problem]. Let R ⊆ B ⊆ U be as in Section 3.2. Consider a basic

structure [C(Ω) ⊆ L∞(Ω, ν) ⊆ B(L2(Ω, ν))]. Let OB = (X, 2X , FB) be an observable in L∞(Ω, ν) such as

defined in the formula (4), that is,

X = {1, 0}, [FB({1})](ω) = 1 (if ω ∈ ΩB), [FB({0})](ω) = 0 (if ω ∈ Ω \ ΩB),

[FB({0})](ω) = 1− [FB({1})](ω) (∀ω ∈ Ω)

Let {ωi}Ni=−n be a sequence in ΩR(⊆ Ω). Clearly, a family of measurements {ML∞(Ω,ν)(OB :=

(X, 2X , FB), S[ωi]) | i = −n,−n + 1, ...,−1, 0, 1, 2, ..., N} satisfies the uniformity principle of nature

(concerning µ) such that

[FB({1})](ωi) = µ({1}) = 1, [FB({0})](ωi) = µ({0}) = 0, ( i = −n,−n+ 1, ..., 0, 1, 2, 3, ..., N)
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Let (x−n, x−n+1, ..., x−1, x0, x1, ..., xN ) ∈×N
i=−n X be a measured value obtained by the parallel measure-

ment
⊗N

i=−n ML∞(Ω,ν) (OB := (X, 2X , FB), S[ωi]), We see, of course, that xi = b (i = −n,−n+ 1, ..,−1, 0).
And thus, we can believe, by Theorem 30 [Inductive reasoning], that x1 = x2 = ... = xN = b.

4.2 Grue paradox cannot be represented in quantum language

If our understanding of inductive reasoning ( mentioned in the above ) is true, we can solve the grue paradox

(cf. ref. [29]). Let us mention it as follows.

Consider a basic structure [C(Ω) ⊆ L∞(Ω, ν) ⊆ B(L2(Ω, ν))]. Let Ωg,Ωb be the open subsets of the state

space Ω such that Ωg∩Ωb = ∅. And put Ωo = Ω\(Ωg∪Ωb). Let O = (X ≡ {g, b, o}, 2X , F ) be the observable

in L∞(Ω, ν) such that

[F ({g})](ω) = 1 (ω ∈ Ωg), = 0 (ω ∈ Ω \ Ωg) [F ({b})](ω) = 1 (ω ∈ Ωb), = 0 (ω ∈ Ω \ Ωb)

[F ({o})](ω) = 1− [F ({g})](ω)− [F ({b})](ω) (ω ∈ Ω) (10)

where “g”, “b”, “o” respectively means “green”, “blue”, “others”.

Let {e−n, e−n+1, ..., e−1, e0, e1, e2, ..., eN} be the set of (green) emeralds. And assume that ωi(∈ Ω◦
g) is the

state of emerald ei (i = −n,−n+ 1, ...,−1, 0, 1, 2, ..., N).

A family of measurements {ML∞(Ω,ν)(Oi := (X, 2X , F ), S[ωi]) | i = −n,−n + 1, ...,−1, 0, 1, 2, ..., N} clearly
satisfies the uniformity principle of nature, that is, there exists an probability space (X, 2X , µ) such that

[F (Ξ)](ωi) = µ(Ξ) ∀Ξ ∈ 2X , ∀i = −n,−n+ 1, ...,−1, 0, 1, 2, ..., N

where µ({g}) = 1, µ({b, o}) = 0.

Let (x−n, x−n+1, ..., x−1, x0, x1, ..., xN ) ∈×N
i=−n X be a measured value obtained by the parallel measure-

ment
⊗N

i=−n ML∞(Ω,ν) (O := (X, 2X , F ), S[ωi]). We see, of course, that xi = g (i = −n,−n + 1, ..,−1, 0).
And thus, we can believe, by Theorem 30 [Inductive reasoning], that x1 = x2 = ... = xN = g. For the sake of

completeness, note that we can predict x1 = x2 = ... = xN = g only by the data x−n = x−n+1 = ... = x0 = g.

This is usual arguments concerning Theorem 30 [Inductive reasoning].

On the other hand, Goodman’s grue paradox is as follows (cf. ref. [29]).

(R1) Define that Y has a grue property iff Y is green at time i such that i ≤ 0 and Y is blue at time i such

that 0 < i. Suppose that we have examined the emeralds at −n,−n + 1, ... − 1, 0, and found them

to all be green (and hence also grue ). Then, “so-called inductive reasoning” says that emeralds at

1, 2, ..., N have the grue property (and hence blue) as well as green. Thus, a contradiction is gotten.

