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Abstract
This is the lecture note for graduate students1. This lecture has been continued, with

gradually improvement, for about 15 years in the faculty of science and technology of Keio
university. In this lecture, I explain “quantum language”(=“measurement theory”), which was
proposed by myself. Quantum language is a language that is inspired by the Copenhagen
interpretation of quantum mechanics, but it has a great power to describe classical systems as
well as quantum systems. In this lecture, I assert that quantum language, roughly speaking,
has the three aspects as follows.

The three aspects of quantum language
1©: the standard interpretation of quantum mechanics

(i.e., the true colors of the Copenhagen interpretation)

2©: the final goal of the dualistic idealism (Descartes=Kant philosophy)

3©: theoretical statistics of the future

And therefore, I assert that

The main assertion of this lecture

Quantum language is the most fundamental language in science.

The purpose of this lecture is to explain these assertions. Also, this lecture note may be regarded
as the revised edition of the following two:

• [28]: S. Ishikawa, Mathematical Foundations of Measurement Theory, Keio University
Press Inc. 2006, (335 pages) .

• [37]: S. Ishikawa, Measurement Theory in the Philosophy of Science, arXiv:1209.3483
[physics.hist-ph] 2012, (177 pages)

1This note is prepared for the lecture (every week from April to July in 2015) in master-course pro-
gram:”Advanced study of mathematics A” at Keio university. The publication (or the 2nd version) of this
preprint will be announced in Ishikawa’s home page:(http://www.math.keio.ac.jp/~ishikawa/indexe.html)
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Ô0
(×t∈T {xt}) . . . . . . . . . . . . . . . . . . . . . . . . 372

16.4 Calculation: prediction part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
16.4.1 Calculation: zs = Φs−1,s∗ (z̃s−1) in (16.9) . . . . . . . . . . . . . . . . . . . . . . 373

16.5 Calculation: Smoothing part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375

16.5.1 Calculation:
(
Fs(Ξs)Φ

s,s+1F̂s+1(×n
t=s+1 Ξt)

)
in (16.9) . . . . . . . . . . . . . 375

17 Equilibrium statistical mechanics 377
17.1 Equilibrium statistical mechanical phenomena concerning Axiom 2 (causality) . . . . 377

17.1.1 Equilibrium statistical mechanical phenomena . . . . . . . . . . . . . . . . . . 378
17.1.2 About 1© in Hypothesis 17.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378
17.1.3 About 2© in Hypothesis 17.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
17.1.4 About 3© and 4© in Hypothesis 17.1 . . . . . . . . . . . . . . . . . . . . . . . 380
17.1.5 Ergodic Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382

17.2 Equilibrium statistical mechanical phenomena concerning Axiom 1 ( Measurement) . 384
17.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385

18 The reliability in psychological test 387
18.1 Reliability in psychological tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387

18.1.1 Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
18.1.2 Group measurement (= parallel measurement) . . . . . . . . . . . . . . . . . . 389
18.1.3 Reliability coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391

18.2 Correlation coefficient: How to calculate the reliability coefficient . . . . . . . . . . . 393
18.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396

19 How to describe “belief” 397
19.1 Belief, probability and odds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397

19.1.1 A simple example; how to describe “belief” in quantum language . . . . . . . 397
19.2 The principle of equal odds weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402

20 Postscript 405
20.1 Two kinds of (realistic and linguistic) world-views . . . . . . . . . . . . . . . . . . . . 405
20.2 The summary of quantum language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406

20.2.1 The big-picture view of quantum language . . . . . . . . . . . . . . . . . . . . 406
20.2.2 The characteristic of quantum language . . . . . . . . . . . . . . . . . . 407

20.3 Quantum language is located at the center of science . . . . . . . . . . . . . . . . . . . 407

KSTS/RR-15/001 
January 22, 2015



Chapter 1

My answer to Feynman’s question

Dr. R. P. Feynman (one of the founders of quantum electrodynamics) said the following wise
words:(]1) and (]2):

1

(]1) There was a time when the newspapers said that only twelve men understood the theory
of relativity. I do not believe there ever was such a time. There might have been a time
when only one man did, because he was the only guy who caught on, before he wrote his
paper. But after people read the paper a lot of people understood the theory of relativity
in some way or other, certainly more than twelve. On the other hand, I think I can safely
say that nobody understands quantum mechanics.

and

(]2) We have always had a great deal of difficulty understanding the world view that quantum
mechanics represents. · · · · · · I cannot define the real problem, therefore I suspect there’s
no real problem, but I’m not sure there’s no real problem.

In this lecture, I will answer Feynman’s question (]1) and (]2) as follows.

([) I am sure there’s no real problem. Therefore, since there is no problem that should be
understood, it is a matter of course that nobody understands quantum mechanics.

This answer may not be uniquely determined, however, I am convinced that the above ([) is
one of the best answers to Feynman’s question (]1) and (]2).

The purpose of this lecture is to explain the answer ([). That is, I show that

If we start from the answer ([),

we can double the scope of quantum mechanics.

And further, I assert that

Metaphysics (which might not be liked by Feynman )

is located in the center of science.

In this lecture, I will show the above.

1The importance of the two (]1) and (]2) was emphasized in Mermin’s book [56]

1
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2 Chapter 1 My answer to Feynman’s question

1.1 Quantum language (= measurement theory)

1.1.1 Introduction

In this lecture, I will explain “quantum language (= measurement theory (=MT))”, which

is located as illustrated in the following figure:

Figure 1.1. [The location of quantum language in the history of world-description (cf. ref.[30]) ]

Parmenides
Socrates

0©:Greek
philosophy

Plato
Aristotle

Schola-−−−−→
sticism

1©

−−→
(monism)

Newton
(realism)

2©
→

relativity
theory −−−−−−→ 3©

→
quantum
mechanics −−−−−−→ 4©

−→

(dualism)

Descartes
Locke,...
Kant
(idealism)

6©−→

(linguistic view)

linguistic
philosophy

language−−−−−→ 8©

language−−−−−−→ 7©


5©−→

(unsolved)

theory of
everything

(quantum phys.)


10©−→

(=MT)

quantum
language
(language)

Figure 1.1: The history of the world-view

statistics
system theory

language−−−−−→ 9©

the linguistic view

the realistic view

It should be noted that the above figure automatically gives answers to the following ques-

tions
7©: What should be the standard interpretation of quantum mechanics?

8©: What did Descartes-Kant philosophy want to do?

9©: How will theoretical statistics evolve?

Therefore,

Figure 1.1 is all in this lecture.
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1.1 Quantum language (= measurement theory) 3

♠Note 1.1. If most physicists feel something like metaphysics in quantum mechanics, the reason
is due to Figure 1.1. That is, we consider that there are two “quantum mechanics”, that is,
“(realistic) quantum mechanics” in 5© and “(metaphysical) quantum mechanics” in 10©. Namely,

• quantum mechanics


“(realistic) quantum mechanics” in 5©

“(metaphysical) quantum mechanics” in 10©

The former is not completed yet. The latter is “the usual quantum mechanics” studied in
undergraduate course of university. In this lecture, we are not concerned with the former.

♠Note 1.2. If readers are familiar with quantum mechanics, it may be recommended to read the
following short papers before reading this lecture text.

• Ref. [29]: S. Ishikawa, A New Interpretation of Quantum Mechanics: JQIS: Vol.1(2),
pp.35-42, 2011

• Ref. [30]:S. Ishikawa, Quantum Mechanics and the Philosophy of Language: Reconsidera-
tion of traditional philosophies, JQIS, Vol. 2(1), pp.2-9, 2012

1.1.2 From Heisenberg’s uncertainty principle to the linguistic in-
terpretation

As explained in §4.3,

(A) In 1991(cf. ref. [21])2, I found the mathematical formulation of Heisenberg’s uncertainty

principle (i.e., ∆x ·∆p ≥ ~/2 in (4.36)), which clarified that

• under what kind of condition does Heisenberg’s uncertainty principle hold?

I thought that this result is interesting. However, from immediately after the discovery (A),

the interpretation of quantum mechanics began to worry me. There are many interpretations

of quantum mechanics, for example, “the Copenhagen interpretation”, “the many world inter-

pretation”, “the probabilistic interpretation”, etc. In the applied field of quantum mechanics,

we can expect that the same conclusion is derived from different interpretations. In this sense,

the problem of “the interpretation of quantum mechanics” is not serious.

However, concerning Heisenberg’s uncertainty principle, this problem is important. That is

because the meaning of “errors” in Heisenberg’s uncertainty principle depend on the interpre-

tation of quantum mechanics
(

for example, the meaning of “errors (∆x and ∆p)” depends on

the acceptance of “the collapse of wave function” or not
)

. Thus,

2Ref.[21]:S. Ishikawa, “Uncertainty relation in simultaneous measurements for arbitrary observables” Rep.
Math. Phys. Vol.29(3), pp.257–273, 1991,
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4 Chapter 1 My answer to Feynman’s question

• I want to establish the “standard” interpretation of quantum mechanics.

In what follows, let me mention my idea (i.e., the linguistic interpretation of quantum

mechanics):

Recalling that quantum mechanics was called “matrix mechanics” (when quantum mechan-

ics was proposed (i.e., 1920s), I consider that

(B1) from the mathematical point of view, quantum mechanics is the theory of

“square matrix”

On the other hand,

(B2) from the mathematical point of view, classical mechanics is the theory of

“diagonal matrix”

Thus, we have the following problem:

(C) What is the interpretation which is common to both quantum system (B1) and classical

system (B2)?

And we conclude that

(D) the answer to the question (C) is uniquely determined as “quantum language”,

where quantum language can describe classical systems as well as quantum systems.

Since quantum language is not physics but language (= metaphysics), quantum language (=

the linguistic interpretation of quantum mechanics) is completely different from other quantum

interpretations. In this sense, we are convinced that

(E) quantum language (= the linguistic interpretation of quantum

mechanics ) is forever,

even if some propose the “final” interpretation of quantum mechanics in the realistic view

(i.e., 5© in Figure 1.1 )
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1.2 The outline of quantum language 5

1.2 The outline of quantum language

1.2.1 The classification of quantum language (=measurement the-
ory)

Quantum language (= measurement theory ) is classified as follows.

(A) measurement theory
(=quantum language)


pure type

(A1)

{
classical system : Fisher statistics
quantum system : usual quantum mechanics

mixed type
(A2)

{
classical system : including Bayesian statistics, Kalman filter

quantum system : quantum decoherence

Therefore, we have two kinds of quantum language, i.e., pure measurement theory and

mixed measurement theory. The former is formulated as follows.

(A1) pure measurement theory

(=quantum language)

:=

[(pure)Axiom 1]

pure measurement

(cf. §2.7)
+

[Axiom 2]

Causality

(cf. §10.3)︸ ︷︷ ︸
a kind of spell(a priori judgment)

+

[quantum linguistic interpretation]

Linguistic interpretation

(cf. §3.1)︸ ︷︷ ︸
the manual how to use spells

And the mixed measurement theory (or, statistical measurement theory) is formulated as fol-

lows.

(A2) mixed measurement theory

(=quantum language)

:=

[(mixed)Axiom(m) 1]

mixed measurement
(cf. §9.1)

+

[Axiom 2]

Causality

(cf. §10.3)︸ ︷︷ ︸
a kind of spell(a priori judgment)

+

[quantum linguistic interpretation]

Linguistic interpretation

(cf. §3.1)︸ ︷︷ ︸
the manual how to use spells

1.2.2 Axiom 1 (measurement) and Axiom 2 (causality)

Since the pure measurement theory is the most fundamental, we mainly devote ourselves

to pure measurement theory. Although it is impossible to read Axiom 1 ( measurement: §2.7)

and Axiom 2 (causality; §10.3) at the present time, we present them as follows.
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6 Chapter 1 My answer to Feynman’s question

(B):Axiom 1 (measurement) pure type

(This will be able to be read in §2.7 )

With any system S, a basic structure [A ⊆ A]B(H) can be associated in which measurement

theory of that system can be formulated. In [A ⊆ A]B(H), consider a W ∗-measurement

MA

(
O=(X,F, F ), S[ρ]

) (
or, C∗-measurementMA

(
O=(X,F, F ), S[ρ]

) )
. That is, consider

• a W ∗-measurement MA

(
O, S[ρ]

) (
or, C∗-measurement MA

(
O=(X,F, F ), S[ρ]

) )
of

an observable O=(X,F, F ) for a state ρ(∈ Sp(A∗) : state space)

Then, the probability that a measured value x (∈ X) obtained by the W ∗-measurement

MA

(
O, S[ρ]

) (
or, C∗-measurement MA

(
O=(X,F, F ), S[ρ]

) )
belongs to Ξ (∈ F) is given by

ρ(F (Ξ))(≡ A∗(ρ, F (Ξ))A) (1.1)

(if F (Ξ) is essentially continuous at ρ, or see (2.56) in Remark 2.18 ).

And

(C): Axiom 2 (causality)

(This will be able to be read in §10.3)

Let T be a tree (i.e., semi-ordered tree structure). For each t(∈ T ), a basic structure
[At ⊆ At]B(Ht) is associated. Then, the causal chain is represented by a W ∗- sequential

causal operator {Φt1,t2 : At2 → At1}(t1,t2)∈T 2
5

(
or, C∗- sequential causal operator

{Φt1,t2 : At2 → At1}(t1,t2)∈T 2
5

)

Here, note that

(D) the above two axioms are kinds of spells (i.e., incantation, magic words, meta-

physical statements), and thus, it is impossible to verify them experimentally.

In this sense, the above two axioms correspond to “a priori synthetic judgment” in Kant’s

philosophy (cf. [49]). Therefore,

(E) what we should do is not to understand the two, but to learn the spells (i.e.,

Axioms 1 and 2) by rote.
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1.2 The outline of quantum language 7

Of course, the “learning by rote” means that we have to understand the mathematical defini-

tions of followings:

(F) basic structure [A ⊆ A]B(H), state space Sp(A∗), observable O=(X,F, F ), etc.

♠Note 1.3. If metaphysics has history of failure, this is due to the serious trial to answer the
following problem

(]1) What is the meaning of the key-words (e.g., measurement, probability, causality, etc.)?

Although this (]) may be attractive, however, it is not productive. What is important is to
know how to use the key-words. Of course, quantum language says that

(]2) Describe every phenomenon modeled on Axioms 1 and 2 (by a hint of the
linguistic interpretation)!

This is all of quantum language. Thus, we are not concerned with the question (]1).

1.2.3 The linguistic interpretation

Axioms 1 and 2 are all of quantum language. Therefore,

(G1) after learning Axioms 1 and 2 by rote, we have to improve how to use them through trial

and error.

Here, we should note the following wise sayings:

(G2) experience is the best teacher, or custom makes all things

However,

(G3) it is better to read the manual how to use Axioms 1 and 2, if we would like to make

progress quantum language early.

Thus, we consider that

(G4)
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8 Chapter 1 My answer to Feynman’s question

the linguistic interpretation of quantum mechanics

=the manual how to use Axioms 1 and 2

To put it strongly, we say the following opposite statements concerning the linguistic inter-

pretation:

(H1) through trial and error, we can do well without the linguistic interpretation.

(H2) all that are written in this note are a part of the linguistic interpretation.

which are the same assertions from the opposite standing points. In this sense, there is a reason

to consider that this lecture note is something like a cookbook.

Of course, these (i.e., (H1) and (H2)) are extreme representations. The simplest and best

representation may be as follows.

(I): The linguistic interpretation (This will be explained in §3.1 )

The most important statement in the linguistic interpretation is

Only one measurement is permitted

♠Note 1.4. Kolmogorov’s probability theory (cf. [50] ) starts from the following spell:

(]) Let (X,F, P ) be a probability space. Then, the probability that a event Ξ(∈ F) happens
is given by P (Ξ)

And, through trial and error, Kolmogorov found his extension theorem, which says that

(]) Only one probability space is permitted.

This surely corresponds to the linguistic interpretation “Only one measurement is permitted.”
That is,

(the most fundamental theorem)

Probability theory
(Only one probability space is permitted)

(correspondence)←→
(the linguistic interpretation)

Quantum language
(Only one measurement is permitted)

In this sense, we want to assert that

(]) Kolmogorov is one of the main discoverers of the linguistic interpretation.

Therefore, we are optimistic to believe that the linguistic interpretation “Only one measurement
is permitted” can be, after trial and error, acquired if we start from Axioms 1 and 2. That is,
we consider, as mentioned in (H1), that we can theoretically do well without the linguistic
interpretation.
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1.2 The outline of quantum language 9

1.2.4 Summary

Summing up the above arguments, we see:

(J): Summary ( All of quantum language )

Quantum language (= measurement theory ) is formulated as follows.

measurement theory
(=quantum language)

:=
[Axiom 1]

Measurement
(cf. §2.7)

+

[Axiom 2]

Causality
(cf. §10.3)︸ ︷︷ ︸

a kind of spell(a priori judgment)

+
[quantum linguistic interpretation]

Linguistic interpretation
(cf. §3.1)︸ ︷︷ ︸

manual how to use spells

(1.2)

[Axioms]. Here

(J1) Axioms 1 and 2 are kinds of spells, (i.e., incantation, magic words, metaphysical
statements), and thus, it is impossible to verify them experimentally. Therefore,
what we should do is not “to understand” but “to use”. After learning Axioms 1 and
2 by rote, we have to improve how to use them through trial and error.

[The linguistic interpretation]. From the pure theoretical point of view, we do well
without the interpretation. However,

(J2) it is better to know the linguistic interpretation of quantum mechanics (= the manual
how to use Axioms 1 and 2), if we would like to make progress quantum language
early.

The most important statement in the linguistic interpretation (§3.1) is

Only one measurement is permitted

The above is all of quantum language.
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10 Chapter 1 My answer to Feynman’s question

1.3 Example: “Cold” or “Hot”

Axioms 1 and 2 (mentioned in the previous section ) are too abstract. And thus, I am afraid

that the readers feel that it is too hard to use quantum language. Hence, let us add a simple

example in this section.

It is sufficient for the readers to consider that our purpose in the next chapters is

• to bury the gap between Axiom 1 and the following simple example (i.e., “Cold” or

“Hot”).

Example 1.2. [The measurement of “Cold or Hot” for the water in a cup] Let testees drink

water with various temperature ω ◦C (0 5 ω 5 100). And assume: you ask them “Cold or Hot

?” alternatively. Gather the data, ( for example, gc(ω) persons say “Cold”, gh(ω) persons say

“Hot”) and normalize them, that is, get the polygonal lines such that

fc(ω) =
gc(ω)

the numbers of testees

fh(ω) =
gh(ω)

the numbers of testees
(1.3)

And

fc(ω) =


1 (0 5 ω 5 10)
70−ω
60

(10 5 ω 5 70)
0 (70 5 ω 5 100)

, fh(ω) = 1− fc(ω)

1

fc fh

0 10 20 30 40 50 60 70 80 90 100

Figure 1.2: Cold or hot?

Therefore, for example,

(A1) You choose one person from the testees, and you ask him/her whether the water (with

55 ◦C) is “cold” or “hot” ?. Then the probability that he/she says

[
“cold”
“hot”

]
is given

by

[
fc(55) = 0.25
fh(55) = 0.75

]
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1.3 Example: “Cold” or “Hot” 11

In what follows, let us describe the statement (A1) in terms of quantum language (i.e., Axiom

1).

Define the state space Ω such that Ω = interval [0, 100](⊂ R(= the set of all real numbers))

and measured value space X = {c, h} ( where “c” and “h” respectively means “cold” and

“hot”). Here, consider the “[C-H]-thermometer” such that

(A2) for water with ω ◦C, [C-H]-thermometer presents

[
c
h

]
with probability

[
fc(ω)
fh(ω)

]
. This

[C-H]-thermometer is denoted by O = (fc, fh)

Note that this [C-H]-thermometer can be easily realized by “random number generator”.

Here, we have the following identification:

(A3) (A1) ⇐⇒ (A2)

Therefore, the statement (A1) in ordinary language can be represented in terms of measurement

theory as follows.

(A4) When an observer takes a measurement by [[C-H]-instrument]
measuring instrumentO=(fc,fh)

for

[water]
(System (measuring object))

with [55 ◦C]
(state(= ω ∈ Ω) )

, the probability that measured value

[
c
h

]

is obtained is given by

[
fc(55) = 0.25
fh(55) = 0.75

]
This example will be again discussed in the following chapter(Example 2.29).
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Chapter 2

Axiom 1 — measurement

Quantum language (= measurement theory ) is formulated as follows.

• measurement theory
(=quantum language)

:=

[Axiom 1]

Measurement
(cf. §2.7)

+

[Axiom 2]

Causality
(cf. §10.3)︸ ︷︷ ︸

a kind of spell(a priori judgment)

+

[quantum linguistic interpretation]

Linguistic interpretation
(cf. §3.1)︸ ︷︷ ︸

manual how to use spells

Measurement theory asserts that

• Describe every phenomenon modeled on Axioms 1 and 2 (by a hint of the linguistic inter-
pretation)!

In this chapter, we introduce Axiom 1 (measurement). Axiom 2 concerning causality will be
explained in Chapter 10.

2.1 The basic structure[A ⊆ A ⊆ B(H)]; General theory

The Hilbert space formulation of quantum mechanics is due to von Neumann. I cannot
emphasize too much the importance of his work (cf. [65]).

2.1.1 Hilbert space and operator algebra

Let H be a complex Hilbert space with a inner product 〈·, ·〉, where it is assumed that
〈u, αv〉 = α〈u, v〉 (∀u, v ∈ H,α ∈ C(= the set of all complex numbers)). And define the norm
‖u‖ = |〈u, u〉|1/2. Define B(H) by

B(H) = {T : H → H | T is a continuous linear operator} (2.1)

B(H) is regarded as the Banach space with the operator norm ‖ · ‖B(H), where

‖T‖B(H) = sup
‖x‖H=1

‖Tx‖H (∀T ∈ B(H)) (2.2)

13
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14 Chapter 2 Axiom 1 — measurement

Let T ∈ B(H). The dual operator T ∗ ∈ B(H) of T is defined by

〈T ∗u, v〉 = 〈u, Tv〉 (∀u, v ∈ H)

The followings are clear.

(T ∗)∗ = T, (T1T2)
∗ = T ∗2 T

∗
1

Further, the following equality (called the “C∗-condition”) holds:

‖T ∗T‖ = ‖TT ∗‖ = ‖T‖2 = ‖T ∗‖2 (∀T ∈ B(H)) (2.3)

When T = T ∗ holds, T is called a self-adjoint operator (or, Hermitian operator). Let Tn(n ∈
N = {1, 2, · · · }), T ∈ B(H). The sequence {Tn}∞n=1 is said to converge weakly to T (that is,
w − limn→∞ Tn = T ), if

lim
n→∞
〈u, (Tn − T )u〉 = 0 (∀u ∈ H) (2.4)

Thus, we have two convergences (i.e., norm convergence and weakly convergence) in B(H)1.

Definition 2.1. [C∗-algebra and W ∗-algebra] A(⊆ B(H)) is called a C∗-algebra, if it satisfies
that

(A1) A(⊆ B(H)) is the closed linear space in the sense of the operator norm ‖ · ‖B(H).

(A2) A is ∗-algebra, that is, A(⊆ B(H)) satisfies that

F1, F2 ∈ A⇒ F1 · F2 ∈ A, F ∈ A⇒ F ∗ ∈ A

Also, a C∗-algebraA(⊆ B(H)) is called a W ∗-algebra, if it is weak closed in B(H).

2.1.2 Basic structure[A ⊆ A ⊆ B(H)]; general theory

Definition 2.2. Consider the basic structure [A ⊆ A ⊆ B(H)]
(

or, denoted by [A ⊆ A]B(H))
. That is,

• A(⊆ B(H)) is a C∗-algebra, and A(⊆ B(H)) is the weak closure of A.

Note that W ∗-algebra A has the pre-dual Banach space A∗( that is, (A∗)
∗ = A ) uniquely.

Therefore, the basic structure[A ⊆ A ⊆ B(H)] is represented as follows.

(B): General basic structure:[A ⊆ A ⊆ B(H)]

A∗xdual

A
⊆−−−−−−−−−−−−−→

subalgebra·weak-closure
A

⊆−−−−−−→
subalgebra

B(H)ypre-dual

A∗

(2.5)

1Although there are many convergences in B(H), in this paper we devote ourselves to the two.
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2.1 The basic structure[A ⊆ A ⊆ B(H)]; General theory 15

2.1.3 Basic structure[A ⊆ A ⊆ B(H)] and state space; General the-
ory

The concept of “state space” is fundamental in quantum language. This is formulated in
the dual space A∗ of C∗-algebra A ( or, in the pre-dual space A∗ of W ∗-algebra A).

Let us explain it as follows.

Definition 2.3. [State space, mixed state space] Consider the basic structure:

[A ⊆ A ⊆ B(H)]

Let A∗ be the dual space of the C∗-algebraA. The mixed state space Sm(A∗) and the pure
state space Sp(A∗) is respectively defined by

(a) Sm(A∗) = {ρ ∈ A∗ | ‖ρ‖A∗ = 1, ρ ≥ 0 (i.e., ρ(T ∗T ) ≥ 0(∀T ∈ A))}

(b) Sp(A∗) = {ρ ∈ Sm(A∗) | ρ is a pure state}. Here, ρ(∈ Sm(A∗)) is a pure state if and
only if

ρ = αρ1 + (1− α)ρ2, ρ1, ρ2 ∈ Sm(A∗), 0 < α < 1 =⇒ ρ = ρ1 = ρ2

The mixed state space Sm(A∗) and the pure state space Sp(A∗) are locally compact spaces
(cf. ref.[69]).

Assume that A∗ is the pre-dual space of A. Then, another mixed state space S
m

(A∗) is
defined by

(c) S
m

(A∗) = {ρ ∈ A∗ | ‖ρ‖A∗
= 1, ρ ≥ 0 (i.e., ρ(T ∗T ) ≥ 0(∀T ∈ A))}

That is, we have two “mixed state spaces”, that is, C∗-mixed state space Sm(A∗) and W ∗-
mixed state space S

m
(A∗).

The above arguments are summarized in the following figure:

(C): General basic structure and State spaces

Sp(A∗)
C∗-pure state

⊂ Sm(A∗)
C∗-mixed state

⊂ A∗xdual

A
⊆−−−−−−−−−−−−−→

subalgebra·weak-closure
A

⊆−−−−−−→
subalgebra

B(H)y pre-dual

(2.6)

S
m

(A∗)
W ∗-mixed state

⊂ A∗
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16 Chapter 2 Axiom 1 — measurement

Remark 2.4. In order to avoid the confusions, three “state spaces” should be explained in
what follows.

(D) “state spaces”


Fisher statistics · · · pure state space:Sp(A∗): most fundamental

Bayes statistics · · ·


C∗-mixed state space:Sm(A∗) : easy

W ∗-mixed state space:S
m

(A∗): natural, useful

In this note, we mainly devote ourselves to the W ∗-mixed stateS
m

(A∗) rather than the C∗-
mixed stateSm(A∗), though the two play the similar roles in quantum language.
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2.2 Quantum basic structure[C(H) ⊆ B(H) ⊆ B(H)] and State space 17

2.2 Quantum basic structure[C(H) ⊆ B(H) ⊆ B(H)] and

State space

If a conclusion is said previously, we say the following classification of (i.e., quantum state
space and classical state space):

(A)

General basic structure[A ⊆ A]B(H)

pure state space Sp(A∗)

C∗-mixed state space Sm(A∗)

W ∗-mixed state space S
m
(A∗)

=⇒



(A1):Quantum basic structure[C(H) ⊆ B(H)]B(H)

pure state space Sp(Tr(H)(≈H))

C∗-mixed state space Sm(Tr(H))(=Tr+1(H))

W ∗-mixed state space Sm(Tr(H))(=Tr+1(H))

(A2):Classical basic structure[C0(Ω) ⊆ L∞(Ω, ν)]B(L2(Ω,ν))

pure state space Ω

C∗-mixed state space M+1(Ω)

W ∗-mixed state space L1
+1(Ω,ν)

In what follows, we shall explain the above classification (A):

2.2.1 Quantum basic structure[C(H) ⊆ B(H) ⊆ B(H)];

In quantum system, the basic structure[A ⊆ A ⊆ B(H)] is characterized as

[C(H) ⊆ B(H) ⊆ B(H)] (2.7)

That is, we see:

(B): Quantum basic structure:[C(H) ⊆ B(H) ⊆ B(H)]

Tr(H)xdual

C(H)
⊆−−−−−−−−−−−−−→

subalgebra·weak-closure
B(H)

⊆−−−−−−→
subalgebra

B(H)ypre-dual

Tr(H)

(2.8)

Before we explain “compact operators class C(H)” and “trace class F(H)”, we have to
prepare “Dirac notation” and “CONS” as follows.
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18 Chapter 2 Axiom 1 — measurement

Definition 2.5. [(i):Dirac notation] Let H be a Hilbert space. For any u, v ∈ H, define |u〉〈v| ∈
B(H) such that

(|u〉〈v|)w = 〈v, w〉u (∀w ∈ H) (2.9)

Here, 〈v|
[

resp. |u〉
]

is called the “Bra-vector”
[

resp. “Ket-vector”
]
.

[(ii):ONS(orthonormal system), CONS(complete orthonormal system)] The sequence {ek}∞k=1 in a

Hilbert space H is called an orthonormal system (i.e., ONS), if it satisfies

(]1) 〈ek, ej〉 =

{
1 (k = j)
0 (k 6= j)

In addition, an ONS {ek}∞k=1 is called a complete orthonormal system (i.e., CONS), if it satisfies

(]2) 〈x, ek〉 = 0 (∀k = 1, 2, ...) implies that x = 0.

Theorem 2.6. [The properties of compact operators class C(H)] Let C(H)(⊆ B(H)) be the

compact operators class. Then, we see the following (C1)-(C4)
(

particularly, “(C1)↔ (C2)”

may be regarded as the definition of the compact operators class C(H)(⊆ B(H))
)

.

(C1) T ∈ C(H). That is,

• for any bounded sequence {un}∞n=1 in Hilbert space H, {Tun}∞n=1 has the subsequence

which converges in the sense of the norm topology.

(C2) There exist two ONSs {ek}∞k=1 and {fk}∞k=1 in the Hilbert space H and a positive real

sequence {λk}∞k=1 (where, limk→∞ λk = 0 ) such that

T =
∞∑
k=1

λk|ek〉〈fk| (in the sense of weak topology) (2.10)

(C3) C(H)(⊆ B(H)) is a C∗-algebra. When T (∈ C(H)) is represented as in (C2), the following

equality holds

‖T‖B(H) = max
k=1,2,···

λk (2.11)

(C4) The weak closure of C(H) is equal to B(H). That is,

C(H) = B(H) (2.12)
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2.2 Quantum basic structure[C(H) ⊆ B(H) ⊆ B(H)] and State space 19

Theorem 2.7. [The properties of trace class Tr(H)] Let Tr(H)(⊆ B(H)) be the trace class.

Then, we see the following (3D1)-(D4)( particularly, “(D1)↔ (D2)” may be regarded as the

definition of the trace class Tr(H)(⊆ B(H)) ).

(D1) T ∈ Tr(H)(⊆ C(H) ⊆ B(H)).

(D2) There exist two ONSs {ek}∞k=1 and {fk}∞k=1 in the Hilbert space H and a positive real

sequence {λk}∞k=1 (where,
∑∞

k=1 λk <∞ ) such that

T =
∞∑
k=1

λk|ek〉〈fk| (in the sense of weak topology)

(D3) It holds that

C(H)∗ = Tr(H) (2.13)

Here, the dual norm ‖ · ‖C(H)∗ is characterized as the trace norm ‖ · ‖Tr such as

‖T‖Tr =
∞∑
k=1

λk (2.14)

when T (∈ Tr(H)) is represented as in (D2),

(D4) Also, it holds that

Tr(H)∗ = B(H) in the same sense, Tr(H) = B(H)∗ (2.15)

Remark 2.8. Assume that a Hilbert space H is finite dimensional, i.e., H = Cn, i.e., Cn =

{z =


z1
z2
...
xn

 | zk ∈ C, k = 1, 2, ..., n}. Put

M(C, n) = The set of all (n× n)-complex matrices

and thus,

A = A = B(Cn) = C(H) = Tr(H) = M(C, n) (2.16)

However, it should be noted that the norms are different as mentioned in (C3) and (D3).
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20 Chapter 2 Axiom 1 — measurement

2.2.2 Quantum basic structure[C(H) ⊆ B(H) ⊆ B(H)] and State space;

Consider the quantum basic structure:

[C(H) ⊆ B(H) ⊆ B(H)]

and see the following diagram:

(E): Quantum basic structure and State space

Sp(Tr(H))
C∗-pure state

⊂ Sm(Tr(H))
C∗-mixed state

⊂ Tr(H)xdual

C(H)
⊆−−−−−−−−−−−−−→

subalgebra·weak-closure
B(H)

⊆−−−−−−→
subalgebra

B(H)y pre-dual

(2.17)

S
m

(Tr(H))
W ∗-mixed state

⊂ Tr(H)

In what follows, we shall explain the above diagram.

Firstly, we note that

C(H)∗ = Tr(H), Tr(H)∗ = B(H) (2.18)

and

Sm(Tr(H)) = S
m

(Tr(H))

={ρ =
∞∑
n=1

λn|en〉〈en| : {en}∞n=1 is ONS ,
∞∑
n=1

λn = 1, λn > 0}

=:Tr+1(H) (2.19)

Also, concerning the pure state space, we see:

Sp(Tr(H))

={ρ = |e〉〈e| : ‖e‖H = 1} =: Trp+1(H) (2.20)

Therefore, under the following identification:

Sp(Tr(H)) 3 |u〉〈u| ←→
identification

u ∈ H (‖u‖ = 1) (2.21)

we see,

Sp(Tr(H)) = {u ∈ H : ‖u‖ = 1} (2.22)

where we assume the equivalence: u ≈ eiθu (θ ∈ R).
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2.2 Quantum basic structure[C(H) ⊆ B(H) ⊆ B(H)] and State space 21

Definition 2.9. Define the trace Tr : Tr(H)→ C such that

Tr(T ) =
∞∑
n=1

〈en, T en〉 (∀T ∈ Tr(H)) (2.23)

where {en}∞n=1 is a CONS in H. It is well known that the Tr(T ) does not depend on the choice

of CONS {en}∞n=1. Thus, clearly we see that

TrH

(
|u〉〈u|, F

)
B(H)

= Tr(|u〉〈u| · F ) = 〈uFu〉 (∀||u||H = 1, F ∈ B(H)) (2.24)

Remark 2.10. Assume that a Hilbert space H is finite dimensional, i.e., H = Cn. Then,

M(C, n) = The set of all (n× n)-complex matrices

That is,

F =


f11 f12 · · · f1n
f21 f22 · · · f2n
...

...
. . .

...
fn1 fn2 · · · fnn

 ∈M(C, n) (2.25)

As mentioned before, we see

A = A = B(Cn) = C(H) = Tr(H) = M(C, n) (2.26)

and further, under the following notations:

TrD+1(Cn) =
{

diagonal matrixF =


f11 0 · · · 0
0 f22 · · · 0
...

...
. . .

...
0 0 · · · fnn

 ∣∣∣ fkk ≥ 0,
n∑
k=1

fkk = 1
}

TrDP+1 (Cn) =
{
F =


f11 0 · · · 0
0 f22 · · · 0
...

...
. . .

...
0 0 · · · fnn

 ∈ TrD+1(Cn)
∣∣∣ fkk = 1 (for some k = j),= 0 (k 6= j)

}

We see,

mixed state space: Tr+1(Cn) =
{
UFU∗ : F ∈ TrD+1(Cn), U is a unitary matrix

}
(2.27)

pure state space: Trp+1(Cn) =
{
UFU∗ : F ∈ TrDP+1 (Cn), U is a unitary matrix

}
(2.28)
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22 Chapter 2 Axiom 1 — measurement

2.3 Classical basic structure[C0(Ω) ⊆ L∞(Ω, ν) ⊆ B(L2(Ω, ν))]

2.3.1 Classical basic structure[C0(Ω) ⊆ L∞(Ω, ν) ⊆ B(L2(Ω, ν))]

In classical systems, the basic structure[A ⊆ A ⊆ B(H)] is restricted to the classical basic

structure:

[C0(Ω) ⊆ L∞(Ω, ν) ⊆ B(L2(Ω, ν))]

And we get the following diagram:

(A): Classical basic structure: [C0(Ω) ⊆ L∞(Ω, ν) ⊆ B(L2(Ω, ν))]

M(Ω)xdual

C0(Ω)
⊆−−−−−−−−−−−−−→

subalgebra·weak-closure
L∞(Ω, ν)

⊆−−−−−−→
subalgebra

B(L2(Ω, ν))ypre-dual

L1(Ω, ν)

(2.29)

In what follows, we shall explain this diagram.

2.3.1.1 Commutative C∗-algebra C0(Ω) and Commutative W ∗-algebra L∞(Ω, ν)

Let Ω a locally compact space, for example, it suffices to image Ω as follows.

R(= the real line), R2(= plane), Rn(= n-dimensional Euclidean space),

[a, b](= interval), finite setΩ(= {ω1, ..., ωn})
(with discrete metric dD)

where the discrete metric dD is defined by dD(ω, ω′) = 1 (ω 6= ω′),= 0 (ω = ω′).

Define the continuous functions space C0(Ω) such that

C0(Ω) = {f : Ω→ C | f is complex-valued continuous on Ω, lim
ω→∞

f(ω) = 0} (2.30)

where “limω→∞ f(ω) = 0” means

(B) for any positive real ε > 0, there exists a compact set K(⊆ Ω) such that

{ω | ω ∈ Ω \K, |f(ω)| > ε} = ∅
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2.3 Classical basic structure[C0(Ω) ⊆ L∞(Ω, ν) ⊆ B(L2(Ω, ν))] 23

Therefore, if Ω is compact, the, the condition “limω→∞ f(ω) = 0” is not needed, and thus,

C0(Ω) is usually denoted by C(Ω). In this note, even if Ω is compact, we often denote C(Ω) by

C0(Ω).

Defining the norm ‖ · ‖C0(Ω) in a complex vector space C0(Ω) such that

‖f‖C0(Ω) = max
ω∈Ω
|f(ω)| (2.31)

we get the Banach space
(
C0(Ω), ‖ · ‖C0(Ω)

)
.

Let Ω be a locally compact space, and consider the σ-finite measure space (Ω,BΩ, ν), where,

BΩ is the Borel field, i.e., the smallest σ-field that contains all open sets. Further, assume that

(C) for any open set U ⊆ Ω, it holds that 0 < ν(U) 5∞

♠Note 2.1. Without loss of generality, we can assume that Ω is compact by the Stone-Čech
compactification. Also, we can assume that ν(Ω) = 1.

Define the Banach space Lr(Ω, ν) (where, r = 1, 2,∞) by the all complex-valued measurable

functions f : Ω→ C such that

‖f‖Lr(Ω,ν) <∞

The norm ‖f‖Lr(Ω,ν) is defined by

‖f‖Lr(Ω,ν) =


[∫

Ω
|f(ω)|r ν(dω)

]1/r
(when r = 1, 2)

ess.sup
ω∈Ω

|f(ω)| (when r =∞)

(2.32)

where

ess.supω∈Ω|f(ω)| = sup{a ∈ R | ν({ω ∈ Ω : |f(ω)| = a }) > 0}

Lr(Ω, ν) is often denoted by Lr(Ω) or Lr(Ω,BΩ, ν).

Remark 2.11. [C0(Ω) ⊆ L∞(Ω, ν) ⊆ B(L2(Ω, ν))] Consider a Hilbert space H such that

H = L2(Ω, ν)

For each f ∈ L∞(Ω), define Tf ∈ B(L2(Ω, ν)) such that

L2(Ω, ν) 3 φ −→ Tf (φ) = f · φ ∈ L2(Ω, ν)
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24 Chapter 2 Axiom 1 — measurement

Then, under the identification:

L∞(Ω) 3 f ←→
identification

Tf ∈ B(L2(Ω, ν)) (2.33)

we see that

f ∈ L∞(Ω) ⊆ B(L2(Ω, ν))

and further, we have the classical basic structure:

[C0(Ω) ⊆ L∞(Ω) ⊆ B(L2(Ω, ν))] (2.34)

This will be shown in what follows.

Riese theorem (cf. [69]) says that

C0(Ω)∗ = M(Ω)(= the set of all complex-valued measures on Ω ) (2.35)

Therefore, for any F ∈ C0(Ω), ρ ∈ C0(Ω)∗ = M(Ω), we have the bi-linear form which is written

by the several ways such as

ρ(F ) =
C0(Ω)∗

(
ρ, F

)
C0(Ω)

=
M(Ω)

(
ρ, F

)
C0(Ω)

=

∫
Ω

F (ω)ρ(dω) (2.36)

Also, the dual norm is calculated as follows.

‖ρ‖C0(Ω)∗ = sup{|ρ(F ) | ‖F‖C0(Ω) = 1} = sup
||F ||C0(Ω)=1

|
∫
Ω

F (ω)ρ(dω)|

= sup
Ξ,Γ∈BΩ

(
|Re(ρ(Ξ))−Re(ρ(Ξc))|2 + |Im(ρ(Γ))− Im(ρ(Γc))|2

)1/2

=‖ρ‖M(Ω) (2.37)

where, Ξc is the complement of Ξ, and Re(z)=“the real part of the complex number z”,

Im(z)=“the imaginary part of the complex number z”.

