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Abstract

Bell’s inequality is usually considered to belong to mathematics and not quantum theory. We think that this
complicates understanding of Bell’s theorem. Thus in this paper, contrary to Bell’s spirit (which inherits
Einstein’s spirit), we try to discuss Bell’s inequality in the framework of quantum theory with the linguistic
Copenhagen interpretation. And we clarify that whether or not Bell’s inequality holds does not depend on
whether classical systems or quantum systems, but depend on whether a kind of combined measurements
exist or not. And further we assert that Bell’s argument (based on Einstein’s spirit) should be regarded as a
philosophical representation of our scientific argument ( based on the linguistic Copenhagen interpretation).
Thus, we conclude that our inequality proposed in this paper is the true Bell’s inequality.

Key phrases: EPR-paradox, Bell’s inequality, Classical systems, Linguistic Copenhagen interpretation,
Quantum Language

1 Review: Quantum language (= Measurement theory );

Quantum language has two formulations, i.e., the C∗-algebraic formulation andW ∗-algebraic formulation,
where the former is elementary, handy and somewhat rough. In refs. [20, 21], we discussed Bell’s inequality
in the W ∗-algebraic formulation, which is exact, powerful and so mathematically difficult. In this paper, we
discussed Bell’s inequality in the C∗-algebraic formulation, which may be expected to be easy to understand.

Following refs. [12, 13, 21], we shall review quantum language ( i.e., the linguistic Copenhagen interpre-
tation of quantum mechanics, or measurement theory ), which has the following form:

(A) Quantum langage

(= measurement theory)

= measurement
(Axiom 1)

+ causality
(Axiom 2)

+
�� ��linguistic ( Copenhagen ) interpretation

(how to use Axioms 1 and 2)

We assert that the location of quantum language in the history of world-description is as follows.

Parmenides
Socrates

0©:Greek
philosophy

Plato
Aristotle

Schola-−−−−−→
sticism

1©

−−→
(monism)

Newton
(realism)

2©
→

relativity
theory −−−−−−−−−−→ 3©

→
quantum
mechanics −−−−−−−−−−→ 4©

−−→

(dualism)

Descartes
Locke,...
Kant
(idealism)

6©−−−−−→

(linguistic view)

linguistic
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language−−−−−−−−→
(B2)

8©

language−−−−−−→
(B1)

7©


5©−−→

(unsolved)

theory of
everything

(quantum phys.)


10©−−→

(=MT)

quantum
language
(language)

Figure 1: The history of the world-description

statistics
system theory

language−−−−−−−−−−→
(B3)

9©

the linguistic world view ( dualism, idealism )

the realistic world view (monism, realism)
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And we think that the following four are equivalent:

(B0) to propose quantum language (cf. 10© in Figure 1, ref.[21])

(B1) to clarify the Copenhagen interpretation of quantum mechanics (cf. 7© in Figure 1, refs.[12, 17, 8]), that

is, the linguistic Copenhagen interpretation is the true figure of so-called Copenhagen interpretation

(B2) to clarify the final goal of the dualistic idealism (Descartes=Kant epistemology) (cf. 8© in Figure 1,

refs.[13, 18, 19])

(B3) to reconstruct statistics (= dynamical system theory) in the dualistic idealism (cf. 9© in Figure 1,

refs.[10, 14, 15, 16])

Bell’s theorem (cf. ref. [1]) is clearly one of consequences of Bohr-Einstein debates (refs. [6, 2]). Also,

our Figure 1 (= quantum language ) is also another consequence of Bohr-Einstein debates as follows.

Einstein’s standing-point (that is, “the moon is there whether one looks at it or not” (i.e., physics holds

without observers) ) is on the side of the realistic world view ( in Figure 1). On the other hand, Bohr’s

standing-point (that is, “To be is to be perceived” due to Bishop Berkeley (i.e., there is no science without

measurements) ) is on the side of the linguistic world view ( in Figure 1)1.

Note that the great disputes in the history of the world view are always formed as follows:

Einstein,...

realistic world view
(monistic realism)

←→
v.s.

Bohr,...

linguistic world view

(dualistic idealism)

For example,

Table 1 : The realistic world view vs. the linguistic world view

Dispute � R vs. L the realistic world view the linguistic world view

Greek philosophy Aristotle Plato
Problem of universals Nominalisme(William of Ockham) Realismus(Anselmus)

Space·times Clarke( Newton) Leibniz
Quantum mechanics Einstein (cf. [6]) Bohr (cf. [2])

(cf. Note 10.7 in Chapter 10 or ref. [21], or more precisely, ref. [19]).

Although Bohr-Einstein debates (and so, Bell’s theorem ) might intend unify the realistic world view and

the linguistic world view, quantum language (= Figure 1 ) declares the consistence of the realistic world

view and the linguistic world view.

1Bohr might believe that his theory (i.e., ”Copenhagen interpretation”) belongs to physics (i.e., the realistic world view), we
think that his Copenhagen interpretation should belong to the linguistic world view as the linguistic Copenhagen interpretation.
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1.1 Mathematical Preparations

Consider an operator algebra B(H) (i.e., an operator algebra composed of all bounded linear operators on

a Hilbert space H with the norm ‖F‖B(H) = sup‖u‖H=1 ‖Fu‖H ). Let A(⊆ B(H)) be a C∗-algebra, i.e, a ∗-

subalgebra of B(H) (cf. refs. [12, 21, 23]). For simplicity, in this paper we always assume that the C∗-algebra

has the identity I. Let A∗ be the dual Banach space of A. That is, A∗ = {ρ | ρ is a continuous linear

functional on A }, and the norm ‖ρ‖A∗ is defined by sup{|ρ(F )| | F ∈ A such that ‖F‖A(= ‖F‖B(H)) ≤ 1}.