However, we think that this (R1) cannot be described in quantum language. If we try to describe the (R1),

we may consider as follows.

(R2) Let {e−n, e−n+1, ..., e−1, e0, e1, e2, ..., eN} be the set of emeralds. Let ωi(∈ Ω◦
g) be the state of emerald

ei (i = −n,−n + 1, ...,−1, 0), and let ωi(∈ Ω◦
b) be the state of emerald ei (i = 1, 2, ..., N). However,

it should be noted that a family of measurements {ML∞(Ω,ν)(Oi := (X, 2X , F ), S[ωi]) | i = −n,−n +

1, ...,−1, 0, 1, 2, ..., N} does not satisfy the uniformity principle of nature. That is because

[F ({g})](ωi) = 1 (i = −n,−n+ 1, ..., 0), [F ({g})](ωi) = 0 (i = 1, 2, ..., N)

Hence Theorem 30 [Inductive reasoning] cannot be applied.

Or,

(R3) Let {e−n, e−n+1, ..., e−1, e0, e1, e2, ..., eN} be the set of emeralds. And let ωi(∈ Ω◦
g) is the state of

emerald ei such that ω = ωi (i = −n,−n + 1, ...,−1, 0, 1, 2, ..., N). Let Oi = (X, 2X , Fi) be the
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observable (i = −n,−n+1, ...,−1, 0, 1, 2, ..., N) such that Oi is the same as O(= (X ≡ {g, b, o}, 2X , F ))

in (10) (if i = −n,−n + 1, ...,−1, 0), and Oi = (X, 2X , Fi) (if 0, 1, 2, ..., N) is defined by Fi({g}) =

F ({b}), Fi({b}) = F ({g}), Fi({o}) = F ({o}). However, in this case, it should be noted that a family

of measurements {ML∞(Ω,ν)(Oi := (X, 2X , Fi), S[ωi]) | i = −n,−n + 1, ...,−1, 0, 1, 2, ..., N} does not

satisfy the uniformity principle of nature. That is because

[Fi({g})](ωi) = [F ({g})](ωi) = 1 (i = −n,−n+ 1, ..., 0),

[Fi({g})](ωi) = [F ({b})](ωi) = 0 (i = 1, 2, ..., N)

Hence Theorem 30 [Inductive reasoning] cannot be applied.

Therefore Goodman’s grue paradox (R1) cannot be described in quantum language.

Remark 35. We believe that there is no scientific argument without scientific worldview. Thus, we can

immediately conclude that Goodman’s discussion (R1) is doubtful since his argument is not based on any

scientific worldview. In this sense, the above arguments (R2) and (R3) may not be needed. That is, the

confusion of grue paradox is due to lack of the understanding of Hume’s problem of induction in the linguistic

quantum mechanical worldview, and not lack of the term “grue” is non-projectible (cf. ref. [29]). Thus, we

think that to solve Goodman’s grue paradox is to answer the following:

(S) Propose a worldview! And further formulate Hume’s induction as the fundamental theorem in the

worldview! In this formulation, confirm that Goodman’s paradox is eliminated naturally.

What we did is this.
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5 The measurement theoretical representation of abduction

5.1 Deduction, abduction and abduction in “logic”

In the conventional world view (i.e., the “logical” world view (cf. the formula (12) later)), the relation among

deduction, abduction and abduction is shown like the following figure.

Figure 6: [Deduction, abduction and abduction in “logic”]

Let us explain this figure as follows.

A typical example of deduction is as follows:
(
In the following, (S′1) and (Ŝ′1) are often omitted.

)
(S1) All the beans in this bag B1 are white: [bag B1 −→“w”(≈ white)]

(S′1) All the beans in that bag B2 are white or black fifty-fifty (or generally, the ratio of white beans to

black beans is p/(1− p) where 0 < p < 1): [bag B2 −→“w”(≈ white) or “b”(≈ black)]

(S2) This bean is from this bag B1: [bag B1]

(S3) Therefore, this bean is white: [“w”(≈ white)]

It is, of course, obvious and ordinary.