Further, we see that

L1(Ω, ν)∗ = L∞(Ω, ν) in the same sense, L1(Ω, ν) = L∞(Ω, ν)∗

Also, it is clear that

C0(Ω) ⊆ L∞(Ω, ν)

For any f ∈ L∞(Ω, ν), there exist fn ∈ C0(Ω), n = 1, 2, .. such that
ν({ω ∈ Ω | limn→∞ fn(ω) 6= f(ω)} = 0

|fn(ω)| ≤ ‖f‖L∞(Ω,ν) (∀ω ∈ Ω,∀n = 1, 2, 3, ...)
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2.3 Classical basic structure[C0(Ω) ⊆ L∞(Ω, ν) ⊆ B(L2(Ω, ν))] 25

Therefore, we see

lim
n→∞

|
〈
φ, (f − fn)φ

〉
L2(Ω,ν)

| ≤ lim
n→∞

∫
Ω

|fn(ω)− f(ω)| · |φ(ω)|2ν(dω) = 0 (∀φ ∈ L2(Ω, ν))

Hence,

the weak closure of C0(Ω) is equal to L∞(Ω, ν)

Then, we have the classical basic structure:

[C0(Ω) ⊆ L∞(Ω) ⊆ B(L2(Ω, ν))] (2.38)

Theorem 2.12. [Gelfand theorem (cf. [62]) ] Consider a general basic structure:

[A ⊆ A ⊆ B(H)]

where it is assumed that A is commutative. Then, there exists a measure space (Ω,BΩ, ν)
(where Ω is a locally compact space) such that

A = C0(Ω), A = L∞(Ω, ν), B(H) = B(L2(Ω, ν))

where Ω is called a spectrum.

2.3.2 Classical basic structure[C0(Ω) ⊆ L∞(Ω, ν) ⊆ B(L2(Ω, ν))] and
State space

Consider the classical basic structure [C0(Ω) ⊆ L∞(Ω, ν) ⊆ B(L2(Ω, ν))]. Then, we see the

following diagram:

(D): Classical basic structure and State space

M
p
+1(Ω)
(≈Ω)

C∗-pure state

⊂ M+1(Ω)
(probability measure)

C∗-mixed state

⊂ M(Ω)

xdual

C0(Ω)
⊆−−−−−−−→

subalgebra
weak-closure

L∞(Ω)
⊆−−−−−−→

subalgebra
B(L2(Ω))y pre-dual

(2.39)

L1
+1(Ω, ν)

(probability density function)

W ∗-mixed state

⊂ L1(Ω, ν)

KSTS/RR-15/001 
January 22, 2015



26 Chapter 2 Axiom 1 — measurement

In the above, the mixed state space Sm(C0(Ω)∗) is characterized as

Sm(C0(Ω)∗) ={ρ ∈M(Ω) : ρ ≥ 0, ||ρ||M(Ω) = 1}

={ρ ∈M(Ω) : ρ is a probability measure on Ω }

=:M+1(Ω) (2.40)

Also, the pure state space Sp(C0(Ω)∗) is

Sp(C0(Ω)∗)

={ρ = δω0 ∈ Sp(C0(Ω)∗) : δω0 is the point measure at ω0(∈ Ω), ω0 ∈ Ω}

≡Mp
+1(Ω) (2.41)

Here, the point measure δω0 ∈M(Ω) is defined by∫
Ω

f(ω)δω0(dω) = f(ω0) (∀f ∈ C0(Ω))

Therefore,

M
p
+1(Ω) = Sp(C0(Ω)∗) 3 δω ←→

identification
ω ∈ Ω (2.42)

Under this identification, we consider that

Sp(C0(Ω)∗) = Ω

Also, it is well known that

L1(Ω, ν)∗ = L∞(Ω, ν)

Therefore, the W ∗-mixed state space is characterized by

L1
+1(Ω, ν) = {f ∈ L1(Ω, ν) : f ≥ 0,

∫
Ω

f(ω)ν(dω) = 1}

= the set of all probability density functions on Ω (2.43)

Remark 2.13. [The case that Ω is finite: C0(Ω) = L∞(Ω, ν), M(Ω) = L1(Ω, ν) ] Let Ω be a

finite set {ω1, ω2, ..., ωn} with the discrete metric dD and the counting measure ν. Here, the

counting measure ν is defined by

ν(D) = ][D](= “the number of the elements of D”)
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2.3 Classical basic structure[C0(Ω) ⊆ L∞(Ω, ν) ⊆ B(L2(Ω, ν))] 27

Then, we see that

C0(Ω) = {F : Ω→ C | F is a complex valued function on Ω} = L∞(Ω, ν)

And thus, we see that

ρ ∈M+1(Ω) ⇐⇒ ρ =
n∑
k=1

pkδωk (
n∑
k=1

pk = 1, pk ≥ 0)

and

f ∈ L1
+1(Ω, ν) ⇐⇒

n∑
k=1

f(ωk) = 1. f(ωk) ≥ 0

In this sense, we have the following identifications:

M+1(Ω) = L1
+1(Ω, ν) ( or, M(Ω) = L1(Ω, ν))

After all, we have the following identification:

C0(Ω) = L∞(Ω) = Cn M(Ω) = L1(Ω) = Cn (2.44)

where the norm ‖ · ‖C0(Ω) in the former is defined by

‖z‖C0(Ω) = max
k=1,2,...,n

|zk| ∀z =


z1
z2
...
xn

 ∈ Cn (2.45)

and the norm ‖ · ‖M(Ω) in the latter is defined by

‖z‖M(Ω) =
n∑
k=1

|zk| ∀z =


z1
z2
...
xn

 ∈ Cn (2.46)
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28 Chapter 2 Axiom 1 — measurement

2.4 State and Observable—the primary quality and the

secondary quality—

2.4.1 In the beginning

Our present purpose is to learn the following spell (= Axiom 1) by rote.

(A): Axiom 1(pure measurement)(cf. This will be able to be read in §2.7)

With any system S, a basic structure [A ⊆ A]B(H) can be associated in which measurement

theory of that system can be formulated. In [A ⊆ A]B(H), consider a W ∗-measurement

MA

(
O=(X,F, F ), S[ρ]

) (
or, C∗-measurementMA

(
O=(X,F, F ), S[ρ]

) )
. That is, consider

• a W ∗-measurement MA

(
O, S[ρ]

) (
or, C∗-measurement MA

(
O=(X,F, F ), S[ρ]

) )
of

an observable O=(X,F, F ) for a state ρ(∈ Sp(A∗) : state space)

Then, the probability that a measured value x (∈ X) obtained by the W ∗-measurement

MA

(
O, S[ρ]

) (
or, C∗-measurement MA

(
O=(X,F, F ), S[ρ]

) )
belongs to Ξ (∈ F) is given by

ρ(F (Ξ))(≡ A∗(ρ, F (Ξ))A)

(if F (Ξ) is essentially continuous at ρ, or see (2.56) in Remark 2.18 ).

The “learning by rote” urges us to understand the mathematical definitions of

(]1) Basic structure[A ⊆ A]B(H), state space Sp(A∗)

(]2) observable O=(X,F, F ), etc.

In the previous section, we studied the above (]1), that is, we discussed the following clas-

sification:

(B) General basic structure[A ⊆ A]B(H)

state space [Sp(A∗),Sm(A∗),S
p
(A∗)]

=⇒



Quantum basic structure[C(H) ⊆ B(H)]B(H)

state space [Sp(Tr(H)),Sm(Tr(H))=S
m
(Tr(H))]

Classical basic structure[C0(Ω) ⊆ L∞(Ω, ν)]B(L2(Ω,ν))
state space [Ω,M+1(Ω),L∞(Ω,ν)]

In this section, we shall study the above (]2), i.e.,

“Observable”
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2.4 State and Observable—the primary quality and the secondary quality— 29

Recall the famous words: “the primary quality” and “the secondary quality” due

to John Locke, an English philosopher and physician regarded as one of the most influential

of Enlightenment thinkers and known as the “Father of Classical Liberalism”. We think the

following correspondence:{
[state] ←→ [the primary quality]
[observable] ←→ [the secondary quality]

(2.47)

And thus, we think

• These (i.e., “state” and “observable”) are the concepts which form the basis of dualism.

Also, the following table promotes the better understanding of quantum language as well as

the other world-views( i.e., the conventional philosophies).

Table 2.1: Observable · State · System in world-views (cf. Table 3.1)

World description�Quantum language observable state system

Plato idea / /

Aristotle / eidos hyle

Locke secondary quality primary quality /

Newton / state point mass

statistics / parameter population

quantum mechanics observable state(≈ wave function) particle

♠Note 2.2. It may be understandable to consider

“observable” =“the partition of word”=“the secondary quality” (2.48)

For example, Chapter 1 (Figure 1.2) says that
(
fc, fh

)
is the partition between “cold” and

“hot”.

1

fc fh

0 10 20 30 40 50 60 70 80 90 100

Chapter 1 (Figure 1.2): Cold or hot?

Also, “measuring instrument” is the instrument that choose a word among words. In this sense,
we consider that “observable”= “measurement instrument”. Also, The reason that John Locke’s
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30 Chapter 2 Axiom 1 — measurement

sayings “primary quality (e.g., length, weight, etc.)” and “secondary quality (e.g., sweet, dark,
cold, etc.)” is that these words form the basis of dualism.

2.4.2 Dualism (in philosophy) and duality (in mathematics)

The following question may be significant:

(C1) Why did philosophers continue persisting in dualism?

As the typical answer, we may consider that

(C2) “I” is the special existence, and thus, we would like to draw a line between “I” and

“matter”.

But, we think that this is only quibbling. We want to connect the question (C1) with the

following mathematical question:

(C3) Why do mathematicians investigate “dual space”?

Of course, the question “why?” is non-sense in mathematics. If we have to answer this, we have

no answer except the following (D):

(D) If we consider the dual space A∗, calculation progresses deeply.

Thus, we want to consider the relation between the dualism and the dual space such as{
[the primary quality] ←→ the state in the dual space A∗

[the secondary quality] ←→ the observable in C∗ algebra A (or, W ∗-algebra A)
(2.49)

Thus, we consider that the answer to the (C1) is also “calculation progresses deeply”.

2.4.3 Essentially continuous

In §2.1.2, we introduced the following diagram:

(E):General basic structure and state space

Sp(A∗)
C∗−purestate

⊂ Sm(A∗)
C∗-mixed state

⊂ A∗xdual

A
⊆−−−−−−−−−−−−−→

subalgebra·weak-closure
A

⊆−−−−−−→
subalgebra

B(H)y pre-dual

(2.50)

S
m

(A∗)
W ∗-mixed state

⊂ A∗
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2.4 State and Observable—the primary quality and the secondary quality— 31

In the above diagram, we introduce the following definition.

Definition 2.14. [Essentially continuous (cf. ref. [29] ) ] An element F (∈ A) is said to be
essentially continuous at ρ0(∈ Sm(A∗)), if there uniquely exists a complex number α such
that

(F1) if ρn (∈ S
m

(A∗)) weakly converges to ρ0(∈ Sm(A∗)) (That is, limn→∞ A∗

(
ρn, G

)
A =

A∗

(
ρ0, G

)
A (∀G ∈ A(⊆ A) ), then limn→∞ A∗

(
ρn, F

)
A = α

Then, the value ρ0(F ) (= A∗

(
ρ0, F

)
A) is defined by the α

Of course, for any ρ0(∈ Sm(A∗)), F (∈ A) is essentially continuous at ρ0.
This “essentially continuous” is chiefly used in th case that ρ0(∈ Sp(A∗)).

Remark 2.15. [Essentially continuous in quantum system and classical system]

[I]: Consider the quantum basic structure [C(H) ⊆ B(H)]B(H). Then, we see

(C(H))∗ = T(H) = B(H)∗

Thus, we have ρ ∈ Sp(C(H)∗) ⊆ Tr(H), F ∈ C(H) = B(H), which implies that

ρ(G) = C(H)∗

(
ρ, F )

)
B(H) = Tr(H)

(
ρ, F )

)
B(H) (2.51)

Thus, we see that “essentially continuous” ⇔ “continuous” in quantum case.

[II]: Next, consider the classical basic structure [C0(Ω) ⊆ L∞(Ω, ν) ⊆ B(L2(Ω, ν))]. A function

F (∈ L∞(Ω, ν)) is essentially continuous at ω0 (∈ Ω = Sp(C0(Ω)∗)), if and only if it holds that

(F2) if ρn(∈ L1
+1(Ω, ν) satisfies that

lim
n→∞

∫
Ω

G(ω)ρn(ω)ν(dω) = G(ω0) (∀G ∈ C0(Ω))

then there uniquely exists a complex number α such that

lim
n→∞

∫
Ω

F (ω)ρn(ω)ν(dω) = α (2.52)

Then, the value of F (ω) is defined by α, that is, F (ω0) = α.
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32 Chapter 2 Axiom 1 — measurement

0 (Ω, ν)ω1 ω2

Figure 2.1: not essentially continuous at ω1, essentially continuous at ω2

2.4.4 The definition of “observable (=measuring instrument)”

Definition 2.16. [Set ring, set field, σ-field] Let X be a set ( or locally compact space). The

F
(
⊆ 2X = P(X) = {A | A ⊆ X}, the power set of X

)
(or, the pair (X,F)) is called a ring (

of sets), if it satisfies that

(a) : ∅(=“empty set”) ∈ F,

(b) : Ξi ∈ F (i = 1, 2, . . .) =⇒
n∪
i=1

Ξi ∈ F,

n∩
i=1

Ξi ∈ F

(c) : Ξ1,Ξ2 ∈ F =⇒ Ξ1 \ Ξ2 ∈ F ( where, Ξ1 \ Ξ2 = {x | x ∈ Ξ1, x /∈ Ξ2})

Also, if X ∈ F holds, the ring F(or, the pair (X,F)) is called a field (of sets).
And further,

(d) if the formula (b) holds in the case that n =∞, a field F is said to be σ-field. And the
pair (X,F) is called a measurable space.

The following definition is most important. In this note, we mainly devote ourselves to the
W ∗-observable.

Definition 2.17. [Observable,measured value space] Consider the basic structure

[A ⊆ A ⊆ B(H)]

(G1):C
∗- observable

A triplet O=(X,R, F ) is called a C∗-observable (or, C∗-measuring instrument ) in A,
if it satisfies as follows.

(i) (X,R) is a ring of sets.

(ii) a map F : R→ A satisfies that
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2.4 State and Observable—the primary quality and the secondary quality— 33

(a) 0 5 F (Ξ) ≤ I (∀Ξ ∈ R), F (∅) = 0,

(b) for any ρ(∈ Sp(A∗)), there exists a probability space (X,R, Pρ) such that
(where, R is the smallest σ-field such that R ⊆ R) such that

A∗

(
ρ, F (Ξ)

)
A

= Pρ(Ξ) (∀Ξ ∈ R) (2.53)

Also, X [resp. (X,F, Pρ)] is called a measured value space [resp. sample probability
space ].

(G2):W
∗- observable

A triplet O=(X,F, F ) is called a W ∗-observable (or, W ∗-measuring instrument ) in A,
if it satisfies as follows.

(i) (X,F) is a σ-field.

(ii) a map F : F → A satisfies that

(a) 0 5 F (Ξ) (∀Ξ ∈ F), F (∅) = 0, F (X) = I

(b) for any ρ(∈ S
m

(A∗)), there exists a probability space (X,F, Pρ) such that

A∗

(
ρ, F (Ξ)

)
A

= Pρ(Ξ) (∀Ξ ∈ F) (2.54)

The observable O=(X,F, F ) is called a projective observable, if it holds that

F (Ξ)2 = F (Ξ) (∀Ξ ∈ F).

Remark 2.18. We want that the following (c) holds:

(c) for any ρ(∈ Sm(A∗)), there exists a probability space (X,F, Pρ) such that Pρ is the

natural extension of
A∗

(
ρ, F (·)

)
A

Note that the (c) is equivalent to the following “(d)+(e)”

(d) for any ρ(∈ Sm(A∗)), put Fρ = {Ξ ∈ F | F (Ξ) is essentially continuous at ρ }, then the
smallest σ-field that contains Fρ is equal to F.

(e) for any ρ(∈ Sm(A∗)), there exists a probability space (X,F, Pρ) such that

A∗

(
ρ, F (Ξ)

)
A

= Pρ(Ξ) (∀Ξ ∈ Fρ) (2.55)

Concerning the C∗-observable, the (c) clearly holds. On the other hand, concerning the W ∗-

observable, we have to say something as follows. As mentioned in Remark 2.15, in quantum

cases ( thus, A∗ = Tr(H) = A∗ ), it clearly holds that “(a)+(b)” implies (c). However, in the

classical cases, we do not know whether the (c) follows from the definition of the W ∗-observable.

Although we do not have the proof, we think that, in important cases, the W ∗-observable
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34 Chapter 2 Axiom 1 — measurement

satisfies the condition the (c). Thus, in this book, we do not add the condition (c) in the

definition of the W ∗-observable.

In the above situation, for any ρ(∈ Sp(A∗)) and any Ξ ∈ F, the
A∗

(
ρ, F (Ξ)

)
A

is extended and

defined by

A∗

(
ρ, F (Ξ)

)
A

= Pρ(Ξ)

In this sense,

A∗

(
ρ, F (Ξ)

)
A

is always defined for any ρ(∈ Sp(A∗)) and any Ξ ∈ F. (2.56)

Also, X [resp. (X,F, Pρ)] is called a measured value space [resp. sample probability

space ].
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2.5 Examples of observables

We shall mention several examples of observables. The observables introduced in Example

2.19-Example 2.22 are characterized as a C∗- observable as well as a W ∗- observable.

In what follows (except Example 2.19), consider the classical basic structure:

[C0(Ω) ⊆ L∞(Ω, ν) ⊆ B(L2(Ω, ν))]

Example 2.19. [Existence observable ] Consider the basic structure:

[A ⊆ A ⊆ B(H)]

Define the observable O(exi) ≡ (X, {∅, X}, F (exi)) in W ∗-algebra A such that:

F (exi)(∅) ≡ 0, F (exi)(X) ≡ I (2.57)

which is called the existence observable (or, null observable).

Consider any observable O = (X,F, F ) in A. Note that {∅, X} ⊆ F. And we see that

F (∅) = 0, F (X) = I

Thus, we see that (X, {∅, X}, F (exi)) = (X, {∅, X}, F ), and therefore, we say that any observable

O = (X,F, F ) includes the existence observable O(exi).

This may be associated with Berkeley’s saying:

(]) To be is to be perceived (by George Berkeley(1685-1753))

Example 2.20. [The resolution of the identity I; The word’s partition] Let [C0(Ω) ⊆ L∞(Ω, ν) ⊆
B(L2(Ω, ν))] be the classical basic structure. We find the similarity between an observable O

and the resolution of the identity I in what follows. Consider an observable O ≡ (X,F, F ) in

L∞(Ω) such that X is a countable set (i.e., X ≡ {x1, x2, ...}) and F = P(X) = {Ξ | Ξ ⊆ X},
i.e., the power set of X. Then, it is clear that

(i) F ({xk}) ≥ 0 for all k = 1, 2, ...

(ii)
∑∞

k=1[F ({xk})](ω) = 1 (∀ω ∈ Ω),
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36 Chapter 2 Axiom 1 — measurement

which imply that the [F ({xk}) : k = 1, 2, ...] can be regarded as the resolution of the identity

element I. Thus we say that

• An observable O
(
≡ (X,F, F )

)
in L∞(Ω) can be regarded as

“ the resolution of the identity I

0

1

[F ({x1})](ω)
[F ({x2})](ω) [F ({x3})](ω)

Ω
100

Figure 2.2: O ≡ ({x1, x2, x3}, 2{x1,x2,x3}, F )

In Figure 2.2, assume that Ω = [0, 100] is the axis of temperatures ( ◦C), and put X =

{C(=“cold”), L (=“lukewarm” = “not hot enough”), H(=“hot”) }. And further, put fx1 = fC,

fx2 = fL, fx3 = fH. Then, the resolution {fx1 , fx2 , fx3} can be regarded as the word’s partition

C(=“cold”), L(=“lukewarm”=“not hot enough”), H(=“hot”) .

Also, putting

F(= 2X) = {∅, {x1}, {x2}, {x3}, {x1, x2}, {x2, x3}, {x1, x3}, X}

and

[F (∅)](ω) = 0, [F (X)](ω) = fx1(ω) + fx2(ω) + fx3(ω) = 1

[F ({x1})](ω) = fx1(ω), [F ({x2})](ω) = fx2(ω), [F ({x3})](ω) = fx3(ω)

[F ({x1, x2})](ω) = fx1(ω) + fx2(ω), [F ({x2, x3})](ω) = fx2(ω) + fx3(ω)

[F ({x1, x3})](ω) = fx1(ω) + fx3(ω)

then, we have the observable (X,F(= 2X), F ) in L∞([0, 100]).
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Example 2.21. [Triangle observable ] Let [C0(Ω) ⊆ L∞(Ω, ν) ⊆ B(L2(Ω, ν))] be the classical

basic structure. For example, define the state space Ω by the closed interval [0, 100] (⊆ R).

For each n ∈ N100
10 = {0, 10, 20, . . . , 100}, define the (triangle) continuous function gn : Ω → R

by

gn(ω) =



0 (0 5 ω 5 n− 10)
ω − n− 10

10
(n− 10 5 ω 5 n)

−ω − n+ 10

10
(n 5 ω 5 n+ 10)

0 (n+ 10 5 ω 5 100)

(2.58)

1

0 10 20 30 40 50 60 70 80 90 100

g0 g10 g20 g30 g40 g50 g60 g70 g80 g90 g100

Figure 2.3: Triangle observable

Putting Y = N100
10 and define the triangle observable O4 = (Y, 2Y , F4) such that

[F4(∅)](ω) = 0, [F4(Y )](ω) = 1

[F4(Γ)](ω) =
∑
n∈Γ

gn(ω) (∀Γ ∈ 2N100
10 )

Then, we have the triangle observable O4 = (Y (= N100
10 ), 2Y , F4) in L∞([0, 100]).

Example 2.22. [Normal observable]

-
x

y

6
y = 1√

2πσ2
e−

x2

2σ2

σ−σ 2σ−2σ
68.3%
95.4%

Figure 2.4: Error function

Consider a classical basic structure [C0(Ω) ⊆ L∞(Ω, ν) ⊆ B(L2(Ω, ν))]. Here, Ω = R(=

the real line) or, Ω = interval [a, b] (⊆ R), which is assumed to have Lebesgue measure ν(dω)(=
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38 Chapter 2 Axiom 1 — measurement

dω). Let σ > 0, which is call a standard deviation. The normal observable OGσ=(R,BR, Gσ)

in L∞(Ω, ν) is defined by

[Gσ(Ξ)](ω) =
1√

2πσ2

∫
Ξ

e−
(x−ω)2

2σ2 dx (∀Ξ ∈ BR(Borel field),∀ω ∈ Ω(= R or [a, b]))

This is the most fundamental observable in statistics.

The following examples introduced in Example 2.23 and Example 2.24 are not C∗- observ-

ables but W ∗- observables. This implies that the W ∗-algebraic approach is more powerful than

the C∗-algebraic approach. Although the C∗-observable is easy, it is more narrow than the W ∗-

observable. Thus, throughout this note, we mainly devote ourselves to W ∗-algebraic approach.

Example 2.23. [Exact observable ] Consider the classical basic structure: [C0(Ω) ⊆ L∞(Ω, ν) ⊆
B(L2(Ω, ν))]. Let BΩ be the Borel field in Ω, i.e., the smallest σ-field that contains all open

sets. For each Ξ ∈ BΩ, define the definition function χ
Ξ

: Ω→ R such that

χ
Ξ
(ω) =


1 (ω ∈ Ξ)

0 (ω /∈ Ξ)
(2.59)

Put [F (exa)(Ξ)](ω) = χΞ(ω) (Ξ ∈ BΩ, ω ∈ Ω). The triplet O(exa) = (Ω,BΩ, F
(exa)) is called

the exact observable in L∞(Ω, ν). This is the W ∗-observable and not C∗-observable, since

[F (exa)(Ξ)](ω) is not always continuous. For the argument about the sample probability space

(cf. Remark 2.18 ), see Example 2.33.

Example 2.24. [Rounding observable] Define the state space Ω by Ω = [0, 100]. For each

n ∈ N100
10 ={0, 10, 20, . . . , 100}, define the discontinuous function gn : Ω→ [0, 1] such that

gn(ω) =


0 (0 5 ω 5 n− 5)
1 (n− 5 < ω 5 n+ 5)
0 (n+ 5 < ω 5 100)

· · · · · · · · · · · ·

1

0 10 20 30 40 50 60 70 80 90 100

g0 g10 g20 g50 g80 g90 g100

Figure 2.5: Round observable
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Define the observable ORND = (Y (=N100
10 ), 2Y , GRND) in L∞(Ω, ν) such that

[GRND(∅)](ω) = 0, [GRND(Y )](ω) = 1

[GRND(Γ)](ω) =
∑
n∈Γ

gn(ω) (∀Γ ∈ 2Y = 2N100
10 )

Recall that gn is not continuous. Thus, this is not C∗-observable but W ∗-observable.
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2.6 System quantity — The origin of observable

In classical mechanics, the term “observable” usually means the continuous real valued

function on a state space (that is, physical quantity). An observable in measurement theory

(= quantum language ) is characterized as the natural generalization of the physical quantity.

This will be explained in the following examples.

Example 2.25. [System quantity] Let [C0(Ω) ⊆ L∞(Ω, ν) ⊆ B(L2(Ω, ν))] be the classical

basic structure. A continuous real valued function f̃ : Ω → R ( or generally, a measurable

Rn-valued function f̃ : Ω → Rn ) is called a system quantity (or in short, quantity) on Ω.

Define the projective observable O = (R,BR, F ) in L∞(Ω, ν) such that

[F (Ξ)](ω) =


1 when ω ∈ f̃−1(Ξ)

0 when ω /∈ f̃−1(Ξ)

(∀Ξ ∈ BR)

Here, note that

f̃(ω) = lim
N→∞

N2∑
n=−N2

n

N

[
F

(
[
n

N
,
n+ 1

N
)
)]

(ω) =

∫
R
λ[F (dλ)](ω) (2.60)

Thus, we have the following identification:

f̃
(system quantity on Ω)

←→ O = (R,BR, F )
(projective observable in L∞(Ω, ν))

(2.61)

This O is called the observable representation of a system quantity f̃ . Therefore, we say that

(a) An observable in measurement theory is characterized as the natural generalization of the

physical quantity.

Example 2.26. [Position observable , momentum observable , energy observable ] Consider

Newtonian mechanics in the classical basic algebra [C0(Ω) ⊆ L∞(Ω, ν) ⊆ B(L∞(Ω, ν))]. For

simplicity, consider the two dimensional space

Ω = Rq × Rp={(q, p) = (position,momentum) | q, p ∈ R}

The following quantities are fundamental:

(]1) :q̃ : Ω→ R, q̃(q, p) =q (∀(q, p) ∈ Ω)
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2.6 System quantity — The origin of observable 41

(]2) :p̃ : Ω→ R, p̃(q, p) =p (∀(q, p) ∈ Ω)

(]3) :ẽ : Ω→ R, ẽ(q, p) =[potential energy ] + [kinetic energy ]

=U(q) +
p2

2m
(Hamiltonian)

(∀(q, p) ∈ Ω)

where, m is the mass of a particle. Under the identification (2.61), the above (]1), (]2) and (]3)

is respectively called a position observable, a momentum observable and an energy observable.

Example 2.27. [Hermitian matrix is projective observable ] Consider the quantum basic struc-

ture in the case that H = Cn, that is,

[B(Cn) ⊆ B(Cn) ⊆ B(Cn)]

Now, we shall show that an Hermitian matrix A(∈ B(Cn)) can be regarded as a projective

observable. For simplicity, this is shown in the case that n = 3. We see (for simplicity, assume

that xj 6= xk(if j 6= k) )

A = U∗

x1 0 0
0 x2 0
0 0 x3

U (2.62)

where U (∈ B(C3)) is the unitary matrix and xk ∈ R. Put

FA({x1}) = U∗

1 0 0
0 0 0
0 0 0

U, FA({x2}) = U∗

0 0 0
0 1 0
0 0 0

U,

FA({x3}) = U∗

0 0 0
0 0 0
0 0 1

U FA(R \ {x1, x2, x3}) =

0 0 0
0 0 0
0 0 0

 ,

Thus, we get the projective observable OA = (R,BR, FA) in B(C3). Hence, we have the

following identification2:

A
(Hermitian matrix)

←→ OA = (R,BR, FA)
(projective observable )

(2.63)

2 For example, in the case that x1 = x2, it suffices to define

FA({x1}) = U∗

1 0 0
0 1 0
0 0 0

U, FA({x3}) = U∗

0 0 0
0 0 0
0 0 1

U FA(R \ {x1, x3}) =

0 0 0
0 0 0
0 0 1


And, we have the projection observable OA = (R,BR, FA).
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Let A(∈ B(Cn)) be an Hermitian matrix. Under this identification, we have the quantum

measurement MB(Cn)(OA, S[ρ]), where

ρ = |ω〉〈ω|, ω =


ω1

ω2
...
ωn

 ∈ Cn, ‖ω‖ = 1

Born’s quantum measurement theory (or, Axiom 1 (§2.7) ) says that

(]) The probability that a measured value x(∈ R) is obtained by the quantum measurement

MB(Cn)(OA, S[ρ]) is given by Tr(ρ · FA({x})) ( = 〈ω, FA({x})ω〉 ).

(for the trace: “Tr”, recall Definition 2.9).

Therefore, the expectation of a measured value is given by∫
R
x〈ω, FA(dx)ω〉 = 〈ω,Aω〉 (2.64)

Also, its variance (δωA)2 is given by

(δωA)2 =

∫
R
(x− 〈ω,Aω〉)2〈ω, FA(dx)ω〉 = 〈Aω,Aω〉 − |〈ω,Aω〉|2

= ||(A− 〈ω,Aω〉)ω||2 (2.65)

Example 2.28. [Spectrum decomposition] Let H be a Hilbert space. Consider the quantum

basic structure

[C(H) ⊆ B(H) ⊆ B(H)].

The spectral theorem (cf. [69]) asserts the following equivalence: ((a)⇔(b)), that is,

(a) T is a self-adjoint operator on Hilbert space H

(b) There exists a projective observable O = (R,BR, F ) in B(H) such that

T =

∫ ∞
−∞

λF (dλ) (2.66)

Since the definition of “unbounded self-adjoint operator” is not easy, in this note we regard the

(b) as the definition. In the sense of the (b), we consider the identification:

self-adjoint operator T ←→
identification

spectrum decomposition O = (R,BR, F ) (2.67)
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This quantum identification should be compared to the classical identification (2.61).

The above argument can be extended as follows. That is, we have the following equivalence:

((c)⇔(d)), that is,

(c) T1, T2 are commutative self-adjoint operators on Hilbert space H

(b) There exists a projective observable Ô = (R2,BR2 , G) in B(H) such that

T1 =

∫
R2

λ1G(dλ1dλ2), T2 =

∫
R2

λ2G(dλ1dλ2) (2.68)
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44 Chapter 2 Axiom 1 — measurement

2.7 Axiom 1 — There is no science without measure-

ment

Measurement theory (= quantum language ) is formulated as follows.

• measurement theory
(=quantum language)

:=

[Axiom 1]

Measurement
(cf. §2.7)

+

[Axiom 2]

Causality
(cf. §10.3)︸ ︷︷ ︸

a kind of spell(a priori judgment)

+

[quantum linguistic interpretation]

Linguistic interpretation
(cf. §3.1)︸ ︷︷ ︸

manual how to use spells

Now we can explain Axiom 1 (measurement).

2.7.1 Axiom1(measurement)

With any system S, a basic structure [A ⊆ A ⊆ B(H)] can be associated in which measure-

ment theory of that system can be formulated. In a basic structure [A ⊆ A ⊆ B(H)], consider

a W ∗-measurement MA

(
O=(X,F, F ), S[ρ]

) (
or, C∗-measurement MA

(
O=(X,F, F ), S[ρ]

))
.

That is, consider

• a W ∗-measurement MA

(
O, S[ρ]

) (
or, C∗-measurement MA

(
O=(X,F, F ), S[ρ]

) )
of an

observable O=(X,F, F ) for a state ρ(∈ Sp(A∗) : state space)

Note that

(A)

{
W ∗-measurement MA

(
O, S[ρ]

)
· · · O is W ∗- observable , ρ ∈ Sp(A∗)

C∗-measurement MA

(
O, S[ρ]

)
· · · O is C∗- observable , ρ ∈ Sp(A∗)

In this lecture, we mainly devote ourselves to W ∗-measurements.

The following axiom is a kind of generalization (or, a linguistic turn) of Born’s probabilistic

interpretation of quantum mechanics3

That is,

(the law proposed in [6])

quantum mechanics (Born’s quantum measurement )

(physics)

−−−−−−−−→
linguistic turn

(a kind of spell)

measurement theory(Axiom 1)

(metaphysics, language)

(2.69)

3 Ref. [6]: Born, M. “Zur Quantenmechanik der Stoßprozesse (Vorläufige Mitteilung)”, Z. Phys. (37)
pp.863–867 (1926)
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2.7 Axiom 1 — There is no science without measurement 45

(B): Axiom 1(measurement) pure type

(This can be read under the preparation to this section )

With any system S, a basic structure [A ⊆ A]B(H) can be associated in which measurement

theory of that system can be formulated. In [A ⊆ A]B(H), consider a W ∗-measurement

MA

(
O=(X,F, F ), S[ρ]

) (
or, C∗-measurementMA

(
O=(X,F, F ), S[ρ]

) )
. That is, consider

• a W ∗-measurement MA

(
O, S[ρ]

) (
or, C∗-measurement MA

(
O=(X,F, F ), S[ρ]

) )
of

an observable O=(X,F, F ) for a state ρ(∈ Sp(A∗) : state space)

Then, the probability that a measured value x (∈ X) obtained by the W ∗-measurement

MA

(
O, S[ρ]

) (
or, C∗-measurement MA

(
O=(X,F, F ), S[ρ]

) )
belongs to Ξ (∈ F) is given by

ρ(F (Ξ))(≡ A∗(ρ, F (Ξ))A)

(if F (Ξ) is essentially continuous at ρ, or see (2.56) in Remark 2.18 ).

2.7.2 A simplest example

Now we shall describe Example1.2 ( Cold or hot?) in terms of quantum language (i.e.,
Axiom 1 ).

Example 2.29. [(continued from Example1.2) The measurement of “cold or hot” for water in a
cup ] Consider the classical basic structure:

[C0(Ω) ⊆ L∞(Ω, ν) ⊆ B(L2(Ω, ν))]

Here, Ω = the closed interval [0, 100](⊂ R) with Lebesgue measure ν. The state space
Sp(C0(Ω)∗) is characterized as

Sp(C0(Ω)∗) = {δω ∈M(Ω) | ω ∈ Ω} ≈ Ω = [0, 100]

1
fc fh

0℃ 10℃ 20℃ 30℃ 40℃ 50℃ 60℃ 70℃ 80℃ 90℃ 100℃

Figure 2.6: Cold? Hot?

In Example 1.2, we consider this [C-H]-thermometer O = (fc, fh), where the state space Ω =
[0, 100], the measured value space X = {c, h}. That is,
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46 Chapter 2 Axiom 1 — measurement

fc(ω) =


1 (0 5 ω 5 10)
70−ω
60

(10 5 ω 5 70)
0 (70 5 ω 5 100)

, fh(ω) = 1− fc(ω)

Then, we have the (cold-hot) observable Och = (X, 2X , Fch) in L∞(Ω) such that

[Fch(∅)](ω) = 0, [Fch(X)](ω) = 1

[Fch({c})](ω) = fc(ω), [Fch({h})](ω) = fh(ω)

Thus, we get a measurement ML∞(Ω)(Och, S[δω ]) ( or in short, ML∞(Ω)(Och, S[ω]). Therefore,
for example, putting ω = 55 ◦C, we can, by Axiom 1 (§2.7), represent the statement (A1) in
Example 1.2 as follows.

(a) the probability that a measured valuex(∈ X={c, h}) obtained by measurement

ML∞(Ω)(Och, S[ω(=55)]) belongs to set


∅
{c}
{h}
{c, h}

 is given by


[Fch(∅)](55) = 0
[Fch({c})](55) = 0.25
[Fch({h})](55) = 0.75
[Fch({c, h})](55) = 1


Or more precisely,

(b) When an observer takes a measurement by [[C-H]-instrument]
measuring instrumentOch=(X,2X ,Fch)

for [water in cup]
(system(measuring object))

with [55 ◦C]
(state(= ω ∈ Ω) )

, the probability that measured value

[
c
h

]
is obtained is given by

[
fc(55) = 0.25
fh(55) = 0.75

]
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2.8 Classical simple examples (urn problem, etc.)

2.8.1 linguistic world-view — Wonder of man’s linguistic compe-
tence

The applied scope of physics physics (realistic world-description method) is rather clear.

But the applied scope of measurement theory is ambiguous.

What we can do in measurement theory (= quantum language) is

(a)


(a1): Use the language defined by Axiom 1 ( §2.7)

(a2): Trust in man’s linguistic competence

Thus, some readers may doubt that

(b) Is it science?

However, it should be noted that the spirit of measurement theory is different from that of

physics.

2.8.2 Elementary examples—urn problem, etc.

Since measurement theory is a language, we can not master it without exercise. Thus, we

present simple examples in what follows.

Example 2.30. [Urn problem] There are two urns U1 and U2. The urn U1 [resp. U2] contains

8 white and 2 black balls [resp. 4 white and 6 black balls] (cf. Table 2.2, Figure 2.7).

Table 2.2: urn problem

Urn� w·b white ball black ball

Urn U1 8 2

Urn U2 4 6

Here, consider the following statement (a):

(a) When one ball is picked up from the urn U2, the probability that the ball is white is 0.4.

In measurement theory, the statement (a) is formulated as follows: Assuming

U1 · · · “the urn with the state ω1”
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48 Chapter 2 Axiom 1 — measurement

ω1 ω2

Figure 2.7: Urn problem

U2 · · · “the urn with the state ω2”

define the state space Ω by Ω = {ω1, ω2} with the discrete metric and the counting measure ν

(i.e., ν({ω1}) = ν({ω2}) = 1). That is, we assume the identification;

U1 ≈ ω1, U2 ≈ ω2,

Thus, consider the classical basic structure:

[C0(Ω) ⊆ L∞(Ω, ν) ⊆ B(L2(Ω, ν))]

Put “w” = “white”, “b” = “black”, and put X = {w, b}. And define the observable O
(
≡ (X ≡

{w, b}, 2{w,b}, F )
)

in L∞(Ω) by

[F ({w})](ω1) = 0.8, [F ({b})](ω1) = 0.2,

[F ({w})](ω2) = 0.4, [F ({b})](ω2) = 0.6.

Thus, we get the measurement ML∞(Ω)(O, S[δω2 ]
). Here, Axiom 1 ( §2.7) says that

(b) the probability that a measured value w is obtained by ML∞(Ω)(O, S[δω2 ]
) is given by

F ({b})(ω2) = 0.4

Therefore, we see:

statement (a)
(ordinary language)

−−−−−−→
translation

statement (b)
(quantum language)

(2.70)

Remark 2.31. [L∞(Ω, ν), or in short, L∞(Ω)] In the above example, the counting measure ν

(i.e., ν({ω1}) = ν({ω2}) = 1) is not absolutely indispensable. For example, even if we assume

that ν({ω1}) = 2 and ν({ω2}) = 1/3, we can assert the same conclusion. Thus, in this note,

L∞(Ω, ν) is often abbreviated to L∞(Ω).
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♠Note 2.3. The statement (a) in Example 2.30 is not necessarily guaranteed, that is,

When one ball is picked up from the urn U2, the probability that the ball is white is 0.4.

is not guaranteed. What we say is that

the statement (a) in ordinary language should be written by the measurement theoretical
statement (b)

It is a matter of course that “probability” can not be derived from mathematics itself. For
example, the following (]1) and (]2) are not guaranteed.

(]1) From the set {1, 2, 3, 4, 5}, choose one number. Then, the probability that the number is
even is given by 2/5

(]2) From the closed interval [0, 1], choose one number x. Then, the probability that x ∈ [a, b] ⊆
[0, 1] is given by |b− a|

The common sense — “probability” can not be derived from mathematics itself — is well known
as Bertrand’s paradox (cf. §9.11). Thus, it is usual to add the term “at random” to the above
(]1) and (]2). In this note, this term “at random” is usually omitted.

Example 2.32. [ The measurement of the approximate temperature of water in a cup (continued

from Example2.21 [triangle observable ])] Consider the classical basic structure:

[C0(Ω) ⊆ L∞(Ω, ν) ⊆ B(L2(Ω, ν))]

where Ω = “the closed interval [0, 100]” with the Lebesgue measure ν.

Let testees drink water with various temperature ω ◦C (0 5 ω 5 100). And you ask them

“How many degrees( ◦C) is roughly this water?” Gather the data, ( for example, hn(ω) persons

say n ◦C (n = 0, 10, 20, . . . , 90, 100). and normalize them, that is, get the polygonal lines.

For example, define the state space Ω by the closed interval [0, 100] (⊆ R) with the Lebesgue

measure. For each n ∈ N100
10 = {0, 10, 20, . . . , 100}, define the (triangle) continuous function

gn : Ω→ [0, 1] by

gn(ω) =



0 (0 5 ω 5 n− 10)
ω − n− 10

10
(n− 10 5 ω 5 n)

−ω − n+ 10

10
(n 5 ω 5 n+ 10)

0 (n+ 10 5 ω 5 100)

(a) You choose one person from the testees, and you ask him/her “How many degrees( ◦C) is

roughly this water?”. Then the probability that he/she says

[
“about 40 ◦C”
“about 50 ◦C”

]
is given

by

[
g40(47) = 0.25
f50(47) = 0.75

]
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1

0 10 20 30 40 50 60 70 80 90 100

g0 g10 g20 g30 g40 g50 g60 g70 g80 g90 g100

Figure 2.8: Triangle observable

This is described in terms of Axiom 1 ( §2.7) in what follows.