Define the mixed state ρ (∈ A∗) such that ‖ρ‖A∗ = 1 and ρ(F ) ≥ 0 for all F ∈ A such that F ≥ 0. And

define the mixed state space Sm(A∗) such that

Sm(A∗)={ρ ∈ A∗ | ρ is a mixed state}.

A mixed state ρ(∈ Sm(A∗)) is called a pure state if it satisfies that “ρ = θρ1 + (1 − θ)ρ2 for some ρ1, ρ2 ∈

Sm(A∗) and 0 < θ < 1” implies “ρ = ρ1 = ρ2”. Put

Sp(A∗)={ρ ∈ Sm(A∗) | ρ is a pure state},

which is called a state space.

Note that a commutative C∗-algebara can be characterizes as C(Ω), i.e., the algebra composed of all

complex valued continuous functions on a compact set Ω. Also, in this paper, as a -commutative C∗-

algebra, we devote ourselves to B(Cn), i.e., Cn is finite dimensional Hilbert space. Thus, in this paper, the

measurement theory (=quantum language) is classified as follows.

(C) measurement theory (A) =


(C1): quantum systems (when A = B(Cn), B(C2)⊗B(C2), etc.)

pure state ρ = |u〉〈u| (where u ∈ Cn, ‖u‖Cn = 1)

(C2): classical systems (when A = C(Ω), C(Ω× Ω), etc.)
pure state ρ = δω (where δω is the point measure at ω, (ω ∈ Ω)

An observable O :=(X,F , F ) in A ( or, a measuring instrument O :=(X,F , F ) in A ) is defined as follows:

(i) [field] X is a set, F(⊆ P(X), the power set of X) is a field of X, that is, “Ξ1,Ξ2 ∈ F ⇒ Ξ1 ∪Ξ2 ∈ F”,

“Ξ ∈ F ⇒ X \ Ξ ∈ F”, ”∅ ∈ F”.

(ii) [finite additivity] F is a mapping from F to A satisfying: (a): for every Ξ ∈ F , F (Ξ) is a non-

negative element in A such that 0 ≤ F (Ξ) ≤ I, (b): F (∅) = 0 and F (X) = I, where 0 and I is the

0-element and the identity in A respectively. (c): for any Ξ1,Ξ2(∈ F), it holds that F (Ξ1 ∪ Ξ2) =

F (Ξ1) + F (Ξ2)− F (Ξ1 ∩ Ξ2) in A.

Remark 1. We have two formulations of quantum language, i.e., the C∗-algebraic formulation and the W ∗-

algebraic formulation. In the former, the above additivity (ii) is finite, on the other hand, in the later the

countably additivity is required. Thus, from the mathematical point of view, the W ∗-algebraic formulation
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is not easy than the C∗-algebraic formulation. However, since the C∗-algebraic formulation is handy, we

devote ourselves to the C∗-algebraic formulation in this paper. If the readers want to the mathematically

exact discussion, they are recommended to progress to the W ∗-algebraic formulation in refs.[20, 21].

1.2 Axiom 1 [Measurement] and Axiom 2 [Causality] in Quantum Language

Quantum language (A) is composed of two axioms (i.e., Axioms 1 and 2) as follows. With any system

S, a C∗-algebra A(⊆ B(H)) can be associated in which the measurement theory (A) of that system can

be formulated. A state of the system S is represented by an element ρ(∈ Sp(A∗)) and an observable is

represented by an observable O :=(X,F , F ) in A. Also, the measurement of the observable O for the system

S with the state ρ (or the measurement for the system S with the state ρ by the measuring instrument O ) is

denoted by MA(O, S[ρ])
(
or more precisely, MA(O :=(X,F , F ), S[ρ])

)
. An observer can obtain a measured

value x (∈ X) by the measurement MA(O, S[ρ]).

The Axiom 1 presented below is a kind of mathematical generalization of Born’s probabilistic interpre-

tation of quantum mechanics (cf. ref.[3]). And thus, it is a statement without reality.

Now we can present Axiom 1 in the C∗-algebraic formulation as follows.

Axiom 1 [ Measurement ]. The probability that a measured value x (∈ X) obtained by the measurement

MN (O :=(X,F , F ), S[ρ]) (i.e., measurement of the observable O for the system S with the state ρ, or mea-

surement for the system S with the state ρ by the measuring instrument O ) belongs to a set Ξ(∈ F) is given

by ρ(F (Ξ)).

Next, we explain Axiom 2. Let A1(⊆ B(H1)) and A2(⊆ B(H2)) be C∗-algebras. A continuous linear

operator Φ1,2 : A2 → A1 is called a Markov operator, if it satisfies that (i): Φ1,2(F2) ≥ 0 for any non-negative

element F2 in A2, (ii): Φ1,2(I2) = I1, where Ik is the identity in Ak, (k = 1, 2).

It is clear that the dual operator Φ∗
1,2 : A∗

1 → A∗
2 satisfies that Φ∗

1,2(S
m(A∗

1)) ⊆ Sm(A∗
2). If it holds

that Φ∗
1,2(S

p(A∗
1)) ⊆ Sp(A∗

2), the Φ1,2 is said to be deterministic. If it is not deterministic, it is said to

be non-deterministic. Also note that, for any observable O2 :=(X,F , F2) in A2, the (X,F , Φ1,2F2) is an

observable in A1.