On the other hand, C.S, Peirce (cf. ref. [30]) proposed abduction. The example of abduction is as follows:

(Ŝ1) All the beans in this bag B1 are white: [bag B1 −→“w”(≈ white)]

(Ŝ′1) All the beans in that bag B2 are white and black fifty-fifty (or generally, the ratio of white beans to

black beans is p/(1− p)): [bag B2 −→“w”(≈ white) or “b”(≈ black)]

(Ŝ2) This bean (from B1 or B2) is white: [“w”(≈ white)]

(Ŝ3) Therefore, this bean is from this bag B1 : [bag B1]

This is wrong from the logical point of view. However, the abduction ( abductive reasoning ) is known as

one of useful tools to find a best solution. Also, note that [(S2)−→(S3)] and [(Ŝ2)−→(Ŝ3)] are in reverse

relation.

Further, induction ( inductive reasoning ) is as follows.

(S̃1) 1000p white beans and 1000(1 − p) black beans are mixed well in this bag B3 ( here, 0 < p < 1).

Assume that we do not know the value p (0 < p < 1).

(S̃2) When we took 20 beans out of this bag B3, every bean was white.

(S̃3) Therefore, the bean picked out from this bag B3 next can be presumed to be white.
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5.2 The measurement theoretical representation of deduction, abduction and induction

In our world view (i.e., the quantum mechanical world view ≈ the measurement theoretical world view (cf.

the formula (12) later)), the relation among deduction, abduction and abduction is characterized as follows.

First, we will show that the abduction [(Ŝ1)-(Ŝ3)] can be justified in quantum language. Consider the

state space Θ = {θ1, θ2} with the discrete topology, and the classical basic structure [C(Θ) ⊆ L∞(Θ, ν) ⊆
B(L2(Θ, ν))], where ν({θ1}) = ν({θ2}) = 1/2. Assume that

θ1 ≈ the state of the bag B1, θ2 ≈ the state of the bag B2,

Assume that 1000 white beans belong to bag B1, and further, 1000p white beans and 1000(1−p) black beans

belong to the bag B2 ( where 0 < p < 1). Thus we have the observable O = ({w, b}, 2{w,b}, F ) in L∞(Θ, ν)

such that

[F ({w})](θ1) = 1 [F ({b})](θ1) = 0

[F ({w})](θ2) = p [F ({b})](θ2) = 1− p (0 < p < 1)

where “w” and “b” means “white” and “black” respectively.

Thus, we have the measurement ML∞(Θ,ν)(O := ({w, b}, 2{w,b}, F ), S[θi]), i = 1, 2. For example, Axiom 1 [

measurement] says that

(U1) [measurement]: The probability that the measured value w is obtained by ML∞(Θ,ν)(O :=

({w, b}, 2{w,b}, F ), S[θ1]) is equal to 1

This is the same as the deduction (i.e., (S1)–(S3)).

Next, under the circumstance that bags B1 and B2 cannot be distinguished, we consider the following

inference problem:

(Û2) [inference problem]: When the measured value w is obtained by the measurement ML∞(Θ,ν)(O :=

({w, b}, 2{w,b}, F ), S[∗]), which do you infer, [∗] = θ1 or [∗] = θ2?

Theorem 13 [Fisher’s maximum likelihood method] says that [∗] = θ1, since

max{F ({w})](θ1), F ({w})](θ2)} = max{1, p} = 1 = [F ({w})](θ1)

This implies (Ŝ3).

Therefore, the above (Û2) is the measurement theoretical representation of abduction (i.e., (Ŝ1)–(Ŝ3)). For

the sake of completeness, note that (U1) and (Û2) are in reverse problem (cf. Remark 14). That is, we have

the following correspondence:

[(S1),(S
′
1),(S2) −→(S3)]
deduction

←−−−−−−−−−−−−
simplified form

(U1): measurement
(Axiom 1)yreverse yreverse

[(Ŝ1),(Ŝ
′
1),(Ŝ2) −→(Ŝ3)]
abduction

←−−−−−−−−−−−−
simplified form

(Û2): inference
(Fisher’s maximum likelihood method)

(11)

Thus, the scientific meaning of abduction can be completely clarified in the translation from logic to quantum

language.

Lastly we should mention that

(Ũ3) the above (S̃1)-(S̃3) (i.e., inductive reasoning) are already discussed in quantum language ( cf. Section

4).
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6 Flagpole problem

Figure 7: [Flagpole problem ]

Let us explain the flagpole problem as follows. Suppose that the sun is at an elevation angle α◦ in the

sky. Assume that tanα◦ = 1/2. There is a flagpole which is ω0
0 meters tall. The flagpole casts a shadow ω0

1

meters long. Suppose that we want to explain the length of the flagpole’s shadow. On Hempel’s model, the

following explanation is sufficient.