Putting Y = N100
10 , define the triangle observable O4 = (Y, 2Y , G4) in L∞(Ω) such that

[G4(∅)](ω) = 0, [G4(Y )](ω) = 1

[G4(Γ)](ω) =
∑
n∈Γ

gn(ω) (∀Γ ∈ 2N100
10 ,∀ω ∈ Ω = [0, 100])

Then, we have the triangle observable O4 = (Y (= N100
10 ), 2Y , G4) in L∞([0, 100]). And we get

a measurement ML∞(Ω)(O
4, S[δω ]). For example, putting ω=47 ◦C, we see, by Axiom 1 ( §2.7),

that

(b) the probability that a measured value obtained by the measurement ML∞(Ω)(O
4, S[ω(=47)])

is

[
about 40 ◦C
about 50 ◦C

]
is given by

[
[G4({40})](47) = 0.3
[G4({50})](47) = 0.7

]
Therefore, we see:

statement (a)
(ordinary language)

−−−−−−→
translation

statement (b)
(quantum language)

(2.71)

///

Example 2.33. [Exact measurement] Consider the classical basic structure:

[C0(Ω) ⊆ L∞(Ω, ν) ⊆ B(L2(Ω, ν))]

Let BΩ be the Borel field. Then, define the exact observable O(exa) = (X(= Ω),F(= BΩ), F (exa))

in L∞(Ω, ν) such that

[F (exa)(Ξ)](ω) = χ
Ξ
(ω) =


1 (ω ∈ Ξ)

0 (ω /∈ Ξ)
(∀Ξ ∈ BΩ)

Let δω0 ≈ ω0(∈ Ω). Consider the exact measurement ML∞(Ω,ν)(O
(exa), S[δω0 ]

). Here, Axiom 1 (

§2.7) says:

KSTS/RR-15/001 
January 22, 2015



2.8 Classical simple examples (urn problem, etc.) 51

(a) Let D(⊆ Ω) be arbitrary open set such that ω0 ∈ D. Then, the probability that a

measured value obtained by the exact measurement ML∞(Ω,ν)(O
(exa), S[δω0 ]

) belongs to D

is given by

C0(Ω)∗

(
δω0 , χD

)
L∞(Ω,ν) = 1

From the arbitrariness of D, we conclude that

(b) a measured value ω0 is, with the probability 1, obtained by the exact measurement

ML∞(Ω,ν) (O(exa), S[δω0 ]
).

Further, put

Fω0 = {Ξ ∈ F : ω0 /∈ “the closure of Ξ”\ “the interior of Ξ”}

Then, when Ξ ∈ Fω0 , F (Ξ) is continuous at ω0. And, F is the smallest σ-field that contains

Fω0 . Therefore, we have the probability space (X,F, Pδω0 ) such that

Pδω0 (Ξ) = [F (Ξ)](ω0) (∀Ξ ∈ Fω0)

that is,

(c) the exact measurement ML∞(Ω,ν)(O
(exa), S[δω0 ]

) has the sample space (X,F, Pδω0 ) (= (Ω,

BΩ, Pδω0 ))

Example 2.34. [Blood type system] The ABO blood group system is the most important

blood type system (or blood group system) in human blood transfusion. Let U1 be the whole

Japanese’s set and let U2 be the whole Indian’s set. Also, assume that the distribution of the

ABO blood group system [O:A:B:AB] concerning Japanese and Indians is determined in (Table

2.3).

Table 2.3: The ratio of the ABO blood group system

J or I�ABO blood group O A B AB

Japanese U1 30% 40% 20% 10%

Indian U2 30% 20% 40% 10%

Consider the following phenomenon:

(a) Choose one person from the the whole Indian’s set U2 at random. Then the probability

that the person’s blood type is


O
A
B
AB

 is given by


0.3
0.2
0.4
0.1
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In what follows, we shall translate the statement (a) described in ordinary language to

quantum language. Put Ω = {ω1, ω2} and consider the discrete metric (Ω, dD). We get consider

the classical basic structure:

[C0(Ω) ⊆ L∞(Ω, ν) ⊆ B(L2(Ω, ν))]

Therefore, the pure state space is defined by

Sp(C0(Ω)∗) = {δω1 , δω2}

Here, consider

δω1 · · · “the state of the whole Japanese’s set U1(i.e., population)”4

δω2 · · · “the state of the whole India’s set U1(i.e., population)”,

That is, we consider the following identification: (Therefore, image Figure 2.9):

U1 ≈ δω1 , U2 ≈ δω2

U1≈δω1 U2≈δω2

Japanese

[3:4:2:1]

Indian

[3:2:4:1]

Figure 2.9: Population(=system)≈urn

Define the blood type observable OBT = ({O,A,B,AB}, 2{O,A,B,AB}, FBT) in L∞(Ω, ν) such

that

[FBT({O})](ω1) = 0.3, [FBT({A})](ω1) = 0.4

[FBT({B})](ω1) = 0.2, [FBT({AB})](ω1) = 0.1 (2.72)

and,

[FBT({O})](ω2) = 0.3, [FBT({A})](ω2) = 0.2

[FBT({B})](ω2) = 0.4, [FBT({AB})](ω2) = 0.1 (2.73)

Thus we get the measurement ML∞(Ω,ν)(OBT, S[δω2 ]
). Hence, the above (a) is translated to the

following statement (in terms of quantum language):

4 Note that “population” = “system” (cf. Table 2.1 ).
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(b) The probability that a measured value


O
A
B
AB

 is obtained by the measurement

ML∞(Ω,ν)(OBT, S[δω2 ]
) is given by

C0(Ω)∗

(
δω2 , FBT({O})

)
L∞(Ω,ν) = [FBT({O})](ω2) = 0.3

C0(Ω)∗

(
δω2 , FBT({A})

)
L∞(Ω,ν) = [FBT({A})](ω2) = 0.2

C0(Ω)∗

(
δω2 , FBT({B})

)
L∞(Ω,ν) = [FBT({B})](ω2) = 0.4

C0(Ω)∗

(
δω2 , FBT({AB})

)
L∞(Ω,ν) = [FBT({AB})](ω2) = 0.1



♠Note 2.4. Readers may feel that Example 2.30–Example 2.34 are too easy. However, as men-
tioned in (a) of Sec. 2.8.1, what we can do is

•


to be faithful to Axioms

to trust in Man’s linguistic competence

If some find the other language that is more powerful than quantum language, it will be praised
as the greatest discovery in the history of science. That is because this discovery is regarded as
beyond the discovery of quantum mechanics.
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2.9 Simple quantum examples (Stern=Gerlach experi-

ment )

2.9.1 Stern=Gerlach experiment

Example 2.35. [Quantum measurement( Schtern–Gerlach experiment (1922))]

Assume that we examine the beam (of silver particles(or simply, electrons) after passing

through the magnetic field. Then, as seen in the following figure, we see that all particles are

deflected either equally upwards or equally downwards in a 50:50 ratio. See Figure 2.10.

S

N

electron e

state ω =

[
α1

α2

]
[↑]

U©

[↓] D©

Screen

Figure 2.10: Stern–Gerlach experiment (1922)

Consider the two dimensional Hilbert space H = C2, And therefore, we get the non-

commutative basic algebra B(H), that is, the algebra composed of all 2 × 2 matrices. Thus,

we have the quantum basic structure:

[C(H) ⊆ B(H) ⊆ B(H)] = [B(C2) ⊆ B(C2) ⊆ B(C2)]

since the dimension of H is finite.

The spin state of an electron P is represented by ρ(= |ω〉〈ω|), where ω ∈ C2 such that

‖ω‖ = 1. Put ω =

[
α1

α2

]
( where, ||ω||2 = |α1|2 + |α2|2 = 1 ).

Define Oz ≡ (Z, 2Z , Fz), the spin observable concerning the z-axis, such that, Z = {↑, ↓}
and

Fz({↑}) =

[
1 0
0 0

]
, Fz({↓}) =

[
0 0
0 1

]
, (2.74)

Fz(∅) =

[
0 0
0 0

]
, Fz({↑, ↓}) =

[
1 0
0 1

]
.
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Here, Born’s quantum measurement theory (the probabilistic interpretation of quantum

mechanics) says that

(]) When a quantum measurementMB(C2)(O, S[ρ]) is taken, the probability that

a measured value

[
↑
↓

]
is obtained is given by

 〈ω, F z({↑})ω〉 = |α1|2

〈ω, F z({↓})ω〉 = |α2|2



That is, putting ω (=

[
α1

α2

]
, we says that

When the electron with a spin state state ρ progresses in a magnetic field,

the probability that the Geiger counter

[
U©
D©

]
sounds

is give by


[
α1 α2

] [1 0
0 0

] [
α1

α2

]
= |α1|2

[
α1 α2

] [0 0
0 1

] [
α1

α2

]
= |α2|2


Also, we can define Ox ≡ (X, 2X , F x), the spin observable concerning the x-axis, such that,

X = {↑x, ↓x} and

F x({↑x}) =

[
1/2 1/2
1/2 1/2

]
, F x({↓x}) =

[
1/2 −1/2
−1/2 1/2

]
. (2.75)

And furthermore, we can define Oy ≡ (Y, 2Y , F y), the spin observable concerning the y-axis,

such that, Y = {↑y, ↓y} and

F y({↑y}) =

[
1/2 i/2
−i/2 1/2

]
, F y({↓y}) =

[
1/2 −i/2
i/2 1/2

]
, (2.76)

where i =
√
−1.

Here, putting

Ŝx = Fx({↑})− Fx({↓}), Ŝy = Fy({↑})− Fy({↓}), Ŝz = Fz({↑})− Fz({↓})

we have the following commutation relation:

ŜyŜz − ŜzŜy = 2iŜx, ŜzŜx − ŜxŜz = 2iŜy, ŜxŜy − ŜyŜx = 2iŜz (2.77)
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56 Chapter 2 Axiom 1 — measurement

2.10 de Broglie paradox in B(C2)

Axiom 1(measurement) includes the paradox ( that is, so called de Broglie paradox “there

is something faster than light”). In what follows, we shall explain de Broglie paradox in B(C2),

though the original idea is mentioned in B(L2(R)) (cf. §11.2, and refs.[12, 63]). Also, it should

be noted that the argument below is essentially the same as the Stern=Gerlach experiment.

Example 2.36. [de Broglie paradox in B(C2) ] Let H be a two dimensional Hilbert space,

i.e., H = C2. Consider the quantum basic structure:

[B(C2) ⊆ B(C2) ⊆ B(C2)]

Now consider the situation in the following Figure 2.11.

D2(= (|f2〉〈f2|))
(photon detector)

D1(= (|f1〉〈f1|))
(photon detector)

u= 1√
2
(f1+f2)

−−−−−−−−→
1√
2
f1

?

√
−1√
2
f2

-

half mirror 1

course1

course2

photon P

Figure 2.11: [D2 +D1] = observable O

Let us explain this figure in what follows. Let f1, f2 ∈ H such that

f1 =

[
1
0

]
∈ C2, f2 =

[
0
1

]
∈ C2

Put

u =
f1 + f2√

2

Thus, we have the state ρ = |u〉〈u| (∈ Sp(B(C2))).

Let U(∈ B(C2)) be an unitary operator such that

U =

[
1 0
0 eiπ/2

]
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2.10 de Broglie paradox in B(C2) 57

and let Φ : B(C2)→ B(C2) be the homomorphism such that

Φ(F ) = U∗FU (∀F ∈ B(C2))

Consider the observable Of = ({1, 2}, 2{1,2}, F ) in B(C2) such that

F ({1}) = |f1〉〈f1|, F ({2}) = |f2〉〈f2|

and thus, define the observable ΦOf = ({1, 2}, 2{1,2},ΦF ) by

ΦF (Ξ) = U∗F (Ξ)U (∀Ξ ⊆ {1, 2})

Let us explain Figure 2.11. The photon P with the state u = 1√
2
(f1 + f2) ( precisely, |u〉〈u| )

rushed into the half-mirror 1

(A1) the f1 part in u passes through the half-mirror 1, and goes along the course 1 to the

photon detector D1.

(A2) the f2 part in u rebounds on the half-mirror 1 (and strictly saying, the f2 changes to
√
−1f2, we are not concerned with it ), and goes along the course 2 to the photon detector

D2.

Thus, we have the measurement:

MB(C2)(ΦOf , S[ρ]) (2.78)

And thus, we see:

(B) The probability that a

[
measured value 1
measured value 2

]
is obtained by the measurement MB(C2)(ΦOf , S[ρ])

is given by[
Tr(ρ · ΦF ({1}))
Tr(ρ · ΦF ({2}))

]
=

[
〈u,ΦF ({1})u〉
〈u,ΦF ({2})u〉

]
=

[
〈Uu, F ({1})Uu〉
〈Uu, F ({2})Uu〉

]
=

[
|〈u, f1〉|2
|〈u, f2〉|2

]
=

[
1
2
1
2

]
This is easy, but it is deep in the following sense.

(C) Assume that

Detector D1 and Detector D2 are very far.

And assume that the photon P is discovered at the detector D1. Then, we are troubled if

the photon P is also discovered at the detector D2. Thus, in order to avoid this difficulty,

the photon P (discovered at the detector D1) has to eliminate the wave function
√
−1√
2
f2

in an instant. In this sense, the (B) implies that

there may be something faster than light
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58 Chapter 2 Axiom 1 — measurement

This is the de Broglie paradox (cf. [12, 63]). From the view point of quantum language, we

give up to solve the paradox, that is, we declare that

Stop to be bothered!

(Also, see [56]).

♠Note 2.5. The de Broglie paradox (i.e., there may be something faster than light ) always
appears in quantum mechanics. For example, the readers should confirm that it appears in
Example 2.35 (Schtern-Gerlach experiment). I think that

• the de Broglie paradox is the only paradox in quantum mechanics
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Chapter 3

The linguistic interpretation

Measurement theory (= quantum language ) is formulated as follows.

• measurement theory
(=quantum language)

:=

[Axiom 1]

Measurement
(cf. §2.7)

+

[Axiom 2]

Causality
(cf. §10.3)︸ ︷︷ ︸

a kind of spell(a priori judgment)

+

[quantum linguistic interpretation]

Linguistic interpretation
(cf. §3.1)︸ ︷︷ ︸

manual how to use spells

Measurement theory says that

• Describe every phenomenon modeled on Axioms 1 and 2 (by a hint of the linguistic inter-
pretation)!

Since we dealt with simple examples in the previous chapter, we did not need the linguistic
interpretation. In this chapter, we study several a little difficult problems under the linguistic
interpretation.

3.1 The linguistic interpretation

3.1.1 The review of Axiom 1 ( measurement: §2.7)

In the previous chapter, we introduced Axiom 1 (measurement ) as follows.

59
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60 Chapter 3 The linguistic interpretation

(A): Axiom 1(measurement) pure type

(cf. It was able to read under the preparation to §2.7) )

With any system S, a basic structure [A ⊆ A]B(H) can be associated in which measurement

theory of that system can be formulated. In [A ⊆ A]B(H), consider a W ∗-measurement

MA

(
O=(X,F, F ), S[ρ]

) (
or, C∗-measurementMA

(
O=(X,F, F ), S[ρ]

) )
. That is, consider

• a W ∗-measurement MA

(
O, S[ρ]

) (
or, C∗-measurement MA

(
O=(X,F, F ), S[ρ]

) )
of

an observable O=(X,F, F ) for a state ρ(∈ Sp(A∗) : state space)

Then, the probability that a measured value x (∈ X) obtained by the W ∗-measurement

MA

(
O, S[ρ]

) (
or, C∗-measurement MA

(
O=(X,F, F ), S[ρ]

) )
belongs to Ξ (∈ F) is given by

ρ(F (Ξ))(≡ A∗(ρ, F (Ξ))A)

(if F (Ξ) is essentially continuous at ρ, or see (2.56) in Remark 2.18 ).

Here, note that

(B1) the above axiom is a kind of spell (i.e., incantation, magic words, metaphysical
statement), and thus, it is impossible to verify them experimentally.

In this sense, the above axiom corresponds to “a priori synthetic judgment” in Kant’s philosophy
(cf. [49]). And thus, we say:

(B2) After we learn the spell (= Axiom 1) by rote, we have to exercise and lesson the spell (=
Axiom 1). Since quantum language is a language, it may be unable to use well at first.

It will make progress gradually, while applying a trial-and-error method.

However,

(C1) if we would like to make speed of acquisition of a quantum language as quick as possible,
we may want the good manual how to use the axioms.

Here, we think that

(C2) the linguistic interpretation
= the manual how to use the spells (Axiom 1 and 2)

3.1.2 Descartes figure (in the linguistic interpretation)

In what follows, let us explain the linguistic interpretation.
The concept of “measurement” can be, for the first time, understood in dualism. Let us

explain it. The image of “measurement” is as shown in Figure 3.1.
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3.1 The linguistic interpretation 61

•

observer
(I(=mind))

system
(matter)

�
-

[observable]
[measured value]

a©interfere

b©perceive a reaction

[state]

Figure 3.1:[Descartes Figure]:The image of “measurement(= a©+ b©)” in dualism

In the above,

(D1) a©: it suffices to understand that “interfere” is, for example, “apply light”.
b©: perceive the reaction.

That is, “measurement” is characterized as the interaction between “observer” and “measuring
object”. However,

(D2) In measurement theory, “interaction” must not be emphasized.

Therefore, in order to avoid confusion, it might better to omit the interaction “ a© and b©”
in Figure 3.1.

After all, we think that:

(D3) It is clear that there is no measured value without observer (i.e., brain). Thus, we consider
that measurement theory is composed of three key-words:

measured value
(observer,brain, mind)

, observable (= measuring instrument )

(thermometer, eye, ear, body, polar star (cf. Note 3.1 later))

, state
(matter)

,

(3.1)

and thus, it might be called “trialism” (and not “dualism”). But, according to the custom,
it is called “dualism” in this note.

3.1.3 The linguistic interpretation [(E1)-(E7)]

The linguistic interpretation is “the manual how to sue Axiom 1 and 2”. Thus, there are
various explanations for the linguistic interpretations. However, it is usual to consider that the
linguistic interpretation is characterized as the following (E). And the most important is

Only one measurement is permitted
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(E):The linguistic interpretation (=quantum language interpretation)

With Descartes figure 3.1 (and (E1)-(E7)) in mind,
describe every phenomenon in terms of Axioms 1 and 2

(E1) Consider the dualism composed of “observer” and “system( =measuring object)”. And
therefore, “observer” and “system” must be absolutely separated. If it says for a
metaphor, we say “Audience should not be up to the stage”.

(E2) Of course, “matter(=measuring object)” has the space-time. On the other hand, the
observer does not have the space-time. Thus, the question: “When and where is a
measured value obtained?” is out of measurement theory, Thus, there is no tense in
measurement theory. This implies that there is no tense in science.

(E3) In measurement theory, “interaction” must not be emphasized.

(E4) Only one measurement is permitted. Thus, the state after measurement
(or, the influence of measurement) is meaningless.

(E5) There is no probability without measurement.

(E6) State never moves,

and so on.
Also, since our assertion is

quantum language is the final goal of dualistic idealism (=“Descartes=Kant
philosophy”)

(cf. 8© in Figure 1.1), we have to assert that

(E7) Many of maxims of the philosophers (particularly, the dualistic idealism )
can be regarded as a part of the linguistic interpretation.

Some may think that the (E7) is unbelievable. However,

(F) Since the purpose of philosophies and that of quantum language are the same, that is,
the non-realistic world view, it is natural to consider that

maxims of philosophers ≈ the linguistic interpretation
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Recall the following figure:

Figure 3.1. [=Figure 1.1:The location of quantum language in the history of world-description]

Parmenides
Socrates

0©:Greek
philosophy

Plato
Aristotle

Schola-−−−−→
sticism

1©

−−→
(monism)

Newton
(realism)

2©
→

relativity
theory −−−−−−→ 3©

→
quantum
mechanics −−−−−−→ 4©

−→

(dualism)

Descartes
Locke,...
Kant
(idealism)

6©−→

(linguistic view)

linguistic
philosophy

language−−−−−→ 8©

language−−−−−−→ 7©


5©−→

(unsolved)

theory of
everything

(quantum phys.)


10©−→

(=MT)

quantum
language
(language)

Figure 1.1: The history of the world-view

statistics
system theory

language−−−−−→ 9©

the linguistic view

the realistic view

In the above, we regard

[ 0© −→ 1© −→ 6© −→ 8© −→ 10©] (3.2)

as a genealogy of the dualistic idealism. Talking cynically, we say that

• Philosophers continued investigating “linguistic interpretation” (=“how to use Axioms 1
and 2”) without Axioms 1 and 2.

For example, “Only one measurement is permitted” and “State never moves” may be related
to Parmenides’ words;

There are no “plurality”, but only “one”.

And therefore, there is no movement.
(3.3)

Thus, we want to assert that Parmenides (born around BC. 515) is the oldest discoverer of the
linguistic interpretation. Also, we propose the following table:
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Table 3.1: Trialism (i.e., dualism ) in world-views (cf. Table 2.1)

Quantum language measured value observable
state

(system)

Plato / idea (cf. Note 3.1) /

Aristotle / /
edios
(hyle)

Thomas Aquinas universale post rem universale ante rem
/

(universale in re)

Descartes I, mind, brain body (cf. Note 3.1)
/

(matter)

Locke / secondary quality
primary quality

(/)

Newton / /
state

(point mass)

statistics sample space /
parameter

(population)

quantum mechanics measured value observable
state

(particle)

♠Note 3.1. In the above table, Newtonian mechanics may be the most understandable. We regard
“Plato idea” as “absolute standard”. And, we want to understand that Newton is similar to
Aristotle, since their assertions belong to the realistic world view(cf. Figure 1.1). Also, recall the
formula (3.1), that is, “observable”=“measuring instrument”=“body”. Thus, as the examples
of “observable”, we think:

eyes, ears, glasses, telescope, compass, etc.

If “compass” is accepted, “the polar star” should be also accepted as the example of the ob-
servable. In the same sense, “the jet stream to an airplane” is a kind of observable (cf. Section
8.1 (pp.129-135) in [37] ). Also, if it is certain that Descartes is the first discoverer of “I”, I
have to retract our understanding of Scholasticism in Table 3.1. Although I have no confidence
about Scholasticism, the discover of three words (“post rem”, “ante rem”, “in re”) should be
remarkable.
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3.2 Tensor operator algebra

3.2.1 Tensor Hilbert space

The linguistic interpretation (§3.1) says

“Only one measurement is permitted”

which implies “only one measuring object” or “only one state”. Thus, if there are several states,

these should be regarded as “only one state”. In order to do it, we have to prepare “tensor

operator algebra”. That is,

(A) “several states”
combine several into one−−−−−−−−−−−−−−→

by tensor operator algebra
“one state”

In what follows, we shall introduce the tensor operator algebra.

Let H,K be Hilbert spaces. We shall define the tensor Hilbert space H ⊗ K as follows.
Let {em | m ∈ N ≡ {1, 2, . . .}} be the CONS (i.e, complete orthonormal system ) in H. And,
let {fn | n ∈ N ≡ {1, 2, . . .}} be the CONS in K. For each (m,n) ∈ N2, consider the symbol
“em ⊗ fn”. Here, consider the following “space”:

H ⊗K =
{
g =

∑
(m,n)∈N2

αm,nem ⊗ fn
∣∣∣ ||g||H⊗K ≡ [

∑
(m,n)∈N2

|αm,m|2]1/2 <∞
}

(3.4)

Also, the inner product 〈·, ·〉H⊗K is represented by

〈em1 ⊗ fn1 , em2 ⊗ fn2〉H⊗K ≡ 〈em1 , em2〉H · 〈fn1 , fn2〉K

=

{
1 (m1, n1) = (m2, n2)
0 (m1, n1) 6= (m2, n2)

(3.5)

Thus, summing up, we say

(B) the tensor Hilbert space H ⊗K is defined by the Hilbert space with the CONS {em ⊗
fn | (m,n) ∈ N2}.

For example, for any e =
∑∞

m=1 αmem ∈ H and any f =
∑∞

n=1 βnfm ∈ H, the tensor e ⊗ f is
defined by

e⊗ f =
∑

(m,n)∈N2

αmβn(em ⊗ fn)

Also, the tensor norm ||û||H⊗K (û ∈ H ⊗K) is defined by

||û||H⊗K = |〈û, û〉H⊗K |1/2
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Example 3.2. [Simple example:tensor Hilbert space C2⊗C3] Consider the 2-dimensional Hilbert
space H = C2 and the 3-dimensional Hilbert space K = C3. Now we shall define the tensor
Hilbert space H ⊗K = C2 ⊗ C3 as follows.

Consider the CONS {e1, e2} in H such as

e1 =

[
1
0

]
, e2 =

[
0
1

]
And, consider the CONS {f1.f2, f3} in K such as

f1 =

1
0
0

 , f2 =

0
1
0

 , f2 =

0
0
1


Therefore, the tensor Hilbert space H ⊗K = C2 ⊗ C3 has the CONS such as

e1 ⊗ f1 =

[
1
0

]
⊗

10
0

 , e1 ⊗ f2 =

[
1
0

]
⊗

01
0

 , e1 ⊗ f3 =

[
1
0

]
⊗

00
1

 ,

e2 ⊗ f1 =

[
0
1

]
⊗

10
0

 , e2 ⊗ f2 =

[
0
1

]
⊗

01
0

 , e2 ⊗ f3 =

[
0
1

]
⊗

00
1


Thus, we see that

H ⊗K = C2 ⊗ C3 = C6

That is because the CONS {ei ⊗ fj | i = 1, 2, 3, j = 1, 2} in H ⊗ K can be regarded as
{gk | k = 1, 2, ..., 6} such that

g1 = e1 ⊗ f1 =



1
0
0
0
0
0

 , g2 = e1 ⊗ f2 =



0
1
0
0
0
0

 , g3 = e1 ⊗ f3 =



0
0
1
0
0
0

 ,

g4 = e2 ⊗ f1 =



0
0
0
1
0
0

 , g5 = e2 ⊗ f2 =



0
0
0
0
1
0

 , g6 = e2 ⊗ f3 =



0
0
0
0
0
1


This Example 3.2 can be easily generalized as follows.

Theorem 3.3. [Finite tensor Hilbert space ]

Cm1 ⊗ Cm2 ⊗ · · · ⊗ ⊗Cmn = C
∑n
k=1mk (3.6)
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Theorem 3.4. [Concrete tensor Hilbert space ]

L2(Ω1, ν1)⊗ L2(Ω2, ν2) = L2(Ω1 × Ω2, ν1 ⊗ ν2) (3.7)

where, ν1 ⊗ ν2 is the product measure.

Definition 3.5. [Infinite tensor Hilbert space ] Let H1, H2, ..., Hk, ... be Hilbert spaces. Then,
the infinite tensor Hilbert space

⊗∞
k=1Hk can be defined as follows. For each k(∈ N), consider

the CONS {ejk}∞j=1 in a Hilbert space Hk. For any map b : N→ N, define the symbol
⊗∞

k=1 e
b(k)
k

such that

∞⊗
k=1

e
b(k)
k = e

b(1)
1 ⊗ eb(2)2 ⊗ eb(3)3 ⊗ · · ·

Then, we have:

{ ∞⊗
k=1

e
b(k)
k

∣∣∣ b : N→ N is a map
}

(3.8)

Hence we can define the infinite Hilbert space
⊗∞

k=1Hk such that it has the CONS (3.8).

3.2.2 Tensor basic structure

For each continuous linear operators F ∈ B(H), G ∈ B(K), the tensor operator F ⊗ G
∈ B(H ⊗K) is defined by

(F ⊗G)(e⊗ f) = Fe⊗Gf (∀e ∈ H, f ∈ K)

Definition 3.6. [Tensor C∗-algebra and Tensor W ∗-algebra ] Consider basic structures

[A1 ⊆ A1 ⊆ B(H1)] and [A2 ⊆ A2 ⊆ B(H2)]

[I]: The tensor C∗-algebra A1 ⊗A2 is defined by the smallest C∗-algebra Â such that

{F ⊗G (∈ B(H1 ⊗H2)) | F ∈ A1, G ∈ A2} ⊆ Â ⊆ B(H1 ⊗H2)

[II]: The tensor W ∗-algebra A1 ⊗A2 is defined by the smallest W ∗-algebra Ã such that

{F ⊗G (∈ B(H1 ⊗H2)) | F ∈ A1, G ∈ A2} ⊆ Ã ⊆ B(H1 ⊗H2)

Here, note that A1 ⊗A2 = A1 ⊗A2.
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Theorem 3.7. [Tensor basic structure ] [I]: Consider basic structures

[A1 ⊆ A1 ⊆ B(H1)] and [A2 ⊆ A2 ⊆ B(H2)]

Then, we have the tensor basic structure:

[A1 ⊗A2 ⊆ A1 ⊗A2 ⊆ B(H1 ⊗H2)]

[II]: Consider quantum basic structures [C(H1) ⊆ B(H1) ⊆ B(H1)] and [C(H2) ⊆ B(H2) ⊆
B(H2)]. Then, we have tensor quantum basic structure:

[C(H1) ⊆ B(H1) ⊆ B(H1)]⊗ [C(H2) ⊆ B(H2) ⊆ B(H2)]

=[C(H1 ⊗H2) ⊆ B(H1 ⊗H2) ⊆ B(H1 ⊗H2)]

[III]: Consider classical basic structures [C0(Ω1) ⊆ L∞(Ω1, ν1) ⊆ B(L2(Ω1, ν1))] and [C0(Ω2) ⊆
L∞(Ω2, ν2) ⊆ B(L2(Ω2 ν2))]. Then, we have tensor classical basic structure:

[C0(Ω1) ⊆ L∞(Ω1 ⊆ ν1) ⊆ B(L2(Ω1, ν1))]⊗ [C0(Ω2) ⊆ L∞(Ω2 ⊆ ν2) ⊆ B(L2(Ω2, ν2))]

=[C0(Ω1 × Ω2) ⊆ L∞(Ω1 × Ω2, ν1 ⊗ ν2) ⊆ B(L2(Ω1 × Ω2, ν1 ⊗ ν2))]

Theorem 3.8. The
⊗∞

k=1B(Hk) (⊆ B(
⊗∞

k=1Hk)) is defined by the smallest C∗-algebra that
contains

F1 ⊗ F2 ⊗ · · · ⊗ Fn ⊗ I ⊗ I ⊗ · · ·
(
∈ B(

∞⊗
k=1

Hk)
)

(∀Fk ∈ B(Hk), k = 1, 2, ..., n, n = 1, 2, ...)

Then, it holds that

∞⊗
k=1

B(Hk) = B(
∞⊗
k=1

Hk) (3.9)

Theorem 3.9. The followings hold:

(i) : ρk ∈ A∗k =⇒
n⊗
k=1

ρk ∈ (
n⊗
k=1

Ak)
∗

(ii) : ρk ∈ Sm(A∗k) =⇒
n⊗
k=1

ρk ∈ Sm((
n⊗
k=1

Ak)
∗)

(iii) : ρk ∈ Sp(A∗k) =⇒
n⊗
k=1

ρk ∈ Sp((
n⊗
k=1

Ak)
∗)

♠Note 3.2. The theory of operator algebra is a deep mathematical theory. However, in this note,
we do not use more than the above preparation.
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3.3 The linguistic interpretation — Only one measurement is permitted 69

3.3 The linguistic interpretation — Only one measure-

ment is permitted

In this section, we examine the linguistic interpretation (§3.1), i.e., “Only one measurement
is permitted”. “Only one measurement” implies that “only one observable” and “only one
state”. That is, we see:

[only one measurement] =⇒


only one observable (=measuring instrument)

only one state
(3.10)

♠Note 3.3. Although there may be several opinions, I believe that the standard Copenhagen
interpretation also says “only one measurement is permitted”. Thus, some think that this spirit
is inherited to quantum language. However, our assertion is reverse, namely, the Copenhagen
interpretation is due to the linguistics interpretation. That is, we assert that

not “ Copenhagen interpretation =⇒ Linguistic interpretation ”

but “ Linguistic interpretation =⇒ Copenhagen interpretation ”

3.3.1 “Observable is only one” and simultaneous measurement

Recall the measurement Example 2.29 (Cold or hot?) and Example 2.32 (Approximate
temperature), and consider the following situation:

(a) There is a cup in which water is filled. Assume that the temperature is ω ◦C (0 5 ω 5 100).
Consider two questions:

“Is this water cold or hot?”

“How many degrees( ◦C) is roughly the water?”

This implies that we take two measurements such that
(]1): ML∞(Ω)(Och=({c, h}, 2{c,h}, Fch), S[ω]) in Example2.29

(]2) : ML∞(Ω) (O4 =(N100
10 , 2N100

10 , G4), S[ω]) in Example2.32

ML∞(Ω)(Och, S[ω]) ML∞(Ω) (O4, S[ω])
ω ◦C
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However, as mentioned in the linguistic interpretation,

“only one measurement” =⇒“only one observable”

Thus, we have the following problem.

Problem 3.10. Represent two measurements ML∞(Ω)(Och=({c, h}, 2{c,h}, Fch), S[ω]) and

ML∞(Ω)(O
4=(N100

10 , 2N100
10 , G4), S[ω]) by only one measurement.

This will be answered in what follows.

Definition 3.11. [Product measurable space] For each k = 1, 2, . . . , n, consider a measurable
(Xk, Fk). The product space×n

k=1Xk of Xk (k = 1, 2, . . . , n) is defined by

n

×
k=1

Xk = {(x1, x2, . . . , xn) | xk ∈ Xk (k = 1, 2, . . . , n)}

Similarly, define the product×n
k=1 Ξk of Ξk(∈ Fk) (k = 1, 2, . . . , n) by

n

×
k=1

Ξk = {(x1, x2, . . . , xn) | xk ∈ Ξk (k = 1, 2, . . . , n)}

Further, the σ-field � n
k=1Fk on the product space×n

k=1Xk is defined by

(]) � n
k=1Fk is the smallest field including {×n

k=1 Ξk | Ξk ∈ Fk (k = 1, 2, . . . , n)}

(×n
k=1Xk, � n

k=1Fk) is called the product measurable space. Also, in the case that (X,F) =
(Xk,Fk) (k = 1, 2, . . . , n), the product space ×n

k=1Xk is denoted by Xn, and the product
measurable space (×n

k=1Xk, � n
k=1Fk) is denoted by (Xn,Fn).

Definition 3.12. [Simultaneous observable , simultaneous measurement] Consider the basic
structure [A ⊆ A ⊆ B(H)]. Let ρ ∈ Sp(A∗). For each k = 1, 2, . . . , n, consider a measurement
MA (Ok = (Xk,Fk, Fk), S[ρ]) in A. Let (×n

k=1Xk, � n
k=1Fk) be the product measurable space.

An observable Ô = (×k∈K Xk, � n
k=1Fk, F̂ ) in A is called the simultaneous observable of

{Ok : k = 1, 2, ..., n}, if it satisfies the following condition:

F̂ (Ξ1 × Ξ2 × · · · × Ξn) = F1(Ξ1) · F2(Ξ2) · · ·Fn(Ξn) (3.11)

( ∀Ξk ∈ Fk (k = 1, 2, . . . , n))

Ô is also denoted by ×n
k=1Ok, F̂ = ×n

k=1 Fk. Also, the measurement MA(×n
k=1Ok, S[ρ]) is

called the simultaneous measurement. Here, it should be noted that

• the existence of the simultaneous observable×n
k=1Ok is not always guaranteed.

though it always exists in the case that A is commutative (this is, A = L∞(Ω)).
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3.3 The linguistic interpretation — Only one measurement is permitted 71

In what follows, we shall explain the meaning of “simultaneous observable”.

Let us explain the simultaneous measurement. We want to take two measurements MA(O1,
S[ρ]) and measurement MA(O2, S[ρ]). That is, it suffices to image the following:

(b) state
ρ(∈Sp(A∗))

−−−−−→

−→ observable
O1=(X1,F1,F1)

−−−−−−−→
M

A
(O1,S[ρ])

measured value
x1(∈X1)

−→ observable
O2=(X2,F2,F2)

−−−−−−−→
M

A
(O2,S[ρ])

measured value
x2(∈X2)

However, according to the linguistic interpretation (§3.1), two measurements MA(O1, S[ρ]) and
MA(O2, S[ρ]) can not be taken. That is,

The (b) is impossible

Therefore, combining two observables O1 and O2, we construct the simultaneous observable
O1 × O2, and take the simultaneous measurement MA(O1 × O2, S[ρ]) in what follows.

(c) state
ρ(∈Sp(A∗))

−−−−−−−→ simultaneous observable
O1×O2

−−−−−−−−−→
M

A
(O1×O2,S[ρ])

measured value
(x1,x2)(∈X1×X2)

The (c) is possible if O1 × O2 exists

Answer 3.13. [The answer to Problem3.10] Consider the state space Ω such that Ω =
[0, 100], the closed interval. And consider two observables, that is, [C-H]-observable Och =
(X={c, h}, 2X , Fch) (in Example2.29) and triangle observable O4 = (Y (=N100

10 ), 2Y , G4) (in Ex-
ample2.32). Thus, we get the simultaneous observable Och×O4 = ({c, h}×N100

10 , 2
{c,h}×N100

10 , Fch×
G4), and we can take the simultaneous measurement ML∞(Ω)(Och × O4, S[ω]). For example,
putting ω = 55, we see

(d) when the simultaneous measurement ML∞(Ω)(Och × O4, S[55]) is taken, the probability

that the measured value


(c, about 50 ◦C)
(c, about 60 ◦C)
(h, about 50 ◦C)
(h, about 60 ◦C)

 is obtained is given by


0.125
0.125
0.375
0.375

 (3.12)

That is because

[(Fch ×G4)({(c, about 50 ◦C)})](55)
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=[Fch({c})](55) · [G4({about 50 ◦C})](55) = 0.25 · 0.5 = 0.125

and similarly,

[(Fch ×G4)({(c, about 60 ◦C)})](55) = 0.25 · 0.5 = 0.125

[(Fch ×G4)({(h, about 50 ◦C)})](55) = 0.75 · 0.5 = 0.375

[(Fch ×G4)({(h, about 60 ◦C)})](55) = 0.75 · 0.5 = 0.375

♠Note 3.4. The above argument is not always possible. In quantum mechanics, a simultaneous
observable O1 × O2 does not always exist (See the following Example 3.14 and Heisenberg’s
uncertainty principle in Sec.4.5).

Example 3.14. [The non-existence of the simultaneous spin observables] Assume that the
electron P has the (spin) state ρ = |u〉〈u| ∈ Sp(B(C2)), where

u =

[
α1

α2

]
(where, |u| = (|α1|2 + |α2|2)1/2 = 1)

Let Oz = (X(= {↑, ↓}), 2X , F z) be the spin observable concerning the z-axis such that

F z({↑}) =

[
1 0
0 0

]
, F z({↓}) =

[
0 0
0 1

]
Thus, we have the measurement MB(C2)(Oz = (X, 2X , F z), S[ρ]).

Let Ox = (X, 2X , F x) be the spin observable concerning the x-axis such that

F x({↑}) =

[
1/2 1/2
1/2 1/2

]
, F x({↓}) =

[
1/2 −1/2
−1/2 1/2

]
Thus, we have the measurement MB(C2)(Ox = (X, 2X , F x), S[ρ])

Then we have the following problem:

(a) Two measurements MB(C2)(Oz = (X, 2X , F z), S[ρ]) and MB(C2)(Ox = (X, 2X , F x), S[ρ]) are
taken simultaneously?

This is impossible. That is because the two observable Oz and Ox do not commute. For
example, we see

F z({↑})F x({↑}) =

[
1 0
0 0

]
·
[
1/2 1/2
1/2 1/2

]
=

[
1/2 1/2
0 0

]

F x({↑})F z({↑}) =

[
1/2 1/2
1/2 1/2

]
·
[
1 0
0 0

]
=

[
1/2 0
1/2 0

]
And thus,

F x({↑})F z({↑}) 6= F z({↑})F x({↑})

///
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The following theorem is clear. For completeness, we add the proof to it.

Theorem 3.15. [Exact measurement and system quantity] Consider the classical basic struc-
ture:

[C0(Ω) ⊆ L∞(Ω, ν) ⊆ B(L2(Ω, ν))]

Let O
(exa)
0 = (X,F, F (exa)) (i.e., (X,F, F (exa)) = (Ω,BΩ, χ) ) be the exact observable in

L∞(Ω, ν). Let O1 = (R,BR, G) be the observable that is induced by a quantity g̃ : Ω→ R as in

Example 2.25(system quantity). Consider the simultaneous observable O
(exa)
0 ×O1. Let (x, y)

(∈ X×R) be a measured value obtained by the simultaneous measurement ML∞(Ω,ν)(O
(exa)
0 ×O1,

S[δω ]). Then, we can surely believe that x = ω, and y = g̃(ω).

Proof. Let D0(∈ BΩ) be arbitrary open set such that ω(∈ D0 ⊆ Ω=X). Also, let D1(∈ BR)
be arbitrary open set such that g̃(ω) ∈ D1. The probability that a measured value (x, y)

obtained by the measurement ML∞(Ω,ν)(O
(exa)
0 ×O1, S[δω ]) belongs to D0×D1 is given by χ

D0
(ω)·

χ
g̃−1(D1)

(ω) = 1. Since D0 and D1 are arbitrary, we can surely believe that x = ω and y =

g̃(ω).

