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Abstract

As the fundamental theory of quantum information science, recently I proposed measurement theory (i.e.,
quantum language, or the linguistic interpretation of quantum mechanics), which is characterized as the
linguistic turn of the Copenhagen interpretation of quantum mechanics. This turn from physics to language
does not only extend quantum theory to classical theory but also yield the quantum mechanical world
view. Although the wave function collapse is prohibited in the linguistic interpretation, in this paper I show
that the phenomenon like wave function collapse (or the projection postulate ) can be realized without the
phrase:“state after measurement”.
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1 Measurement theory (= quantum
language )

1.1 Preparations

According to refs.[3]-[6], we briefly introduce mea-
surement theory as follows.
Consider an operator algebra B(H) (i.e., an

operator algebra composed of all bounded linear
operators on a Hilbert space H with the norm
‖F‖B(H) = sup‖u‖H=1 ‖Fu‖H ), and consider the
pair [A,N ]B(H), called a basic structure. Here, A(⊆
B(H)) is a C∗-algebra, and N (A ⊆ N ⊆ B(H)) is
a particular C∗-algebra (called a W ∗-algebra) such
that N is the weak closure of A in B(H).
The measurement theory (=MT) is classified as fol-
lows.

(A) MT =


(A1): quantum system theory

(when A = C(H))

(A2): classical system theory
(when A = C0(Ω))

That is, whenA = C(H), the C∗-algebra composed of
all compact operators on a Hilbert space H, the (A1)
is called quantum measurement theory (or, quantum
system theory), which can be regarded as the lin-
guistic aspect of quantum mechanics. Also, when

A is commutative (that is, when A is characterized
by C0(Ω), the C

∗-algebra composed of all continuous
complex-valued functions vanishing at infinity on a
locally compact Hausdorff space Ω (cf. [9, 10])), the
(A2) is called classical measurement theory.
Also, note (cf. [9]) that, when A = C(H),

(i) A∗ = Tr(H) (=trace class), N = B(H), N∗ =
Tr(H) (i.e., pre-dual space)

Also, when A = C0(Ω),

(ii) A∗ =the space of all signed measures on Ω”,N =
L∞(Ω, ν)(⊆ B(L2(Ω, ν))), N∗ = L1(Ω, ν), where
ν is some measure on Ω (cf. [9]).

Let A(⊆ B(H)) be a C∗-algebra, and let A∗ be
the dual Banach space of A. That is, A∗ =
{ρ | ρ is a continuous linear functional on A }, and
the norm ‖ρ‖A∗ is defined by sup{|ρ(F )| | F ∈
A such that ‖F‖A(= ‖F‖B(H)) ≤ 1}. Define the
mixed state ρ (∈ A∗) such that ‖ρ‖A∗ = 1 and
ρ(F ) ≥ 0 for all F ∈ A such that F ≥ 0. And
define the mixed state space Sm(A∗) such that

Sm(A∗)={ρ ∈ A∗ | ρ is a mixed state}.
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A mixed state ρ(∈ Sm(A∗)) is called a pure state if
it satisfies that “ρ = θρ1+(1−θ)ρ2 for some ρ1, ρ2 ∈
Sm(A∗) and 0 < θ < 1” implies “ρ = ρ1 = ρ2”. Put

Sp(A∗)={ρ ∈ Sm(A∗) | ρ is a pure state},

which is called a state space. It is well known (cf. [9])
that Sp(C(H)

∗
) = {|u〉〈u| (i.e., the Dirac notation) |

‖u‖H = 1}, and Sp(C0(Ω)
∗
) = {δω0 | δω0 is a point

measure at ω0 ∈ Ω}, where
∫
Ω
f(ω)δω0(dω) = f(ω0)

(∀f ∈ C0(Ω)). The latter implies that Sp(C0(Ω)
∗
)

can be also identified with Ω (called a spectrum space
or simply spectrum) such as

Sp(C0(Ω)
∗
)

(state space)

3 δω ↔ ω ∈ Ω
(spectrum)

(1)

For instance, in the above (ii) we must clarify the
meaning of the “value” of F (ω0) for F ∈ L∞(Ω, ν)
and ω0 ∈ Ω. An element F (∈ N ) is said to be essen-
tially continuous at ρ0(∈ Sp(A∗)), if there uniquely
exists a complex number α such that

(B) if ρ (∈ N∗, ‖ρ‖N∗ = 1) converges to ρ0(∈
Sp(A∗)) in the sense of weak∗ topology of A∗,
that is,

ρ(G) −−→ ρ0(G) (∀G ∈ A(⊆ N )), (2)

then ρ(F ) converges to α.

And the value of ρ0(F ) is defined by the α.
According to the noted idea (cf. [1]), an observable

O :=(X,F , F ) in N is defined as follows:

(i) [σ-field] X is a set, F(⊆ 2X , the power set of
X) is a σ-field of X, that is, “Ξ1,Ξ2, ... ∈ F ⇒
∪∞
n=1Ξn ∈ F”, “Ξ ∈ F ⇒ X \ Ξ ∈ F”.