Now Axiom 2 is presented as follows. (For details, see ref. [21].)

Axiom 2 [Causality]. Let t1 ≤ t2. The causality is represented by a Markov operator Φt1,t2 : At2 → At1 .

Remark 1 In dualistic idealism we have the two most important problems. One is the mind-body problem

(cf. ref. [18, 19] ). Another is the causality problem, i.e., ”What is causality?”. Note (cf. ref. [21] )that the

solution to the causality problem is given by Axiom 2.
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1.3 The linguistic ( Copenhagen) interpretation (= the manual to use Axioms 1 and 2)

In the above, Axioms 1 and 2 are kinds of spells, (i.e., incantation, magic words, metaphysical statements),

and thus, it is nonsense to verify them experimentally. Therefore, what we should do is not “to understand”

but “to use”. After learning Axioms 1 and 2 by rote, we have to improve how to use them through trial

and error.

We can do well even if we do not know the linguistic interpretation (= the manual to use Axioms 1 and

2). However, it is better to know the linguistic interpretation , if we would like to make progress quantum

language early. I believe that the linguistic interpretation is the true Copenhagen interpretation (though

there are several opinions for ”Copenhagen interpretation” cf. ref. [7]).

The linguistic interpretation says that

(D) Only one measurement is permitted. And thus, the state after a measurement is meaningless

since it can not be measured any longer. Thus, the collapse of the wavefunction is prohibited. We are

not concerned with anything after measurement. Strictly speaking, the phrase “after the measurement”

should not be used (cf. [17]). Also, the causality should be assumed only in the side of system, however,

a state never moves. Thus, the Heisenberg picture should be adopted, and thus, the Schrödinger picture

should be prohibited. Also, there is no probability ( thus, no probability space ) without a measurement.

and so on. For details, see ref. [21].

1.4 Simultaneous measurement (or, product observable ), parallel measurement

Definition 2. (i): Consider observables Ok = (Xk,Fk, Fk) (k = 1, 2, ...,K) in a C∗-algebra A. Let

(×n
k=1Xk, � n

k=1Fk) be the product measurable space of (Xk,Fk), k = 1, 2, ..., n. An observable O =

×n
k=1 Ok = (×n

k=1Xk, � n
k=1Fk, F ) in A is called the simultaneous observable (or, product observable ) of

Ok (k = 1, 2, ...,K), if it holds that

n

×
k=1

Fk(Ξk) = F (
n

×
k=1

Ξk) (∀Ξk ∈ Fk) (1)

Also, the measurement MA(O, S[ρ0]) is called a simultaneous measurement of measurements MA(Ok, S[ρ0])

(k = 1, 2, ..., n). Note that a simultaneous observable O = (×n
k=1Xk, � n

k=1, F ) in A always exists if observ-

ables O = (×n
k=1Xk, � n

k=1, F ) commute, i.e.,

Fk(Ξk)Fl(Ξl) = Fl(Ξl)Fk(Ξk) (Ξk ∈ Fl,Ξl ∈ Fk, k 6= l) (2)

(ii): Consider measurements MAk
(Ok = (Xk,Fk, Fk), S[ρk]) (k = 1, 2, ..., n) in a C∗-algebra Ak. Let

⊗n
k=1Ok = (×n

k=1Xk, �n
k=1Fk, ⊗n

k=1Fk) be a parallel observable in a tensor C∗-algebra ⊗n
k=1Ak. And

let ⊗n
k=1ρk (∈ Sp((⊗n

k=1Ak)
∗)). Then, the measurement M⊗n

k=1Ak
(⊗n

k=1Ok = (Xk,Fk, Fk), S[⊗n
k=1ρk]) is

called a prallel measurement of MAk
(Ok = (Xk,Fk, Fk), S[ρk]) (k = 1, 2, ...,K). Cf. [12, 21].
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1.5 Bell’s inequality in mathematics

Bell’s inequality is generally considered to be important in the relation of ”the hidden variable”. How-

ever, in this paper I assert that Bell’s inequality should be reconsidered in quantum language and not in

mathematics.

Firstly, let us mention Bell’s inequality in mathematics.

Theorem 3. [The conventional Bell’s inequality (cf. refs. [1, 4, 22, 24])] The mathematical Bell’s inequality

is as follows: Let (Θ,B, P ) be a probability space. Let (f1, f2, f3, f4) : Θ→ X4(≡ {−1, 1}4) be a measurable

functions. Define the correlation functions R̃ij(i = 1, 2, j = 3, 4) by
∫
Θ
fi(θ)fj(θ)P (dθ). Then, the following

mathematical Bell’s inequality ( or precisely, CHSH inequality (cf. ref. [4])) holds:

|R̃13 − R̃14|+ |R̃23 + R̃24| ≤ 2 (3)

Proof. It is easy as follows.

“the left-hand side of the above eq.(3)”

≤
∫
Θ

|f3(θ)− f4(θ)|P (dθ) +
∫
Θ

|f3(θ) + f4(θ)|P (dθ) ≤ 2

This completes the proof.

This theorem is too easy, but we must remember the linguistic interpretation:

(F) There is no probability (or, no probability space ) without measurements.

Thus, in this paper, we discuss ”What is the probability space in Theorem 3?”.

2 Bell’s inequality should be reconsidered in quantum language

2.1 Bell’s inequality holds in both classical and quantum systems

Now let us consider a kind of generalization of the simultaneous observable as follows.