3.3.2 “State does not move” and quasi-product observable

We consider that

“only one measurement” =⇒“state does not move”

That is because

(a) In order to see the state movement, we have to take measurement at least more than
twice. However, the “plural measurement” is prohibited. Thus, we conclude “state does
not move”

Review 3.16. [= Example 2.30:urn problem] There are two urns U1 and U2. The urn U1 [resp.
U2] contains 8 white and 2 black balls [resp. 4 white and 6 black balls] (cf. Figure 3.2).

Table 3.2: urn problem

Urn� w·b white ball black ball

Urn U1 8 2

Urn U2 4 6

Here, consider the following statement (a):

(a) When one ball is picked up from the urn U2, the probability that the ball is white is 0.4.
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ω1(≈ U1) ω2(≈ U2)

Figure 3.2: Urn problem

In measurement theory, the statement (a) is formulated as follows: Assuming

U1 · · · “the urn with the state ω1”

U2 · · · “the urn with the state ω2”

define the state space Ω by Ω = {ω1, ω2} with discrete metric and counting measure ν. That
is, we assume the identification;

U1 ≈ ω1, U2 ≈ ω2,

Thus, consider the classical basic structure:

[C0(Ω) ⊆ L∞(Ω, ν) ⊆ B(L2(Ω, ν))]

Put “w” = “white”, “b” = “black”, and put X = {w, b}. And define the observable Owb

(
≡

(X ≡ {w, b}, 2{w,b}, Fwb)
)

in L∞(Ω) by

[Fwb({w})](ω1) = 0.8, [Fwb({b})](ω1) = 0.2,

[Fwb({w})](ω2) = 0.4, [Fwb({b})](ω2) = 0.6. (3.13)

Thus, we get the measurement ML∞(Ω)(Owb, S[δω2 ]
). Here, Axiom 1 ( §2.7) says that

(b) the probability that a measured value w is obtained by ML∞(Ω)(Owb, S[δω2 ]
) is given by

Fwb({b})(ω2) = 0.4

Thus, the above statement (b) can be rewritten in the terms of quantum language as follows.

(c) the probability that a measured value

[
w
b

]
is obtained by the measurement ML∞(Ω)(Owb,

S[ω2]) is given by[ ∫
Ω

[Fwb({w})](ω)δω2(dω) = [Fwb({w})](ω2) = 0.4∫
Ω

[Fwb({b})](ω)δω2(dω) = [Fwb({b})](ω2) = 0.6

]

Problem 3.17. (a) [Sampling with replacement]: Pick out one ball from the urn U2, and
recognize the color (“white” or “black”) of the ball. And the ball is returned to the
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3.3 The linguistic interpretation — Only one measurement is permitted 75

urn. And again, Pick out one ball from the urn U2, and recognize the color of the ball.
Therefore, we have four possibilities such that.

(w,w) (w, b) (b, w) (b, b)

It is a common sense that

the probability that


(w,w)
(w, b)
(b, w)
(b, b)

 is given by


0.16
0.24
0.24
0.36


Now, we have the following problem:

(a) How do we describe the above fact in term of quantum language?

Answer Is suffices to consider the simultaneous measurement ML∞(Ω)(O
2
wb, S[δω2 ]

) (=

ML∞(Ω)(Owb×Owb, S[δω2 ]
) ), where O2

wb = ({w, b} × {w, b}, 2{w,b}×{w,b}, F 2
wb(= Fwb × Fwb)).

The, we calculate as follows.

F 2
wb({(w,w)})(ω1) = 0.64, F 2

wb({(w, b)})(ω1) = 0.16

F 2
wb({(b, w)})(ω1) = 0.16, F 2

wb({(b, b)})(ω1) = 0.4

and

F 2
wb({(w,w)})(ω2) = 0.16, F 2

wb({(w, b)})(ω2) = 0.24

F 2
wb({(b, w)})(ω2) = 0.24, F 2

wb({(b, b)})(ω2) = 0.36

Thus, we conclude that

(b) the probability that a measured value


(w,w)
(w, b)
(b, w)
(b, b)

 is obtained by ML∞(Ω)(Owb×Owb, S[δω2 ]
)

is given by


[Fwb({w})](ω2) · [Fwb({w})](ω2) = 0.16
[Fwb({w})](ω2) · [Fwb({b})](ω2) = 0.24
[Fwb({b})](ω2) · [Fwb({w})](ω2) = 0.24
[Fwb({b})](ω2) · [Fwb({b})](ω2) = 0.36



Problem 3.18. (a) [Sampling without replacement]: Pick out one ball from the urn U2, and
recognize the color (“white” or “black”) of the ball. And the ball is not returned to
the urn. And again, Pick out one ball from the urn U2, and recognize the color of the
ball. Therefore, we have four possibilities such that.

(w,w) (w, b) (b, w) (b, b)
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It is a common sense that

the probability that


(w,w)
(w, b)
(b, w)
(b, b)

 is given by


12/90
24/90
24/90
30/90


Now, we have the following problem:

(a) How do we describe the above fact in term of quantum language?

Now, recall the simultaneous observable (Definition3.12) as follows. Let Ok = (Xk, Fk, Fk)

(k = 1, 2, . . . , n ) be observables in A. The simultaneous observable Ô = (×n
k=1Xk, � n

k=1Fk,

F̂ ) is defined by

F̂ (Ξ1 × Ξ2 × · · · × Ξn) = F1(Ξ1)F2(Ξ2) · · ·Fn(Ξn)

(∀Ξk ∈ Fk, ∀k = 1, 2, . . . , n)

The following definition (“quasi-product observable”) is a kind of simultaneous observable:

Definition 3.19. [quasi-product observable ] Let Ok = (Xk, Fk, Fk) (k = 1, 2, . . . , n ) be
observables in a W ∗-algebra A. Assume that an observable O12...n = (×n

k=1Xk, � n
k=1Fk,

F12...n) satisfies

F12...n(X1 × · · · ×Xk−1 × Ξk ×Xk+1 × · · · ×Xn) = Fk(Ξk) (3.14)

(∀Ξk ∈ Fk, ∀k = 1, 2, . . . , n)

The observable O12...n = (×n
k=1Xk, � n

k=1Fk, F12...n) is called a quasi-product observable
of {Ok | k = 1, 2, . . . , n}, and denoted by

qp

×××××××××
k=1,2,...,n

Ok = (
n

×
k=1

Xk, � n
k=1Fk,

qp

×××××××××
k=1,2,...,n

Fk)

Of course, a simultaneous observable is a kind of quasi-product observable. Therefore, quasi-
product observable is not uniquely determined. Also, in quantum systems, the existence of the
quasi-product observable is not always guaranteed.

Answer 3.20. [The answer to Problem 3.17] Define the quasi-product observable Owb

qp

×××××××××Owb =

({w, b} × {w, b}, 2{w,b}×{w,b}, F12(= Fwb
qp

×××××××××Fwb)) of Owb = ({w, b}, 2{w,b}, F ) in L∞(Ω) such that

F12({(w,w)})(ω1) =
8× 7

90
, F12({(w, b)})(ω1) =

8× 2

90

F12({(b, w)})(ω1) =
2× 8

90
, F12({(b, b)})(ω1) =

2× 1

90

F12({(w,w)})(ω2) =
4× 3

90
, F12({(w, b)})(ω2) =

4× 6

90
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F12({(b, w)})(ω2) =
6× 4

90
, F12({(b, b)})(ω2) =

6× 5

90

Thus, we have the (quasi-product) measurement ML∞(Ω)(O12, S[ω])
Therefore, in terms of quantum language, we describe as follows.

(b) the probability that a measured value


(w,w)
(w, b)
(b, w)
(b, b)

 is obtained dy ML∞(Ω)(Owb

qp

×××××××××Owb, S[δω2 ]
)

is given by



[F12({(w,w)})](ω2) = 4×3
90

[F12({(w, b)})](ω2) = 4×6
90

[F12({(b, w)})](ω2) = 4×6
90

[F12({(b, b)})](ω2) = 6×5
90



3.3.3 Only one state and parallel measurement

For example, consider the following situation:

(a) There are two cups A1 and A2 in which water is filled. Assume that the temperature of

the water in the cup Ak (k = 1, 2) is ωk
◦C (0 5 ωk 5 100). Consider two questions “Is

the water in the cup A1 cold or hot?” and “How many degrees( ◦C) is roughly the water

in the cup A2?”. This implies that we take two measurements such that
(]1): ML∞(Ω)(Och=({c, h}, 2{c,h}, Fch), S[ω1]) in Example2.29

(]2) : ML∞(Ω) (O4 =(N100
10 , 2N100

10 , G4), S[ω2]) in Example2.32

ML∞(Ω)(Och, S[ω1])
ω1
◦C

A1

ML∞(Ω) (O4, S[ω2])
ω2
◦C

A2

However, as mentioned in the above,

“only one state” must be demanded.

Thus, we have the following problem.
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Problem 3.21. Represent two measurements ML∞(Ω)(Och=({c, h}, 2{c,h}, Fch), S[ω1]) and

ML∞(Ω)(O
4 =(N100

10 , 2N100
10 , G4), S[ω2]) by only one measurement.

This will be answered in what follows.

Definition 3.22. [Parallel observable] For each k = 1, 2, . . . , n, consider a basic structure

[Ak ⊆ Ak ⊆ B(Hk)], and an observable Ok = (Xk,Fk, Fk) in Ak. Define the observable

Õ = (×n
k=1Xk, � n

k=1Fk, F̃ ) in
⊗n

k=1Ak such that

F̃ (Ξ1 × Ξ2 × · · · × Ξn) = F1(Ξ1)⊗ F2(Ξ2)⊗ · · · ⊗ Fn(Ξn) (3.15)

∀Ξk ∈ Fk (k = 1, 2, . . . , n)

Then, the observable Õ = (×n
k=1Xk, � n

k=1Fk, F̃ ) is called the parallel observable in
⊗n

k=1Ak,

and denoted by F̃ =
⊗n

k=1 Fk, Õ =
⊗n

k=1Ok. the measurement of the parallel observable Õ =⊗n
k=1Ok, that is, the measurement M⊗n

k=1 Ak
(Õ, S[

⊗n
k=1 ρk]

) is called a parallel measurement,

and denoted by M⊗n
k=1 Ak

(
⊗n

k=1Ok, S[
⊗n
k=1 ρk]

) or
⊗n

k=1MAk
(Ok, S[ρk]).

The meaning of the parallel measurement is as follows.

Our present purpose is

• to take both measurements MA1
(O1, S[ρ1]) and MA2

(O2, S[ρ2])

Then. image the following:

(b)


state

ρ1(∈Sp(A∗
1))

−−−−−−−→ observable
O1

−−−−−−−−→
M

A1
(O1,S[ρ1]

)
measured value

x1(∈X1)

state
ρ2(∈Sp(A∗

2))

−−−−−−−→ observable
O2

−−−−−−−−→
M

A2
(O2,S[ρ2]

)
measured value

x2(∈X2)

However, according to the linguistic interpretation (§3.1), two measurements can not be taken.
Hence,

The (b) is impossible

Thus, two states ρ1 and ρ1 are regarded as one state ρ1⊗ρ2, and further, combining two
observables O1 and O2, we construct the parallel observable O1 ⊗ O2, and take the parallel
measurement MA1⊗A2

(O1 ⊗ O2, S[ρ1⊗ρ2]) in what follows.

(c) state
ρ1⊗ρ2(∈Sp(A∗

1)⊗Sp(A∗
2))

−→ parallel observable
O1⊗O2

−−−−−−−−−−−−−−−→
M

A1⊗A2
(O1⊗O2,S[ρ1⊗ρ2])

measured value
(x1,x2)(∈X1×X2)
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The (c) is always possible

Example 3.23. [The answer to Problem 3.21 ] Put Ω1 = Ω2 = [0, 100], and define the

state space Ω1 × Ω2. And consider two observables, that is, the [C-H]-observable Och =

(X={c, h}, 2X , Fch) in C(Ω1) (in Example2.29) and triangle-observable O4 = (Y (=N100
10 ), 2Y , G4)

in L∞(Ω2) (in Example2.32). Thus, we get the parallel observable Och ⊗ O4 = ({c, h} ×
N100

10 , 2
{c,h}×N100

10 , Fch ⊗ G4) in L∞(Ω1 × Ω2), take the parallel measurement ML∞(Ω1×Ω2)(Och ⊗
O4, S[(ω1,ω2)]). Here, note that

δω1 ⊗ δω2 = δ(ω1,ω2) ≈ (ω1, ω2).

For example, putting (ω1, ω2) = (25, 55), we see the following.

(d) When the parallel measurement ML∞(Ω1×Ω2)(Och ⊗O4, S[(25,55)]) is taken, the probability

that the measured value


(c, about 50 ◦C)
(c, about 60 ◦C)
(h, about 50 ◦C)
(h, about 60 ◦C)

 is obtained is given by


0.375
0.375
0.125
0.125


That is because

[(Fch ⊗G4)({(c, about 50 ◦C)})](25, 55)

=[Fch({c})](25) · [G4({about 50 ◦C})](55) = 0.75 · 0.5 = 0.375

Thus, similarly,

[(Fch ⊗G4)({(c, about 60 ◦C)})](25, 55) = 0.75 · 0.5 = 0.375

[(Fch ⊗G4)({(h, about 50 ◦C)})](25, 55) = 0.25 · 0.5 = 0.125

[(Fch ⊗G4)({(h, about 60 ◦C)})](25, 55) = 0.25 · 0.5 = 0.125

Remark 3.24. Also, for example, putting (ω1, ω2) = (55, 55), we see:

(e) the probability that a measured value


(c, about 50 ◦C)
(c, about 60 ◦C)
(h, about 50 ◦C)
(h, about 60 ◦C)

 is obtained by parallel mea-

surement ML∞(Ω1×Ω2)(Och ⊗ O4, S[(55,55)]) is given by


0.125
0.125
0.375
0.375
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That is because, we similarly, see
[Fch({c})](55) · [G4({about 50 ◦C})](55) = 0.25 · 0.5 = 0.125
[Fch({c})](55) · [G4({about 60 ◦C})](55) = 0.25 · 0.5 = 0.125
[Fch({h})](55) · [G4({about 50 ◦C})](55) = 0.75 · 0.5 = 0.375
[Fch({h})](55) · [G4({about 60 ◦C})](55) = 0.75 · 0.5 = 0.375

(3.16)

Note that this is the same as Answer 3.13 (cf. Note 3.5 later).

The following theorem is clear. But, the assertion is significant.

Theorem 3.25. [Ergodic property] For each k = 1, 2, · · · , n, consider a measurement

ML∞(Ω)(Ok(:= (Xk,Fk, Fk)), S[δω ]) with the sample probability space (Xk,Fk, P
ω
k ). Then, the

sample probability spaces of the simultaneous measurement ML∞(Ω)(×n
k=1Ok, S[δω ]) and the

parallel measurement ML∞(Ωn) (
⊗n

k=1Ok, S[⊗nk=1δω ]
) are the same, that is, these are the same

as the product probability space

(
n

×
k=1

Xk, � n
k=1Fk,

n⊗
k=1

P ω
k ) (3.17)

Proof. It is clear, and thus we omit the proof. ( Also, see Note 3.5 later.)

Example 3.26. [The parallel measurement is always meaningful in both classical and quantum

systems ] The electron P1 has the (spin) state ρ1 = |u1〉〈u1| ∈ Sp(B(C2)) such that

u1 =

[
α1

β1

]
(where, ‖u1‖ = (|α1|2 + |β1|2)1/2 = 1)

Let Oz = (X(= {↑, ↓}), 2X , F z) be the spin observable concerning the z-axis such that

F z({↑}) =

[
1 0
0 0

]
, F z({↓}) =

[
0 0
0 1

]
Thus, we have the measurement MB(C2)(Oz = (X, 2X , F z), S[ρ1]).

The electron P2 has the (spin) state ρ2 = |u2〉〈u2| ∈ Sp(B(C2)) such that

u =

[
α2

β2

]
(where, ‖u2‖ = (|α2|2 + |β2|2)1/2 = 1)

Let Ox = (X, 2X , F x) be the spin observable concerning the x-axis such that

F x({↑}) =

[
1/2 1/2
1/2 1/2

]
, F x({↓}) =

[
1/2 −1/2
−1/2 1/2

]
Thus, we have the measurement MB(C2)(Ox = (X, 2X , F x), S[ρ2])

Then we have the following problem:
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3.3 The linguistic interpretation — Only one measurement is permitted 81

(a) Two measurements MB(C2)(Oz = (X, 2X , F z), S[ρ1]) and MB(C2)(Ox = (X, 2X , F x), S[ρ2])

are taken simultaneously?

This is possible. It can be realized by the parallel measurement

MB(C2)⊗B(C2)(Oz ⊗ Oz = (X ×X, 2X×X , F z ⊗ F x), S[ρ⊗ρ])

That is,

(b) The probability that a measured value


(↑, ↑)
(↑, ↓)
(↓, ↑)
(↓, ↓)

 is obtained by the parallel measurement

MB(C2)⊗B(C2)(Oz ⊗ Oz, S[ρ⊗ρ]) is given by
〈u, F z({↑})u〉〈u, F x({↑})u〉 = p1p2
〈u, F z({↑})u〉〈u, F x({↓})u〉 = p1(1− p2)
〈u, F z({↓})u〉〈u, F x({↑})u〉 = (1− p1)p2
〈u, F z({↓})u〉〈u, F x({↓})u〉 = (1− p1)(1− p2)



where p1 = |α1|2, p2 = 1
2
(|α1|2 + α̂1α2 + α1α̂2 + |α2|2)

♠Note 3.5. Theorem 3.25 is rather deep in the following sense. For example, “To toss a coin
10 times” is a simultaneous measurement. On the other hand, “To toss 10 coins once” is
characterized as a parallel measurement. The two have the same sample space. That is,

“spatial average” = “time average”

which is called the ergodic property. This means that the two are not distinguished by
the sample space and not the measurements (i.e., a simultaneous measurement and a parallel
measurement). However, this is peculiar to classical pure measurements. It does not hold in
classical mixed measurements and quantum measurement.
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Chapter 4

Linguistic interpretation (chiefly,
quantum system)

Measurement theory (= quantum language ) is formulated as follows.

• measurement theory
(=quantum language)

:=

[Axiom 1]

Measurement
(cf. §2.7)

+

[Axiom 2]

Causality
(cf. §10.3)︸ ︷︷ ︸

a kind of spell(a priori judgment)

+

[quantum linguistic interpretation]

Linguistic interpretation
(cf. §3.1)︸ ︷︷ ︸

manual how to use spells

Measurement theory says that

• Describe every phenomenon modeled on Axioms 1 and 2 (by a hint of the linguistic inter-
pretation)!

In this chapter, we devote ourselves to the linguistic interpretation (§3.1) for general (or, quan-
tum) systems.

4.1 Parmenides and Kolmogorov

4.1.1 Kolmogorov’s extension theorem and the linguistic interpre-
tation

Kolmogorov’s probability theory (cf. [50] ) starts from the following spell:

(]) Let (X,F, P ) be a probability space. Then, the probability that a event Ξ (∈ F) happens

is given by P (Ξ)

And, through trial and error, Kolmogorov found his extension theorem, which says that

(]) “Only one probability space is permitted”

which surely corresponds to

83
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84 Chapter 4 Linguistic interpretation (chiefly, quantum system)

(]) “Only one measurement is permitted” in the linguistic interpre-

tation (§3.1)

Therefore, we want to say that

(]) Parmenides (born around BC. 515) and Kolmogorov (1903-1987) said about the same

thing

(cf. Parmenides’ words (3.3)).

4.2 Kolmogorov’s extension theorem in quantum lan-

guage

Let Λ̂ be a set (called an index set). For each λ ∈ Λ̂, consider a set Xλ. For any subsets

Λ1 ⊆ Λ2( ⊆ Λ̂), πΛ1,Λ2 is the natural map such that:

πΛ1,Λ2 : ×
λ∈Λ2

Xλ −→ ×
λ∈Λ1

Xλ. (4.1)

Especially, put πΛ = πΛ,Λ̂. Consider the basic structure

[A ⊆ A ⊆ B(H)]

For each λ ∈ Λ̂, consider an observable (Xλ,Fλ, Fλ) in A. Note that the quasi-product ob-

servable O ≡ (×λ∈Λ̂Xλ, ×λ∈Λ̂Fλ, FΛ̂) of { (Xλ,Fλ, Fλ) | λ ∈ Λ̂ } is characterized as the

observable such that:

FΛ̂(π−1{λ}(Ξλ)) = Fλ(Ξλ) (∀Ξλ ∈ Fλ, ∀λ ∈ Λ̂), (4.2)

though the existence and the uniqueness of a quasi-product observable are not guaranteed in

general. The following theorem says something about the existence and uniqueness of the

quasi-product observable.

Let Λ̃ be a set. For each λ ∈ Λ̃, consider a set Xλ. For any subset Λ1 ⊆ Λ2( ⊆ Λ̃), define

the natural map πΛ1,Λ2 :×λ∈Λ2
Xλ −→×λ∈Λ1

Xλ by

×
λ∈Λ2

Xλ 3 (xλ)λ∈Λ2 7→ (xλ)λ∈Λ1 ∈ ×
λ∈Λ1

Xλ (4.3)

The following theorem guarantees the existence and uniqueness of the observable. It should

be noted that this is due to the the linguistic interpretation (§3.1), i.e., “only one measurement

is permitted”.
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Theorem 4.1. [ Kolmogorov extension theorem in measurement theory ( cf. [26, 28] ) ] Consider

the basic structure

[A ⊆ A ⊆ B(H)]

For each λ ∈ Λ̂, consider a Borel measurable space (Xλ,Fλ), where Xλ is a separable complete

metric space. Define the set P0(Λ̂) such as P0(Λ̂) ≡ {Λ ⊆ Λ̂ | Λ is finite }. Assume that the

family of the observables
{
OΛ ≡ (×λ∈ΛXλ,×λ∈Λ Fλ, FΛ ) | Λ ∈ P0(Λ̂)

}
in A satisfies the

following “consistency condition”:

• for any Λ1, Λ2 ∈ P0(Λ̂) such that Λ1 ⊆ Λ2,

FΛ2

(
π−1Λ1,Λ2

(ΞΛ1)
)

= FΛ1

(
ΞΛ1

)
(∀ΞΛ1 ∈ ×

λ∈Λ1

Fλ). (4.4)

Then, there uniquely exists the observable ÕΛ̂ ≡
(×λ∈Λ̂Xλ,×λ∈Λ̂ Fλ, F̃Λ̂

)
in A such that:

F̃Λ̂

(
π−1Λ (ΞΛ)

)
= FΛ

(
ΞΛ

)
(∀ΞΛ ∈ ×

λ∈Λ
Fλ, ∀Λ ∈ P0(Λ̂)).

Proof. For the proof, see refs.[26, 28].

Corollary 4.2. [Infinite simultaneous observable ] Consider the basic structure

[A ⊆ A ⊆ B(H)]

Let Λ̃ be a set. For each λ ∈ Λ̃, assume that Xλ is a separable complete metric space, Fλ is

its Borel field. For each λ ∈ Λ̃, consider an observable Oλ = (Xλ,Fλ, Fλ) in A such that it

satisfies the commutativity condition, that is,

Fk1(Ξk1)Fk2(Ξk2) = Fk2(Ξk2)Fk1(Ξk1) (∀Ξk1 ∈ Fk1 , ∀Ξk2 ∈ Fk2 , k1 6= k2) (4.5)

Then, a simultaneous observable Ô = (×λ∈Λ̃Xλ, � λ∈Λ̃Fλ, F̂=×λ∈Λ̃ Fλ) uniquely exists. That

is, for any finite set Λ0(⊆ Λ̃), it holds that

F̂
(
(×
λ∈Λ0

Ξλ)× ( ×
λ∈Λ̃\Λ0

Xλ)
)

= ×
λ∈Λ0

Fλ(Ξλ) (∀Ξλ ∈ Fλ, ∀λ ∈ Λ0)

Proof. The proof is a direct consequence of Theorem 4.1. Thus, it is omitted.
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4.3 The law of large numbers in quantum language

4.3.1 The sample space of infinite parallel measurement
⊗∞

k=1MA(O =
(X,F, F ), S[ρ])

Consider the basic structure

[A ⊆ A ⊆ B(H)](
that is, [C(H) ⊆ B(H) ⊆ B(H)], or [C0(Ω) ⊆ L∞(Ω, ν) ⊆ B(L2(Ω, ν))]

)
and measurement MA(O = (X,F, F ), S[ρ]), which has the sample probability space (X,F, Pρ)

Note that the existence of the infinite parallel observable Õ (=
⊗∞

k=1O) = (XN, �∞
k=1F,

F̃ (=
⊗∞

k=1 F )) in an infinite tensor W ∗-algebra
⊗∞

k=1A is assured by Kolmogorov’s extension

theorem (Corollary4.2).

For completeness, let us calculate the sample probability space of the parallel measurement

M⊗∞
k=1 A

(Õ, S[
⊗∞
k=1 ρ]

) in both cases (i.e., quantum case and classical case):

[I]: quantum system: The quantum infinite tensor basic structure is defined by

[C(⊗∞k=1H) ⊆ B(⊗∞k=1H) ⊆ B(⊗∞k=1H)]

Therefore, infinite tensor state space is characterized by

Sp(Tr(⊗∞k=1H)) ⊂ Sm(Tr(⊗∞k=1H)) = S
m

(Tr(⊗∞k=1H)) (4.6)

Since Definition 2.17 says that F = Fρ (∀ρ ∈ Sp(Tr(H))), the sample probability space (XN,
�∞

k=1F, P
⊗∞
k=1 ρ

) of the infinite parallel measurement M⊗∞
k=1B(H)(⊗∞k=1O = (XN, �∞

k=1F,
⊗k = 1∞F ), S[

⊗∞
k=1 ρ]

) is characterized by

P⊗∞
k=1 ρ

(Ξ1 × Ξ2 × · · · × Ξn × (
∞
×

k=n+1
X)) =

n

×
k=1

Tr(H)

(
ρ, F (Ξk)

)
B(H)

(4.7)

( ∀Ξk ∈ F = Fρ, ( k = 1, 2, . . . , n), n = 1, 2, 3 · · · )

which is equal to the infinite product probability measure
⊗n

k=1 Pρ.

[II]: classical system: Without loss of generality, we assume that the state space Ω is compact,
and ν(Ω) = 1 (cf. Note 2.1). Then, the classical infinite tensor basic structure is defined by

[C0(×∞k=1Ω) ⊆ L∞(×∞k=1Ω,⊗∞k=1ν) ⊆ B(L2(×∞k=1Ω,⊗∞k=1ν))] (4.8)

Therefore, the infinite tensor state space is characterized by

Sp(C0(×∞k=1Ω)∗)
(
≈
∞
×
k=1

Ω
)

(4.9)

Put ρ = δω. the sample probability space (XN, �∞
k=1F, P

⊗∞
k=1 ρ

) of the infinite parallel
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4.3 The law of large numbers in quantum language 87

measurement ML∞(×∞
k=1Ω,⊗

∞
k=1ν)

(⊗∞k=1O = (XN, �∞
k=1F,⊗k = 1∞F ), S[

⊗∞
k=1 ρ]

) is characterized
by

P⊗∞
k=1 ρ

(Ξ1 × Ξ2 × · · · × Ξn × (
∞
×

k=n+1
X)) =

n

×
k=1

[F (Ξk)](ω) (4.10)

( ∀Ξk ∈ F = Fρ, ( k = 1, 2, . . . , n), n = 1, 2, 3 · · · )

which is equal to the infinite product probability measure
⊗n

k=1 Pρ.
[III]: Conclusion: Therefore, we can conclude

(]) in both cases, the sample probability space (XN, �∞
k=1F, P

⊗∞
k=1 ρ

) is defined
by the infinite product probability space (XN, �∞

k=1F,
⊗∞

k=1 Pρ)

Summing up, we have the following theorem ( the law of large numbers ).

Theorem 4.3. [The law of large numbers ] Consider the measurement MA(O = (X,F, F ), S[ρ])

with the sample probability space (X,F, Pρ). Then, by Kolmogorov’s extension theorem (Corol-

lary4.2), we have the infinite parallel measurement:

M⊗∞
k=1 A

(⊗∞k=1O = (XN, �∞
k=1F,⊗∞k=1F ), S[

⊗∞
k=1 ρ]

)

The sample probability space (XN, �∞
k=1F, P

⊗∞
k=1 ρ

) is characterized by the infinite probability

space (XN, �∞
k=1F,

⊗∞
k=1 Pρ). Further, we see

(A) for any f ∈ L1(X,Pρ), put

Df =
{

(x1, x2, . . .) ∈ XN | lim
n→∞

f(x1) + f(x2) + · · ·+ f(xn)

n
= E(f)

}
(4.11)

( where, E(f) =
∫
X
f(x)Pρ(dx) )

Then, it holds that

P⊗∞
k=1 ρ

(Df ) = 1 (4.12)

That is, we see, almost surely,∫
X
f(x)Pρ(dx)

(population mean)

= limn→∞
f(x1)+f(x2)+···+f(xn)

n

(sample mean)

(4.13)

Remark 4.4. [Frequency probability ] In the above, consider the case that

f(x) = χ
Ξ
(x) =

{
1 (x ∈ Ξ)
0 (x /∈ Ξ)

(Ξ ∈ F)
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Then, put

Dχ
Ξ

=
{

(x1, x2, . . .) ∈ XN | lim
n→∞

][{k | xk ∈ Ξ, 1 ≤ k ≤ n}
n

= Pρ(Ξ)
}

(4.14)

(where, ][A] is the number of the elements of the set A)

Then, it holds that

P⊗∞
k=1 ρ

(Dχ
Ξ
) = 1 (4.15)

Therefore, the law of large numbers (Theorem 4.3) says that

(]) the probability in Axiom 1 ( §2.7) can be regarded as “frequency
probability”

4.3.2 Mean, variance, unbiased variance

Consider the measurement MA(O = (R,BR, F ), S[ρ]). Let (R,BR, Pρ) be its sample proba-
bility space. That is, consider the case that a measured value space X = R.

Here, define:

population mean(µρO) : E[MA(O = (R,BRF ), S[ρ])] =

∫
R
xPρ(dx)(= µ) (4.16)

population variance((σρO)2) : V [MA(O = (R,BRF ), S[ρ])] =

∫
R
(x− µ)2Pρ(dx) (4.17)

Assume that a measured value (x1, x2, x3, ..., xn)(∈ Rn) is obtained by the parallel measure-
ment ⊗nk=1MA(O, S[ρ]). Put

sample distribution(νn) : νn =
δx1 + δx2 + · · ·+ δxn

n
∈M+1(X)

sample mean(µn) : E[⊗nk=1MA(O, S[ρ])] =
x1 + x2 + · · ·+ xn

n
(= µ)

=

∫
R
xνn(dx)

sample variance(s2n) : V [⊗nk=1MA(O, S[ρ])] =
(x1 − µ)2 + (x2 − µ)2 + ·+ (x2 − µ)2

n

=

∫
R
(x− µ)2νn(dx)

unbiased variance(u2n) : U [⊗nk=1MA(O, S[ρ])] =
(x1 − µ)2 + (x2 − µ)2 + ·+ (x2 − µ)2

n− 1

=
n

n− 1

∫
R
(x− µ)2νn(dx)

Under the above preparation, we have:
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Theorem 4.5. [Population mean, population variance, sample mean, sample variance] Assume
that a measured value (x1, x2, x3, · · · )(∈ RN) is obtained by the infinite parallel measurement⊗∞

k=1MA(O = (R,BR, F ), S[ρ]). Then, the law of large numbers (Theorem4.3) says that

(4.16) = population mean(µρO) = lim
n→∞

x1 + x2 + · · ·+ xn
n

=: µ = sample mean

(4.17) = population variance(σρO) = lim
n→∞

(x1 − µρO)2 + (x2 − µρO)2 + · · ·+ (xn − µρO)2

n

= lim
n→∞

(x1 − µ)2 + (x2 − µ)2 + · · ·+ (xn − µ)2

n
=: sample variance

Example 4.6. [Spectrum decomposition] Consider the quantum basic structure

[C(H) ⊆ B(H) ⊆ B(H)]

Let A be a self-adjoint operator on H, which has the spectrum decomposition (i.e., projective
observable) OA = (R,BR, FA) such that

A =

∫
R
λFA(dλ)

That is, under the identification:

self-adjoint operator: A ←→
identification

spectrum decomposition:OA = (R,BR, FA)

the self-adjoint operator A is regarded as the projective observable OA = (R,BR, FA). Fix the
state ρu = |u〉〈u| ∈ Sp(Tr(H)). Consider the measurement MB(H)(OA, S[|u〉〈u|]). Then, we see

population mean(µρuOA) : E[MB(H)(OA, S[|u〉〈u|])] =

∫
R
λ〈u, FA(dλ)u〉 = 〈u,Au〉 (4.18)

population variance((σρuOA)2) : V [MB(H)(OA, S[|u〉〈u|])] =

∫
R
(λ− 〈u,Au〉)2〈u, FA(dλ)u〉

= ‖(A− 〈u,Au〉)u‖2 (4.19)

Now we can introduce Robertson’s uncertainty principle as follows.

Theorem 4.7. [Robertson’s uncertainty principle (parallel measurement) (cf. [60]) ] Consider
the quantum basic structure [C(H) ⊆ B(H) ⊆ B(H)]. Let A1 and A2 be unbounded self-
adjoint operators on a Hilbert space H, which respectively has the spectrum decomposition:

OA1 = (R,BR, FA1) to OA1 = (R,BR, FA1)

Thus, we have two measurements MB(H)(OA1 , S[ρu]) and MB(H)(OA2 , S[ρu]), where ρu = |u〉〈u|
∈ Sp(C(H)∗). To take two measurements means to take the parallel measurement:
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MB(Cn)(OA1 , S[ρu]) ⊗ MB(Cn)(OA2 , S[ρu]), namely,

MB(H)⊗B(H)(OA1 ⊗ OA2 , S[ρu⊗ρu])

Then, the following inequality (i.e., Robertson’s uncertainty principle ) holds that

σρuA1
· σρuA2

= 1

2
|〈u, (A1A2 − A2A1)u〉| (∀|u〉〈u| = ρu, ‖u‖H = 1)

where σρuA1
and σρuA2

are shown in (4.19), namely,{
σρuA1

= [〈A1u,A1u〉 − |〈u,A1u〉|2]1/2 = ‖(A1 − 〈u,A1u〉)u‖
σρuA2

= [〈A2u,A2u〉 − |〈u,A2u〉|2]1/2 = ‖(A2 − 〈u,A2u〉)u‖

Therefore, putting [A1, A2] ≡ A1A2 − A2A1, we rewrite Robertson’s uncertainty principle as
follows:

‖A1u‖ · ‖A2u‖ ≥ ‖(A1 − 〈u,A1u〉)u‖ · ‖(A2 − 〈u,A2u〉)u‖ ≥ |〈u, [A1, A2]u〉|/2 (4.20)

For example, when A1(= Q) [resp. A2(= P ) ] is the position observable [resp. momentum
observable ] (i.e., QP − PQ = ~

√
−1), it holds that

σρuQ · σ
ρu
P = 1

2
~

Proof. Robertson’s uncertainty principle (4.20) is essentially the same as Schwarz inequality,
that is,

|〈u, [A1, A2]u〉| = |〈u, (A1A2 − A2A1)u〉|

=
∣∣∣〈u,((A1 − 〈u,A1u〉)(A2 − 〈u,A2u〉)− (A2 − 〈u,A2u〉)(A1 − 〈u,A1u〉)

)
u
〉∣∣∣

≤2‖(A1 − 〈u,A1u〉)u‖ · ‖(A2 − 〈u,A2u〉)u‖
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4.4 Heisenberg’s uncertainty principle 91

4.4 Heisenberg’s uncertainty principle

4.4.1 Why is Heisenberg’s uncertainty principle famous?

Heisenberg’s uncertainty principle is as follows.

Proposition 4.8. [Heisenberg’s uncertainty principle (cf. [18]:1927) ]

(i) The position x of a particle P can be measured exactly. Also similarly, the momentum
p of a particle P can be measured exactly. However, the position x and momentum p of
a particle P can not be measured simultaneously and exactly, namely, the both errors
∆x and ∆p can not be equal to 0. That is, the position x and momentum p of a particle
P can be measured simultaneously and approximately,

(ii) And, ∆x and ∆p satisfy Heisenberg’s uncertainty principle as follows.

∆x ·∆p + ~(= Plank constant/2π+1.5547× 10−34Js). (4.21)

This was discovered by Heisenberg’s thought experiment due to γ-ray microscope. It is

(A) one of the most famous statements in the 20-th century.

But, we think that it is doubtful in the following sense.

♠Note 4.1. I think that Heisenberg’s uncertainty principle(Proposition 4.8) is meaningless. That
is because, for example,

(]) The approximate measurement and “error” in Proposition 4.8 are not defined.

This will be improved in Theorem 4.12 in the framework of quantum mechanics. That is,
Heisenberg’s thought experiment is an excellent idea before the discovery of quantum mechanics.
Some may ask that

If it be so, why is Heisenberg’s uncertainty principle (Proposition 4.8) famous?

I think that

Heisenberg’s uncertainty principle (Proposition 4.8) was used as the slogan for adver-
tisement of quantum mechanics in order to emphasize the difference between classical
mechanics and quantum mechanics.

And, this slogan was completely successful. This kind of slogan is not rare in the history of
science. For example, recall “cogito proposition (due to Descartes)”, that is,

I think, therefore I am.
which is also meaningless (cf. §8.3). However, it is certain that the cogito proposition built the
foundation of modern science.

KSTS/RR-15/001 
January 22, 2015



92 Chapter 4 Linguistic interpretation (chiefly, quantum system)

♠Note 4.2. Heisenberg’s uncertainty principle(Proposition 4.8) may include contradiction (cf.
ref. [21]), if we think as follows

(]) it is “natural” to consider that

∆x = |x− x̃|, ∆p = |p− p̃|,

where{
Position: [x : exact measured value (=true value), x̃ : measured value]
Momentum: [p : exact measured value (=true value), p̃ : measured value]

However, this is in contradiction with Heisenberg’s uncertainty principle (4.21). That is because
(4.21) says that the exact measured value (x, p) can not be measured.

4.4.2 The mathematical formulation of Heisenberg’s uncertainty prin-
ciple

In this section, we shall propose the mathematical formulation of Heisenberg’s uncertainty

principle 4.8.

Consider the quantum basic structure:

[C(H) ⊆ B(H) ⊆ B(H)]

Let Ai (i = 1, 2) be arbitrary self-adjoint operator on H. For example, it may satisfy that

[A1, A2](:= A1A2 − A2A1) = ~
√
−1I

Let OAi = (R,B, FAi) be the spectral representation of Ai, i.e., Ai =
∫
R λFAi(dλ), which is

regarded as the projective observable in B(H). Let ρ0 = |u〉〈u| be a state, where u ∈ H and

‖u‖ = 1. Thus, we have two measurements:

(B1) MB(H)(OA1 :=(R,B, FA1), S[ρu])
by (4.18)−−−−−−−−−→

expectation
〈u,A1u〉

(B2) MB(H)(OA2 :=(R,B, FA2), S[ρu])
by (4.18)−−−−−−−−−→

expectation
〈u,A2u〉

(∀ρu = |u〉〈u| ∈ Sp(C(H)∗))

However, since it is not always assumed that A1A2−A2A1 = 0, we can not expect the existence

of the simultaneous observable OA1 × OA2 , namely,
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4.4 Heisenberg’s uncertainty principle 93

• in general, two observables OA1 and OA2 can not be simultaneously measured

That is,

(B3) the measurement MB(H)(OA1 × OA2 , S[ρu]) is impossible, Thus, we have the question:

Then, what should be done?

In what follows, we shall answer this.

Let K be another Hilbert space, and let s be in K such that ‖s‖ = 1. Thus, we also

have two observables OA1⊗I :=(R,B, FA1⊗I) and OA2⊗I :=(R,B, FA2⊗I) in the tensor algebra

B(H ⊗K).

Put

the tensor state ρ̂us = |u⊗ s〉〈u⊗ s|

And we have the following two measurements:

(C1) MB(H⊗K)(OA1⊗I , S[ρ̂us])
by (4.18)−−−−−−−−−→

expectation
〈u⊗ s, (A1 ⊗ I)(u⊗ s)〉 = 〈u,A1u〉

(C2) MB(H⊗K)(OA2⊗I , S[ρ̂us])
by (4.18)−−−−−−−−−→

expectation
〈u⊗ s, (A2 ⊗ I)(u⊗ s)〉 = 〈u,A2u〉

It is a matter of course that

(C1)=(B1) (C2)=(B2)

and

(C3) MB(H⊗K)(OA1⊗I × OA2⊗I , S[ρ̂us]) is impossible.

Thus, overcoming this difficulty, we prepare the following idea:

Let Âi (i = 1, 2) be arbitrary self-adjoint operator on the tensor Hilbert space H ⊗ K,
where it is assumed that

[Â1, Â2](:= Â1Â2 − Â2Â1) = 0 (i.e., the commutativity) (4.22)

Let OÂi
= (R,B, FÂi) be the spectral representation of Âi, i.e.Âi =

∫
R λFÂi(dλ), which is

regarded as the projective observable in B(H ⊗ K). Thus, we have two measurements as
follows:
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(D1) MB(H⊗K)(OÂ1
, S[ρ̂us])

by (4.18)−−−−−−→
expectation

〈u⊗ s, Â1(u⊗ s)〉

(D2) MB(H⊗K)(OÂ2
, S[ρ̂us])

by (4.18)−−−−−−→
expectation

〈u⊗ s, Â2(u⊗ s)〉

Note, by the commutative condition (4.22), that the two can be measured by the simultaneous
measurement MB(H⊗K)(OÂ1

× OÂ2
, S[ρ̂us]), where OÂ1

× OÂ2
= (R2,B2, FÂ1

× FÂ2
).