(ii) [Countable additivity] F is a mapping from F to
N satisfying: (a): for every Ξ ∈ F , F (Ξ) is a
non-negative element in N such that 0 ≤ F (Ξ)
≤ I, (b): F (∅) = 0 and F (X) = I, where 0
and I is the 0-element and the identity in N re-
spectively. (c): for any countable decomposition
{Ξ1,Ξ2, . . . ,Ξn, ...} of Ξ

(
i.e., Ξ,Ξn ∈ F (n =

1, 2, 3, ...), ∪∞
n=1Ξn = Ξ, Ξi ∩ Ξj = ∅ (i 6= j)

)
, it

holds that F (Ξ) =
∑∞

n=1 F (Ξn) in the sense of
weak∗ topology in N .

1.2 Axiom 1 [Measurement] and Axiom 2
[Causality]

With any system S, a basic structure [A,N ]B(H)

can be associated in which the measurement the-
ory (A) of that system can be formulated. A state

of the system S is represented by an element ρ(∈
Sp(A∗)) and an observable is represented by an ob-
servable O :=(X,F , F ) in N . Also, the measure-
ment of the observable O for the system S with the
state ρ is denoted by MN (O, S[ρ])

(
or more pre-

cisely, MN (O :=(X,F , F ), S[ρ])
)
. An observer can

obtain a measured value x (∈ X) by the measurement
MN (O, S[ρ]).
The Axiom 1 presented below is a kind of math-

ematical generalization of Born’s probabilistic inter-
pretation of quantum mechanics. And thus, it is a
statement without reality.
Now we can present Axiom 1 in the W ∗-algebraic

formulation as follows.
Axiom 1 [ Measurement ]. The probability that a
measured value x (∈ X) obtained by the measurement
MN (O :=(X,F , F ), S[ρ]) belongs to a set Ξ(∈ F) is
given by ρ(F (Ξ)) if F (Ξ) is essentially continuous at
ρ(∈ Sp(A∗)).

Next, we explain Axiom 2. Let [A1,N1]B(H1)

and [A2,N2]B(H2) be basic structures. A continu-
ous linear operator Φ1,2 : N2 (with weak∗ topology)
→ N1(with weak∗ topology) is called a Markov op-
erator, if it satisfies that (i): Φ1,2(F2) ≥ 0 for any
non-negative element F2 in N2, (ii): Φ1,2(I2) = I1,
where Ik is the identity in Nk, (k = 1, 2). In addition
to the above (i) and (ii), in this paper we assume
that Φ1,2(A2) ⊆ A1 and sup{‖Φ1,2(F2)‖A1

| F2 ∈
A2 such that ‖F2‖A2 ≤ 1} = 1.
It is clear that the dual operator Φ∗

1,2 : A∗
1 → A∗

2

satisfies that Φ∗
1,2(S

m(A∗
1)) ⊆ Sm(A∗

2). If it holds
that Φ∗

1,2(S
p(A∗

1)) ⊆ Sp(A∗
2), the Φ1,2 is said to be

deterministic. If it is not deterministic, it is called
non-deterministic or decoherence.
Here note that, for any observable O2 :=(X,F , F2)

in N2, the (X,F , Φ1,2F2) is an observable in N1.

Now Axiom 2 is presented as follows:
Axiom 2 [Causality]. Let t1 ≤ t2. The causality is
represented by a Markov operator Φt1,t2 : Nt2 → Nt1 .

1.3 The linguistic interpretation

In the above, Axioms 1 and 2 are kinds of spells, (i.e.,
incantation, magic words, metaphysical statements),
and thus, it is nonsense to verify them experimentally.
Therefore, what we should do is not “to understand”
but “to use”. After learning Axioms 1 and 2 by
rote, we have to improve how to use them through
trial and error.
We can do well even if we do not know the linguis-

tic interpretation. However, it is better to know the
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linguistic interpretation (= the manual to use Axioms
1 and 2), if we would like to make progress quantum
language early.

The essence of the manual is as follows:

(C) Only one measurement is permitted. And thus,
the state after a measurement is meaningless
since it can not be measured any longer. Thus,
the collapse of the wavefunction is prohibited.
We are not concerned with anything after mea-
surement. Strictly speaking, the phrase “after
the measurement” should not be used. Also,
the causality should be assumed only in the side
of system, however, a state never moves. Thus,
the Heisenberg picture should be adopted, and
thus, the Schrödinger picture should be prohib-
ited.

and so on. For details, see [6].