Definition 4. [Combinable, Combined observable(cf. ref. [10])] Let A(⊆ B(H)) be a C∗-algebra. Let

{S1, S2, ..., Sj} be a family (i.e., a set of sets) such that Sl ⊆ {1, 2, ..., n} (∀l = 1, 2, ..., j}). For each

l ∈ {1, 2, ..., j}, consider an observable Ol = (×s∈Sl
Xs, � s∈Sl

Fs, Fl) in a C∗-algebra A, and define a
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natural map πl :×k=1,2,...,nXk →×s∈Sl
Xs such that

×
k=1,2,...,n

Xk 3 (xk)k=1,2,...n 7→ (xk)k∈Sl
∈ ×

k∈Sl

Xk

Here, the {Ol : l = 1, 2, ..., j} is said to be combinable, if there exists an observable O = (×k=1,2,...,nXk,

� k=1,2,...,nFk, F ) in A such that

F (π−1
l (×

s∈Sl

Ξs)) = Fl(×
s∈Sl

Ξs) (Ξs ∈ Fs, s ∈ Sl)

Also, the observable O is called a combined observable of {Ol : l = 1, 2, ..., j}

Note that, for each l, a measurement MA(Ol, S[ρ0]) is included in MA(O, S[ρ0]). That is, it suffices to take

only a measurement MA(O, S[ρ0]).

Quantum language (i.e., the linguistic Copenhagen interpretation ) says that a combined observable is

the most fundamental than a simultaneous observable , a quesi-product observable, etc.

Example 5. [Quasi-product observable ] Let A(⊆ B(H)) be a C∗-algebra. Let {S1, S2, ..., Sn} be a family

(i.e., a set of sets) such that Sl = {l} (∀l = 1, 2, ..., n}). For each l ∈ {1, 2, ..., n}, consider an observable Ol

= (Xl, Fl, Fl) in a C∗-algebra A, and define a natural map πl :×k=1,2,...,nXk → Xl such that

×
k=1,2,...,n

Xk 3 (xk)k=1,2,...n 7→ xl ∈ Xl

Here, the {Ol : l = 1, 2, ..., l} is said to be combinable, if there exists an observable O = (×k=1,2,...,nXk,

� k=1,2,...,nFk, F ) in A such that

F (π−1
l (Ξl)) = F (X1 ×X2 × ...×Xl−1 × Ξl ×Xl+1 × ...×Xn)) = Fl(Ξl) (Ξl ∈ Fl, l = 1, 2, ..., n)

Also, the combined observable observable O is called a quasi-product observable of {Ol : l = 1, 2, ..., n}.

Note that a simultaneous observable is a kind of quasi-product observable.

Example 6. [Combined observable in syllogism] Let A(⊆ B(H)) be a C∗-algebra. Let {S1, S2} be a family

(i.e., a set of sets) such that S1 = {l, 2} and S2 = {2, 3}. For each S1, S2, consider observables OS1 =

(X1 ×X2, F1 �F2, Fl) and OS2 = (X2 ×X3, F2 �F3, FS2) in a C∗-algebra A, and define natural maps

π1 :×k=1,2,3Xk →×k=1,2X1 and π2 :×k=1,2,3Xk →×k=2,3Xk such that

(x1, x2, x3) 7→
π1

(x1, x2), (x1, x2, x3) 7→
π2

(x2, x3),

Here, the {OS1 ,OS2} is said to be combinable, if there exists an observable O = (×k=1,2,3Xk, � k=1,2,3Fk,
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F ) in A such that

F (Ξ1 × Ξ2 ×X3) = FS1(Ξ1 × Ξ2), F (X1 × Ξ2 × Ξ3) = FS2(Ξ2 × Ξ3) (Ξk ∈ Fk, k = 1, 2, 3)

This combined observable observable O plays an important role in the proof of the classical syllogism (cf.

ref. [10]). That is, syllogism (i.e., [[A⇒ B] ∧ [B ⇒ C]]⇒ [A⇒ C] ) does not hold in quantum systems but

in classical systems (cf. ref. [21]).

In this paper we devote ourselves to the following combined observable.

Example 7. [Combined observable related to Bell test experiment] Let A(⊆ B(H)) be a C∗-algebra. Put

X = {−1, 1}. Let O1 = (X,P(X), F1), O2 = (X,P(X), F2), O3 = (X,P(X), F3), O4 = (X,P(X), F3)

be observables in A. Consider four observables: O13 = (X2,P(X2), F13), O14 = (X2,P(X2), F14), O23 =

(X2,P(X2), F23), O24 = (X2,P(X2), F24) in A such that

F13({x} ×X) = F14({x} ×X) = F1({x})

F23({x} ×X) = F24({x} ×X) = F2({x})

F13(X × {x}) = F23(X × {x}) = F3({x})

F14(X × {x}) = F24(X × {x}) = F4({x}) (4)

for any x ∈ {−1, 1}. The four observables O13, O14, O23 and O24 are said to be combinable if there exists

an observable O = (X4,P(X4), F ) in A such that

F13({(x1, x3)}) = F ({x1} ×X × {x3} ×X), F14({(x1, x4)}) = F ({x1} ×X ×X × {x4})

F23({(x2, x3)}) = F (X × {x2} × {x3} ×X), F24({(x2, x4)}) = F (X × {x2} ×X × {x4}) (5)

for any (x1, x2, x3, x4) ∈ X4. (Note that the formula (5) implies (4). The condition (4) is not needed.)