Again note that any relation between Ai ⊗ I and Âi is not assumed. However,

• we want to regard this simultaneous measurement as the substitute of the above two
(C1) and (C2). That is, we want to regard

(D1) and (D2) as the substitute of (C1) and (C2)

For this, we have to prepare Hypothesis 4.9 below.

Putting

N̂i := Âi − Ai ⊗ I (and thus, Âi = N̂i + Ai ⊗ I) (4.23)

we define the ∆ρ̂us

N̂i
and ∆

ρ̂us

N̂i
such that

∆u⊗s
N̂i

=‖N̂i(u⊗ s)‖ = ‖(Âi − Ai ⊗ I)(u⊗ s)‖ (4.24)

∆
u⊗s
N̂i

=‖(N̂i − 〈u⊗ s, N̂i(u⊗ s)〉)(u⊗ s)‖

=‖((Âi − Ai ⊗ I)− 〈u⊗ s, (Âi − Ai ⊗ I)(u⊗ s)〉)(u⊗ s)‖

where the following inequality:

∆ρ̂us

N̂i
≥ ∆

ρ̂us

N̂i
(4.25)

is common sense.

By the commutative condition (4.22), (4.23) implies that

[N̂1, N̂2] + [N̂1, A2 ⊗ I] + [A1 ⊗ I, N̂2] = −[A1 ⊗ I, A2 ⊗ I] (4.26)

Here, we should note that the first term (or, precisely, |〈u⊗ s, [the first term](u⊗ s)〉| ) of

(4.26) can be, by the Robertson uncertainty relation (cf. Theorem4.7), estimated as follows:

2∆
ρ̂us

N̂1
·∆ρ̂us

N̂2
≥ |〈u⊗ s, [N̂1, N̂2](u⊗ s)〉| (4.27)
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4.4.2.1 Average value coincidence conditions; approximately simultaneous mea-
surement

However, it should be noted that

In the above, any relation between Ai ⊗ I and Âi is not assumed.

Thus, we think that the following hypothesis is natural.

Hypothesis 4.9. [Average value coincidence conditions ]. We assume that

〈u⊗ s, N̂i(u⊗ s)〉 = 0 (∀u ∈ H, i = 1, 2) (4.28)

or equivalently,

〈u⊗ s, Âi(u⊗ s)〉 = 〈u,Aiu〉 (∀u ∈ H, i = 1, 2) (4.29)

That is,

the average measured value of MB(H⊗K)(OÂi
, S[ρ̂us])

=〈u⊗ s, Âi(u⊗ s)〉
=〈u,Aiu〉
=the average measured value of MB(H)(OAi , S[ρu])

(∀u ∈ H, ||u||H = 1, i = 1, 2)

Hence, we have the following definition.

Definition 4.10. [Approximately simultaneous measurement] Let A1 and A2 be (unbounded)

self-adjoint operators on a Hilbert space H. The quartet (K, s, Â1, Â2) is called an approxi-
mately simultaneous observable of A1 and A2, if it satisfied that

(E1) K is a Hilbert space. s ∈ K, ‖s‖K = 1, Â1 and Â2 are commutative self-adjoint operators
on a tensor Hilbert space H ⊗ K that satisfy the average value coincidence condition
(4.28), that is,

〈u⊗ s, Âi(u⊗ s)〉 = 〈u,Aiu〉 (∀u ∈ H, i = 1, 2) (4.30)

Also, the measurement MB(H⊗K)(OÂ1
× OÂ2

, S[ρ̂us]) is called the approximately simultaneous
measurement of MB(H)(OA1 , S[ρu]) and MB(H)(OA2 , S[ρu]).
Thus, under the average coincidence condition, we regard

(D1) and (D2) as the substitute of (C1) and (C2)
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And

(E2) ∆ρ̂us

N̂1
(= ‖(Â1−A1⊗ I)(u⊗ s)‖) and ∆ρ̂us

N̂2
(= ‖(Â2−A2⊗ I)(u⊗ s)‖) are called errors of

the approximate simultaneous measurement measurement MB(H⊗K)(OÂ1
× OÂ2

, S[ρ̂us])

Lemma 4.11. Let A1 and A2 be (unbounded) self-adjoint operators on a Hilbert space H.

And let (K, s, Â1, Â2) be an approximately simultaneous observable of A1 and A2. Then, it
holds that

∆ρ̂us

N̂i
= ∆

ρ̂us

N̂i
(4.31)

〈u⊗ s, [N̂1, A2 ⊗ I](u⊗ s)〉 = 0 (∀u ∈ H) (4.32)

〈u⊗ s, [A1 ⊗ I, N̂2](u⊗ s)〉 = 0 (∀u ∈ H) (4.33)

The proof is easy, thus, we omit it.

Under the above preparations, we can easily get “Heisenberg’s uncertainty principle” as

follows.

∆ρ̂us

N̂1
·∆ρ̂us

N̂2
(= ∆

ρ̂us

N̂1
·∆ρ̂us

N̂2
) ≥ 1

2
|〈u, [A1, A2]u〉| (∀u ∈ H such that ||u|| = 1) (4.34)

Summing up, we have the following theorem:

Theorem 4.12. [The mathematical formulation of Heisenberg’s uncertainty principle]
Let A1 and A2 be (unbounded) self-adjoint operators on a Hilbert space H. Then. we have
the followings:

(i) There exists an approximately simultaneous observable(K, s, Â1, Â2) of A1 and A2, that

is, s ∈ K, ‖s‖K = 1, Â1 and Â2 are commutative self-adjoint operators on a tensor
Hilbert space H⊗K that satisfy the average value coincidence condition (4.28). There-
fore, the approximately simultaneous measurement MB(H⊗K)(OÂ1

× OÂ2
, S[ρ̂us]) exists.

(ii) And further, we have the following inequality (i.e., Heisenberg’s uncertainty principle).

∆ρ̂us

N̂1
·∆ρ̂us

N̂2
(= ∆

ρ̂us

N̂1
·∆ρ̂us

N̂2
) = ‖(Â1 − A1 ⊗ I)(u⊗ s)‖ · ‖(Â2 − A2 ⊗ I)(u⊗ s)‖

≥ 1

2
|〈u, [A1, A2]u〉| (∀u ∈ H such that ||u|| = 1) (4.35)

(iii) In addition, if A1A2 − A2A1 = ~
√
−1, we see that

∆ρ̂us

N̂1
·∆ρ̂us

N̂2
≥ ~/2 (∀u ∈ H such that ||u|| = 1) (4.36)
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Proof. For the proof of (i) and (ii), see

• Ref. [21]: S. Ishikawa, Rep. Math. Phys. Vol.29(3), 1991, pp.257–273,

As shown in the above (4.34), the proof (ii) is easy (cf. [28, 57]), but the proof (i) is not easy
(cf. [7, 28]).

4.4.3 Without the average value coincidence condition

Now we have the complete form of Heisenberg’s uncertainty relation as Theorem 4.12, To be

compared with Theorem 4.12, we should note that the conventional Heisenberg’s uncertainty

relation (= Proposition 4.8) is ambiguous. Wrong conclusions are sometimes derived from

the ambiguous statement (= Proposition 4.8). For example, in some books of physics, it is

concluded that EPR-experiment (Einstein, Podolosky and Rosen [13], or, see the following

section) conflicts with Heisenberg’s uncertainty relation. That is,

[I ] Heisenberg’s uncertainty relation says that the position and the momentum of a particle

can not be measured simultaneously and exactly.

On the other hand,

[II ] EPR-experiment says that the position and the momentum of a certain “particle”can

be measured simultaneously and exactly ( Also, see Note 4.4. )

Thus someone may conclude that the above [I] and [II] includes a paradox, and therefore,

EPR-experiment is in contradiction with Heisenberg’s uncertainty relation. Of course, this is

a misunderstanding. This “paradox”was solved in [21, 28]. Now we shall explain the solution

of the paradox.

[Concerning the above [I]] Put H = L2(Rq). Consider two-particles system in H ⊗H =

L2(R2
(q1,q2)

). In the EPR problem, we, for example, consider the state ue ( ∈ H ⊗ H =

L2(R2
(q1,q2)

))
(

or precisely, |ue〉〈ue|
)

such that:

ue(q1, q2) =

√
1

2πεσ
e−

1
8σ2

(q1−q2−a)2− 1
8ε2

(q1+q2−b)2 · eiφ(q1,q2) (4.37)

where ε is assumed to be a sufficiently small positive number and φ(q1, q2) is a real-valued

function. Let A1 : L2(R2
(q1,q2)

)→ L2(R2
(q1,q2)

) and A2 : L2(R2
(q1,q2)

)→ L2(R2
(q1,q2)

) be (unbounded)

self-adjoint operators such that

A1 = q1, A2 =
~∂
i∂q1

. (4.38)
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Then, Theorem 4.12 says that there exists an approximately simultaneous observable(K, s, Â1, Â2)

of A1 and A2. And thus, the following Heisenberg’s uncertainty relation (= Theorem 4.12) holds,

‖Â1ue − A1ue‖ · ‖Â2ue − A2ue‖ ≥ ~/2 (4.39)

[Concerning the above [II]] However, it should be noted that, in the above situation we

assume that the state ue is known before the measurement. In such a case, we may take another

measurement as follows: Put K = C, s = 1. Thus, (H ⊗H) ⊗K = H ⊗H, u ⊗ s = u ⊗ 1 =

u. Define the self-adjoint operators Â1 : L2(R2
(q1,q2)

) → L2(R2
(q1,q2)

) and Â2 : L2(R2
(q1,q2)

) →
L2(R2

(q1,q2)
) such that

Â1 = b− q2, Â2 = A2 =
~∂
i∂q1

(4.40)

Note that these operators commute. Therefore,

(]) we can take an exact simultaneous measurement of Â1 and Â2 (for the state ue).

And moreover, we can easily calculate as follows:

‖Â1ue − A1ue‖

=
[ ∫∫

R2

∣∣∣((b− q2)− q1)√ 1

2πεσ
e−

1
8σ2

(q1−q2−a)2− 1
8ε2

(q1+q2−b)2 · eiφ(q1,q2)
∣∣∣2dq1dq2]1/2

=
[ ∫∫

R2

∣∣∣((b− q2)− q1)√ 1

2πεσ
e−

1
8σ2

(q1−q2−a)2− 1
8ε2

(q1+q2−b)2
∣∣∣2dq1dq2]1/2

=
√

2ε, (4.41)

and

‖Â2ue − A2ue‖ = 0. (4.42)

Thus we see

‖Â1ue − A1ue‖ · ‖Â2ue − A2ue‖ = 0. (4.43)

However it should be again noted that, the measurement (]) is made from the knowledge of

the state ue.

[[I] and [II] are consistent ] The above conclusion (4.43) does not contradict Heisenberg’s

uncertainty relation (4.39), since the measurement (]) is not an approximate simultaneous mea-

surement of A1 and A2. In other words, the (K, s, Â1, Â2) is not an approximately simultaneous

observable of A1 and A2. Therefore, we can conclude that

KSTS/RR-15/001 
January 22, 2015



4.4 Heisenberg’s uncertainty principle 99

(F) Heisenberg’s uncertainty principle is violated without the average value coincidence con-

dition

(cf. Remark 3 in ref.[21], or p.316 in [28]).

♠Note 4.3. Some may consider that the formulas (4.41) and (4.42) imply that the statement [II]
is true. However, it is not true. This is answered in Remark 8.14.

Also, we add the following remark.

Remark 4.13. Calculating the second term (precisely , 〈u⊗s,“the second term”(u⊗s)〉) and
the third term (precisely , 〈u⊗ s,“the third term”(u⊗ s)〉) in (4.26), we get, by Robertson’s
uncertainty principle (4.20),

2∆
ρ̂us

N̂1
· σ(A2;u) ≥ |〈u⊗ s, [N̂1, A2 ⊗ I](u⊗ s)〉| (4.44)

2∆
ρ̂us

N̂2
· σ(A1;u) ≥ |〈u⊗ s, [A⊗I, N̂2](u⊗ s)〉| (4.45)

(∀u ∈ H such that ||u|| = 1)

and, from (4.26), (4.27), (4.44),(4.45), we can get the following inequality

∆ρ̂us

N̂1
·∆ρ̂us

N̂2
+ ∆ρ̂us

N̂2
· σ(A1;u) + ∆ρ̂us

N̂1
· σ(A2;u)

≥∆
ρ̂us

N̂1
·∆ρ̂us

N̂2
+ ∆

ρ̂us

N̂2
· σ(A1;u) + ∆

ρ̂us

N̂1
· σ(A2;u)

≥1

2
|〈u, [A1, A2]u〉| (∀u ∈ H such that ||u|| = 1) (4.46)

Since we do not assume the average value coincidence condition, it is a matter of course that
this (4.46) is more rough than Heisenberg’s uncertainty principle (4.35)

The inequality (4.46) is often called Ozawa’s inequality, if a certain interpretation is adopted

such as ∆ρ̂us

N̂1
and ∆ρ̂us

N̂1
respectively means “disturbance” and “uncertainty”. However, the

linguistic interpretation (§3.1) says “only one measurement is permitted ” and thus, the term

“disturbance” can not be used in quantum language. That is because we can not see the

influence of measurement1.

1For the further argument, see Ref. [38]: S. Ishikawa; Heisenberg uncertainty principle and quantum Zeno
effects in the linguistic interpretation of quantum mechanics ( arXiv:1308.5469 [quant-ph] 2014 )
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4.5 EPR-paradox (1935) and faster-than-light

4.5.1 EPR-paradox

Next, let us explain EPR-paradox (Einstein–Poolside–Rosen: [13, 63]). Consider Two elec-

trons P1 and P2 and their spins. The tensor Hilbert space H = C2 ⊗ C2 is defined in what

follows. That is,

e1 =

[
1
0

]
, e2 =

[
0
1

]
(i.e., the complete orthonormal system {e1, e2} in the C2),

C2 ⊗ C2 = {
∑
i,j=1,2

αijei ⊗ ej | αij ∈ C, i, j = 1, 2}

Put u =
∑

i,j=1,2

αijei ⊗ ej and v =
∑

i,j=1,2

βijei ⊗ ej. And the inner product 〈u, v〉
C2⊗C2

is defined

by

〈u, v〉
C2⊗C2

=
∑
i,j=1,2

αi,j · βi,j

Therefore, we have the tensor Hilbert space H = C2 ⊗ C2 with the complete orthonormal

system {e1 ⊗ e1, e1 ⊗ e2, e2 ⊗ e1, e2 ⊗ e2}.
For each F ∈ B(C2) and G ∈ B(C2), define the F ⊗G ∈ B(C2 ⊗ C2) (i.e., linear operator

F ⊗G : C2 ⊗ C2 → C2 ⊗ C2 ) such that

(F ⊗G)(u⊗ v) = Fu⊗Gv

Let us define the entangled state ρ = |s〉〈s| of two particles P1 and P2 such that

s =
1√
2

(e1 ⊗ e2 − e2 ⊗ e1)

Here, we see that 〈s, s〉
C2⊗C2

= 1
2
〈e1 ⊗ e2 − e2 ⊗ e1, e1 ⊗ e2 − e2 ⊗ e1〉C2⊗C2

= 1
2
(1 + 1) = 1,

and thus, ρ is a state. Also, assume that

two particles P1 and P2 are far.

Let O = (X, 2X , F z) in B(C2) (where X = {↑, ↓} ) be the spin observable concerning the

z-axis such that

F z({↑}) =

[
1 0
0 0

]
, F z({↓}) =

[
0 0
0 1

]
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The parallel observable O⊗ O = (X2, 2X × 2X , F z ⊗ F z) in B(C2 ⊗ C2) is defined by

(F z ⊗ F z)({(↑, ↑)}) = F z({↑})⊗ F z({↑}) =

[
1 0
0 0

]
⊗
[
1 0
0 0

]
(F z ⊗ F z)({(↓, ↑)}) = F z({↓})⊗ F z({↑}) =

[
0 0
0 1

]
⊗
[
1 0
0 0

]
(F z ⊗ F z)({(↑, ↓)}) = F z({↑})⊗ F z({↓}) =

[
1 0
0 0

]
⊗
[
0 0
0 1

]
(F z ⊗ F z)({(↓, ↓)}) = F z({↓})⊗ F z({↓}) =

[
0 0
0 1

]
⊗
[
0 0
0 1

]
Thus, we get the measurement MB(C2⊗C2)(O⊗O, S[ρ]) The, Born’s quantum measurement theory

says that

When the parallel measurementmeasurement MB(C2⊗C2)(O⊗ O, S[s]) is taken,

the probability that the measured value


(↑, ↑)
(↓, ↑)
(↑, ↓)
(↓, ↓)

 is obtained

is given by


〈s, (F z ⊗ F z)({(↑, ↑)})s〉

C2⊗C2
= 0

〈s, (F z ⊗ F z)({(↓, ↑)})s〉
C2⊗C2

= 0.5

〈s, (F z ⊗ F z)({(↑, ↓)})s〉
C2⊗C2

= 0.5

〈s, (F z ⊗ F z)({(↓, ↓)})s〉
C2⊗C2

= 0


That is because, F z({↑})e1 = e1, F

z({↓})e2 = e2, F
z({↑})e2 = F z({↓})e1 = 0 For example,

〈s, (F z ⊗ F z)({(↑, ↓)})s〉
C2⊗C2

=
1

2
〈(e1 ⊗ e2 − e2 ⊗ e1), (F z({↑})⊗ F z({↓})(e1 ⊗ e2 − e2 ⊗ e1)〉C2⊗C2

=
1

2
〈(e1 ⊗ e2 − e2 ⊗ e1), e1 ⊗ e2〉C2⊗C2

=
1

2

Here, it should be noted that we can assume that the x1 and the x2 (in (x1, x2) ∈ { (↑z, ↑z),
(↑z, ↓z), (↓z, ↑z), (↓z, ↓z)}) are respectively obtained in Tokyo and in New York (or, in the earth

and in the polar star).

(b)

(probability1
2 )

↑z

Tokyo

↓z

New York

or

(c)

(probability1
2 )

↓z

Tokyo

↑z

New York

This fact is, figuratively speaking, explained as follows:
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102 Chapter 4 Linguistic interpretation (chiefly, quantum system)

• Immediately after the particle in Tokyo is measured and the measured value ↑z [resp. ↓z]
is observed, the particle in Tokyo informs the particle in New York “Your measured value

has to be ↓z [resp. ↑z]”.

Therefore, the above fact implies that quantum mechanics says that there is something faster

than light. This is essentially the same as the de Broglie paradox (cf. [63]). That is,

• if we admit quantum mechanics, we must also admit the fact that there is

something faster than light (i.e., so called “non-locality”).

♠Note 4.4. EPR-paradox is closely related to the fact that quantum syllogism does not hold in
general. This will be discussed in Chapter 8. The Bohr-Einstein debates were a series of public
disputes about quantum mechanics between Albert Einstein and Niels Bohr. Although there
may be several opinions, I regard this debates as

Einstein
(realistic view)

←→
v.s.

Bohr
(linguistic view)

For the further argument, see Section 10.7 (Leibniz-Clarke debates).
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4.6 Bell’s inequality(1966) 103

4.6 Bell’s inequality(1966)

4.6.1 Bell’s inequality is violated in classical and quantum systems

Firstly, let us mention Bell’s inequality in mathematics2.

Theorem 4.14. [Bell’s inequality] Let (Y,G, µ) be a probability space. Consider measurable
functions fk : Y → {−1, 1}, (k = 1, 2, 3, 4), and define the correlations: C13 =

∫
Y
f1(y) ·

f3(y)µ(dy), C14 =
∫
Y
f1(y) ·f4(y)µ(dy), C23 =

∫
Y
f2(y) ·f3(y)µ(dy), C24 =

∫
Y
f2(y) ·f4(y)µ(dy)

Then, we have Bell’s inequality such that

|C13 − C14|+ |C23 + C24| 5 2 (4.47)

Proof. It is easy as follows.

|C13 − C14|+ |C23 + C24|

≤
∫
Y

f1(y) · |f3(y)− f4(y)|µ(dy) +

∫
Y

f2(y) · |f3(y) + f4(y)|µ(dy) = 2

Although I do not necessarily know about Bell’s inequality (cf. Ref. [4] ) well, in this section

I describe some things about the relation between quantum mechanics and Bell’s inequality.

Here, let us prepare three steps (I∼III) as follows.

[Step I]: Consider the basic structure:

[A ⊆ A ⊆ B(H)]

Define the measured value space X2 = {−1, 1}2 such that X2 = {−1, 1}2 = {(1, 1), (1,−1),

(−1, 1), (−1,−1)}.
Consider two complex numbers a = α1 + α2

√
−1 and b = β1 + β2

√
−1 such that |a| ≡√

|α1|2 + |α2|2 = 1 and |b| ≡
√
|β1|2 + |β2|2 = 1. Define the probability space (X2,P(X2), νab)

such that

νab({(1, 1)})= νab({(−1,−1)})= (1− α1β1 − α2β2)/4

νab({(1,−1)})= νab({(−1, 1)})= (1 + α1β1 + α2β2)/4. (4.48)

2This section is extracted from the following paper:

Ref. [29]: S. Ishikawa, “A New Interpretation of Quantum Mechanics,” Journal of Quantum Information
Science, Vol. 1 No. 2, 2011, pp. 35-42. doi: 10.4236/jqis.2011.12005
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104 Chapter 4 Linguistic interpretation (chiefly, quantum system)

The correlation function P (a, b) is calculated as

P (a, b) ≡
∑

(x1,x2)∈X×X

x1 · x2νab({(x1, x2)}) = −α1β1 − α2β2 (4.49)

Our present problem is as follows.

(D):Problem

Find the measurement MA(Oab := (X2, P(X2), Fab), S[ρ0]) that satisfies

νab(Ξ) = ρ0(Fab(Ξ)) (∀Ξ ∈ P(X2))

This will be answered in the following step [II].

[Step: II]: Consider the problem in the two cases. That is,{
(i):quantum case: [A = B(C2 ⊗ C2)]
(ii):classical case: [A = C0(Ω× Ω)]

(i): quantum case [A = B(C2)⊗B(C2) = B(C2 ⊗ C2) ]

Put

e1 =

[
1
0

]
, e2 =

[
0
1

]
(∈ C2).

For each c ∈ {a, b}, define the observable Oc ≡
(
X,P(X), Gc

)
in B(C2) such that

Gc({1}) =
1

2

[
1 c̄
c 1

]
, Gc({−1}) =

1

2

[
1 −c̄
−c 1

]
.

Consider the two particles quantum system in B(C2 ⊗ C2).

Consider two states ρs = |ψs〉〈ψs| and ρ0 = |ψ0〉〈ψ0|
(
∈ Sp(B(C2 ⊗ C2)∗)

)
. Here, put

ψs = (e1 ⊗ e2 − e2 ⊗ e1)/
√

2 and ψ0 = e1 ⊗ e1.
Consider the unitary operator U (∈ B(C2 ⊗ C2) such that Uψ0 = ψs.

Consider an observable Oab = (X2,P(X2), Fab := U∗(Ga ⊗ Gb)U) in B(C2 ⊗ C2), and get

the measurement MB(C2⊗C2)(Oab, S[ρ0]).

This clearly satisfies (D). That is because we see that, for each (x1, x2) ∈ X2,

ρ0(Fab({(x1, x2)})) = 〈ψ0, Fab({(x1, x2)})ψ0〉

=〈ψs, (Ga({x1})⊗Gb({x2}))ψs〉 = νab({(x1, x2)}).

(ii): classical case: [A = C0(Ω)⊗ C0(Ω) = C0(Ω× Ω)]

Put ω0(= (ω′0, ω
′′
0)) ∈ Ω× Ω, and ρ0 = δω0 (∈ Sp(C0(Ω× Ω)∗) ).
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4.6 Bell’s inequality(1966) 105

Define the observable Oab := (X2,P(X2), Fab) in L∞(Ω× Ω) such that

[Fab({(x1, x2)})](ω0) = νab({(x1, x2)})

Therefore, we get the measurement ML∞(Ω×Ω)(Oab, S[δω0 ]
), which clearly satisfies (D).

[Step III]: For each k = 1, 2, consider two complex numbers ak(= αk1 + αk2
√
−1) and

bk(= βk1 + βk2
√
−1) such that |ak| = |bk| = 1.

Consider the tensor parallel measurement ⊗i,j=1,2 MA(Oaibj := (X2,P(X2), Faibj), S[ρ0]) in

the tensor W ∗-algebra ⊗
i,j=1,2

A. Assume the measured value x(∈ X8). That is,

x =
(
(x111 , x

11
2 ), (x121 , x

12
2 ), (x211 , x

21
2 ), (x221 , x

22
2 )

)
∈ ×

i,j=1,2
X2

Here, we see, by (4.49), that, for any i, j = 1, 2,

P (ai, bj) =
∑

(xij1 ,x
ij
2 )∈X×X

xij1 · x
ij
2 ρ0(Faibj({(x

ij
1 , x

ij
2 )}))

= −αi1β
j
1 − αi2β

j
2

Putting

a1 =
√
−1, b1 =

1 +
√
−1√

2
, a2 = 1, b2 =

1−
√
−1√

2
,

we get the following equality:

|P (a1, b1)− P (a1, b2)| + |P (a2, b1) + P (a2, b2)| = 2
√

2 (4.50)

Thus, in both cases ( i.e., quantum case [A = B(C2⊗C2)] and classical case [A = C0(Ω×Ω)]),

the formula (4.50) holds. This fact is often said that

Bell’s inequality is violated

though we do not know the reason to compare the equality (4.50) and Bell’s inequality.

Remark 4.15. [Shut up and calculate]. The above argument may suggest that there is some-

thing faster than light. However, when faster-than-light appears, our standing point is

Stop being bothered

This is not only our opinion but also most physicists’. In fact, in Mermin’s book [56], he said
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106 Chapter 4 Linguistic interpretation (chiefly, quantum system)

(a) “Most physicists, I think it is fair to say, are not bothered.”

(b) If I were forced to sum up in one sentence what the Copenhagen interpretation says to

me, it would be “Shut up and calculate”

If it is so, we want to assert that the linguistic interpretation (§3.1) is the true colors of “the

Copenhagen interpretation”
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Chapter 5

Fisher statistics (I)

Measurement theory (= quantum language ) is formulated as follows.

• measurement theory
(=quantum language)

:=

[Axiom 1]

Measurement
(cf. §2.7)

+

[Axiom 2]

Causality
(cf. §10.3)︸ ︷︷ ︸

a kind of spell(a priori judgment)

+

[quantum linguistic interpretation]

Linguistic interpretation
(cf. §3.1)︸ ︷︷ ︸

manual how to use spells

Measurement theory says that

• Describe every phenomenon modeled on Axioms 1 and 2 (by a hint of the linguistic inter-
pretation)!

In this chapter, we study Fisher statistics in terms of Axiom 1 ( measurement: §2.7). We shall
emphasize

the reverse relation between measurement and inference

(such as “the two sides of a coin”).

The readers can read this chapter without the knowledge of statistics.

5.1 Statistics is, after all, urn problems

5.1.1 Population(=system)↔state

Example 5.1. The density functions of the whole Japanese male’s height and the whole Amer-
ican male’s height is respectively defined by fJ and fA. That is,∫ β

α

fJ(x)dx =
A Japanese male’s population whose height is from α(cm) to β(cm)

A Japanese male’s overall population

107
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108 Chapter 5 Fisher statistics (I)∫ β

α

fA(x)dx =
An American male’s population whose height is from α(cm) to β(cm)

An American male’s overall population

Let the density functions fJ and fA be regarded as the probability density functions fJ and fA
such as

(A) From

[
the set of all Japanese males
the set of all American males

]
, choose a person (at random). Then, the prob-

ability that his height is from α(cm) to β(cm) is given by[
[Fh([α, β))](ωJ) =

∫ β
α
fJ(x)dx

[Fh([α, β))](ωA) =
∫ β
α
fA(x)dx

]
Now, let us represent the statements (A1) and (A2) in terms of quantum language: Define

the state space Ω by Ω = {ωJ , ωA} with the discrete metric dD and the counting measure ν
such that

ν({ωJ}) = 1, ν({ωA}) = 1(
It does not matter, even if ν({ωJ}) = a, ν({ωA}) = b (a, b > 0)

)
. Thus, we have the

classical basic structure:

Classical basic structure[C0(Ω) ⊆ L∞(Ω, ν) ⊆ B(L2(Ω, ν))]

The pure state space is defined by

Sp(C0(Ω)∗) = {δωJ , δωA} ≈ {ωJ , ωA} = Ω

Here, we consider that

δωJ · · · “the state of the set U1 of all Japanese males”,

δωA · · · “the state of the set U2 of all American males”,

and thus, we have the following identification (that is, Figure 5.1):

U1 ≈ δωJ , U2 ≈ δωA

The observable Oh = (R,B, Fh) in L∞(Ω, ν) is already defined by (A). Thus, we have the
measurement ML∞(Ω)(Oh, S[δω ]) (ω ∈ Ω = {ωJ , ωA}). The statement(A) is represented in terms
of quantum language by

(B) The probability that a measured value obtained by the measurement

[
ML∞(Ω)(Oh, S[ωJ ])
ML∞(Ω)(Oh, S[ωA])

]
belongs to an interval [α, β) is given by

 C0(Ω)∗

(
δωJ , Fh([α, β))

)
L∞(ω,ν) = [Fh([α, β))](ωJ)

C0(Ω)∗

(
δωA , Fh([α, β))

)
L∞(ω,ν) = [Fh([α, β))](ωA)


Therefore, we get:

statement (A)
(ordinary language)

−−−−−−→
translation

statement (B)
(quantum language)

KSTS/RR-15/001 
January 22, 2015



5.1 Statistics is, after all, urn problems 109

U1≈δωJ U2≈δωA

All Japanese males

in this urn U1

All American males

in this urn U2

Figure 5.1: Population≈urn(↔state)

5.1.2 Normal observable and student t-distribution

Consider the classical basic structure:

[C0(Ω) ⊆ L∞(Ω, ν) ⊆ B(L2(Ω, ν))]

where Ω = R (=the real line) with the Lebesgue measure ν. Let σ > 0 be a standard deviation,
which is assumed to be fixed. Define the measured value space X by R (i.e., X = R ). Define
the normal observable OGσ = (X(= R),BR, Gσ) in L∞(Ω, ν) such that

[Gσ(Ξ)](ω) =
1√
2πσ

∫
Ξ

exp

[
− 1

2σ2
(x− ω)2

]
dx (5.1)

(∀Ξ ∈ BX(= BR), ∀ω ∈ Ω(= R))

where BR is the Borel field. For example,

1√
2πσ2

∫ σ

−σ
e−

x2

2σ2 dx = 0.683...,
1√

2πσ2

∫ 2σ

−2σ
e−

x2

2σ2 dx = 0.954...,

1√
2πσ2

∫ 1.96σ

−1.96σ
e−

x2

2σ2 dx+0.95

-
x

y

6
y = 1√

2πσ2
e−

x2

2σ2

σ−σ 2σ−2σ
68.3%
95.4%

Figure 5.2: Error function

Next, consider the parallel observable
⊗n

k=1OGσ = (Rn,BRn ,
⊗n

k=1Gσ) in L∞(Ωn, ν⊗n) and
restrict it on

K = {(ω, ω, . . . , ω) ∈ Ωn | ω ∈ Ω}(⊆ Ωn)
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110 Chapter 5 Fisher statistics (I)

This is essentially the same as the simultaneous observable On = (Rn,BRn ,×n
k=1Gσ) in L∞(Ω).

That is,

[(
n

×
k=1

Gσ)(Ξ1 × Ξ2 × · · · × Ξn)](ω) =
n

×
k=1

[Gσ(Ξk)](ω)

=
n

×
k=1

1√
2πσ

∫
Ξk

exp

[
− 1

2σ2
(xk − ω)2

]
dxk (5.2)

(∀Ξk ∈ BX(= BR), ∀ω ∈ Ω(= R))

Then, for each (x1, x2, · · · , xn) ∈ Xn(= Rn), define

xn =
x1 + x2 + · · ·+ xn

n

U2
n =

(x1 − xn)2 + (x2 − xn)2 + · · ·+ (xn − xn)2

n− 1

and define the map ψ : Rn → R such that

ψ(x1, x2, . . . , xn) =
xn − ω
Un/
√
n

Then, we have the observable OTσn = (X(= R),BR, T
σ
n ) in L∞(R) such that

[T σn (Ξ)](ω) =
[
Gσ

(
{(x1, x2, ..., xn) ∈ Rn | xn − ω

Un/
√
n
∈ Ξ}

)]
(ω) (∀Ξ ∈ F) (5.3)

The observable OTσn = (X(= R),BR, T
σ
n ) in L∞(R) is called the student t observable .

Here, putting

fσn (x) =
{Γ(n/2)√

(n− 1)πΓ((n− 1)/2)
(1 +

x2

n− 1
)−n/2 (Γ is Gamma function) (5.4)

we see that

[T σn (Ξ)](ω) =

∫
Ξ

fσn (x)dx (∀Ξ ∈ F) (5.5)

which is independent of ω and σ. Also note that

lim
n→∞

fσn (x) = lim
n→∞

Γ(n/2)√
(n− 1)πΓ((n− 1)/2)

(1 +
x2

n− 1
)−n/2

=
1√
2π
e−

x2

2

thus, if n ≥ 30, it can be regarded as the normal distribution N(0, 1)( that is, mean 0, the
standard deviation 1).
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5.2 The reverse relation between Fisher ( =inference)

and Born ( =measurement)

In this section, we consider the reverse relation between Fisher ( =inference) and Born (
=measurement)

5.2.1 Inference problem ( Statistical inference )

Before we mention Fisher’s maximum likelihood method, we exercise the following problem:

Problem 5.2. [Urn problem( =Example2.30), A simplest example of Fisher’s maximum
likelihood method]

There are two urns U1 and U2. The urn U1 [resp. U2] contains 8 white and 2 black balls
[resp. 4 white and 6 black balls].

- �[∗]
U1(≈ ω1) U2(≈ ω2)

Figure 5.3: Pure measurement (Fisher’s maximum likelihood method)

Here consider the following procedures (i) and (ii).

(i) One of the two (i.e., U1 or U2) is chosen and is settled behind a curtain. Note, for
completeness, that you do not know whether it is U1 or U2.

(ii) Pick up a ball out of the unknown urn behind the curtain. And you find that the ball
is white.

Here, we have the following problem:

(iii) Infer the urn behind the curtain, U1 or U2?

The answer is easy, that is, the urn behind the curtain is U1. That is because
the urn U1 has more white balls than U2. The above problem is too easy, but it includes the
essence of Fisher maximum likelihood method.

5.2.2 Fisher’s maximum likelihood method in measurement theory

We begin with the following notation:
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112 Chapter 5 Fisher statistics (I)

Notation 5.3. [MA(O, S[∗])]: Consider the measurement MA (O=(X,F, F ), S[ρ]) formulated

in the basic structure [A ⊆ A ⊆ B(H)]. Here, note that

(A1) In most cases that the measurement MA (O=(X,F, F ), S[ρ]) is taken, it is usual to think
that the state ρ (∈ Sp(A∗)) is unknown.

That is because

(A2) the measurement MA(O, S[ρ]) may be taken in order to know the state ρ.

Therefore, when we want to stress that

we do not know the state ρ

The measurement MA (O=(X,F, F ), S[ρ]) is often denoted by

(A3) MA (O=(X,F, F ), S[∗])

Further, consider the subset K(⊆ Sp(A∗)). When we know that the state ρ belongs to K, MA

(O=(X,F, F ), S[∗]) is denoted by MA(O, S[∗]((K))). Therefore, it suffices to consider that

MA(O, S[∗]) = MA(O, S[∗]((S
p(A∗))))

Using this notation MA(O, S[∗]), we characterize our problem (i.e., inference) as follows.

Problem 5.4. [Inference problem]

(a) Assume that a measured value obtained by MA(O=(X,F, F ), S[∗]((K))) belongs to Ξ(∈
F). Then, infer the unknown state [∗] (∈ Ω)

or,

(b) Assume that a measured value (x, y) obtained by MA(O=(X × Y,F � G, H), S[∗]((K)))
belongs to Ξ× Y (Ξ ∈ F). Then, infer the probability that y ∈ Γ.

Before we answer the problem, we emphasize the reverse relation between “inference” and
“measurement”.

The measurement is “the view from the front”, that is,

(B1) (observable[O], state[ω(∈ Ω)])
measurement−−−−−−−−−−−→

ML∞(Ω)(O,S[ω])
measured value[x(∈ X)]

On the other hand, the inference is “the view from the back”, that is,

(B2) (observable[O],measured value[x ∈ Ξ(∈ F)])
inference−−−−−−−−−→

ML∞(Ω)(O,S[∗])
state [ω(∈ Ω)]

In this sense, we say that
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5.2 The reverse relation between Fisher ( =inference) and Born ( =measurement) 113

the inference problem is the reverse problem of measurement

Therefore, it suffices to image Fig. 5.4.

(measuring object)

unknown state −−−−−−−→

(measurement)︷ ︸︸ ︷
observable

(measuring instrument)

−−−−−−−−−→
probabilistic

measured value
(output)︸ ︷︷ ︸

(observer)

6

inference

Figure 5.4: The image of inference

In order to answer the above problem 5.4, we shall describe Fisher maximum likelihood

method in terms of measurement theory.

Theorem 5.5. [(Answer to Problem 5.4(b)): Fisher’s maximum likelihood method(the general

case)] Consider the basic structure

[A ⊆ A ⊆ B(H)]

Assume that a measured value(x, y) obtained by a measurement MA(O=(X×Y,F � G, H), S[∗]((K)))

belongs to Ξ× Y (Ξ ∈ F). Then, there is reason to infer that the probability P (Γ) that y ∈ Γ

is equal to

P (Γ) =
ρ0(H(Ξ× Γ))

ρ0(H(Ξ× Y ))
(∀Γ ∈ G)

where, ρ0 ∈ K is determined by.

ρ0(H(Ξ× Y )) = max
ρ∈K

ρ(H(Ξ× Y )) (5.6)

Proof. Assume that ρ1, ρ2 ∈ K and ρ1(H(Ξ × Y )) < ρ2(H(Ξ × Y )). By Axiom 1 (

measurement: §2.7)

(i) the probability that a measured value(x, y) obtained by a measurement MA(O, S[ρ1]) be-

longs to Ξ× Y is equal to ρ1(H(Ξ× Y ))

(ii) the probability that a measured value(x, y) obtained by a measurement MA(O, S[ρ2]) be-

longs to Ξ× Y is equal to ρ2(H(Ξ× Y ))
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114 Chapter 5 Fisher statistics (I)

Since we assume that ρ1(H(Ξ × Y )) < ρ2(H(Ξ × Y )), we can conclude that “(i) is more rare

than (ii)”. Thus, there is a reason to infer that [∗] = ω2. Therefore, the ρ0 in (5.6) is reasonable.

Since the probability that a measured value(x, y) obtained by MA(O, S[ρ0]) belongs to Ξ× Γ is

given by ρ0(H(Ξ× Γ)), we complete the proof of Theorem 5.5.

Theorem 5.6. [(Answer to 5.4(a)): Fisher’s maximum likelihood method in classical case ]

(i): Consider a measurement ML∞(Ω)(O =(X,F, F ), S[∗]((K))). Assume that we know that a

measured value obtained by a measurement ML∞(Ω)(O, S[∗]((K))) belongs to Ξ (∈ F). Then,

there is a reason to infer that the unknown state state [∗] is ω0 (∈ Ω) such that

[F (Ξ)](ω0) = max
ω∈Ω

[F (Ξ)](ω)

0

1

Ω
ω0

[F (Ξ)](ω)

Figure 5.5: Fisher maximum likelihood method

(ii): Assume that a measured value x0 (∈ X) is obtained by a measurement ML∞(Ω)(O

=(X,F, F ), S[∗]((K))). Define the likelihood function f(x, ω) by

f(x, ω) = inf
ω1∈K

[
lim

Ξ3x,[F (Ξ)](ω1)6=0,Ξ→{x}

[F (Ξ)](ω)

[F (Ξ)](ω1)

]
(5.7)

Then, there is a reason to infer that [∗] = ω0(∈ K) such that f(x0, ω0) = 1.

Proof. Consider Theorem 5.5 in the case that

[A ⊆ A ⊆ B(H)] = [C0(Ω) ⊆ L∞(Ω) ⊆ B(L2(Ω)]

Thus, in the measurement ML∞(Ω)(O=(X × Y,F � G, H), S[∗]((K))), consider the case that

Fixed O1=(X,F, F ), any O2=(Y,G, G),

O=O1 × O2 = (X × Y,F � G, F ×G), ρ0 = δω0

Then, we see

P (Γ) =
[H(Ξ)](ω0)× [G(Γ)](ω0)

[H(Ξ)](ω0)× [G(Y )](ω0)
= [G(Γ)](ω0) (∀Γ ∈ G) (5.8)
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5.2 The reverse relation between Fisher ( =inference) and Born ( =measurement) 115

And, from the arbitrariness of O2, there is a reason to infer that

[∗] = δω0( ≈
identification

ω0)

♠Note 5.1. The linguistic interpretation says that the state after measurement is non-sense. In
this sense, the readers may consider that

(]1) Theorem 5.6 is also non-sense

However, we say that

(]2) in the sense of (5.8), Theorem 5.6 should be accepted.

or

(]3) as far as classical system, it suffices to believe in Theorem 5.6

Answer 5.7. [The answer to Problem 5.2 by Fisher’s maximum likelihood method]
You do not know which the urn behind the curtain is, U1 or U2.