(V1) 1. The sun is at an elevation angle α◦ in the sky.

2. Light propagates linearly.

3. The flagpole is ω0
0 meters high.

Then,

4. The length of the shadow is ω0
1 = ω0

0/ tanα
◦ = 2ω0

0

This is a good explanation of ”Why is that shadow 2ω0
0 meters long?”

Similarly, we may consider as follows.

(V2) 1. The sun is at an elevation angle α◦ in the sky.

2. Light propagates linearly.

3. The length of the shadow is ω0
1

Then,

4. The flagpole is ω0
0(= (tanα◦)ω0

1 = ω0
1/2) meters tall.

However, this is not sufficient as the explanation of ”Why is the flagpole ω0
0(= ω0

1/2) meters tall?”

The confusion between (V1) and (V2) is due to the lack of measurement. In what follows, we discuss it.

For each time t = 0, 1, consider a basic structure [C(Ωt) ⊆ L∞(Ωt, νt) ⊆ B(L2(Ωt, νt))], where Ω0 = [0, 1] is

the state space ( in which the length of the flagpole is represented ) at time 0 (where the closed interval in

the real line R), Ω1 = [0, 2] is the state space ( in which the length of the shadow is represented ) at time

1 and the νt is the Lebesgue measure. Since the sun is at an elevation angle α◦ in the sky, it suffices to

consider to the map φ0,1 : Ω0 → Ω1 such that φ0,1(ω0) = 2ω0 (∀ω0 ∈ Ω0). Thus, we can define the causal

operator Φ0,1 : L∞(Ω1)→ L∞(Ω0) such that (Φ0,1f1)(ω0) = f1(φ(ω0)) (∀f1 ∈ L∞(Ω1), ω0 ∈ Ω0).

Let Oe = (X,F , Fe) be the exact observable in L∞(Ω1, ν1) (cf. Example 5). That is, it satisfies that

X = Ω1,F = BΩ1 (i.e., the Borel field in Ω), [Fe(Ξ)](ω1) = 1 ( if ω1 ∈ Ξ), = 0 ( otherwise).

Thus, we have the measurement ML∞(Ω0,ν0)(Φ0,1Oe = (X,F ,Φ0,1Fe), S[ω0
0 ]
). Then we have the following

statement

(W1) [Measurement]; the probability that the measured value x(∈ X) obtained by the measurement

ML∞(Ω0,ν0) (Φ0,1Oe = (X,F ,Φ0,1Fe), S[ω0
0 ]
) is equal to 2ω0

0 is given by 1.

which is the measurement theoretical representation of (V1). That is, we consider that the (V1) is the

simplified form ( or, the rough representation ) of (W1). Also,
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(W2) [Inference]; Assume that the measured value ω0
1(∈ X) is obtained by the measurement

ML∞(Ω0,ν0)(Φ0,1Oe = (X,F ,Φ0,1Fe), S[∗]). Then, we can infer that [∗] = ω0
1/2

which is the measurement theoretical representation of (V2). That is, we consider that the (V2) is the

simplified form ( or, the rough representation ) of (W2).

Thus, we conclude that “scientific explanation” is to describe by quantum language. Also, we have to

add that the flagpole problem is not trivial but significant, since this is never solved without Axiom 1 (

measurement) and Axiom 2 ( causality) (i.e., the answers to the problems “What is measurement ?” and

“What is causality ?”).
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7 Conclusion; To do science is to describe phenomena by quantum language

7.1 Summary of comparison between logic (in ordinary language), statistics and quantum lan-

guage

“What is science ?” is the main question of philosophy of science. There may be the following three

answers:

(]1) Science is to describe phenomena by logic ( i.e., the logical world view)

(]2) Science is to describe phenomena by statistics ( i.e., the classical mechanical world view)

(]3) Science is to describe phenomena by quantum language ( i.e., the quantum mechanical world view)

In this paper, we asserted that (]3), rather than (]1) and (]2)], more essential. In what follow, again let us

examine this:

[(]1):Logic]: Some may say “Science is to describe phenomena by logic”, which may be due to the logical

positivism ( or, the tradition of Aristotle’s syllogism). However, as seen in Sections 3∼6, Hempel’s raven

paradox, Hume’s problem of induction, Goodman’s grue paradox , Peirce’s abduction and flagpole problem

are related to the concept of measurement (= inference), and thus, these problems cannot be adequately

handled by logic alone. Thus, we think that logic is the language of mathematics, and not the language of

science. Mathematical logic (i.e., the language of mathematics) should not be confused with usual logic. As

seen throughout this paper, we believe that the representation using “logic” is rough in most cases. So-called

logic plays an essential role in everyday conversation (e.g., trial, business negotiations, politics, romance,

etc.). On the other hand, science requires quantitative discussion, and thus, science may choose statistics (

or, quantum language ) rather than logic. It should be noted that

[(]2): Statistics; the classical mechanical world view ]: Statistics are used everywhere in science, and

thus, statistics may be the principle of science. Therefore some may say “Science is to describe phenomena

in the classical mechanical worldview (≈ statistics ≈ dynamical system theory)”. This answer may be

somewhat better as follows.

(X1) economics is to describe economical phenomena by statistics ( it is usual to regard economics as the

application of dynamical system theory (≈ statistics ))

(X2) psychology is to describe psychological phenomena by statistics

(X3) biology is to describe biological phenomena by statistics

(X4) medicine is to describe medical phenomena by statistics (i.e., medical statistics)

Also, since dynamical system theory is considered as a kind of mathematical generalization of Newtonian

mechanics, we may be allowed to say:

(X5) Newtonian mechanics is to describe classical mechanical phenomena by statistics (= dynamical system

theory). Also, it is clear that dynamical system theory plays a central role in engineering.

though Newtonian mechanics is physics, and thus, it belongs to the realistic worldview in Fig. 1.

However, statistics (≈ dynamical system theory (cf. Remark 14)) is too mathematical. Hence, “Science is

to describe phenomena in the classical mechanical worldview (≈ statistics ≈ dynamical system theory)” is

almost the same as “Science is to describe phenomena using the mathematical theories of probability and

differential equation”. And thus, the framework of the classical mechanical worldview is ambiguous. Since

statistics (≈ dynamical system theory ) does not have clear axioms, we think that it is a little unreasonable

to say that statistics is the language of science.

For example, we don’t know how to clarify Hempel’s raven problem (K4)-(K7) from the statistical point

of view, since statistics does not have the concept of measurement. As seen below, the relationship between
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science and statistics is revealed by quantum language ( cf. 10© in Fig. 1).

[(]3): Quantum language; the linguistic quantum mechanical worldview]: We choose quantum

language (i.e., the linguistic quantum mechanical worldview, or the probabilistic interpretation of science),

and we assert “Science is to describe phenomena by quantum language”. That is, in a similar sense of

(X1)-(X5), we say that

(Y1) economics is to describe economical phenomena by quantum language

(Y2) psychology is to describe psychological phenomena by quantum language (cf. Chapter 18 in ref [18])

(Y3) biology is to describe biological phenomena by quantum language

(Y4) medicine is to describe medical phenomena by quantum language

(Y5) Newtonian mechanics is to describe classical mechanical phenomena by quantum language ( in the

same meaning as the (X5), also recall the history: 2© −→ 7© −→ 11© in Fig. 1 ). Also, it is clear that

classical system theory (= dynamical system theory, cf. (B2)) plays a central role in engineering.

(Y6) statistical mechanics is to describe statistical mechanical phenomena by quantum language (cf. ref.

[12])

(Y7) quantum mechanics (i.e., quantum information theory) is to describe quantum mechanical phenomena

by quantum language (cf. (B1)).

(Y8) As mentioned in the (iv) and (v) of Remark 7, a lot of paradoxes (e.g., Bertrand’s paradox, McTaggart’s

paradox, Zeno’s paradox, Monty Hall problem, etc. (cf. refs. [11, 17, 18])) are clarified in quantum

language.

(Y9) As shown in Sections 3∼6, fundamental problems in philosophy of science (i.e., Hempel’s raven para-

dox, Hume’s problem of induction, Peirce’s abduction, the flagpole problem, etc.) are easily solved

in the linguistic quantum mechanical worldview. Therefore, quantum language guarantees that these

problems are scientific. On the other hand, Goodman’s grue paradox (R1) cannot be described by

quantum language. Thus, it is not scientific. Also, it should be noted that these results are conse-

quences of Axiom 1 [measurement].

etc. Quantum language has the advantage of having the concept of “measurement”. And thus, as seen in

this paper, “logic” can be paraphrased in detail in terms of measurement, and thus, precise expression is

obtained.