The observable O is said to be a combined observable of Oij (i = 1, 2, j = 3, 4). Also, the measurement

MA(O = (X4,P(X4), F ), S[ρ0]) is called the combined measurement of MA(O13, S[ρ0]), MA(O14, S[ρ0]),

MA(O23, S[ρ0]) and MA(O24, S[ρ0]).

The following theorem is all of our insistence concerning Bell’s inequality. We assert that this is the true

Bell’s inequality.

Theorem 8. [Bell’s inequality in quantum language] Let A(⊆ B(H)) be a C∗-algebra. Put

X = {−1, 1}. Fix the pure state ρ0
(
∈ Sp(A∗)

)
. And consider the four measurements
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MA(O13 = (X2,P(X2), F13), S[ρ0]), MA(O14 = (X2,P(X2), F14), S[ρ0]), MA(O23 = (X2,P(X2),

F23), S[ρ0]) and MA(O24 = (X2,P(X2), F24), S[ρ0]). Or equivalently, consider the parallel measurement

⊗i=1,2,j=3,4MA(Oij = (X2,P(X2), Fij), S[ρ0]). Define four correlation functions (i = 1, 2, j = 3, 4) such

that

Rij =
∑

(u,v)∈X×X

u · v ρ0(Fij({(u, v)}))

Assume that four observables O13 = (X2,P(X2), F13), O14 = (X2,P(X2), F14), O23 = (X2,P(X2),

F23) and O24 = (X2,P(X2), F24) are combinable, that is, we have the combined observable O =

(X4,P(X4), F ) in A such that it satisfies the formula (5). Then we have a combined measurement

MA(O = (X4,P(X4), F ), S[ρ0]) of MA(O13, S[ρ0]), MA(O14, S[ρ0]), MA(O23, S[ρ0]) and MA(O24, S[ρ0]). And

further, we have Bell’s inequality in quantum language as follows.

|R13 −R14|+ |R23 +R24| 5 2 (6)

In this paper, we assert that this (6) is the true Bell’s inequality.

Proof. Clearly we see, i = 1, 2, j = 3, 4,

Rij =
∑

(x1,x2,x3,x4)∈X×X×X×X

xi · xj ρ0(F ({(x1, x2, x3, x4)})) (7)

(
for example, R13 =

∑
(x1,x2,x3,x4)∈X×X×X×X x1 · x3 ρ0(F ({(x1, x2, x3, x4)}))

)
. Therefore, we see that

|R13 −R14|+ |R23 +R24|

=
∑

(x1,x2,x3,x4)∈X×X×X×X

[
|x1 · x3 − x1 · x4|+ |x2 · x3 + x2 · x4|

]
ρ0(F ({(x1, x2, x3, x4)}))

=
∑

(x1,x2,x3,x4)∈X×X×X×X

[
|x3 − x4|+ |x3 + x4|

]
ρ0(F ({(x1, x2, x3, x4)})) ≤ 2

This completes the proof.

As the corollary of this theorem, we have the followings:

Corollary 9. Consider the parallel measurement ⊗i=1,2,j=3,4MA(Oij = (X2,P(X2), Fij), S[ρ0]) as in The-
orem 8. Let

x =
(
(x113, x

2
13), (x

1
14, x

2
14), (x

1
23, x

2
23), (x

1
24, x

2
24)

)
∈ X8(≡ {−1, 1}8)

be a measured value of the parallel measurement ⊗i=1,2,j=3,4MA(Oij = (X2,P(X2), Fij), S[ρ0]). Let N

be sufficiently large natural number. Consider N -parallel measurement
⊗N

n=1 [ ⊗i=1,2,j=2,3 MA(Oij :=
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(X2,P(X2), Fij), S[ρ0]) ]. Let {xn}Nn=1 be the measured value. That is,

{xn}Nn=1 =



(
(x1,1

13 , x2,1
13 ), (x1,1

14 , x2,1
14 ), (x1,1

23 , x2,1
23 ), (x1,1

24 , x2,1
24 )

)
(
(x1,2

13 , x2,2
13 ), (x1,2

14 , x2,2
14 ), (x1,2

23 , x2,2
23 ), (x1,2

24 , x2,2
24 )

)
...

...
...(

(x1,N
13 , x2,N

13 ), (x1,N
14 , x2,N

14 ), (x1,N
23 , x2,N

23 ), (x1,N
24 , x2,N

24 )
)


∈ (X8)N

Here, note that the law of large numbers says: for sufficiently large N ,

Rij ≈
1

N

N∑
n=1

x1,nij x
2,n
ij (i = 1, 2, j = 3, 4).

Then, it holds, by the formula (6), that

|
N∑

n=1

x1,n13 x
2,n
13

N
−

N∑
n=1

x1,n14 x
2,n
14

N
|+ |

N∑
n=1

x1,n23 x
2,n
23

N
+

N∑
n=1

x1,n24 x
2,n
24

N
| ≤ 2, (8)

which is also called Bell’s inequality in quantum language.

Remark 10. [(i):The conventional Bell’s inequality (cf. refs. [4, 22, 24])] From the mathematical point

of view, the formulas (3) and (6) are the same. However, the probability space (X4,P(X4), ρ0(F (·))) in

Theorem 8 is visible and concrete.