Assume that you pick up a white ball from the urn.
The urn is U1 or U2? Which do you think?

- �[∗]
U1≈ω1 U2≈ω2

Figure 5.6: Pure measurement (Fisher’s maximum likelihood method)

Answer: Consider the measurement ML∞(Ω)(O= ({w, b}, 2{w,b}, F ), S[∗]), where the ob-
servable Owb = ({w, b}, 2{w,b}, Fwb) in L∞(Ω) is defined by

[Fwb({w})](ω1) = 0.8, [Fwb({b})](ω1) = 0.2

[Fwb({w})](ω2) = 0.4, [Fwb({b})](ω2) = 0.6 (5.9)

Here, we see:

max{[Fwb({w})](ω1), [Fwb({w})](ω2)}
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= max{0.8, 0.4} = 0.8 = Fwb({w})](ω1)

Then, Fisher’s maximum likelihood method (Theorem 5.6) says that

[∗] = ω1

Therefore, there is a reason to infer that the urn behind the curtain is U1.

♠Note 5.2. As seen in Figure 5.4 , inference (Fisher maximum likelihood method) is the reverse
of measurement (i.e., Axiom 1 due to Born). Here note that

(a) Born’s discovery “the probabilistic interpretation of quantum mechanics” in [6] (1926)

(b) Fisher’s great book “Statistical Methods for Research Workers” (1925)

Thus, it is surprising that Fisher and Born investigated the same thing in the different fields in
the same age.
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5.3 Examples of Fisher’s maximum likelihood method 117

5.3 Examples of Fisher’s maximum likelihood method

All examples mentioned in this section are easy for the readers who studied the elementary

of statistics. However, it should be noted that these are consequence of Axiom 1 ( measurement:

§2.7).

Example 5.8. [Urn problem] Each urn U1, U2, U3 contains many white balls and black ball

such as:

Table 5.1: urn problem

w·b� Urn Urn U1 Urn U2 Urn U3

white ball 80% 40% 10%

black ball 20% 60% 90%

Here,

(i) one of three urns is chosen, but you do not know it. Pick up one ball from the unknown

urn. And you find that its ball is white. Then, how do you infer the unknown urn, i.e.,

U1, U2 or U3?

Further,

(ii) And further, you pick up another ball from the unknown urn (in (i)). And you find that

its ball is black. That is, after all, you have one white ball and one black ball. Then, how

do you infer the unknown urn, i.e., U1, U2 or U3?

In what follows, we shall answer the above problems (i) and (ii) in terms of measurement

theory.

Consider the classical basic structure:

[C0(Ω) ⊆ L∞(Ω, ν) ⊆ B(L2(Ω, ν))]

Put

δωj(≈ ωj)←→ [the state such that urn Uj is chosen] (j = 1, 2, 3)

Thus, we have the state space Ω ( ={ω1, ω2, ω3} ) with the counting measure ν. Further, define

the observable O = ({w, b}, 2{w,b}, F ) in C(Ω) such that

F ({w})(ω1) = 0.8, F ({w})(ω2) = 0.4, F ({w})(ω3) = 0.1

F ({b})(ω1) = 0.2, F ({b})(ω2) = 0.6, F ({b})(ω3) = 0.9
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Answer to (i): Consider the measurement ML∞(Ω)(O, S[∗]), by which a measured value “w”

is obtained. Therefore, we see

[F ({w})](ω1) = 0.8 = max
ω∈Ω

[F ({w})](ω) = max{0.8, 0.4, 0.1}

Hence, by Fisher’s maximum likelihood method (Theorem5.6) we see that

[∗] = ω1

Thus, we can infer that the unknown urn is U1.

Answer to (ii): Next, consider the simultaneous measurement ML∞(Ω)(×2
k=1O = (X2,

2X
2
, F̂=×2

k=1 F ), S[∗]), by which a measured value (w, b) is obtained. Here, we see

[F̂ ({(w, b)})](ω) = [F ({w})](ω) · [F ({b})](ω)

thus,

[F̂ ({(w, b)})](ω1) = 0.16, [F̂ ({(w, b)})](ω2) = 0.24, [F̂ ({(w, b)})](ω3) = 0.09

Hence, by Fisher’s maximum likelihood method (Theorem5.6), we see that

[∗] = ω2

Thus, we can infer that the unknown urn is U2.

Example 5.9. [Normal observable(i): Ω = R] As mentioned before, we again discuss the

normal observable in what follows. Consider the classical basic structure:

[C0(Ω) ⊆ L∞(Ω, ν) ⊆ B(L2(Ω, ν))] (where, Ω = R)

Fix σ > 0, and consider the normal observable OGσ = (R,BR, Gσ) in L∞(R) (where Ω = R)

such that

[Gσ(Ξ)](µ) =
1√
2πσ

∫
Ξ

exp[− 1

2σ2
(x− µ)2]dx

(∀Ξ ∈ BR, ∀µ ∈ Ω = R)

Thus, the simultaneous observable ×3
k=1OGσ (in short, O3

Gσ
) = (R3,BR3 , G3

σ) in L∞(R) is

defined by
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5.3 Examples of Fisher’s maximum likelihood method 119

[G3
σ(Ξ1 × Ξ2 × Ξ3)](µ) = [Gσ(Ξ1)](µ) · [Gσ(Ξ2)](µ) · [Gσ(Ξ3)](µ)

=
1

(
√

2πσ)3

∫∫∫
Ξ1×Ξ2×Ξ3

exp[− (x1 − µ)2 + (x2 − µ)2 + (x3 − µ)2

2σ2
]

× dx1dx2dx3

(∀Ξk ∈ BR, k = 1, 2, 3, ∀µ ∈ Ω = R)

Thus, we get the measurement ML∞(R)(O
3
Gσ
, S[∗])

Now we consider the following problem:

(a) Assume that a measured value (x01, x
0
2, x

0
3) (∈ R3) is obtained by the measurement ML∞(R)(O

3
Gσ
,

S[∗]). Then, infer the unknown state [∗](∈ R).

Answer(a) Put

Ξi = [x0i −
1

N
, x0i +

1

N
] (i = 1, 2, 3)

Assume that N is sufficiently large. Fisher’s maximum likelihood method (Theorem5.6) says

that the unknown state[ ∗ ] = µ0 is found in what follows.

[G3
σ(Ξ1 × Ξ2 × Ξ3)](µ0) = max

µ∈R
[G3

σ(Ξ1 × Ξ2 × Ξ3)](µ)

Since N is sufficiently large, we see

1

(
√

2πσ)3
exp[− (x01 − µ0)

2 + (x02 − µ0)
2 + (x03 − µ0)

2

2σ2
]

= max
µ∈R

[ 1

(
√

2πσ)3
exp[− (x01 − µ)2 + (x02 − µ)2 + (x03 − µ)2

2σ2
]
]

That is,

(x01 − µ0)
2 + (x02 − µ0)

2 + (x03 − µ0)
2 = min

µ∈R

{
(x01 − µ)2 + (x02 − µ)2 + (x03 − µ)2

}
Therefore, solving d

dµ
{· · · } = 0, we conclude that

µ0 =
x01 + x02 + x03

3

[Normal observable(ii)] Next consider the classical basic structure:

[C0(Ω) ⊆ L∞(Ω, ν) ⊆ B(L2(Ω, ν))] (where, Ω = R× R+)

and consider the case:
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• we know that the length of the pencil µ is satisfied that 10cm µ L cm ≤30.

And we assume that

(]) the length of the pencil µ and the roughness σ of the ruler are unknown.

That is, assume that the state space Ω = [10, 30] × R+

(
={µ ∈ R | 10 5 µ 5 30} × {σ ∈

R | σ > 0}
)

Define the observable O = (R,BR, G) in L∞([10, 30]× R+) such that

[G(Ξ)](µ, σ) = [Gσ(Ξ)](µ) (∀Ξ ∈ BR, ∀(µ, σ) ∈ Ω = [10, 30]× R+)

Therefore, the simultaneous observable O3 = (R3,BR3 , G3) in C([10, 30]× R+) is defined by

[G3(Ξ1 × Ξ2 × Ξ3)](µ, σ) = [G(Ξ1)](µ, σ) · [G(Ξ2)](µ, σ) · [G(Ξ3)](µ, σ)

=
1

(
√

2πσ)3

∫
Ξ1×Ξ2×Ξ3

exp[− (x1 − µ)2 + (x2 − µ)2 + (x3 − µ)2

2σ2
]dx1dx2dx3

(∀Ξk ∈ BR, k = 1, 2, 3, ∀(µ, σ) ∈ Ω = [10, 30]× R+)

Thus, we get the simultaneous measurement ML∞([10,30]×R+)(O
3, S[∗]). Here, we have the follow-

ing problem:

(b) When a measured value (x01, x
0
2, x

0
3) ( ∈ R3) is obtained by the measurement ML∞([10,30]×R+)

(O3, S[∗]), infer the unknown state [∗](= (µ0, σ0) ∈ [10, 30] × R+), i.e., the length µ0 of

the pencil and the roughness σ0 of the ruler.

Answer (b) By the same way of (a), Fisher’s maximum likelihood method (Theorem5.6)

says that the unknownstate [ ∗ ] = (µ0, σ0) such that

1

(
√

2πσ0)3
exp[− (x01 − µ0)

2 + (x02 − µ0)
2 + (x03 − µ0)

2

2σ2
0

]

= max
(µ,σ)∈[10,30]×R+

{ 1

(
√

2πσ)3
exp[− (x01 − µ)2 + (x02 − µ)2 + (x03 − µ)2

2σ2
]
}

(5.10)

Thus, solving ∂
∂µ
{· · · } = 0, ∂

∂σ
{· · · } = 0 we see

µ0 =


10 (when (x01 + x02 + x03)/3 < 10 )

(x01 + x02 + x03)/3 (when 10 5 (x01 + x02 + x03)/3 5 30 )

30 (when 30 < (x01 + x02 + x03)/3 )

(5.11)

σ0 =
√
{(x01 − µ̃)2 + (x02 − µ̃)2 + (x03 − µ̃)2}/3

KSTS/RR-15/001 
January 22, 2015



5.3 Examples of Fisher’s maximum likelihood method 121

where

µ̃ = (x01 + x02 + x03)/3

Example 5.10. [Fisher’s maximum likelihood method for the simultaneous normal measurement].

Consider the simultaneous normal observable On
G = (Rn,Bn

R, G
n) in L∞(R × R+) (such as

defined in formula (5.2)). This is essentially the same as the simultaneous observable On =

(Rn,BRn ,×n
k=1Gσ) in L∞(R× R+). That is,

[(
n

×
k=1

Gσ)(Ξ1 × Ξ2 × · · · × Ξn)](ω) =
n

×
k=1

[Gσ(Ξk)](ω)

=
n

×
k=1

1√
2πσ

∫
Ξk

exp

[
− 1

2σ2
(xk − µ)2

]
dxk

(∀Ξk ∈ BX(= BR), ∀ω = (µ, σ) ∈ Ω(= R× R+))

Assume that a measured value x = (x1, x2, . . . , xn)(∈ Rn) is obtained by the measurement

ML∞(R×R+)(O
n = (Rn,Bn

R, G
n
σ),S[∗]). The likelihood function Lx(µ, σ)(= L(x, (µ, σ)) is equal to

Lx(µ, σ) =
1

(
√

2πσ)n
exp[−

∑n
k=1(xk − µ)2

2σ2
]

or, in the sense of (5.7),

Lx(µ, σ) =

1
(
√
2πσ)n

exp[−
∑n
k=1(xk−µ)2

2σ2 ]

1
(
√
2πσ(x))n

exp[−
∑n
k=1(xk−µ(x))2

2σ(x)2
]

(5.12)

(∀x = (x1, x2, . . . , xn) ∈ Rn, ∀ω = (µ, σ) ∈ Ω = R× R+).

Therefore, we get the following likelihood equation:

∂Lx(µ, σ)

∂µ
= 0,

∂Lx(µ, σ)

∂σ
= 0 (5.13)

which is easily solved. That is, Fisher’s maximum likelihood method (Theorem5.6) says that

the unknown state [∗] = (µ, σ) (∈ R× R+) is inferred as follows.

µ = µ(x) =
x1 + x2 + . . .+ xn

n
, (5.14)

σ = σ(x) =

√∑n
k=1(xk − µ(x))2

n
(5.15)
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5.4 Moment method: useful but artificial

Let us explain the moment method (cf. [28]), which as well as Fisher’s maximum likelihood

method are frequently used.

Consider the measurement MA

(
O ≡ (X,F, F ), S[ρ]

)
, and its parallel measurement⊗nk=1MA

(
O

≡ (X,F, F ), S[ρ]

)
(= M⊗A

(⊗n
k=1 O := (Xn,Fn,

⊗n
k=1 F ), S[⊗nk=1ρ]

)
. Assume that the measured

value (x1, x2, ..., xn)(∈ Xn) is obtained by the parallel measurement. Assume that n is suffi-

ciently large. By the law of large numbers (Theorem 4.3), we can assure that

M+1(X) 3 νn
(
≡ δx1 + δx2 + · · ·+ δxn

n

)
+ ρ(F (·)) ∈M+1(X) (5.16)

Thus,

(A) in order to infer the unknown state ρ(∈ Sp(A∗)), it suffices to solve the equation (5.16)

For example, we have several methods to solve the equation (5.16) as follows.

(B1) Solve the following equation:

‖νn(·)− ρ(F (·))‖M(X) = min{‖νn(·)− ρ1(F (·))‖M(X) | ρ1(∈ Sp(A∗))} (5.17)

(B2) For some f1, f2, · · · , fn ∈ C(X) (= the set of all continuous functions on X), it suffices

to find ρ(∈ Sp(A∗)) such that ∆(ρ) = minρ1(∈Sp(A∗)) ∆(ρ1), where

∆(ρ) =
n∑
k=1

∣∣∣ ∫
X

fk(ξ)νn(dξ)−
∫
X

fk(ξ)ρ(F (dξ))
∣∣∣

=
n∑
k=1

∣∣∣fk(x1) + fk(x2) + · · ·+ fk(xn)

n
−
∫
X

fk(ξ)ρ(F (dξ))
∣∣∣

(B3) In the cases of the classical measurement ML∞(Ω)

(
O ≡ (X,F, F ), S[ρ]

)
(putting ρ = δω),

it suffices to solve

0 =
n∑
k=1

∣∣∣fk(x1) + fk(x2) + · · ·+ fk(xn)

n
−
∫
X

fk(ξ)[F (dξ)](ω)
∣∣∣ (5.18)

or, it suffices to solve

f1(x1)+f1(x2)+···+f1(xn)
n

−
∫
X
f1(ξ)[F (dξ)](ω) = 0

f2(x1)+f2(x2)+···+f2(xn)
n

−
∫
X
f2(ξ)[F (dξ)](ω) = 0

. . . . . .

. . . . . .
fm(x1)+fm(x2)+···+fm(xn)

n
−
∫
X
fm(ξ)[F (dξ)](ω) = 0
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(B4) Particularly, in the case that X = {ξ1, ξ2, · · · , ξm} is finite, define f1, f2, · · · , fm ∈ C(X)

by

fk(ξ) = χ{ξk}
(ξ) =

{
1 (ξ = ξk)
0 (ξ 6= ξk)

and, it suffices to find the ρ(= δω) such that

n∑
k=1

∣∣∣χ{ξk}
(x1) + χ{ξk}

(x2) + · · ·+ χ{ξk}
(xn)

n
−
∫
X

χ{ξk}
(ξ)ρ(F (dξ))

∣∣∣
=

n∑
k=1

∣∣∣][{xm : ξk = xm}]
n

− [F ({ξk}](ω))
∣∣∣ = 0

The above methods are all the moment method. Note that

(C1) It is desirable that n is sufficiently large, but the moment method may be valid even when

n = 1.

(C2) The choice of fk is artificial ( on the other hand, Fisher’ maximum likelihood method is

natural).

Problem 5.11. [=Problem5.2: Urn problem: by the moment method]
You do not know which the urn behind the curtain is, U1 or U2.

Assume that you pick up a white ball from the urn.
The urn is U1 or U2? Which do you think?

- �[∗]
U1≈ω1 U2≈ω2

Figure 5.7: Inference(by moment method)

Answer: Consider the measurement ML∞(Ω)(O= ({w, b}, 2{w,b}, F ), S[∗]). Here, recall that

the observable Owb = ({w, b}, 2{w,b}, Fwb) in L∞(Ω) is defined by

[Fwb({w})](ω1) = 0.8, [Fwb({b})](ω1) = 0.2
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[Fwb({w})](ω2) = 0.4, [Fwb({b})](ω2) = 0.6

Since a measured value “w” is obtained, the approximate sample space ({w, b}, 2{w,b}, ν1) is

obtained as

ν1({w}) = 1, ν1({b}) = 0

[when the unknown state [∗] is ω1]

(5.17) = |1− 0.8|+ |0− 0.2|

[when the unknown state [∗] is ω2]

(5.17) = |1− 0.4|+ |0− 0.6|

Thus, by the moment method, we can infer that [∗] = ω1, that is, the urn behind the curtain

is U1.

[II] The above may be too easy. Thus, we add the following problem.

Problem 5.12. [Sampling with replacement]: As mentioned in the above, assume that “white
ball” is picked. and the ball is returned to the urn. And further, we pick “black ball”, and it
is returned to the urn. Repeat this, after all, assume that we get

“w”, “b”, “b”, “w”, “b”, “w”, “b”,

Then, we have the following problem:

(a) Which the urn behind the curtain is U1 or U2?

Answer: Consider the simultaneous measurement ML∞(Ω)(×7
k=1O= ({w, b}7, 2{w,b}

7

, ×7
k=1F ),

S[∗]). And assume that the measured value is (w, b, b, w, b, w, b). Then,

[when [∗] is ω1]

(5.17) = |3/7− 0.8|+ |4/7− 0.2| = 52/70

[when [∗] is ω2]

(5.17) = |3/7− 0.4|+ |4/7− 0.6| = 10/70

Thus, by the moment method, we can infer that [∗] = ω2, that is, the urn behind the curtain

is U2.
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Example 5.13. [The most important example of moment method] Putting Ω = R × R+

= {ω = (µ, σ) | µ ∈ R, σ > 0} with Lebesgue measure ν, Consider the classical basic structure

[C0(Ω) ⊆  L∞(Ω, ν) ⊆ B(L2(Ω, ν))]

Assume that the observable OG = (X(= R),BR, G) in L∞(Ω, ν) satisfies that∫
R
ξ[G(dξ)](µ, σ) = µ,

∫
R
(ξ − µ)2[G(dξ)](µ, σ) = σ2

(∀ω = (µ, σ) ∈ Ω(= R× R+))

Here, assume that a measured value (x1, x2, x3)(∈ R3) is obtained by the simultaneous mea-

surement×3
k=1 ML∞(Ω)(OG, S[∗]). That is, we have the 3-sample distribution ν3 such that

ν3 =
δx1 + δx2 + δx3

3
∈M+1(R)

Put f1(ξ) = ξ, f2(ξ) = ξ2. Then, by the moment method (5.18), we see:

0 =
2∑

k=1

∣∣∣ ∫
R
ξkν3(dξ)−

∫
R
ξk[G(dξ)](ω)

∣∣∣
=

2∑
k=1

∣∣∣(x1)k + (x2)
k + (xn)k

3
−
∫
R
ξk[G(dξ)](µ, σ)

∣∣∣
=
∣∣∣x1 + x2 + x3

3
− µ

∣∣∣ +
∣∣∣(x1)2 + (x2)

2 + (x3)
2

3
− (σ2 + µ2)

∣∣∣
Thus, we get:

µ =
x1 + x2 + xn

3

σ2 =
(x1)

2 + (x2)
2 + (x3)

2

3
− µ2

=
(x1 − x1+x2+xn

3
)2 + (x2 − x1+x2+xn

3
)2 + (x3 − x1+x2+xn

3
)2

3

which is the same as the (5.11) concerning the normal measurement.

♠Note 5.3. Consider the measurement ML∞(Ω)(O=(X, 2X , F ), S[∗]), where X = {x1, x2, ..., xn}
is finite. Then, we see that

“Fisher’s maximum likelihood method”=“moment method”

.

[Answer] Assume that a measured valuexm(∈ X) is obtained by the measurementMA(O=(X, 2X ,
F ), S[∗])

[Fisher’s maximum likelihood method]:
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(a) Find ω0(∈ Ω) such that

[F ({xm})](ω0) = max
ω∈Ω

[F ({xm})](ω)

[Moment method]:

(b) Since we get the approximate sample probability space (X, 2X , δxm), we see

|0− [F ({x1})](ω)|+ · · ·+ |0− [F ({xm−1})](ω)|+ |1− [F ({xm})](ω)|
+ |0− [F ({xm+1})](ω)|+ · · ·+ |0− [F ({xn})](ω)|

=[F ({x1})](ω) + · · ·+ [F ({xm−1})](ω) + [F ({xm})](ω)
+ [F ({xm+1})](ω) + · · ·+ [F ({xn})](ω)

=1− 2[F ({xm})](ω)

Thus, it suffice to find ω0(∈ Ω) such that

1− 2[F ({xm})](ω0) = min
ω

(1− 2[F ({xm})](ω))

Thus, Fisher’s maximum likelihood method and the moment method are the same in this case.
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5.5 Monty Hall problem—High school student puzzle—

Monty Hall problem is as follows1.

Problem 5.14. [Monty Hall problem ]
You are on a game show and you are given the choice of three doors. Behind one door is

a car, and behind the other two are goats. You choose, say, door 1, and the host, who knows
where the car is, opens another door, behind which is a goat. For example, the host says that

([) the door 3 has a goat.

And further, he now gives you the choice of sticking with door 1 or switching to door 2?
What should you do?

? ? ?

door door door
No. 1 No. 2 No. 3

Figure 5.8: Monty Hall problem

Answer: Put Ω = {ω1, ω2, ω3} with the discrete topology dD and the counting measure ν.

Thus consider the classical basic structure:

[C0(Ω) ⊆ L∞(Ω, ν) ⊆ B(L2(Ω, ν))]

Assume that each state δωm(∈ Sp(C(Ω)∗)) means

δωm ⇔ the state that the car is behind the door m (m = 1, 2, 3)

Define the observable O1 ≡ ({1, 2, 3}, 2{1,2,3}, F1) in L∞(Ω) such that

[F1({1})](ω1) = 0.0, [F1({2})](ω1) = 0.5, [F1({3})](ω1) = 0.5,

[F1({1})](ω2) = 0.0, [F1({2})](ω2) = 0.0, [F1({3})](ω2) = 1.0,

1This section is extracted from the followings:

(a) Ref. [28]: S. Ishikawa, “Mathematical Foundations of Measurement Theory,” Keio University Press Inc.
2006.

(b) Ref. [32]: S. Ishikawa, “Monty Hall Problem and the Principle of Equal Probability in Measurement
Theory,” Applied Mathematics, Vol. 3 No. 7, 2012, pp. 788-794. doi: 10.4236/am.2012.37117.
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[F1({1})](ω3) = 0.0, [F1({2})](ω3) = 1.0, [F1({3})](ω3) = 0.0, (5.19)

where it is also possible to assume that F1({2})(ω1) = α, F1({3})(ω1) = 1−α (0 < α < 1). The

fact that you say “the door 1” clearly means that you take a measurement ML∞(Ω)(O1, S[∗]).

Here, we assume that

a) “a measured value 1 is obtained by the measurement ML∞(Ω)(O1, S[∗])”

⇔ The host says “Door 1 has a goat”

b) “measured value 2 is obtained by the measurement ML∞(Ω)(O1, S[∗]) ”

⇔ The host says “Door 2 has a goat”

c) “measured value 3 is obtained by the measurement ML∞(Ω)(O1, S[∗]) ”

⇔ The host says “Door 3 has a goat”

Recall that, in Problem 5.14, the host said “Door 3 has a goat”. This implies that you get the

measured value “3” by the measurement ML∞(Ω)(O1, S[∗]). Therefore, Theorem 5.6 (Fisher’s

maximum likelihood method) says that you should pick door number 2. That is because we see

that

max{[F1({3})](ω1), [F1({3})](ω2), [F1({3})](ω3)} = max{0.5, 1.0, 0.0}

= 1.0 = [F1({3})](ω2)

and thus, there is a reason to infer that wquaualweigh[∗] = δω2 . Thus, you should switch to

door 2. This is the first answer to Problem 5.14 (Monty-Hall problem).

♠Note 5.4. Examining the above example, the readers should understand that the problem “What
is measurement?” is an unreasonable demand. Thus,

we abandon the realistic approach, and accept the metaphysical approach.

Also, for a Bayesian approach to Monty Hall problem, see Chapter 9 and Chapter 19.

Remark 5.15. [The answer by the moment method] In the above, a measured value “3” is

obtained by the measurement ML∞(Ω)(O=({1, 2, 3}, 2{1,2,3}, F ), S[∗]). Thus, the approximate

sample space ({1, 2, 3}, 2{1,2,3}, ν1) is obtained such that ν1({1}) = 0, ν1({2}) = 0, ν1({3}) = 1.

Therefore,
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[when the unknown [∗] is ω1]

(5.17) = |0− 0|+ |0− 0.5|+ |1− 0.5| = 1,

[when the unknown [∗] is ω2]

(5.17) = |0− 0|+ |0− 0|+ |1− 1| = 0

[when the unknown [∗] is ω3]

(5.17) = |0− 0|+ |0− 1|+ |1− 0| = 2.

Thus, we can infer that [∗] = ω2. That is, you should change to the Door 2.
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5.6 The two envelope problem —High school student

puzzle—

This section is extracted from the following:

Ref. [45]: S. Ishikawa; The two envelopes paradox in non-Bayesian and Bayesian statistics

( arXiv:1408.4916v4 [stat.OT] 2014 )

Also, for a Bayesian approach to the two envelope problem, see Chapter 9.

5.6.1 Problem(the two envelope problem)

The following problem is the famous “two envelope problem( cf. [54] )”.

Problem 5.16. [The two envelope problem]
The host presents you with a choice between two envelopes (i.e., Envelope A and Envelope
B). You know one envelope contains twice as much money as the other, but you do not know
which contains more. That is, Envelope A [resp. Envelope B] contains V1 dollars [resp. V2
dollars]. You know that

(a) V1
V2

= 1/2 or, V1
V2

= 2

Define the exchanging map x : {V1, V2} → {V1, V2} by

x =

{
V2, ( if x = V1),
V1 ( if x = V2)

You choose randomly (by a fair coin toss) one envelope, and you get x1 dollars (i.e., if you
choose Envelope A [resp. Envelope B], you get V1 dollars [resp. V2 dollars] ). And the host
gets x1 dollars. Thus, you can infer that x1 = 2x1 or x1 = x1/2. Now the host says “You are
offered the options of keeping your x1 or switching to my x1”. What should you do?

Envelope A Envelope B

Figure 5.9: Two envelope problem

[(P1):Why is it paradoxical?]. You get α = x1. Then, you reason that, with probability 1/2,
x1 is equal to either α/2 or 2α dollars. Thus the expected value (denoted Eother(α) at this

KSTS/RR-15/001 
January 22, 2015

http://arxiv.org/abs/1408.4916


5.6 The two envelope problem —High school student puzzle— 131

moment) of the other envelope is

Eother(α) = (1/2)(α/2) + (1/2)(2α) = 1.25α (5.20)

This is greater than the α in your current envelope A. Therefore, you should switch to B.
But this seems clearly wrong, as your information about A and B is symmetrical. This is the
famous two-envelope paradox (i.e., “The Other Person’s Envelope is Always Greener” ).

5.6.2 Answer: the two envelope problem 5.16

Consider the classical basic structure

[C0(Ω) ⊆ L∞(Ω, ν) ⊆ B(L2(Ω, ν))]

where the locally compact space Ω is arbitrary, that is, it may be R+ = {ω | ω ≥ 0} or the one

point set {ω0} or Ω = {2n | n = 0,±1,±2, . . .}. Put X = R+ = {x | x ≥ 0}. Consider two

continuous (or generally, measurable ) functions V1 : Ω→ R+ and V2 : Ω→ R+. such that

V2(ω) = 2V1(ω) or, 2V2(ω) = V1(ω) (∀ω ∈ Ω)

For each k = 1, 2, define the observable Ok = (X(= R+),F(= BR+
: the Borel field), Fk) in

L∞(Ω, ν) such that

[Fk(Ξ)](ω) =

{
1 ( if Vk(ω) ∈ Ξ)
0 ( if Vk(ω) /∈ Ξ)

(∀ω ∈ Ω,∀Ξ ∈ F = BR+
i.e., the Bore field in X(= R+) )

Further, define the observable O = (X,F, F ) in L∞(Ω, ν) such that

F (Ξ) =
1

2

(
F1(Ξ) + F2(Ξ)

)
(∀Ξ ∈ F) (5.21)

That is,

[F (Ξ)](ω) =


1 ( if V1(ω) ∈ Ξ, V2(ω) ∈ Ξ)
1/2 ( if V1(ω) ∈ Ξ, V2(ω) /∈ Ξ)
1/2 ( if V1(ω) /∈ Ξ, V2(ω) ∈ Ξ)
0 ( if V1(ω) /∈ Ξ, V2(ω) /∈ Ξ)

(∀ω ∈ Ω,∀Ξ ∈ F = BX i.e., Ξ is a Borel set in X(= R+) )

Fix a state ω(∈ Ω), which is assumed to be unknown. Consider the measurement ML∞(Ω,ν)(O =

(X,F, F ), S[ω]). Axiom 1 (§2.7) says that
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(A1) the probability that a measured value

{
V1(ω)
V2(ω)

}
is obtained by the measurement ML∞(Ω,ν)(O

= (X,F, F ), S[ω]) is given by

{
1/2
1/2

}
If you switch to

{
V2(ω)
V1(ω)

}
, your gain is

{
V2(ω)− V1(ω) = ω
V1(ω)− V2(ω) = −ω

}
. Therefore, the expectation

of switching is

(V2(ω)− V1(ω))/2 + (V1(ω)− V2(ω))/2 = 0

That is, it is wrong “The Other Person’s envelope is Always Greener”.

Remark 5.17. The condition (a) in Problem 5.16 is not needed. This condition plays a role

to confuse the essence of the problem.

5.6.3 Another answer: the two envelope problem 5.16

For the preparation of the following section (§ 5.6.4), consider the state space Ω such that

Ω = R+

with Lebesgue measure ν. Thus, we start from the classical basic structure

[C0(Ω) ⊆ L∞(Ω, ν) ⊆ B(L2(Ω, ν))]

Also, putting Ω̂ = {(ω, 2ω) | ω ∈ R+}, we consider the identification:

Ω 3 ω ←→
(identification)

(ω, 2ω) ∈ Ω̂ (5.22)

Further, define V1 : Ω(≡ R+)→ X(≡ R+) and V2 : Ω(≡ R+)→ X(≡ R+) such that

V1(ω) = ω, V2(ω) = 2ω (∀ω ∈ Ω)

And define the observable O = (X(= R+),F(= BR+
: the Borel field), F ) in L∞(Ω, ν) such

that

[F (Ξ)](ω) =


1 ( if ω ∈ Ξ, 2ω ∈ Ξ)
1/2 ( if ω ∈ Ξ, 2ω /∈ Ξ)
1/2 ( if ω /∈ Ξ, 2ω ∈ Ξ)
0 ( if ω /∈ Ξ, 2ω /∈ Ξ)

(∀ω ∈ Ω,∀Ξ ∈ F)

Fix a state ω(∈ Ω), which is assumed to be unknown. Consider the measurement ML∞(Ω,ν)(O =

(X,F, F ), S[ω]). Axiom 1 ( measurement: §2.7) says that
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(A2) the probability that a measured value

{
x = V1(ω) = ω
x = V2(ω) = 2ω

}
is obtained by ML∞(Ω,ν)(O =

(X,F, F ), S[ω]) is given by

{
1/2
1/2

}
If you switch to

{
V2(ω)
V1(ω)

}
, your gain is

{
V2(ω)− V1(ω)
V1(ω)− V2(ω)

}
. Therefore, the expectation of

switching is

(V2(ω)− V1(ω))/2 + (V1(ω)− V2(ω))/2 = 0

That is, it is wrong “The Other Person’s envelope is Always Greener”.

Remark 5.18. The readers should note that Fisher’s maximum likelihood method is not used

in the two answers ( in §5.6.2 and §5.6.3). If we try to apply Fisher’s maximum likelihood

method to Problem 5.16 ( Two envelope problem), we get into a dead end. This is shown

below.

5.6.4 Where do we mistake in (P1) of Problem 5.16?

Now we can answer to the question:

Where do we mistake in (P1) of Problem 5.16?

Let us explain it in what follows.

Assume that

(a) a measured value α is obtained by the measurement ML∞(Ω,ν)(O = (X,F, F ), S[∗])

Then, we get the likelihood function f(α, ω) such that

f(α, ω) ≡ inf
ω1∈Ω

[
lim

Ξ→{x},[F (Ξ)](ω1)6=0

[F (Ξ)](ω)

[F (Ξ)](ω1)

]
=

{
1 (ω = α/2 or α)
0 ( elsewhere )

6

-

α

(α
2
, α) (α, 2α)

X(= R+)

Ω̂(≈ Ω = R+)

Figure 5.10: Two envelope problem
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Therefore, Fisher’s maximum likelihood method says that

(B1) unknown state [∗] is equal to α/2 or α(
If [∗] = α/2 [resp. [∗] = α ], then the switching gain is (α/2− α) [resp. (2α− α)]

)
.

However, Fisher’s maximum likelihood method does not say

(B2)


“the probability that [∗] = α/2”=1/2
“the probability that [∗] = α”=1/2
“the probability that [∗] is otherwise”=0

Therefore, we can not calculate ( such as (5.20)):

(α/2− α)× 1

2
+ (2α− α)× 1

2
= 1.25α

(C1) Thus, the sentence “with probability 1/2” in [(P1):Why is it paradoxical?] is wrong.

Hence, we can conclude that

(C2) If “state space” is specified, there will be no method of a mistake.

since the state space is not declared in [(P1):Why is it paradoxical?].

After all, we want to conclude that

(D) we can not explain the two envelope problem paradoxically in quantum lan-

guage

♠Note 5.5. The readers may think that

(]1) the answer of Problem 5.16 is a direct consequence of the fact that the information about
A and B is symmetrical (as mentioned in [(P1): Why is it paradoxical?] in Problem 5.16).
That is, it suffices to point out the symmetry.

This answer (]1) may not be wrong. But we think that the (]1) is not sufficient. That is because

(]2) in the above answer (]1), the problem “What kind of theory (or, language, world view) is
used?” is not clear. On the other hand, the answer presented in Section 5.6.2 is based on
quantum language.

This is quite important. For example, someone may paradoxically assert that it is impossible
to decide “Geocentric model vs. Heliocentrism”, since motion is relative. However, we can say,
at least, that
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(]3) Heliocentrism is more handy (than Geocentric model) under Newtonian mechanics.

That is, I think that

(]4) Geocentric model may not be wrong under Aristotle’s world view.

Therefore, I think that the true meaning of the Copernican revolution is

Aristotle’s world view −−−−−−−−−−−−−−−−−→
(the Copernican revolution)

Newtonian mechanical world view (5.23)

and not

Geocentric model −−−−−−−−−−−−−−−−−→
(the Copernican revolution)

Heliocentrism (5.24)

Thus, this (5.24) is merely one of the symbolic events in the Copernican revolution (5.23). The
readers should recall my only one assertion in this note, i.e., Figure 1.1 (The history of the world
views).
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Chapter 6

The confidence interval and statistical
hypothesis testing

The standard university course of statistics is as follows:

1©
Inference

(maximum likelihood method)

(moment method)

−→
2©

confidence interval −→
3©

statistical hypothesis testing

−→
4©

ANOVA (Analysis of Variance)

In the previous chapter, we are concerned with 1© (inference) in quantum language. In this

chapter, we devote ourselves to 2© and 3© (confidence interval and statistical hypothesis testing).

This chapter is extracted from

Ref. [39]: S. Ishikawa; A quantum linguistic characterization of the reverse relation

between confidence interval and hypothesis testing ( arXiv:1401.2709 [math.ST] 2014 )

6.1 Review: classical quantum language(Axiom 1)

Firstly, we review classical measurement theory as follows.

137
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(A): Axiom 1(measurement) classical pure type

(cf. This can be read under the preparation to §2.7) )

With any classical system S, a basic structure [C0(Ω) ⊆ L∞(Ω, ν) ⊆ B(L2(Ω, ν))]
can be associated in which measurement theory of that classical system can be for-
mulated. In [C0(Ω) ⊆ L∞(Ω, ν) ⊆ B(L2(Ω, ν))], consider a W ∗-measurement

ML∞(Ω,ν)

(
O=(X,F, F ), S[δω ]

) (
or, C∗-measurement ML∞(Ω)

(
O=(X,F, F ), S[δω ]

) )
. That

is, consider

• a W ∗-measurement ML∞(Ω,ν)

(
O, S[δω ]

) (
or, C∗-measurement

ML∞(Ω)

(
O=(X,F, F ), S[δω ]

) )
of an observable O=(X,F, F ) for a state

δω(∈Mp(Ω) : state space)

Then, the probability that a measured value x (∈ X) obtained by the W ∗-measurement

ML∞(Ω,ν)

(
O, S[δω ]

) (
or, C∗-measurement ML∞(Ω)

(
O=(X,F, F ), S[δω ]

) )
belongs to Ξ (∈ F)

is given by

δω(F (Ξ))(≡ [F (Ξ)](ω) = M(Ω)(δω, F (Ξ))L∞(Ω.ν))

(if F (Ξ) is essentially continuous at δω, or see (2.56) in Remark 2.18 ).

In this chapter, we devote ourselves to the simultaneous normal measurement as follows.

Example 6.1. [Normal observable]. Let R be the real axis. Define the state space Ω = R×R+,

where R+ = {σ ∈ R|σ > 0} with the Lebesgue measure ν. Consider the classical basic structure:

[C0(Ω) ⊆ L∞(Ω, ν) ⊆ B(L2(Ω, ν))]

The normal observable OG = (R,BR, G) in L∞(Ω(≡ R× R+)) is defined by

[G(Ξ)](ω) =
1√
2πσ

∫
Ξ

exp[− (x− µ)2

2σ2
]dx (6.1)

(∀Ξ ∈ BR(= the Borel field in R)), ∀ω = (µ, σ) ∈ Ω = R× R+).

Example 6.2. [Simultaneous normal observable]. Let n be a natural number. Let OG =

(R,BR, G) be the normal observable in L∞(R × R+). Define the n-th simultaneous normal

observable On
G = (Rn,Bn

R, G
n) in L∞(R× R+) such that

[Gn(×n
k=1Ξk)](ω) =×n

k=1[G(Ξk)](ω)

=
1

(
√

2πσ)n

∫
· · ·

∫
×n

k=1Ξk

exp[−
∑n

k=1(xk − µ)2

2σ2
]dx1dx2 · · · dxn (6.2)
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(∀Ξk ∈ BR(k = 1, 2, . . . , n), ∀ω = (µ, σ) ∈ Ω = R× R+).

Thus, we have the simultaneous normal measurement ML∞(R×R+)(O
n
G = (Rn,Bn

R, G
n), S[(µ,σ)]).

Consider the maps µ : Rn → R, SS : Rn → R and σ : Rn → R such that

µ(x) = µ(x1, x2, . . . , xn) =
x1 + x2 + · · ·+ xn

n
(∀x = (x1, x2, . . . , xn) ∈ Rn) (6.3)

SS(x) = SS(x1, x2, . . . , xn) =
n∑
k=1

(xk − µ(x))2 (∀x = (x1, x2, . . . , xn) ∈ Rn) (6.4)

σ(x) = σ(x1, x2, . . . , xn) =

√∑n
k=1(xk − µ(x))2

n
(∀x = (x1, x2, . . . , xn) ∈ Rn) (6.5)

Therefore, we get and calculate (by the formulas of Gauss integrals ( in § 7.4)) two image

observables µ(On
G) = (R,BR, G

n ◦µ−1) and SS(On
G) = (R+,BR+ , G

n ◦SS−1) in L∞(R×R+) as

follows.

[(Gn ◦ µ−1)(Ξ1)](ω)

=
1

(
√

2πσ)n

∫
· · ·

∫
{x∈Rn : µ(x)∈Ξ1}

exp[−
∑n

k=1(xk − µ)2

2σ2
]dx1dx2 · · · dxn

=

√
n√

2πσ

∫
Ξ1

exp[− n(x− µ)2

2σ2
]dx (6.6)

(∀Ξ1 ∈ BR, ∀ω = (µ, σ) ∈ Ω ≡ R× R+).

and,

[(Gn ◦ SS−1)(Ξ2)](ω)

=
1

(
√

2πσ)n

∫
· · ·

∫
{x∈Rn : SS(x)∈Ξ2}

exp[−
∑n

k=1(xk − µ)2

2σ2
]dx1dx2 · · · dxn

=

∫
Ξ2/σ2

pχ
2

n−1(x)dx (6.7)

( ∀Ξ2 ∈ BR+ , ∀ω = (µ, σ) ∈ Ω ≡ R× R+).

where pχ
2

n−1(x) is the probability density function of χ2-distribution with (n − 1) degree of

freedom. That is,

pχ
2

n−1(x) =
x(n−1)/2−1e−x/2

2(n−1)/2Γ((n− 1)/2)
(x > 0) (6.8)

where, Γ is the Gamma function.
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6.2 The reverse relation between confidence interval method

and statistical hypothesis testing

In what follows, we shall mention the reverse relation (such as “the two sides of a coin”)

between confidence interval method and statistical hypothesis testing.