Remark 36. (i): [Can logic and statistics be regarded as kinds of worldviews?] Logic and statistics has

respectively various aspects. However, when we say roughly, logic is the language of mathematics, and

statistics is a quite useful mathematical theory. If so, how can we regard logic and statistics as kinds of

worldviews? In this paper, we see that logic and statistics respectively has aspects such as simplified forms

of quantum language. That is,

logic

statistics

 simplified form←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
elimination of dualism (≈ measurement)

quantum language

(e.g. see (B3) in Fig. 1 and the formula (11)). If so, logic and statistics are scientific as simplified forms

of quantum language. Thus, we conclude that so-called logic (i.e., non-mathematical logic ) is essential in

usual conversation ( e.g., argument in a trial, etc.) and not in science.

(ii):[ The histry of world descriptionss] Thus, we want to consider the history of world descriptions as follows.

0© in Fig. 1

logical world description

Aristotle,...

−−−→
2©, 9© in Fig. 1

classical mechanical world description

Newton, Fisher,...

−−−→
11© in Fig. 1

quantum mechanical world description

Born,...

(12)
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7.2 Summing up; Quantum language is the language of science

In this paper, we clarify the following unsolved problems in the linguistic quantum mechanical worldview:

• Hempel’s raven paradox in Section 3, Hume’s problem of induction in Section 4.1, Goodman’s grue

paradox in Section 4.2, Peirce’s abduction in Section 5, the flagpole problem in Section 6

That is, we sum up as follows:

(Z1) [Hempel’s raven paradox in Section 3]: Hempel’s raven paradox urges us to investigate the problem:

“What is the meaning od ‘All ravens are black’?”. And we conclude that ‘All ravens are black’ is

defined by ΩR ⊆ ΩB . And therefore, in most cases, it can not verified experimentally. Further, roughly

speaking we say that

([) the word “all” cannot be used logically in a posteriori statement

which is being often talked about. Also we show that the ([) can be justified by quantum language.

Therefore, in order to believe in ‘All ravens are black’, we should rely on hypothesis testing.

(Z2) [Hume’s problem of induction in Section 4.1]: In the linguistic quantum mechanical worldview, Hume’s

problem of induction (= Theorem 30 [Inductive reasoning]) is essentially the same as the law of large

numbers (which is the most basic theorem in science). It may be reasonable. That is because Hume’s

problem of induction should be the most basic claim in science if there is the answer to this problem.

(Z3) [Goodman’s grue paradox in Section 4.2]: We believe that if Hume’s problem of induction is solved,

Goodman’s grue paradox is immediately solved as its corollary. In fact, Goodman’s grue paradox

can be easily solved as the corollary of Theorem 30 [Inductive reasoning] in the linguistic quantum

mechanical worldview. Thus, Goodman’s grue paradox is due to the lack of the understanding of

Hume’s problem of induction.

(Z4) [Peirce’s abduction in Section 5]: As shown in the formula (11), Peirce’s abduction is characterized as

the simplified form of Fisher’s maximum likelihood method in quantum language.

(Z5) [The flagpole problem in Section 6]: The confusion concerning the flagpole problem is due to relying

only on “logic”, and not using quantum language.

Hence we conclude that the reason that these problems are not yet clarified depends on lack of the worldview

with the concept of measurement in philosophy of science. Again we emphasize the importance of worldview

in science. That is because, if we do not have the worldview, we do not know what to rely on to proceed with

the discussion. Therefore, it is no exaggeration to say that there is no science without a scientific worldview.

As mentioned in Remark 1, quantum language does not cover all sciences. However, we consider that

familiar sciences are described by quantum language. And further, we believe that quantum language (i.e.,

the probabilistic interpretation of science ) plays a central role in almost familiar sciences. That is, we believe

that quantum language gives the mathematical foundations to science.

However, the answer to ”What is science?” may not necessarily be determined uniquely. Although there

are several aspects of philosophy of science, we believe that it is the central theme of the philosophy of

science to find a mathematical structure that is common to almost all sciences. If so, we feel like knowing

other interpretations (i.e., other scientific worldview) besides ours (i.e., the probabilistic interpretation of

science ). Thus, we hope that various mathematical foundations (e.g., category theoretical approach, modal

logic approach, etc. ) of scientific philosophy will be proposed. And we expect that fundamental problems

such as raven problem, problem of induction, grue paradox, etc. will be investigated in these interpretations.

And we hope that philosophy of science will progress with such competition.

We hope that our proposal will be examined from various points of view*3

*3 For the further information, see my homepage ( http://www.math.keio.ac.jp/∼ishikawa/indexe.html)
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