[(ii): ”true value” (or, ”hidden value”)] In Theorem 8, we have the combined measurement MA(O =

(X4,P(X4), F ), S[ρ0]). Thus, some may consider that

• the true value (x1, x2, x3, x4) (of observables Ok, k = 1, 2, 3, 4 in Example 7 ) can be obtained by the

measurement MA(O = (X4,P(X4), F ), S[ρ0]).

No-Go theorem (cf. [22] ) is usually mentioned in terms of Einstein’s world view. However,

• If No-Go theorem is mentioned in terms of Bohr’s world view, we think that No-Go theorem is the

existence theorem of the combined observable.

2.2 “Bell’s inequality” is violated in classical systems as well as quantum sys-
tems

In the previous section, we show that Theorem 8 (or Corollary 9) says

(F1) Under the combinable condition (cf. Example 7), Bell’s inequality (6) (or, (8)) holds in both classical

systems and quantum systems.

Or, equivalently,

(F2) If Bell’s inequality (6) (or, (8)) is violated, then the combined observable does not exist, and thus, we

cannot obtain the measured value ( by the combined measurement).
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Remark 11. [Heisenberg’s uncertainty principle (cf. [8])] The above (F2) is similar to the following well-

known statement in quantum mechanics:

(F′
2) We have no simultaneous measurement (= combined measurement ) of the position observable Q and

the momentum observable P , and thus we cannot obtain the measured value ( by the simultaneous

measurement),

which may be, from Einstein’s point of view, represented that “true value (or, hidden variable) of the

position and momentum” does not exist. That is, we have the following correspondence:

Bohr’s point of view

non-existence of combined observable ⇐⇒
Einstein’s point of view

non-existence of true value

Since the error ∆ is usually defined by ∆ = |rough measured value− true value|, it is not easy to define the

errors ∆Q and ∆P in Heisenberg’s uncertainty principle ∆Q ·∆P ≥ ~/2. Therefore, if we define the error ∆

by ∆ = |rough measured value− true value|, Heisenberg’s uncertainty principle includes paradox (cf. page

403 of ref. [9]). The definition of ∆Q and ∆P was completed and Heisenberg’s uncertainty principle was

proved (cf. Corollary 1 in ref. [8]). Also, according to the maxim of dualism: “To be is to be perceived”

due to G. Berkeley, we think that it is not necessary to name that does not exist (or equivalently, that is

not measured ).

The above statement (F2) makes us expect that

(G) Bell’s inequality (6) (or, (8)) is violated in classical systems as well as quantum systems without the

combinable condition.

This (G) was already shown in my previous paper [12]. However, I received a lot of questions concerning

(G) from the readers. Thus, in this section, we again explain the (G) more precisely.

2.2.1 Bell test experiment

In order to show the (G), three steps ([Step:I] ∼[Step:III]) are prepared in what follows.

[Step: I]. Put X = {−1, 1}. Define complex numbers ak(= αk + βk
√
−1 ∈ C : the complex field)

(k = 1, 2, 3, 4) such that |ak| = 1. Define the probability space (X2,P(X2), νaiaj ) such that (i = 1, 2, j = 3, 4)

νaiaj
({(1, 1)})= νaiaj

({(−1,−1)})= (1− αiαj − βiβj)/4

νaiaj ({(−1, 1)})= νaiaj ({(1,−1)})= (1 + αiαj + βiβj)/4 (9)

The correlation R(ai, aj) (i = 1, 2, j = 3, 4) is defined as follows:

R(ai, aj) ≡
∑

(x1,x2)∈X×X

x1 · x2νaiaj ({(x1, x2)}) = −αiαj − βiβj (10)
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Now we have the following problem:

(H) Find a measurement MA(Oaiaj := (X2, P(X2), Faiaj ), S[ρ0]) (i = 1, 2, j = 3, 4) such that

ρ0(Faiaj (Ξ)) = νaiaj (Ξ) (∀Ξ ∈ P(X2)) (11)

and

Fa1a3({x1} ×X) = Fa1a4({x1} ×X) Fa2a3({x2} ×X) = Fa2a4({x2} ×X)

Fa1a3(X × {x3}) = Fa2a3(X × {x3}) Fa1a4(X × {x4}) = Fa2a4(X × {x4})

(∀xk ∈ X(≡ {−1, 1}), k = 1, 2, 3, 4)

which is the same as the condition (4)

[Step: II].

Let us answer this problem (H) in the two cases (i.e., classical case and quantum case), that is,

•

 (i):the case of quantum systems: [A = B(C2)⊗B(C2)(≡ B(C2 ⊗ C2))]

(ii):the case of classical systems: [A = C(Ω)⊗ C(Ω)(≡ C(Ω× Ω)) ]

(i):the case of quantum system: [A = B(C2)⊗B(C2)]

Put

e1 =

[
1
0

]
, e2 =

[
0
1

]
(∈ C2).

For each ak (k = 1, 2, 3, 4), define the observable Oak
≡

(
X,P(X), Gak

)
in B(C2) such that

Gak
({1}) = 1

2

[
1 āk
ak 1

]
, Gak

({−1}) = 1

2

[
1 −āk
−ak 1

]
.

where āk = αk − βk
√
−1. Then, we have four observable:

Ôai
= (X,P(X), Gai

⊗ I), Ôaj
= (X,P(X), I ⊗Gaj

) (i = 1, 2, j = 3, 4) (12)

and further,

Oaiaj = (X2,P(X2), Faiaj := Gai ⊗Gaj ) (i = 1, 2, j = 3, 4) (13)

in B(C2)⊗B(C2), where it should be noted that Faiaj is separated by Gai and Gaj .