We devote ourselves to the classical systems, i.e., the classical basic structure:

[C0(Ω) ⊆ L∞(Ω, ν) ⊆ B(L2(Ω, ν))]

6.2.1 The confidence interval method

Consider an observable O = (X,F, F ) in L∞(Ω). Let Θ be a locally compact space (called

the second state space), which has the semi-metric dxΘ (∀x ∈ X) such that,

(]) for each x ∈ X, the map dxΘ : Θ2 → [0,∞) satisfies (i):dxΘ(θ, θ) = 0,

(ii):dxΘ(θ1, θ2) = dxΘ(θ2, θ1), (ii):dxΘ(θ1, θ3) ≤ dxΘ(θ1, θ2) + dxΘ(θ2, θ3).

Further, consider two maps E : X → Θ and π : Ω→ Θ. Here, E : X → Θ and π : Ω→ Θ

is respectively called an estimator and a system quantity.

Theorem 6.3. [Confidence interval method ]. Let a positive number α be 0 < α � 1, for
example, α = 0.05. For any state ω( ∈ Ω), define the positive number δ1−αω ( > 0) such that:

δ1−αω = inf{δ > 0 : [F ({x ∈ X : dxΘ(E(x), π(ω)) < δ})](ω) ≥ 1− α} (6.9)

Then we say that:

(A) the probability, that the measured value x obtained by the measurement ML∞(Ω)

(
O :=

(X,F, F ), S[ω0]

)
satisfies the following condition (6.10), is more than or equal to 1− α

(e.g., 1− α = 0.95).

dxΘ(E(x), π(ω0)) ≤ δ1−αω0
(6.10)

And further, put

D1−α,Θ
x = {π(ω)(∈ Θ) : dxΘ(E(x), π(ω)) ≤ δ1−αω }. (6.11)

which is called the (1− α)-confidence interval. Here, we see the following equivalence:

(6.10) ⇐⇒ D1−α,Θ
x 3 π(ω0). (6.12)
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x0

E

π

E(x0)

π(ω0) · ω0
D1−α,Θ
x0

Θ ΩX

Figure 6.1 Confidence interval D1−α,Θ
x0

Remark 6.4. [(B1):The meaning of confidence interval]. Consider the parallel measurement⊗J
j=1 ML∞(Ω)

(
O := (X,F, F ), S[ω0]

)
, and assume that a measured value x = (x1, x2, . . . , xJ)(∈

XJ) is obtained by the parallel measurement. Recall the formula (6.12). Then, it surely holds

that

lim
J→∞

Num[{j | D1−α,Θ
xj

3 π(ω0)]

J
≥ 1− α(= 0.95) (6.13)

where Num[A] is the number of the elements of the set A. Hence Theorem 6.3 can be tested

by numerical analysis (with random number). Similarly, Theorem 6.5 ( mentioned later ) can

be tested.

[(B2)] Also, note that

(6.9) = δ1−αω = inf{δ > 0 : [F ({x ∈ X : dxΘ(E(x), π(ω)) < δ})](ω) ≥ 1− α}

= inf{η > 0 : [F ({x ∈ X : dxΘ(E(x), π(ω)) ≥ η})](ω) ≤ α} (6.14)

6.2.2 Statistical hypothesis testing

Next, we shall explain the statistical hypothesis testing, which is characterized as the reverse

of the confident interval method.

Theorem 6.5. [Statistical hypothesis testing]. Let α be a real number such that 0 < α � 1,
for example, α = 0.05. For any state ω( ∈ Ω), define the positive number ηαω ( > 0) such that:

ηαω = inf{η > 0 : [F ({x ∈ X : dxΘ(E(x), π(ω)) ≥ η})](ω) ≤ α} (6.15)

( by the (6.14), note that δ1−αω = ηαω)

Then we say that:
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142 Chapter 6 The confidence interval and statistical hypothesis testing

(C) the probability, that the measured value x obtained by the measurement ML∞(Ω)

(
O :=

(X,F, F ), S[ω0]

)
satisfies the following condition (6.16), is less than or equal to α (e.g.,

α = 0.05).

dxΘ(E(x), π(ω0)) ≥ ηαω0
. (6.16)

Further, consider a subset HN of Θ, which is called a “null hypothesis”. Put

R̂α,Θ
HN

=
∩

ω∈Ω such that π(ω)∈HN

{E(x)(∈ Θ) : dxΘ(E(x), π(ω)) ≥ ηαω}. (6.17)

which is called the (α)-rejection region of the null hypothesis HN . Then we say that:

(D) the probability, that the measured value x obtained by the measurement ML∞(Ω)

(
O :=

(X,F, F ), S[ω0]

)
(where π(ω0) ∈ HN) satisfies the following condition (6.18), is less than

or equal to α (e.g., α = 0.05).

R̂α
HN
3 E(x). (6.18)

x0

E

π

E(x0)

π(ω0)
· ω0

R̂α
HN

Θ ΩX

Figure 6.2: Rejection region R̂α
HN

(when HN = {π(ω0)}

Corollary 6.6. [The reverse relation between Confidence interval and statistical hypothesis testing

]. Let 0 < α� 1. Consider an observable O = (X,F, F ) in L∞(Ω), and the second state space

Θ (i.e., locally compact space with a semi-metric dxΘ(x ∈ X) ). And consider the estimator

E : X → Θ and the system quantity π : Ω→ Θ. Define δ1−αω by (6.9), and define ηαω by (6.15)

( and thus, δ1−αω = ηαω).

(E) [Confidence interval method]. for each x ∈ X, define (1− α)-confidence interval by

D1−α,Θ
x = {π(ω)(∈ Θ) : dxΘ(E(x), π(ω)) < δ1−αω } (6.19)

Also,

D1−α,Ω
x = {ω(∈ Ω) : dxΘ(E(x), π(ω)) < δ1−αω } (6.20)
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6.2 The reverse relation between confidence interval method and statistical hypothesis testing 143

Here, assume that a measured value x(∈ X) is obtained by the measurement ML∞(Ω)

(
O :=

(X,F, F ), S[ω0]

)
. Then, we see that

(E1) the probability that

D1−α,Θ
x 3 π(ω0) or, in the same sense D1−α,Ω

x 3 ω0

is more than 1− α.

(F) [statistical hypothesis testing]. Consider the null hypothesis HN(⊆ Θ). Assume that the

state ω0(∈ Ω) satisfies:

π(ω0) ∈ HN(⊆ Θ)

Here, put,

R̂α;Θ
HN

=
∩

ω∈Ω such that π(ω)∈HN

{E(x)(∈ Θ) : dxΘ(E(x), π(ω)) ≥ ηαω}. (6.21)

or,

R̂α;X
HN

= E−1(R̂α;Θ
HN

) =
∩

ω∈Ω such that π(ω)∈HN

{x(∈ X) : dxΘ(E(x), π(ω)) ≥ ηαω}. (6.22)

which is called the (α)-rejection region of the null hypothesis HN .

Assume that a measured value x(∈ X) is obtained by the measurement ML∞(Ω)

(
O :=

(X,F, F ), S[ω0]

)
. Then, we see that

(F1) the probability that

“E(x) ∈ R̂α;Θ
HN

” or, in the same sense, “x ∈ R̂α;X
HN

” (6.23)

is less than α.
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144 Chapter 6 The confidence interval and statistical hypothesis testing

6.3 Confidence interval and statistical hypothesis testing

for population mean

Consider the classical basic structure:

[C0(Ω) ⊆ L∞(Ω, ν) ⊆ B(L2(Ω, ν))]

Fix a positive number α such that 0 < α� 1, for example, α = 0.05.

6.3.1 Preparation (simultaneous normal measurement)

Example 6.7. Consider the simultaneous normal measurement ML∞(R×R+) (On
G = (Rn,Bn

R, G
n),

S[(µ,σ)]) in L∞(R×R+). Here, the simultaneous normal observable On
G = (Rn,Bn

R, G
n) is defined

by

[Gn(×n
k=1Ξk)](ω) =×n

k=1[G(Ξk)](ω)

=
1

(
√

2πσ)n

∫
· · ·

∫
×n

k=1Ξk

exp[−
∑n

k=1(xk − µ)2

2σ2
]dx1dx2 · · · dxn (6.24)

(∀Ξk ∈ BR(k = 1, 2, . . . , n), ∀ω = (µ, σ) ∈ Ω = R× R+).

Therefore, the state space Ω and the measured value space X are defined by

Ω = R× R+

X = Rn

Also, the second state space Θ is defined by

Θ = R

The estimator E : Rn → Θ(≡ R) and the system quantityπ : Ω → Θ are respectively

defined by

E(x) = E(x1, x2, . . . , xn) = µ(x) =
x1 + x2 + · · ·+ xn

n
Ω = R× R+ 3 ω = (µ, σ) 7→ π(ω) = µ ∈ Θ = R

Also, the semi-metric d
(1)
Θ in Θ is defined by

d
(1)
Θ (θ1, θ2) = |θ1 − θ2| (∀θ1, θ2 ∈ Θ = R)
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6.3 Confidence interval and statistical hypothesis testing for population mean 145

6.3.2 Confidence interval

Our present problem is as follows.

Problem 6.8. [Confidence interval]. Consider the simultaneous normal measurement
ML∞(R×R+) (On

G = (Rn,Bn
R, G

n), S[(µ,σ)]). Assume that a measured valuex ∈ X = Rn is
obtained by the measurement. Let 0 < α� 1.
Then, find the D1−α;Θ

x (⊆ Θ) (which may depend on σ) such that

• the probability that µ ∈ D1−α;Θ
x is more than 1− α.

Here, the more D1−α;Θ
x (⊆ Θ) is small, the more it is desirable.

Consider the following semi-distance d
(1)
Ω in the state space R× R+:

d
(1)
Ω ((µ1, σ1), (µ2, σ2)) = |µ1 − µ2| (6.25)

For any ω = (µ, σ)( ∈ Ω = R× R+), define the positive number δ1−αω ( > 0) such that:

δ1−αω = inf{η > 0 : [F (E−1(Ball
d
(1)
Ω

(ω; η))](ω) ≥ 1− α}

where Ball
d
(1)
Ω

(ω; η) = {ω1( ∈ Ω) : d
(1)
Ω (ω, ω1) ≤ η} = [µ− η, µ+ η]× R+

Hence we see that

E−1(Ball
d
(1)
Ω

(ω; η)) = E−1([µ− η, µ+ η]× R+)

={(x1, . . . , xn) ∈ Rn : µ− η ≤ x1 + . . .+ xn
n

≤ µ+ η} (6.26)

Thus,

[Gn(E−1(Ball
d
(1)
Ω

(ω; η))](ω)

=
1

(
√

2πσ)n

∫
· · ·

∫
µ−η≤x1+...+xn

n
≤µ+η

exp[−
∑n

k=1(xk − µ)2

2σ2
]dx1dx2 · · · dxn

=
1

(
√

2πσ)n

∫
· · ·

∫
−η≤x1+...+xn

n
≤η

exp[−
∑n

k=1(xk)
2

2σ2
]dx1dx2 · · · dxn

=

√
n√

2πσ

∫ η

−η
exp[− nx2

2σ2
]dx =

1√
2π

∫ √nη/σ
−
√
nη/σ

exp[− x2

2
]dx (6.27)

Solving the following equation:

1√
2π

∫ −z(α/2)
−∞

exp[− x2

2
]dx =

1√
2π

∫ ∞
z(α/2)

exp[− x2

2
]dx =

α

2
(6.28)
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we define that

δ1−αω =
σ√
n
z(
α

2
) (6.29)

Then, for any x ( ∈ Rn), we get D1−α,Ω
x ( the (1− α)-confidence interval of x ) as follows:

D1−α,Ω
x = {ω(∈ Ω) : dΩ(E(x), ω) ≤ δ1−αω }

= {(µ, σ) ∈ R× R+ : |µ− µ(x)| = |µ− x1 + . . .+ xn
n

| ≤ σ√
n
z(
α

2
)} (6.30)

Also,

D1−α,Θ
x = {π(ω)(∈ Θ) : dΩ(E(x), ω) ≤ δ1−αω }

= {µ ∈ R : |µ− µ(x)| = |µ− x1 + . . .+ xn
n

| ≤ σ√
n
z(
α

2
)}

which depends on σ.

R

R+

D1−α,Ω
x

-

6

µ(x)

Figure 6.3: Confidence interval D1−α,Ω
x for the semi-distance d

(1)
Ω

6.3.3 Statistical hypothesis testing[null hypothesisHN = {µ0}(⊆ Θ =
R)]

Problem 6.9. [Statistical hypothesis testing]. Consider the simultaneous normal measurement
ML∞(R×R+) (On

G = (Rn,Bn
R, G

n), S[(µ,σ)]). Assume the null hypothesis HN such that

HN = {µ0}(⊆ Θ = R))

Let 0 < α� 1.
Then, find the rejection region R̂α;Θ

HN
(⊆ Θ) (which may depend on σ) such that

• the probability that a measured value x(∈ Rn) obtained by ML∞(R×R+) (On
G =

(Rn,Bn
R, G

n), S[(µ0,σ)]) satisfies that

E(x) ∈ R̂α;Θ
HN
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is less than α.

Here, the more the rejection region R̂α;Θ
HN

is large, the more it is desirable.

Define the null hypothesis HN such that

HN = {µ0}(⊆ Θ(= R))

For any ω = (µ, σ)( ∈ Ω = R× R+), define the positive number ηαω ( > 0) such that:

ηαω = inf{η > 0 : [F (E−1(BallC
d
(1)
Θ

(π(ω); η))](ω) ≤ α}

where BallC
d
(1)
Θ

(π(ω); η) = {θ( ∈ Θ) : d
(1)
Θ (µ, θ) ≥ η} =

(
(−∞, µ− η] ∪ [µ+ η,∞)

)
Hence we see that

E−1(BallC
d
(1)
Θ

(π(ω); η)) = E−1
(

(−∞, µ− η] ∪ [µ+ η,∞)
)

={(x1, . . . , xn) ∈ Rn :
x1 + . . .+ xn

n
≤ µ− η or µ+ η ≤ x1 + . . .+ xn

n
}

={(x1, . . . , xn) ∈ Rn : |(x1 − µ) + . . .+ (xn − µ)

n
| ≥ η} (6.31)

Thus,

[Gn(E−1(BallC
d
(1)
Θ

(π(ω); η))](ω)

=
1

(
√

2πσ)n

∫
· · ·

∫
| (x1−µ)+...+(xn−µ)

n
|≥η

exp[−
∑n

k=1(xk − µ)2

2σ2
]dx1dx2 · · · dxn

=
1

(
√

2πσ)n

∫
· · ·

∫
|x1+...+xn

n
|≥η

exp[−
∑n

k=1(xk)
2

2σ2
]dx1dx2 · · · dxn

=

√
n√

2πσ

∫
x≥η

exp[− nx2

2σ2
]dx =

1√
2π

∫
x≥
√
nη/σ

exp[− x2

2
]dx (6.32)

Solving the following equation:

1√
2π

∫ −z(α/2)
−∞

exp[− x2

2
]dx =

1√
2π

∫ ∞
z(α/2)

exp[− x2

2
]dx =

α

2
(6.33)

we define that

ηαω =
σ√
n
z(
α

2
) (6.34)
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Therefore, we get R̂α
HN

( the (α)-rejection region of HN(= {µ0} ⊆ Θ(= R)) ) as follows:

R̂α,Θ
{µ0} =

∩
π(ω)=µ∈{µ0}

{E(x)(∈ Θ = R) : d
(1)
Θ (E(x), π(ω)) ≥ ηαω}

= {E(x)(=
x1 + . . .+ xn

n
) ∈ R : µ(x)− µ0 =

x1 + . . .+ xn
n

− µ0 ≥
σ√
n
z(
α

2
)} (6.35)

Remark 6.10. Note that the R̂α,Θ
{µ0} ( the (α)-rejection region of {µ0} ) depends on σ.

Thus, putting

R̂α
{µ0}×R+

= {(µ(x), σ) ∈ R× R+ : |µ0 − µ(x)| = |µ0 −
x1 + . . .+ xn

n
| ≥ σ√

n
z(
α

2
)} (6.36)

we see that R̂α
{µ0}×R+

=“the slash part in Figure 6.4”.

R

σ

R̂α
{µ0}×R+

-

6

µ0

Figure 6.4: Rejection region R̂α
{µ0} (which depends on σ)

6.3.4 Statistical hypothesis testing[null hypothesisHN = (−∞, µ0](⊆ Θ(=
R))]

Our present problem was as follows

Problem 6.11. [Statistical hypothesis testing]. Consider the simultaneous normal measure-
ment ML∞(R×R+) (On

G = (Rn,Bn
R, G

n), S[(µ,σ)]). Assume the null hypothesis HN such that

HN = (−∞, µ0](⊆ Θ = R))

Let 0 < α� 1.
Then, find the rejection region R̂α;Θ

HN
(⊆ Θ) (which may depend on σ) such that

• the probability that a measured value x(∈ Rn) obtained by ML∞(R×R+) (On
G =
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(Rn,Bn
R, G

n), S[(µ0,σ)]) satisfies that

E(x) ∈ R̂α;Θ
HN

is less than α.

Here, the more the rejection region R̂α;Θ
HN

is large, the more it is desirable.

[Rejection region of HN = (−∞, µ0] ⊆ Θ(= R)]. Consider the simultaneous measurement

ML∞(R×R+) (On
N = (Rn,Bn

R, G
n), S[(µ,σ)]) in L∞(R × R+). Thus, we consider that Ω = R × R,

X = Rn. Assume that the real σ in a state ω = (µ, σ) ∈ Ω is fixed and known. Put

Θ = R

The formula (6.3) urges us to define the estimator E : Rn → Θ(≡ R) such that

E(x) == µ(x) =
x1 + x2 + · · ·+ xn

n
(6.37)

And consider the quantity π : Ω→ Θ such that

Ω = R× R+ 3 ω = (µ, σ) 7→ π(ω) = µ ∈ Θ = R

Consider the following semi-distance d
(2)
Θ in Θ(= R):

d
(2)
Θ ((θ1, θ2) =


|θ1 − θ2| θ0 ≤ θ1, θ2
|θ2 − θ0| θ1 ≤ θ0 ≤ θ2
|θ1 − θ0| θ2 ≤ θ0 ≤ θ1
0 θ1, θ2 ≤ θ0

(6.38)

Define the null hypothesis HN such that

HN = (−∞, µ0](⊆ Θ(= R))

For any ω = (µ, σ)( ∈ Ω = R× R+), define the positive number ηαω ( > 0) such that:

ηαω = inf{η > 0 : [F (E−1(BallC
d
(2)
Θ

(π(ω); η))](ω) ≤ α}

where BallC
d
(2)
Θ

(π(ω); η) = {θ( ∈ Θ) : d
(2)
Θ (µ, θ) ≥ η} =

(
(−∞, µ− η] ∪ [µ+ η,∞)

)
Hence we see that

E−1(BallC
d
(2)
Θ

(π(ω); η)) = E−1
(

[µ+ η,∞)
)

={(x1, . . . , xn) ∈ Rn : µ+ η ≤ x1 + . . .+ xn
n

}
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={(x1, . . . , xn) ∈ Rn :
(x1 − µ) + . . .+ (xn − µ)

n
≥ η} (6.39)

Thus,

[Gn(E−1(BallC
d
(2)
Θ

(π(ω); η))](ω)

=
1

(
√

2πσ)n

∫
· · ·

∫
(x1−µ)+...+(xn−µ)

n
≥η

exp[−
∑n

k=1(xk − µ)2

2σ2
]dx1dx2 · · · dxn

=
1

(
√

2πσ)n

∫
· · ·

∫
x1+...+xn

n
≥η

exp[−
∑n

k=1(xk)
2

2σ2
]dx1dx2 · · · dxn

=

√
n√

2πσ

∫
|x|≥η

exp[− nx2

2σ2
]dx =

1√
2π

∫
|x|≥
√
nη/σ

exp[− x2

2
]dx (6.40)

Solving the following equation:

1√
2π

∫ −z(α/2)
−∞

exp[− x2

2
]dx =

1√
2π

∫ ∞
z(α/2)

exp[− x2

2
]dx = α (6.41)

we define that

ηαω =
σ√
n
z(α) (6.42)

Then, we get R̂α,Θ
HN

( the (α)-rejection region of HN(= (−∞, µ0] ⊆ Θ(= R)) ) as follows:

R̂α,Θ
(−∞,µ0] =

∩
π(ω)=µ∈(−∞,µ0]

{E(x)(∈ Θ = R) : d
(2)
Θ (E(x), π(ω)) ≥ ηαω}

= {E(x)(=
x1 + . . .+ xn

n
) ∈ R :

x1 + . . .+ xn
n

− µ0 ≥
σ√
n
z(α)} (6.43)

Thus, in a similar way of Remark 6.10, we see that R̂α
(−∞,µ0]×R+

=“the slash part in Figure 6.5”,

where

R̂α
(−∞,µ0]×R+

= {(E(x)(=
x1 + . . .+ xn

n
), σ) ∈ R× R+ :

x1 + . . .+ xn
n

− µ0 ≥
σ√
n
z(α)}

(6.44)
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R

σ

R̂α
(−∞,µ0]×R+

-

6

µ0

Figure 6.5: Rejection region R̂α,Θ
(−∞,µ0] (which depends on σ)
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6.4 Confidence interval and statistical hypothesis testing

for population variance

6.4.1 Preparation (simultaneous normal measurement)

Consider the simultaneous normal measurement ML∞(R×R+) (On
G = (Rn,Bn

R, G
n), S[(µ,σ)])

in L∞(R × R+). Here, recall that the simultaneous normal observable On
G = (Rn,Bn

R, G
n) is

defined by

[Gn(×n
k=1Ξk)](ω) =×n

k=1[G(Ξk)](ω)

=
1

(
√

2πσ)n

∫
· · ·

∫
×n

k=1Ξk

exp[−
∑n

k=1(xk − µ)2

2σ2
]dx1dx2 · · · dxn (6.45)

(∀Ξk ∈ BR(k = 1, 2, . . . , n), ∀ω = (µ, σ) ∈ Ω = R× R+).

where, note that

Ω = R× R+

X = Rn

The second state space Θ is

Θ = R+

Putting

µ(x) =
x1 + x2 + · · ·+ xn

n

we define the estimator E : Rn → Θ(≡ R+) by

E(x) = E(x1, x2, . . . , xn) =

√
(x1 − µ(x))2 + (x2 − µ(x))2 + · · ·+ (xn − µ(x))2

n

and the system quantity π : Ω→ Θ by

Ω = R× R+ 3 ω = (µ, σ) 7→ π(ω) = σ ∈ Θ = R+
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6.4.2 Confidence interval

Our present problem is as follows.

Problem 6.12. [Confidence interval for population variance]. Consider the simultaneous normal
measurement ML∞(R×R+) (On

G = (Rn,Bn
R, G

n), S[(µ,σ)]). Assume that a measured valuex ∈ X =
Rn is obtained by the measurement. Let 0 < α� 1.
Then, find the D1−α;Θ

x (⊆ Θ) (which may depend on µ) such that

• the probability that σ ∈ D1−α;Θ
x is more than 1− α

Here, the more D1−α;Θ
x (⊆ Θ) is small, the more it is desirable.

Consider the following semi-distance d
(1)
Θ in Θ(= R+):

d
(1)
Θ (θ1, θ2) = |

∫ σ2

σ1

1

σ
dσ| = | log σ1 − log σ2| (6.46)

For any ω = (µ, σ)( ∈ Ω = R× R+), define the positive number δ1−αω ( > 0) such that:

δ1−αω = inf{η > 0 : [F (E−1(Ball
d
(1)
Θ

(ω; η))](ω) ≥ 1− α}

= inf{η > 0 : [F (E−1(BallC
d
(1)
Θ

(ω; η))](ω) ≤ α} (6.47)

where

BallC
d
(1)
Θ

(ω; η) = BallC
d
(1)
Θ

((µ;σ), η) = R× {σ′ : | log(σ′/σ)| ≥ η} = R×
(
(0, σe−η] ∪ [σeη,∞)

)
(6.48)

Then,

E−1(BallC
d
(1)
Θ

(ω; η)) = E−1
(
R×

(
(0, σe−η] ∪ [σeη,∞)

))
={(x1, . . . , xn) ∈ Rn :

(∑n
k=1(xk − µ(x))2

n

)1/2

≤ σe−η or σeη ≤
(∑n

k=1(xk − µ(x))2

n

)1/2

}
(6.49)

Hence we see, by the Gauss integral (6.7), that

[Gn(E−1(BallC
d
(1)
Θ

(ω; η))](ω)

=
1

(
√

2πσ)n

∫
· · ·

∫
E−1

(
R×

(
(0,σe−η ]∪[σeη ,∞)

)) exp[−
∑n

k=1(xk − µ)2

2σ2
]dx1dx2 · · · dxn

=

∫ ne−2η

0

pχ
2

n−1(x)dx+

∫ ∞
ne2η

pχ
2

n−1(x)dx = 1−
∫ ne2η

ne−2η

pχ
2

n−1(x)dx (6.50)
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Using the chi-squared distribution pχ
2

n−1(x) (with n− 1 degrees of freedom) in (6.8), define the

δ1−αω such that

1− α =

∫ ne2δ
1−α
ω

ne−2δ1−αω

pχ
2

n−1(x)dx (6.51)

where it should be noted that the δ1−αω depends on only α and n. Thus, put

δ1−αω = δ1−αn (6.52)

Hence we get, for any x ( ∈ X), the D1−α,Ω
x ( the (1− α)-confidence interval of x ) as follows:

D1−α,Ω
x = {ω(∈ Ω) : d

(1)
Θ (E(x), π(ω)) ≤ δ1−αn }

= {(µ, σ) ∈ R× R+ : σe−δ
1−α
n ≤

(∑n
k=1(xk − µ(x))2

n

)1/2

≤ σeδ
1−α
n } (6.53)

Recalling (6.4), i.e., σ(x) =
(∑n

k=1(xk−µ(x))2
n

)1/2

= (SS(x)
n

)
1/2

, we conclude that

D1−α,Ω
x = {(µ, σ) ∈ R× R+ : σ(x)e−δ

1−α
n ≤ σ ≤ σ(x)eδ

1−α
n }

= {(µ, σ) ∈ R× R+ :
e−2δ

1−α
n

n
SS(x) ≤ σ2 ≤ e2δ

1−α
n

n
SS(x)} (6.54)

And

D1−α,Θ
x = {σ ∈ R+ : σ(x)e−δ

1−α
n ≤ σ ≤ σ(x)eδ

1−α
n }

= {(µ, σ) ∈ R× R+ :
e−2δ

1−α
n

n
SS(x) ≤ σ2 ≤ e2δ

1−α
n

n
SS(x)}

R

R+

D1−α,Ω
x

-

6

	
σ(x)eδ

1−α
n

I σ(x)e−δ
1−α
n

Figure 6.6: Confidence interval D1−α,Ω
x for the semi-distance d

(1)
Θ
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6.4 Confidence interval and statistical hypothesis testing for population variance 155

6.4.3 Statistical hypothesis testing[null hypothesisHN = {σ0} ⊆ Θ =
R+]

Our present problem is as follows.

Problem 6.13. [Statistical hypothesis testing]. Consider the simultaneous normal measure-
ment ML∞(R×R+) (On

G = (Rn,Bn
R, G

n), S[(µ,σ)]). Assume the null hypothesis HN such that

HN = {σ0}(⊆ Θ = R))

Let 0 < α� 1.
Then, find the rejection region R̂α;Θ

HN
(⊆ Θ) (which may depend on µ) such that

• the probability that a measured valuex(∈ Rn) obtained by ML∞(R×R+) (On
G =

(Rn,Bn
R, G

n), S[(µ0,σ)]) satisfies that

E(x) ∈ R̂α;Θ
HN

is less that α.

Here, the more the rejection region R̂α;Θ
HN

is large, the more it is desirable.

For any ω = (µ, σ)( ∈ Ω = R× R+), define the positive number ηαω ( > 0) such that:

ηαω = inf{η > 0 : [F (E−1(BallC
d
(1)
Θ

(ω; η))](ω) ≤ α}

Recall that

ηαω = δ1−αω = δ1−αn (= ηαn)

Hence we get the R̂α,Θ
HN

( the (α)-rejection region of HN = {σ0} ⊆ Θ = R+ ) as follows:

R̂α,Θ
HN

= R̂α,Θ
{σ0} =

∩
π(ω)=σ∈{σ0}

{E(x)(∈ Θ) : d
(1)
Θ (E(x), π(ω)) ≥ ηαω}

= {E(x)(∈ Θ = R+) : d
(1)
Θ (E(x), σ0) ≥ ηαn}

= {σ(x)(∈ Θ = R+) : σ(x) ≤ σ0e
−ηαn or σ0e

ηαn ≤ σ(x)} (6.55)

where σ(x) =
(∑n

k=1(xk−µ(x))2
n

)1/2

.

Thus, in a similar way of Remark 6.10, we see that R̂α
R×{σ0}=“the slash part in Figure 6.7”,

where

R̂α
R×{σ0} = {(µ, σ(x)) ∈ R× R+ : σ(x) ≤ σ0e

−ηαn or σ0e
ηαn ≤ σ(x)} (6.56)
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µ

R+

R̂α
R×{σ0}

-

6

	
σ0e

ηαn

� σ0

I σ0e
−ηαn

Figure 6.7: Rejection region R̂α
R×{σ0}

6.4.4 Statistical hypothesis testing[null hypothesisHN = (0, σ0] ⊆ Θ =
R+]

Our present problem is as follows.

Problem 6.14. [Statistical hypothesis testing]. Consider the simultaneous normal measure-
ment ML∞(R×R+) (On

G = (Rn,Bn
R, G

n), S[(µ,σ)]). Assume the null hypothesis HN such that

HN = (0, σ0](⊆ Θ = R))

Let 0 < α� 1.
Then, find the rejection region R̂α;Θ

HN
(⊆ Θ) (which may depend on µ) such that

• the probability that a measured valuex(∈ Rn) obtained by ML∞(R×R+) (On
G =

(Rn,Bn
R, G

n), S[(µ0,σ)]) satisfies that

E(x) ∈ R̂α;Θ
HN

is less that α.

Here, the more the rejection region R̂α;Θ
HN

is large, the more it is desirable.

Consider the following semi-distance d
(2)
Θ in Θ(= R+):

d
(2)
Θ (σ1, σ2) =


|
∫ σ2
σ1

1
σ
dσ| = | log σ1 − log σ2| (σ0 ≤ σ1, σ2)

|
∫ σ2
σ0

1
σ
dσ| = | log σ0 − log σ2| (σ1 ≤ σ0 ≤ σ2)

|
∫ σ1
σ0

1
σ
dσ| = | log σ0 − log σ1| (σ2 ≤ σ0 ≤ σ1)

0 (σ1, σ2 ≤ σ0)

(6.57)

For any ω = (µ, σ)( ∈ Ω = R× R+), define the positive number ηαω ( > 0) such that:

ηαω = inf{η > 0 : [F (E−1(BallC
d
(2)
Θ

(ω; η))](ω) ≤ α} (6.58)
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where

BallC
d
(2)
Θ

(ω; η) = BallC
d
(2)
Θ

((µ;σ), η) = R× [σeη,∞) (6.59)

Then,

E−1(BallC
d
(2)
Θ

(ω; η)) = E−1
(

[σeη,∞)
)

={(x1, . . . , xn) ∈ Rn : σeη ≤ σ(x) =
(∑n

k=1(xk − µ(x))2

n

)1/2

} (6.60)

Hence we see, by the Gauss integral (6.7), that

[Gn(E−1(BallC
d
(2)
Θ

(ω; η))](ω)

=
1

(
√

2πσ)n

∫
· · ·

∫
σ0eη≤σ(x)

exp[−
∑n

k=1(xk − µ)2

2σ2
]dx1dx2 · · · dxn

=

∫ ∞
ne2ησ2

σ2

pχ
2

n−1(x)dx

≤
∫ ∞
ne2η

pχ
2

n−1(x)dx (6.61)

Solving the following equation, define the (ηαn)′(> 0) such that

α =

∫ ∞
ne2(η

α
n )′
pχ

2

n−1(x)dx (6.62)

Hence we get the R̂α,Θ
HN

( the (α)-rejection region of HN = (0, σ0] ) as follows:

R̂α,Θ
HN

= R̂α,Θ
(0,σ0]

=
∩

π(ω)∈(0,σ0]

{E(x)(∈ Θ = R+) : d
(2)
Θ (E(x), π(ω)) ≥ ηαω}

=
∩

π(ω)∈(0,σ0]

{E(x)(∈ Θ) : d
(2)
Θ (E(x), π(ω)) ≥ (ηαn)′}

= {σ(= σ(x)) ∈ R+ : σ0e
(ηαn )

′ ≤ σ(x)} (6.63)

where σ(x) =
(∑n

k=1(xk−µ(x))2
n

)1/2

.

Thus, in a similar way of Remark 6.10, we see that R̂α
R×(0,σ0]=“the slash part in Figure 6.8”,

where

R̂α
R×(0,σ0] = {(µ, σ(x)) ∈ R× R+ : σ0e

(ηαn )
′ ≤ σ(x)} (6.64)
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µ

R+

R̂α
R×(0,σ0]

-

6

	
σ0e

(ηαn )
′

� σ0

I σ0e
−(ηαn )′

Figure 6.8: Rejection region R̂α
R×(0,σ0]
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6.5 Confidence interval and statistical hypothesis testing

for the difference of population means

6.5.1 Preparation (simultaneous normal measurement)

Consider the parallel measurementML∞((R×R+)×(R×R+)) (On
G⊗Om

G = (Rn×Rm ,Bn
R �Bm

R , G
n⊗

Gm), S[(µ1,σ1,µ2,σ2)]) (in L∞((R× R+)× (R× R+))) of two normal measurements.

Assume that σ1 and σ2 are fixed and known. Thus, this parallel measurement is represented

by ML∞(R×R) (On
Gσ1
⊗ Om

Gσ1
= (Rn × Rm ,Bn

R �Bm
R , Gσ1

n ⊗ Gσ2
m), S[(µ1,µ2)]) in L∞(R × R).

Here, recall the normal observable (6.1), i.e.,

[Gσ(Ξ)](µ) =
1√
2πσ

∫
Ξ

exp[− (x− µ)2

2σ2
]dx (∀Ξ ∈ BR(=Borel field in R)), ∀µ ∈ R). (6.65)

Therefore, we have the state space Ω = R2 = {ω = (µ1, µ2) : µ1, µ2 ∈ R}. Put Θ = R with

the distance d
(1)
Θ (θ1, θ2) = |θ1 − θ2| and consider the quantity π : R2 → R by

π(µ1, µ2) = µ1 − µ2 (6.66)

The estimator E : X̂(= X × Y = Rn × Rm)→ Θ(= R) is defined by

E(x1, . . . , xn, y1, . . . , ym) =

∑n
k=1 xk
n

−
∑m

k=1 yk
m

(6.67)

For any ω = (µ1, µ2)( ∈ Ω = R × R), define the positive number ηαω(= δ1−αω ) ( > 0) such

that:

ηαω(= δ1−αω ) = inf{η > 0 : [F (E−1(BallC
d
(1)
Θ

(π(ω); η))](ω) ≥ α}

where BallC
d
(1)
Θ

(π(ω); η) = (−∞, µ1 − µ2 − η] ∪ [µ1 − µ2 + η,∞). Define the null hypothesis HN

(⊆ Θ = R) such that

HN = {θ0}

Now let us calculate the ηαω as follows:

E−1(BallC
d
(1)
Θ

(π(ω); η)) = E−1((−∞, µ1 − µ2 − η] ∪ [µ1 − µ2 + η,∞))

={(x1, . . . , xn, y1, . . . , ym) ∈ Rn × Rm : |
∑n

k=1 xk
n

−
∑m

k=1 yk
m

− (µ1 − µ2)| ≥ η}

={(x1, . . . , xn, y1, . . . , ym) ∈ Rn × Rm : |
∑n

k=1(xk − µ1)

n
−

∑m
k=1(yk − µ2)

m
| ≥ η} (6.68)

KSTS/RR-15/001 
January 22, 2015



160 Chapter 6 The confidence interval and statistical hypothesis testing

Thus,

[(Nσ1
n ⊗Nσ2

m)(E−1(BallC
d
(1)
Θ

(π(ω); η))](ω)

=
1

(
√

2πσ1)n(
√

2πσ2)m

×
∫
· · ·

∫
|
∑n
k=1

(xk−µ1)
n

−
∑m
k=1

(yk−µ2)
m

|≥η

exp[−
∑n

k=1(xk − µ1)
2

2σ2
1

−
∑m

k=1(yk − µ2)
2

2σ2
2

]dx1dx2 · · · dxndy1dy2 · · · dym

=
1

(
√

2πσ1)n(
√

2πσ2)m

∫
· · ·

∫
|
∑n
k=1

xk
n

−
∑m
k=1

yk
m

|≥η

exp[−
∑n

k=1 xk
2

2σ2
1

−
∑m

k=1 yk
2

2σ2
2

]dx1dx2 · · · dxndy1dy2 · · · dym

=1− 1
√

2π(
σ2
1

n
+

σ2
2

m
)1/2

∫ η

−η
exp[− x2

2(
σ2
1

n
+

σ22
m

)
]dx (6.69)

Using the z(α/2) in (6.33), we get that

ηαω = δ1−αω = (
σ2
1

n
+
σ2
2

m
)1/2z(

α

2
) (6.70)

6.5.2 Confidence interval

Our present problem is as follows

Problem 6.15. [ Confidence interval for the difference of population means]. Let σ1 and σ2 be
positive numbers which are assumed to be fixed. Consider the parallel measurement ML∞(R×R)
(On

Gσ1
⊗Om

Gσ1
= (Rn×Rm ,Bn

R �Bm
R , Gσ1

n⊗Gσ2
m), S[(µ1,µ2)]). Assume that a measured value

x̂ = (x, y) = (x1, . . . , xn, y1, . . . , ym) ( ∈ Rn × Rm) is obtained by the measurement. Let
0 < α� 1.
Then, find the confidence interval D1−α;Θ

(x,y) (⊆ Θ) (which may depend on σ1 and σ2) such that

• the probability that µ1 − µ2 ∈ D1−α;Θ
(x,y) is more than 1− α.

Here, the more the confidence interval D1−α;Θ
(x,y) is small, the more it is desirable.

Therefore, for any x̂ = (x, y) = (x1, . . . , xn, y1, . . . , ym) ( ∈ Rn × Rm), we get D1−α
x̂ ( the

(1− α)-confidence interval of x̂ ) as follows:

D1−α,Ω
x̂ = {ω(∈ Ω) : dΘ(E(x̂), π(ω)) ≤ δ1−αω }

= {(µ1, µ2) ∈ R× R : |
∑n

k=1 xk
n

−
∑m

k=1 yk
m

− (µ1 − µ2)| ≤ (
σ2
1

n
+
σ2
2

m
)1/2z(

α

2
)}
(6.71)
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6.5.3 Statistical hypothesis testing[rejection region: null hypothesisHN =
{µ0} ⊆ Θ = R]

Our present problem is as follows

Problem 6.16. [Statistical hypothesis testing for the difference of population means]. Consider
the parallel measurement ML∞(R×R) (On

Gσ1
⊗ Om

Gσ1
= (Rn × Rm ,Bn

R �Bm
R , Gσ1

n ⊗ Gσ2
m),

S[(µ1,µ2)]). Assume that

π(µ1, µ2) = µ1 − µ2 = θ0 ∈ Θ = R

that is, assume the null hypothesisHN such that

HN = {θ0}(⊆ Θ = R))

Let 0 < α� 1.
Then, find the rejection region R̂α;Θ

HN
(⊆ Θ) (which may depend on µ) such that

• the probability that a measured value(x, y)(∈ Rn×Rm) obtained by ML∞(R×R) (On
Gσ1
⊗

Om
Gσ1

= (Rn × Rm ,Bn
R �Bm

R , Gσ1
n ⊗Gσ2

m), S[(µ1,µ2)]) satisfies

E(x, y) =
x1 + x2 + · · ·+ xn

n
− y1 + y2 + · · ·+ ym

m
∈ R̂α;Θ

HN

is less than α.

Here, the more the rejection region R̂α;Θ
HN

is large, the more it is desirable.

By the formula (6.70), we see that the rejection regionR̂α
x̂ ( (α)-rejection region of HN =

{θ0}(⊆ Θ) ) is defined by

R̂α,Θ
HN

=
∩

ω=(µ1,µ2)∈Ω(=R2) such that π(ω)=µ1−µ2∈HN (={θ0})

{E(x̂)(∈ Θ) : d
(1)
Θ (E(x̂), π(ω)) ≥ ηαω}

= {µ(x)− µ(y) ∈ Θ(= R) : |µ(x)− µ(y)− θ0| ≥ (
σ2
1

n
+
σ2
2

m
)1/2z(

α

2
)} (6.72)

or,

R̂α,X
HN

=
∩

ω=(µ1,µ2)∈Ω(=R2) such that π(ω)=µ1−µ2∈HN (={θ0})

{x̂(∈ Rn × Rm) : d
(1)
Θ (E(x̂), π(ω)) ≥ ηαω}

= {x̂(∈ Rn × Rm) : |µ(x)− µ(y)− θ0| ≥ (
σ2
1

n
+
σ2
2

m
)1/2z(

α

2
)} (6.73)

Here,

µ(x) =

∑n
k=1 xk
n

, µ(y) =

∑m
k=1 yk
m
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6.5.4 Statistical hypothesis testing[rejection region: null hypothesisHN =
(−∞, θ0] ⊆ Θ = R]

Our present problem is as follows

Problem 6.17. [Statistical hypothesis testing for the difference of population means]. Consider
the parallel measurement ML∞(R×R) (On

Gσ1
⊗ Om

Gσ1
= (Rn × Rm ,Bn

R �Bm
R , Gσ1

n ⊗ Gσ2
m),

S[(µ1,µ2)]). Assume that

π(µ1, µ2) = µ1 − µ2 = (−∞, θ0] ⊆ Θ = R

that is, assume the null hypothesisHN such that

HN = (−∞, θ0](⊆ Θ = R))

Let 0 < α� 1.
Then, find the rejection region R̂α;Θ

HN
(⊆ Θ) (which may depend on µ) such that

• the probability that a measured value(x, y)(∈ Rn×Rm) obtained by ML∞(R×R) (On
Gσ1
⊗

Om
Gσ1

= (Rn × Rm ,Bn
R �Bm

R , Gσ1
n ⊗Gσ2

m), S[(µ1,µ2)]) satisfies

E(x, y) =
x1 + x2 + · · ·+ xn

n
− y1 + y2 + · · ·+ ym

m
∈ R̂α;Θ

HN

is less than α.