2 The wave function collapse

2.1 Problem: the von Neumann-Lüders
projection postulate

Let [C(H), B(H)]B(H) be a quantum basic structure.
Let P = [Pk]

∞
k=1 be a spectral decomposition inB(H),

that is, Pk(∈ B(H)) is a projection (∀k = 1, 2, ...)
such that

∞∑
k=1

Pk = I

Put N = {1, 2, ...}. Define the observable OP =
(N, 2N, P ) in B(H) such that

P ({k}) = Pk (∀k = 1, 2, ...) (3)

Axiom 1 says:

(D1) The probability that a measured value n
(∈ N) is obtained by the measurement
MB(H)(OP :=(N, 2N, P ), S[ρ]) is given by

Tr(ρPn)(= 〈u, Pnu〉), ( where ρ = |u〉〈u|)

Also, the von Neumann-Lüders projection postulate
(cf. [7]) says:

(D2) When a measured value n (∈ N) is obtained by
the measurement MB(H)(OP :=(N, 2N, P ), S[ρ]),

the state ρa after the measurement is given
by

ρa =
Pn|u〉〈u|Pn

‖Pnu‖2
(4)

And furthermore, when a measurement
MB(H)(OF :=(X,F , F ), S[ρa]) is taken, the
probability that a measured value belongs to
Ξ(∈ F) is given by

Tr(ρaF (Ξ))
(
= 〈 Pnu

‖Pnu‖
, F (Ξ)

Pnu

‖Pnu‖
〉
)

(5)

Problem 1. In the cases that OP and OF do not
commute, it is obvious that the (5) does not hold.
Thus, the (D2) should be modified. Hence, we have
the following problem:

(E) How should the projection postulate
(=(D1)+(D2)) be modified? Or, how
should it be understood?

In the following section, I, from the point-view of the
linguistic interpretation, answer this problem.

2.2 The derivation of the von Neumann-
Lüders projection postulate in the lin-
guistic interpretation

Consider two basic structure [C(H), B(H)]B(H) and
[C(K ⊗H), B(K ⊗H)]B(K⊗H). Let P = [Pk]

∞
k=1 be a

spectral decomposition in B(H), and let {ek}∞k=1 be
a complete orthonormal system in a Hilbert space K.
Define the predual Markov operator Ψ∗ : Tr(H) →
Tr(K ⊗H) by, for any u ∈ H,

Ψ∗(|u〉〈u|) = |
∞∑
k=1

(ek ⊗ Pku)〉〈
∞∑
k=1

(ek ⊗ Pku)| (6)

or

Ψ∗(|u〉〈u|) =
∞∑
k=1

|ek ⊗ Pku〉〈ek ⊗ Pku| (7)

Thus the Markov operator Ψ : B(K⊗H) → B(H) is
defined by Ψ = (Ψ∗)

∗.
Define the observable OG = (N, 2N, G) in B(K) such
that

G({k}) = |ek〉〈ek| (k ∈ N = {1, 2, ...})

Let OP = {N, 2N, P ) be as in (3). Let OF = (X,F , F )
be arbitrary observable in B(H). Thus, we have the
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tensor observable OG⊗OF = (N×X, 2N�F , G⊗F )
in B(K ⊗H).

Fix a pure state ρ = |u〉〈u| (u ∈ H, ‖u‖H = 1).
Consider the measurement MB(H)(Ψ(OG⊗OF ), S[ρ]).
Then, we see that

(F) the probability that a measured value (k, x)
obtained by the measurement MB(H)(Ψ(OG ⊗
OF ), S[ρ])belongs to {n} × Ξ is given by

Tr[(|u〉〈u|)Ψ(G({n})⊗ F (Ξ))]

=Tr[(Ψ∗(|u〉〈u|))(G({n})⊗ F (Ξ))]

=Tr[(|
∞∑

k=1

(ek ⊗ Pku)〉〈
∞∑

k=1

(ek ⊗ Pku)|)(|en〉〈en| ⊗ F (Ξ))]

=〈Pnu, F (Ξ)Pnu〉 (∀Ξ ∈ F) (8)

( In a similar way, the same result is easily obtained
in the case of (7)).

The (8) implies the following (G1) and (G2):

(G1) if Ξ = X, then

Tr[Ψ∗(|u〉〈u|)(G({n})⊗ F (X))] = 〈u, Pnu〉

(G2) when a measured value (k, x) belongs to {n}×X,
the conditional probability such that x ∈ Ξ is
given by

〈 Pnu

‖Pnu‖
, F (Ξ)

Pnu

‖Pnu‖
〉 (∀Ξ ∈ F) (9)

This is a direct consequence of Axioms 1 and 2.

Considering the correspondence: (D) ⇔ (G), that
is,

MB(H)(OP , S[ρ]) ⇔ MB(H)(Ψ(OG ⊗ OF ), S[ρ]),

namely,

(D1) ⇔ (G1), (D2) ⇔ (G2)

there is a reason to assume that the true meaning of
the (5) is just the (9) ( since OF is arbitrary).

Remark 1. Note the taboo phrase “after the mea-
surement” is not used in (G2) but in (D2).

3 Conclusions

In this paper, I assert:

(H) Although the von Neumann-Lüders projection
postulate (D2) concerning the measurement
MB(H)(OP :=(N, 2N, P ), S[ρ]) does not hold (i.e.,
(D2) is wrong), the similar result (G2) concern-
ing MB(H)(Ψ(OG ⊗ OF ), S[ρ]) holds

That is, the projection postulate (G2) ( without the
phrase: “state after measurement”) can be derived
from Axioms 1 and 2.
I hope that my assertion will be examined from

various points of view.
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