Further define the singlet state ρ0 = |ψs〉〈ψs|
(
∈ Sp(B(C2 ⊗ C2)∗)

)
, where

ψs = (e1 ⊗ e2 − e2 ⊗ e1)/
√
2
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Thus we have the measurement MB(C2⊗C2)(Oaiaj , S[ρ0]) in B(C2)⊗B(C2) (i = 1, 2, j = 3, 4). The followings

are clear: for each (x1, x2) ∈ X2(≡ {−1, 1}2),

ρ0(Faiaj ({(x1, x2)})) = 〈ψs, (Gai({x1})⊗Gaj ({x2}))ψs〉 = νaiaj ({(x1, x2)}) (i = 1, 2, j = 3, 4) (14)

For example, we easily see:

ρ0(Faibj ({(1, 1)})) = 〈ψs, (Gai({1})⊗Gaj ({1}))ψs〉

=
1

8
〈(e1 ⊗ e2 − e2 ⊗ e1), (

[
1 āi
ai 1

]
⊗

[
1 āj
aj 1

]
)(e1 ⊗ e2 − e2 ⊗ e1)〉

= 1
8
〈(
[
1
0

]
⊗

[
0
1

]
−

[
0
1

]
⊗

[
1
0

]
), (

[
1 āi

ai 1

]
⊗

[
1 āj

aj 1

]
)(

[
1
0

]
⊗

[
0
1

]
−

[
0
1

]
⊗

[
1
0

]
)〉

=
1

8
〈(
[
1
0

]
⊗
[
0
1

]
−

[
0
1

]
⊗
[
1
0

]
), (

[
1
ai

]
⊗
[
āj
1

]
−
[
āi
1

]
⊗
[
1
aj

]
)〉

=
1

8
(2− aāj − āiaj) = (1− αiαj − βiβj)/4 = νaiaj ({(1, 1)}).

Therefore, the measurement MB(C2⊗C2)(Oaiaj , S[ρ0]) satisfies the condition (H).

(ii):the case of classical systems: [A = C(Ω)⊗ C(Ω) = C(Ω× Ω)]

Put ω0(= (ω′
0, ω

′′
0 )) ∈ Ω × Ω、ρ0 = δω0

(∈ Sp(C(Ω× Ω)
∗
), i.e., the point measure at ω0) ). Define the

observable Oaiaj := (X2,P(X2), Faiaj ) in L
∞(Ω× Ω) such that

[Faiaj ({(x1, x2)})](ω) = νaiaj ({(x1, x2)}) (∀(x1, x2) ∈ X2, i = 1, 2, j = 3, 4, ∀ω ∈ Ω× Ω)

Thus, we have four observables

Oaiaj = (X2,P(X2), Faiaj ) (i = 1, 2, j = 3, 4) (15)

in L∞(Ω × Ω) ( though the variables are not separable (cf. the formula (13) ). Then, it is clear that the

measurement MC0(Ω×Ω)(Oaiaj , S[δω0 ]
) satisfies the condition (H).

(ii)′:the case of classical systems: [A = C(Ω)⊗ C(Ω) = C(Ω× Ω)]

It is easy to show a lot of different answers from the above (ii). For example, as a slight generalization of

(9), define the probability measure νtaiaj
(0 ≤ t ≤ 1) such that

νtaiaj
({(1, 1)})= νtaiaj

({(−1,−1)})= (1− t(αiαj + βiβj))/4

νtaiaj
({(−1, 1)})= νtaiaj

({(1,−1)})= (1 + t(αiαj + βiβj))/4 (16)

And consider the real-valued continuous function t(∈ C(Ω×Ω)) such that 0 ≤ t(ω′, ω′′) ≤ 1 (∀ω = (ω′, ω′′) ∈

Ω×Ω). And assume that t(ω0) = 1 for some ω0(= (ω′
0, ω

′′
0 )) ∈ Ω×Ω、ρ0 = δω0 (∈ Sp(C(Ω× Ω)

∗
), i.e., the

point measure at ω0) ). Define the observable Oaiaj := (X2,P(X2), Faiaj ) in L
∞(Ω× Ω) such that

[Faiaj ({(x1, x2)})](ω) = νt(ω)
aiaj

({(x1, x2)}) (∀(x1, x2) ∈ X2, i = 1, 2, j = 3, 4, ∀ω ∈ Ω× Ω) (17)
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Thus, we have four observables

Oaiaj = (X2,P(X2), Faiaj ) (i = 1, 2, j = 3, 4)

in L∞(Ω × Ω) ( though the variables are not separable (cf. the formula (13) ). Then, it is clear that the

measurement ML∞(Ω×Ω)(Oaiaj , S[δω0 ]
) satisfies the condition (H).

[Step: III].

As defined by (9), consider four complex numbers ak(= αk + βk
√
−1; k = 1, 2, 3, 4) such that |ak| = 1.

Thus we have four observables

Oa1a3 := (X2,P(X2), Fa1a3), Oa1a4 := (X2,P(X2), Fa1a4),

Oa2a3 := (X2,P(X2), Fa2a3), Oa2a4 := (X2,P(X2), Fa2a4),

in A. Thus, we have the parallel measurement ⊗i=1,2,j=3,4 MA(Oaiaj := (X2,P(X2), Faiaj ), S[ρ0]) in

⊗i=1,2,j=3,4A.

Thus, putting

a1 =
√
−1, a2 = 1, a3 =

1 +
√
−1√
2

, a4 =
1−
√
−1√
2

,

we see, by (10), that

|R(a1, a3)−R(a1, a4)| + |R(a2, a3) +R(a2, a4)| = 2
√
2 (18)

Further, assume that the measured value is x(∈ X8). That is,

x =
(
(x113, x

2
13), (x

1
14, x

2
14), (x

1
23, x

2
23), (x

1
24, x

2
24)

)
∈ ×

i,j=1,2
X2(≡ {−1, 1}8)

LetN be sufficiently large natural number. ConsiderN -parallel measurement
⊗N

n=1 [⊗i=1,2,j=3,4 MA(Oaiaj :=

(X2,P(X2), Faiaj ), S[ρ0]) ]. Assume that its measured value is {xn}Nn=1. That is,

{xn}Nn=1 =



(
(x1,1

13 , x2,1
13 ), (x1,1

14 , x2,1
14 ), (x1,1

23 , x2,1
23 ), (x1,1

24 , x2,1
24 )

)
(
(x1,2

13 , x2,2
13 ), (x1,2

14 , x2,2
14 ), (x1,2

23 , x2,2
23 ), (x1,2

24 , x2,2
24 )

)
...

...
...(

(x1,N
13 , x2,N

13 ), (x1,N
14 , x2,N

14 ), (x1,N
23 , x2,N

23 ), (x1,N
24 , x2,N

24 )
)


∈
( ×
i=1,2,j=3,4

X2)N (≡ {−1, 1}8N )

Then, the law of large numbers says that

R(ai, aj) ≈
1

N

N∑
n=1

x1,nij x
2,n
ij (i = 1, 2, j = 3, 4)

This and the formula (18) say that

|
N∑

n=1

x1,n13 x
2,n
13

N
−

N∑
n=1

x1,n14 x
2,n
14

N
|+ |

N∑
n=1

x1,n23 x
2,n
23

N
+

N∑
n=1

x1,n24 x
2,n
24

N
| ≈ 2

√
2 (19)

Therefore, Bell’s inequality (6) (or, (8)) is violated in classical systems as well as quantum systems.
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Remark 12. For completeness, note that the observables Oaiaj (i = 1, 2, j = 3, 4) in the classical L∞(Ω×Ω)
are not combinable in spite that these commute. Also, note that the formulas (16) and (17) imply that

[Fa1a3({x} ×X)](ω) = [Fa1a4({x} ×X)](ω) = 1/2, [Fa2a3({x} ×X)](ω) = [Fa2a4({x} ×X)](ω) = 1/2,

[Fa1a3(X × {x})](ω) = [Fa2a3(X × {x})](ω) = 1/2, [Fa1a4(X × {x})](ω) = [Fa2a4(X × {x})](ω) = 1/2

(∀x ∈ X, ∀ω ∈ Ω× Ω),

which is similar as (4).

3 Conclusion

In Bohr-Einstein debates (refs. [6, 2]), Einstein’s standing-point (that is, “the moon is there whether one

looks at it or not” (i.e., physics holds without observers) ) is on the side of the realistic world view in Figure

1. On the other hand, we think that Bohr’s standing point (that is, “to be is to be perceived” (i.e., there is

no science without measurements )) is on the side of the linguistic world view in Figure 1.1.

In this paper, contrary to Bell’s spirit (which inherits Einstein’s spirit), we try to discuss Bell’s inequality

in Bohr’s spirit (i.e., in the framework of quantum language). And we show Theorem 8 ( Bell’s inequality

in quantum language), which says the statement (F2), that is,

(I1) (≡ (F2)): [ from Bohr’s standing-point]:

If Bell’s inequality (6) (or, (8)) is violated, then the combined observable does not exist, and thus, we

cannot obtain the measured value (by the measurement of the combined observable).

Also, recall that Bell’s original argument (which is under the influence of Bohr-Einstein debates) says, roughly

speaking, that

(I2) [ from Einstein’s standing-point]:

If the mathematical Bell’s inequality (3) is violated in Bell test experiment (the quantum case of Section

4.5.3), then hidden variables do not exist.

It should be note that the concept of “hidden variable” is independent of measurements, thus, the (I2)

is a philosophical statement in Einstein’s spirit, or precisely, the (I2) may says that quantum mechanical

phenomenon (i.e., Bell test experiment) cannot be described in Einstein’s spirit. On the other hand, our

(I1) is not related Einstein’s spirit, that is, it is a statement in Bohr’s spirit (i.e., there is no science without

measurements). It is sure that Bell’s answer (I2) is philosophically attractive, however, we believe in the

scientific superiority of our answer (I1). For example, consider the following problem:

(J) [Problem]: Why is Bell’s inequality violated in the Bell test experiment ( mentioned in Section 2.2)?

It is sure that everybody agrees to the answer (I1) and not (I2). Thus, the scientific superiority of our answer

(I1) is clear. That is, we think that Bell’s (I2) is a philosophical view of the scientific (I1). If so, we can, for

the first time, understand Bell’s inequality from the practical point of view.
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That is,

Theorem 8 is the true Bell’s inequality.

And we conclude that whether or not Bell’s inequality holds does not depend on whether classical systems

or quantum systems (in Sections 2,2), but depend on whether the combined measurement exists or not (in

Section 2.1).

Readers are recommended to progress to the W ∗-algebraic approach to Bell’s inequality [20, 21]. For the

recent information concerning quantum language, see my home page [26].

I hope that quantum language (= Figure 1 ) will be accepted as one of the main results of Bohr-Einstein

debates.
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