Here, the more the rejection region R̂α;Θ
HN

is large, the more it is desirable.

Since the null hypothesis HN is assumed as follows:

HN = (−∞, θ0],

it suffices to define the semi-distance d
(1)
Θ in Θ(= R) such that

d
(1)
Θ (θ1, θ2) =


|θ1 − θ2| (∀θ1, θ2 ∈ Θ = R such that θ0 ≤ θ1, θ2)
max{θ1, θ2} − θ0 (∀θ1, θ2 ∈ Θ = R such that min{θ1, θ2} ≤ θ0 ≤ max{θ1, θ2})
0 (∀θ1, θ2 ∈ Θ = R such that θ1, θ2 ≤ θ0)

(6.74)

Then, we can easily see that

R̂α,Θ
HN

=
∩

ω=(µ1,µ2)∈Ω(=R2) such that π(ω)=µ1−µ2∈HN (=(−∞,θ0])

{E(x̂)(∈ Θ) : d
(1)
Θ (E(x̂), π(ω)) ≥ ηαω}

= {µ(x)− µ(y) ∈ R : µ(x)− µ(y)− θ0 ≥ (
σ2
1

n
+
σ2
2

m
)1/2z(α)} (6.75)
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6.6 Student t-distribution of population mean

6.6.1 Preparation

Example 6.18. [Student t-distribution]. Consider the simultaneous measurement ML∞(R×R+)

(On
G = (Rn,Bn

R, G
n), S[(µ,σ)]) in L∞(R × R+). Thus, we consider that Ω = R × R+, X = Rn.

Put Θ = R with the semi-distance dxΘ(∀x ∈ X) such that

dxΘ(θ1, θ2) =
|θ1 − θ2|
σ′(x)/

√
n

(∀x ∈ X = Rn, ∀θ1, θ2 ∈ Θ = R) (6.76)

where σ′(x) =
√

n
n−1σ(x). The quantity π : Ω(= R× R+)→ Θ(= R) is defined by

Ω(= R× R+) 3 ω = (µ, σ) 7→ π(µ, σ) = µ ∈ Θ(= R) (6.77)

Also, define the estimator E : X(= Rn)→ Θ(= R) such that

E(x) = E(x1, x2, . . . , xn) = µ(x) =
x1 + x2 + · · ·+ xn

n
(6.78)

Define the null hypothesis HN (⊆ Θ = R)) such that

HN = {µ0} (6.79)

Thus, for any ω = (µ0, σ)( ∈ Ω = R× R+), we see that

[Gn({x ∈ X(= Rn) : dxΘ(E(x), π(ω)) ≥ η})](ω)

=[Gn({x ∈ X :
|µ(x)− µ0|
σ′(x)/

√
n
≥ η})](ω)

=
1

(
√

2πσ)n

∫
· · ·

∫
η≤ |µ(x)−µ0|

σ′(x)/
√
n

exp[−
∑n

k=1(xk − µ0)
2

2σ2
]dx1dx2 · · · dxn

=
1

(
√

2π)n

∫
· · ·

∫
η≤ |µ(x)|

σ′(x)/
√
n

exp[−
∑n

k=1(xk)
2

2
]dx1dx2 · · · dxn

=1−
∫ η

−η
ptn−1(x)dx (6.80)

where ptn−1 is the t-distribution with n − 1 degrees of freedom. Solving the equation 1 − α =∫ ηαω
−ηαω

ptn−1(x)dx, we get

δ1−αω = ηαω = t(α/2)
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6.6.2 Confidence interval

Our present problem is as follows

Problem 6.19. [Confidence interval]. Consider the simultaneous normal measurement
ML∞(R×R+) (On

G = (Rn,Bn
R, G

n), S[(µ,σ)]). Assume that a measured valuex ∈ X = Rn is
obtained by the measurement. Let 0 < α� 1.
Then, find the confidence interval D1−α;Θ

x (⊆ Θ) (which does not depend on σ) such that

• the probability that µ ∈ D1−α;Θ
x is more than 1− α

Here, the more the confidence interval D1−α;Θ
x is small, the more it is desirable.

Therefore, for any x ( ∈ X), we get D1−α,Θ
x ( the (1− α)-confidence interval of x ) as follows:

D1−α
x = {π(ω)(∈ Θ) : ω ∈ Ω, dxΘ(E(x), π(ω)) ≤ δ1−αω }

= {µ ∈ Θ(= R) : µ(x)− σ′(x)√
n
t(α/2) ≤ µ ≤ µ(x) +

σ′(x)√
n
t(α/2)} (6.81)

D1−α,Ω
x = {ω = (µ, σ)(∈ Ω) : ω ∈ Ω, dxΘ(E(x), π(ω)) ≤ δ1−αω }

= {ω = (µ, σ)(∈ Ω) : µ(x)− σ′(x)√
n
t(α/2) ≤ µ ≤ µ(x) +

σ′(x)√
n
t(α/2)} (6.82)

6.6.3 Statistical hypothesis testing[null hypothesisHN = {µ0}(⊆ Θ =
R)]

Our present problem was as follows

Problem 6.20. [Statistical hypothesis testing]. Consider the simultaneous normal measure-
ment ML∞(R×R+) (On

G = (Rn,Bn
R, G

n), S[(µ,σ)]). Assume that

µ = µ0

That is, assume the null hypothesis HN such that

HN = {µ0}(⊆ Θ = R))

Let 0 < α� 1.
Then, find the rejection region R̂α;Θ

HN
(⊆ Θ) (which does not depend on σ) such that

• the probability that a measured valuex(∈ Rn) obtained by ML∞(R×R+) (On
G =

(Rn,Bn
R, G

n), S[(µ0,σ)]) satisfies

E(x) ∈ R̂α;Θ
HN
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6.6 Student t-distribution of population mean 165

is less than α.

Here, the more the rejection region R̂α;Θ
HN

is large, the more it is desirable.

The rejection regionR̂α,Θ
HN

( (α)-rejection region of null hypothesis HN(= {µ0}) ) is calculated

as follows:

R̂α,Θ
HN

=
∩

ω=(µ,σ)∈Ω(=R×R+) such that π(ω)=µ∈HN (={µ0})

{E(x)(∈ Θ) : dxΘ(E(x), π(ω)) ≥ ηαω}

= {µ(x) ∈ Θ(= R) :
|µ(x)− µ0|
σ′(x)/

√
n
≥ t(α/2)}

= {µ(x) ∈ Θ(= R) : µ0 ≤ µ(x)− σ′(x)√
n
t(α/2) or µ(x) +

σ′(x)√
n
t(α/2) ≤ µ0} (6.83)

Also,

R̂α,X
HN

=
∩

ω=(µ,σ)∈Ω(=R×R+) such that π(ω)=µ∈HN (={µ0})

{x ∈ X : dxΘ(E(x), π(ω)) ≥ ηαω}

= {x ∈ X = Rn :
|µ(x)− µ0|
σ′(x)/

√
n
≥ t(α/2)}

= {x ∈ X = Rn : µ0 ≤ µ(x)− σ′(x)√
n
t(α/2) or µ(x) +

σ′(x)√
n
t(α/2) ≤ µ0} (6.84)

6.6.4 Statistical hypothesis testing[null hypothesis HN = (−∞, µ0](⊆
Θ = R )]

Our present problem was as follows

Problem 6.21. [Statistical hypothesis testing]. Consider the simultaneous normal measure-
ment ML∞(R×R+) (On

G = (Rn,Bn
R, G

n), S[(µ,σ)]). Assume that

µ ∈ (−∞, µ0]

That is, assume the null hypothesis HN such that

HN = (−∞, µ0](⊆ Θ = R))

Let 0 < α� 1.
Then, find the rejection region R̂α;Θ

HN
(⊆ Θ) (which does not depend on σ) such that

• the probability that a measured valuex(∈ Rn) obtained by ML∞(R×R+) (On
G =

(Rn,Bn
R, G

n), S[(µ0,σ)]) satisfies

E(x) ∈ R̂α;Θ
HN
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166 Chapter 6 The confidence interval and statistical hypothesis testing

is less than α.

Here, the more the rejection region R̂α;Θ
HN

is large, the more it is desirable.

Since the null hypothesis HN is assumed as follows:

HN = (−∞, µ0],

it suffices to define the semi-distance dxΘ in Θ(= R) such that

dxΘ(θ1, θ2) =


|θ1−θ2|
σ′(x)/

√
n

(∀θ1, θ2 ∈ Θ = R such that µ0 ≤ θ1, θ2)
max{θ1,θ2}−µ0

σ′(x)/
√
n

(∀θ1, θ2 ∈ Θ = R such that min{θ1, θ2} ≤ µ0 ≤ max{θ1, θ2})
0 (∀θ1, θ2 ∈ Θ = R such that θ1, θ2 ≤ µ0)

(6.85)

for any x ∈ X = Rn.

Then, (α)-rejection regionR̂α,Θ
HN

is calculated as follows.

R̂α,Θ
HN

=
∩

ω=(µ,σ)∈Ω(=R×R+) such that π(ω)=µ∈HN (=(−∞,µ0])

{E(x)(∈ Θ) : dxΘ(E(x), π(ω)) ≥ ηαω}

= {µ(x) ∈ Θ(= R) : µ0 ≤ µ(x)− σ′(x)√
n
t(α)} (6.86)

Also,

R̂α,X
HN

=
∩

ω=(µ,σ)∈Ω(=R×R+) such that π(ω)=µ∈HN (=(−∞,µ0])

{x(∈ X = Rn) : dxΘ(E(x), π(ω)) ≥ ηαω}

= {x(∈ X = Rn) : µ0 ≤ µ(x)− σ′(x)√
n
t(α)} (6.87)

Remark 6.22. There are many ideas of statistical hypothesis testing. The most natural idea

is the likelihood-ratio, which is discussed in

(a) Ref. [28]: S. Ishikawa, “Mathematical Foundations of Measurement Theory,” Keio Uni-

versity Press Inc. 2006.

(b) Ref. [31]: S. Ishikawa, “A Measurement Theoretical Foundation of Statistics,” Applied

Mathematics, Vol. 3, No. 3, 2012, pp. 283-292. doi: 10.4236/am.2012.33044

Also, we think that the arguments concerning “null hypothesis vs. alternative hypothesis” and

“one-sided test and two-sided test” are practical and not theoretical.
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Chapter 7

ANOVA( = Analysis of Variance)

The standard university course of statistics is as follows:

1©
Inference

(likelihood method, moment method)

−→
2©

confidence interval −→
3©

statistical hypothesis testing

−→
4©

ANOVA

In the previous chapters, we studied 1©, 2© and 3©. In this chapter, we devote ourselves to

4©(ANOVA). This chapter is extracted from the following.

Ref. [40]: S. Ishikawa, ANOVA (analysis of variance) in the quantum linguistic formulation

of statistics ( arXiv:1402.0606 [math.ST] 2014 )

7.1 Zero way ANOVA (Student t-distribution)

In the previous chapter, we introduced the statistical hypothesis testing for student t-

distribution, which is characterized as “zero” way ANOVA (analysis of variance ). In this

section, we review “zero” way ANOVA (analysis of variance ).

Consider the classical basic structure

[C0(Ω) ⊆ L∞(Ω, ν) ⊆ B(L2(Ω, ν))]

where

Ω = R× R+ = {(µ, σ) | µ is real, σ is positive real}

Consider the simultaneous normal measurement ML∞(R×R+) (On
G = (Rn,Bn

R, G
n), S[(µ,σ)]) ( in

L∞(R× R+)). For completeness, recall that

167
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168 Chapter 7 ANOVA( = Analysis of Variance)

[Gn(×n
k=1Ξk)](ω) =×n

k=1[G(Ξk)](ω)

=
1

(
√

2πσ)n

∫
· · ·

∫
×n

k=1Ξk

exp[−
∑n

k=1(xk − µ)2

2σ2
]dx1dx2 · · · dxn (7.1)

(∀Ξk ∈ BR(k = 1, 2, . . . , n), ∀ω = (µ, σ) ∈ Ω = R× R+).

And recall the state space Ω = R × R+, the measured value space X = Rn, the second state

space(=parameter space) Θ = R. Also, recall the estimator E : X(= Rn) → Θ(= R) defined

by

E(x) = E(x1, x2, . . . , xn) = µ(x) =
x1 + x2 + · · ·+ xn

n
(7.2)

and the system quantity π : Ω(= R× R+)→ Θ(= R) defined by

Ω(= R× R+) 3 ω = (µ, σ) 7→ π(µ, σ) = µ ∈ Θ(= R) (7.3)

The essence of “studentized” is to define the semi-metric dxΘ(∀x ∈ X) in the second state space

Θ(= R)such that

dxΘ(θ(1), θ(2)) =
|θ(1) − θ(2)|√

nσ(x)
=
|θ(1) − θ(2)|√

SS(x)
(∀x ∈ X = Rn, ∀θ(1), θ(2) ∈ Θ = R) (7.4)

where

SS(x) = SS(x1, x2, . . . , xn) =
n∑
k=1

(xk − µ(x))2 (∀x = (x1, x2, . . . , xn) ∈ Rn)

Thus, as mentioned in the previous chapter, our problem is characterized as follows.

Problem 7.1. [The zero-way ANOVA]. Consider the simultaneous normal measurement
ML∞(R×R+) (On

G = (Rn,Bn
R, G

n), S[(µ,σ)]) Here, assume that

µ = µ0

That is, the null hypothesis HN is defined by HN = {µ0} (⊆ Θ = R)). Consider 0 < α� 1.

Then, find the largest R̂α;Θ
HN

(⊆ Θ) (independent of σ) such that

(A1) the probability that a measured value x(∈ Rn) (obtained by ML∞(R×R+)(O
n
G = (X(≡

Rn),Bn
R, G

n), S[(µ0,σ)])) satisfies

E(x) ∈ R̂α;Θ
HN

(7.5)

is less than α.
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7.1 Zero way ANOVA (Student t-distribution) 169

We see, for any ω = (µ0, σ)( ∈ Ω = R× R+),

[Gn({x ∈ X : dxΘ(E(x), π(ω)) ≥ η})](ω)

=[Gn({x ∈ X :
|µ(x)− µ0|√

SS(x)
≥ η})](ω)

=
1

(
√

2πσ)n

∫
· · ·

∫
η
√
n−1≤ |µ(x)−µ0|√

SS(x)/
√
n−1

exp[−
∑n

k=1(xk − µ0)
2

2σ2
]dx1dx2 · · · dxn

=
1

(
√

2π)n

∫
· · ·

∫
η2n(n−1)≤ n(µ(x))2

SS(x)/(n−1)

exp[−
∑n

k=1(xk)
2

2
]dx1dx2 · · · dxn (7.6)

(A2) by the formula of Gauss integrals ( Formula 7.8(A)(§7.4)), we see

=

∫ ∞
η2n(n−1)

pF(1,n−1)(t)dt = α ( e.g., α = 0.05) (7.7)

where pF(1,n−1) is the probability density function of F -distribution with (1, n − 1) degree of

freedom.

Note that the probability density function pF(n1,n2)
(t) of F -distribution with (n1, n2) degree

of freedom is defined by

pF(n1,n2)
(t) =

1

B(n1/2, n2/2)

(n1

n2

)n1/2 t(n1−2)/2

(1 + n1t/n2)(n1+n2)/2
(t ≥ 0) (7.8)

where B(·, ·) is the Beta function.

The α-point: F n2
n1,α

(> 0) is defined by∫ ∞
F
n2
n1,α

pF(n1,n2)
(t)dt = α (0 < α� 1. e.g., α = 0.05) (7.9)

Thus, it suffices to solve the following equation:

η2n(n− 1) = F 1
n−1,α (7.10)

Therefore,

(ηαω)2 =
F 1
n−1,α

n(n− 1)
(7.11)

Then, the rejection regionR̂α;Θ
HN

( (or R̂α;X
HN

) is calculated as

R̂α;Θ
HN

=
∩

ω=(µ,σ)∈Ω(=R×R+) such that π(ω)=µ∈HN (={µ0})

{E(x)(∈ Θ) : dxΘ(E(x), π(ω)) ≥ ηαω}
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170 Chapter 7 ANOVA( = Analysis of Variance)

= {µ(x) ∈ Θ(= R) :
|µ(x)− µ0|√

SS(x)
≥ ηαω} = {µ(x) ∈ Θ(= R) :

|µ(x)− µ0|
σ(x)

≥ ηαω
√
n}

=
{
µ(x) ∈ Θ(= R) :

|µ(x)− µ0|
σ(x)

≥

√
F 1
n−1,α

n− 1

}
=

{
µ(x) ∈ Θ(= R) : µ0 ≤ µ(x)− σ(x)

√
F 1
n−1,α

n− 1
or µ(x) + σ(x)

√
F 1
n−1,α

n− 1
≤ µ0

}
(7.12)

and,

R̂α;X
HN

= E−1(R̂α;Θ
HN

)

=
{
x ∈ X(= Rn) : µ0 ≤ µ(x)− σ(x)

√
F 1
n−1,α

n− 1
or µ(x) + σ(x)

√
F 1
n−1,α

n− 1
≤ µ0

}
(7.13)

♠Note 7.1. (i): It should be noted that the mathematical part is only the (A2).

(ii): Also, note that

(]) F -distribution with (1, n− 1) degree of freedom
= the student t-distribution with (n− 1) degree of freedom

Thus, we conclude that

(7.12) = (6.83) (7.13) = (6.84)
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7.2 The one way ANOVA 171

7.2 The one way ANOVA

For each i = 1, 2, · · · , a, a natural number ni is determined. And put, n =
∑a

i=1 ni.

Consider the parallel simultaneous normal observable On
G = (X(≡ Rn),Bn

R, G
n) ( in L∞(Ω(≡

(Ra × R+)) ) such that

[Gn(Ξ̂)](ω) =
1

(
√

2πσ)n

∫
· · ·

∫
Ξ̂

exp[−
∑a

i=1

∑ni
k=1(xik − µi)2

2σ2
]
a

×
i=1

ni×
k=1

dxik (7.14)

(∀ω = (µ1, µ2, . . . , µa, σ) ∈ Ω = Ra × R+, Ξ̂ ∈ Bn
R)

That is, consider

ML∞(Ra×R+)(O
n
G = (X(≡ Rn),Bn

R, G
n), S[(µ=(µ1,µ2,··· ,µa),σ)])

Put ai as follows.

αi = µi −
∑a

i=1 µi
a

(∀i = 1, 2, . . . , a) (7.15)

and put,

Θ = Ra

Thus,, the system quantity π : Ω→ Θ is defined as follows.

Ω = Ra × R+ 3 ω = (µ1, µ2, . . . , µa, σ) 7→ π(ω) = (α1, α2, . . . , αa) ∈ Θ = Ra (7.16)

Define the null hypothesis HN(⊆ Θ = Ra) as follows.

HN = {(α1, α2, . . . , αa) ∈ Θ = Ra : α1 = α2 = . . . = αa = α}

= {(
a︷ ︸︸ ︷

0, 0, . . . , 0)} (7.17)

Here, note the following equivalence:

“µ1 = µ2 = . . . = µa”⇔ “α1 = α2 = . . . = αa = 0”⇔ “(7.17)”

Hence, our problem is as follows.

Problem 7.2. [The one-way ANOVA]. Put n =
∑a

i=1 ni. Consider the parallel simultaneous
normal measurement ML∞(Ra×R+)(O

n
G = (X(≡ Rn), Bn

R, G
n), S[(µ=(µ1,µ2,··· ,µa),σ)]) Here, assume
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172 Chapter 7 ANOVA( = Analysis of Variance)

that

µ1 = µ2 = · · · = µa

that is,

π(µ1, µ2, · · · , µa) = (0, 0, · · · , 0)

Namely, assume that the null hypothesis is HN = {(0, 0, · · · , 0)} (⊆ Θ = R)). Consider
0 < α� 1.
Then, find the largest R̂α;Θ

HN
(⊆ Θ) (independent of σ) such that

(A1) the probability that a measured value x(∈ Rn) (obtained by ML∞(Ra×R+)(O
n
G = (X(≡

Rn),Bn
R, G

n), S[(µ=(µ1,µ2,··· ,µa),σ)])) satisfies

E(x) ∈ R̂α;Θ
HN

is less than α.

Consider the weighted Euclidean norm ‖θ(1) − θ(2)‖Θ in Θ = Ra as follows.

‖θ(1) − θ(2)‖Θ =

√√√√ a∑
i=1

ni

(
θ
(1)
i − θ

(2)
i

)2

(∀θ(`) = (θ
(`)
1 , θ

(`)
2 , . . . , θ(`)a ) ∈ Ra, ` = 1, 2)

Also, put

X = Rn 3 x = ((xik)k=1,2,...,ni)i=1,2,...,a

xi· =

∑ni
k=1 xik
ni

, x·· =

∑a
i=1

∑ni
k=1 xik

ni
, (7.18)

Theorem 5.6 (Fisher’s maximum likelihood method) urges us to calculate σ(x)(=

√
SS(x)
n

) as

follows.

For x ∈ X = Rn,

SS(x) = SS(((xik) k=1,2,...,ni)i=1,2,...,a )

=
a∑
i=1

ni∑
k=1

(xik − xi·)2

=
a∑
i=1

ni∑
k=1

(xik −
∑ni

k=1 xik
ni

)2

=
a∑
i=1

ni∑
k=1

((xik − µi)−
∑ni

k=1(xik − µi)
ni

)2
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=SS(((xik − µi) k=1,2,...,ni)i=1,2,...,a ) (7.19)

For each x ∈ X = Rn, define the semi-norm dxΘ in Θ such that

dxΘ(θ(1), θ(2)) =
‖θ(1) − θ(2)‖Θ√

SS(x)
(∀θ(1), θ(2) ∈ Θ)). (7.20)

Further, define the estimator E : X(= Rn)→ Θ(= Ra) as follows.

E(x) =E((xik)i=1,2,...,a,k=1,2,...,n)

=
(∑ni

k=1 x1k
n

−
∑a

i=1

∑ni
k=1 xik

n
,

∑ni
k=1 x2k
n

−
∑a

i=1

∑ni
k=1 xik

n
, . . . ,

∑ni
k=1 xak
n

−
∑a

i=1

∑ni
k=1 xik

n

)
=
(∑ni

k=1 xik
n

−
∑a

i=1

∑ni
k=1 xik

n

)
i=1,2,...,a

= (xi· − x··)i=1,2,...,a (7.21)

Thus, we get

‖E(x)− π(ω)‖2Θ

=||
(∑ni

k=1 xik
n

−
∑a

i=1

∑ni
k=1 xik

n

)
i=1,2,...,a

− (αi)i=1,2,...,a||2Θ

=||
(∑ni

k=1 xik
n

−
∑a

i=1

∑ni
k=1 xik

n
− (µi −

∑a
i=1 µi
a

)
)
i=1,2,...,a

||2Θ

remarking the null hypothesis HN (i.e., µi −
∑a
k=1 µi
a

= αi = 0(i = 1, 2, . . . , a)),

=||
(∑ni

k=1 xik
n

−
∑a

i=1

∑ni
k=1 xik

n

)
i=1,2,...,a

||2Θ =
a∑
i=1

ni(xi· − x··)2 (7.22)

Therefore, for any ω = ((µik)i=12,...,a, k=1,2,...,n, σ)( ∈ Ω = Rn × R+), define the positive real ηαω

( > 0) such that

ηαω = inf{η > 0 : [Gn(E−1(BallCdxΘ(π(ω); η))](ω) ≥ α} (7.23)

where

BallCdxΘ(π(ω); η) = {θ ∈ Θ : dxΘ(π(ω), θ) > η} (7.24)

Recalling the null hypothesis HN (i.e., µi −
∑a
k=1 µi
a

= αi = 0(i = 1, 2, . . . , a)) , calculate ηαω as

follows.

E−1(BallCdxΘ(π(ω); η)) = {x ∈ X = Rn : dxΘ(E(x), π(ω)) > η}

={x ∈ X = Rn :
‖E(x)− π(ω)‖2Θ

SS(x)
=

∑a
i=1 ni(xi· − x··)2∑a

i=1

∑ni
k=1(xik − xi·)2 > η2} (7.25)
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For any ω = (µ1, µ2, . . . , µa, σ) ∈ Ω = Ra × R+ such that π(ω)(= (α1, α2, . . . , αa)) ∈ HN(=

{0, 0, . . . , 0)}), we see

[Gn(E−1(BallCdxΘ(π(ω); η)))(ω)

=
1

(
√

2πσ)n

∫
· · ·

∫
∑a
i=1

ni(x
i·−x··)2∑a

i=1

∑ni
k=1

(xik−x
i·)2>η

2

exp[−
∑a

i=1

∑ni
k=1(xik − µi)2

2σ2
]
a

×
i=1

ni×
k=1

dxik

=
1

(
√

2π)n

∫
· · ·

∫
(
∑a
i=1

ni(x
i·−x··)2/(a−1)

(
∑a
i=1

∑ni
k=1

(xik−x
i·)2)/(n−a)>

η2(n−a)
(a−1)

exp[−
∑a

i=1

∑ni
k=1(xik)

2

2
]
a

×
i=1

ni×
k=1

dxik

(A2) By the formula of Gauss integrals (Formula 7.8(B)(§7.4)), we see

=

∫ ∞
η2(n−a)
(a−1)

pF(a−1,n−a)(t)dt = α ( e.g., α=0.05) (7.26)

where, pF(a−1,n−a) is a probability density function of the F -distribution with pF(a−1,n−a) degree

of freedom.

Therefore, it suffices to solve the following equation

η2(n− a)

(a− 1)
= F a−1

n−a,α(= “α-point”) (7.27)

This is solved,

(ηαω)2 = F a−1
n−a,α(a− 1)/(n− a) (7.28)

Then, we get R̂α;Θ
x̂ (or, R̂α;X

x̂ ; the (α)-rejection region of HN = {(0.0. . . . , 0)}(⊆ Θ = Ra) ) as

follows:

R̂α;Θ
HN

=
∩

ω=((µi)ai=1,σ)∈Ω(=Ra×R+) such that π(ω)=(µ)ai=1∈HN={(0,0,...,0)}

{E(x)(∈ Θ) : dxΘ(E(x), π(ω)) ≥ ηαω}

= {E(x)(∈ Θ) :
(
∑a

i=1 ni(xi· − x··)2)/(a− 1)

(
∑a

i=1

∑ai
k=1(xik − xi·)2))/(n− a)

≥ F a−1
n−a,α} (7.29)

Thus,

R̂α;X
x̂ = E−1(R̂α;Θ

HN
) = {x ∈ X :

(
∑a

i=1 ni(xi· − x··)2)/(a− 1)

(
∑a

i=1

∑ni
k=1(xik − xi·)2)/(n− a)

≥ F a−1
n−a,α} (7.30)

♠Note 7.2. It should be noted that the mathematical part is only the (A2).
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7.3 The two way ANOVA

7.3.1 Preparation

As one of generalizations of the simultaneous normal observable (7.14), we consider a kind

of observable Oabn
G = (X(≡ Rabn),Babn

R , Gabn) in L∞(Ω(≡ (Rab × R+)).

[Gabn(Ξ̂)](ω)

=
1

(
√

2πσ)abn

∫
· · ·

∫
Ξ̂

exp[−
∑a

i=1

∑b
j=1

∑n
k=1(xijk − µij)2

2σ2
]
n

×
k=1

b

×
j=1

a

×
i=1

dxijk

(∀ω = ((µij)i=1,2,...,a,j=1,2,...,b, σ) ∈ Ω = Rab × R+, Ξ̂ ∈ Babn
R ) (7.31)

Therefore, consider the parallel simultaneous normal measurement:

ML∞(Rab×R+)(O
abn
G = (X(≡ Rabn),Babn

R , Gabn), S[(µ=(µij | i=1,2,··· ,a,j=1,2,··· ,b),σ)])

Here,

µij = µ(= µ·· =

∑a
i=1

∑b
j=1 µij

ab
)

+ αi(= µi· − µ·· =

∑b
j=1 µij

b
−

∑a
i=1

∑b
j=1 µij

ab
)

+ βj(= µ·j − µ·· =

∑a
i=1 µij
a

−
∑a

i=1

∑b
j=1 µij

ab
)

+ (αβ)ij(= µij − µi· − µ·j + µ··) (7.32)

And put,

X = Rabn 3 x = (xijk)i=1,2,...,a, j=1,2,...,b, k=1,2,...,n

xij· =

∑n
k=1 xijk
n

, xi·· =

∑b
j=1

∑n
k=1 xijk

bn
, x·j· =

∑a
i=1

∑n
k=1 xijk

an
,

x··· =

∑a
i=1

∑b
j=1

∑n
k=1 xijk

abn
(7.33)

7.3.2 The null hypothesis: µ1· = µ2· = · · · = µa· = µ··
Now put,

Θ = Ra (7.34)
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define the system quantity π1 : Ω(= Rab × R+)→ Θ(= Ra) by

Ω = Rab × R+ 3 ω = ((µij)i=1,2,...,a,j=1,2,...,b, σ) 7→ π1(ω) = (αi)
a
i=1(= (µi· − µ··)ai=1) ∈ Θ = Ra

(7.35)

Define the null hypothesis HN(⊆ Θ = Ra) such that

HN = {(α1, α2, . . . , αa) ∈ Θ = Ra : α1 = α2 = . . . = αa = α} (7.36)

= {(
a︷ ︸︸ ︷

0, 0, . . . , 0)} (7.37)

Here, “(7.36)⇔(7.37)” is derived from

aα =
a∑
i=1

αi =
a∑
i=1

(µi· − µ··) =

∑a
i=1

∑b
j=1 µij

b
−

a∑
i=1

∑a
i=1

∑b
j=1 µij

ab
= 0 (7.38)

Also, define the estimator E : X(= Rabn)→ Θ(= Ra) by

E(x) =
(∑b

j=1

∑n
k=1 xijk

bn
−

∑a
i=1

∑b
j=1

∑n
k=1 xijk

abn

)
i=1,2,...,a

=
(
xi·· − x···

)
i=1,2,...,a

(7.39)

Now we have the following problem:

Problem 7.3. [The two-way ANOVA]. Consider the parallel simultaneous normal measure-
ment:

ML∞(Rab×R+)(O
abn
G = (X(≡ Rabn),Babn

R , Gabn), S[(µ=(µij | i=1,2,··· ,a,j=1,2,··· ,b),σ)])

where we assume that

µ1· = µ2· = · · · = µa· = µ··
that is,

π1(µ1, µ2, · · · , µa) = (0, 0, · · · , 0)

namely, consider the null hypothesis HN = {(0, 0, · · · , 0)} (⊆ Θ = Ra)). Let 0 < α� 1.

Then, find the largest R̂α;Θ
HN

(⊆ Θ)(independent of σ) such that

(A1) the probability that a measured value x(∈ Rabn) obtained by ML∞(Rab×R+)(O
abn
G = (X(≡

Rabn),Babn
R , Gabn), S[(µ=(µij | i=1,2,··· ,a,j=1,2,··· ,b),σ)]) satisfies that

E(x) ∈ R̂α;Θ
HN

is less than α.
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Further,

‖θ(1) − θ(2)‖Θ =

√√√√ a∑
i=1

(
θ
(1)
i − θ

(2)
i

)2

(∀θ(`) = (θ
(i)
1 , θ

(`)
2 , . . . , θ(`)a ) ∈ Ra, ` = 1, 2)

Motivated by Theorem 5.6 (Fisher’s maximum likelihood method), define and calculate σ(x)
(

=√
SS(x)/(abn)

)
as follows.

SS(x) = SS((xijk)i=1,2,...,a, j=1,2,...,b,k=1,2,...,n)

:=
a∑
i=1

b∑
j=1

n∑
k=1

(xijk − xij·)2 =
a∑
i=1

b∑
j=1

n∑
k=1

(xijk −
∑n

k=1 xijk
n

)2

=
a∑
i=1

b∑
j=1

n∑
k=1

((xijk − µij)−
∑n

k=1(xijk − µij)
n

)2

=SS(((xijk − µij)i=1,2,...,a, j=1,2,...,b)k=1,2,··· ,n) (7.40)

Define the semi-distance dxΘ ( in Θ = Ra) such that

dxΘ(θ(1), θ(2)) =
‖θ(1) − θ(2)‖Θ√

SS(x)
(∀θ(1), θ(2) ∈ Θ = Ra,∀x ∈ X = Rabn) (7.41)

Define the estimator E : X(= Rabn)→ Θ(= Ra) such that

E(x) =
(∑b

j=1

∑n
k=1 xijk

bn
−

∑a
i=1

∑b
j=1

∑n
k=1 xijk

abn

)
i=1,2,...,a

=
(
xi·· − x···

)
i=1,2,...,a

Therefore,

‖E(x)− π(ω)‖2Θ

=||
(∑b

j=1

∑n
k=1 xijk

bn
−

∑a
i=1

∑b
j=1

∑n
k=1 xijk

abn

)
i=1,2,...,a

−
(
αi

)
i=1,2,...,a

||2Θ

=||
(∑b

j=1

∑n
k=1 xijk

bn
−

∑a
i=1

∑b
j=1

∑n
k=1 xijk

abn

)
i=1,2,...,a

−
(∑b

j=1 µij

b
−

∑a
i=1

∑b
j=1 µij

ab

)
i=1,2,...,a

||2Θ

=||
(∑n

k=1

∑b
j=1(xijk − µij)
bn

−
∑a

i=1

∑b
j=1

∑n
k=1(xijk − µij)

abn

)
i=1,2,...,a

||2Θ

and thus, if the null hypothesis HN is assumed (i.e., µi· − µ·· = αi = 0 (∀i = 1, 2, . . . , a) )

=||
(∑n

k=1

∑b
j=1 xijk

bn
−

∑a
i=1

∑b
j=1

∑n
k=1 xijk

abn

)
i=1,2,...,a

||2Θ =
a∑
i=1

(xij· − x···)2 (7.42)
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Thus, for any ω = (µ1, µ2)( ∈ Ω = R× R), define the positive number ηαω ( > 0) such that:

ηαω = inf{η > 0 : [G(E−1(BallCdxΘ(π(ω); η))](ω) ≥ α} (7.43)

Assume the null hypothesis HN . Now let us calculate the ηαω as follows:

E−1(BallCdxΘ(π(ω); η)) = {x ∈ X = Rabn : dxΘ(E(x), π(ω)) > η}

={x ∈ X = Rabn :
abn

∑a
i=1

∑b
j=1(xij· − x···)2∑a

i=1

∑b
j=1

∑n
k=1(xijk − xij·)2

> η} (7.44)

That is, for any ω = ((µij)i=1,2,...,a, j=1,2,...,b, , σ) ∈ Ω such that π(ω)(= (α1, α2, . . . , αa)) ∈ HN(=

{0, 0, . . . , 0)}),

[Gabn(E−1(BallCdxΘ(π(ω); η)))(ω)

=
1

(
√

2πσ)abn

∫
· · ·

∫
E−1(BallC

dx
Θ
(π(ω);η))

exp[−
∑a

i=1

∑b
j=1

∑n
k=1(xijk − µij)2

2σ2
]
n

×
k=1

b

×
j=1

a

×
i=1

dxijk

=
1

(
√

2πσ)abn

∫
· · ·

∫
abn

∑a
i=1

∑b
j=1

(x
ij·−x···)2∑a

i=1

∑b
j=1

∑n
k=1

(xijk−x
ij·)2>η

2

exp[−
∑a

i=1

∑b
j=1

∑n
k=1(xijk − µij)2

2σ2
]
n

×
k=1

b

×
j=1

a

×
i=1

dxijk

=
1

(
√

2π)abn

∫
· · ·

∫
∑a
i=1

∑b
j=1

(x
ij·−x···)2)

(a−1)∑a
i=1

∑b
j=1

∑n
k=1

(xijk−x
ij·)2

ab(n−1)

>
η2(ab(n−1))
abn(a−1)

exp[−
∑a

i=1

∑b
j=1

∑n
k=1(xijk)

2

2
]
n

×
k=1

b

×
j=1

a

×
i=1

dxijk

(7.45)

(A2) using the formula of Gauss integrals derived in Kolmogorov’s probability theory, we finally
get as follows.

=

∫ ∞
η2(n−1)
n(a−1)

pF(a−1,ab(n−1))(t)dt = α (e.g., α = 0.05) (7.46)

where pF(a−1,ab(n−1)) is the F -distribution with (a − 1, ab(n − 1)) degrees of freedom. Thus, it

suffices to calculate the α-point F a−1
ab(n−1),α Thus, we see

(ηαω)2 = F a−1
ab(n−1),α · n(a− 1)/(n− 1) (7.47)
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Therefore, we get R̂α;Θ
x̂ (or, R̂α;X

x̂ ; the (α)-rejection region of HN = {(0.0. . . . , 0)}(⊆ Θ = Ra) )

as follows:

R̂α;Θ
HN

=
∩

ω=((µi)ai=1,σ)∈Ω(=Ra×R+) such that π(ω)=(αi)ai=1∈HN={(0,0,...,0)}

{E(x)(∈ Θ) : dxΘ(E(x), π(ω)) ≥ ηαω}

= {E(x)(∈ Θ) :
(
∑a

i=1

∑b
j=1(xij· − x···)2)/(a− 1)

(
∑a

i=1

∑b
j=1

∑n
k=1(xijk − xij·)2)/(ab(n− 1))

≥ F a−1
ab(n−1),α} (7.48)

Thus,

R̂α;X
HN

= E−1(R̂α;Θ
HN

) = {x(∈ X) :
(
∑a

i=1

∑b
j=1(xij· − x···)2)/(a− 1)

(
∑a

i=1

∑b
j=1

∑n
k=1(xijk − xij·)2)/(ab(n− 1))

≥ F a−1
ab(n−1),α}

(7.49)

♠Note 7.3. It should be noted that the mathematical part is only the (A2).

7.3.3 Null hypothesis: µ·1 = µ·2 = · · · = µ·b = µ··

Our present problem is as follows

Problem 7.4. [The two-way ANOVA]. Consider the parallel simultaneous normal measure-
ment:

ML∞(Rab×R+)(O
abn
G = (X(≡ Rabn),Babn

R , Gabn), S[(µ=(µij | i=1,2,··· ,a,j=1,2,··· ,b),σ)])

where the null hypothesis

µ·1 = µ·2 = · · · = µ·b = µ··
is assumed. Let 0 < α� 1.
Then, find the largest R̂α;Θ

HN
(⊆ Θ)(independent of σ) such that

(B)′ the probability that a measured value x(∈ Rabn) obtained by ML∞(Rab×R+)(O
abn
G = (X(≡

Rabn),Babn
R , Gabn), S[(µ=(µij | i=1,2,··· ,a,j=1,2,··· ,b),σ)]) satisfies that

E(x) ∈ R̂α;Θ
HN

is less than α.
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Since a and b have the same role, by the similar way of §7.3.2, we can easily solve Problem

7.4.

7.3.4 Null hypothesis: (αβ)ij = 0 (∀i = 1, 2, . . . , a, j = 1, 2, . . . , b )

Now, put

Θ = Rab (7.50)

And, define the system quantityπ : Ω→ Θ by

Ω = Rab × R+ 3 ω = ((µij)i=1,2,...,a, j=1,2,...,b, σ) 7→ π(ω) = ((αβ)ij)i=1,2,...,a, j=1,2,...,b ∈ Θ = Rab

(7.51)

Here, recall:

(αβ)ij = µij − µi· − µ·j + µ·· (7.52)

Also, the estimator E : X(= Rabn)→ Θ(= Rab) is defined by

E((xijk)i=1,...,a, j=1,2,...b, k=1,2,...,n)

=
(∑n

k=1 xijk
n

−
∑b

j=1

∑n
k=1 xijk

bn
−

∑b
j=1

∑n
k=1 xijk

an
+

∑a
i=1

∑b
j=1

∑n
k=1 xijk

abn

)
i=1,2,...,a j=1,2,...b,

=
(
xij· − xi·· − x·j· + x···

)
i=1,2,...,a j=1,2,...b,

(7.53)

Our present problem is as follows

Problem 7.5. [The two way ANOVA]. Consider the parallel simultaneous normal measure-
ment:

ML∞(Rab×R+)(O
abn
G = (X(≡ Rabn),Babn

R , Gabn), S[(µ=(µij | i=1,2,··· ,a,j=1,2,··· ,b),σ)])

The null hypothesis HN(⊆ Θ = Rab) is defined by

HN = {((αβ)ij)i=1,2,...,a, j=1,2,...,b ∈ Θ = Rab : (αβ)ij = 0, (∀i = 1, 2, . . . , a, j = 1, 2, . . . , b)}
(7.54)

That is,

(αβ)ij = µij − µi· − µ·j + µ·· = 0 (i = 1, 2, · · · , a, j = 1, 2, · · · , b) (7.55)

Let 0 < α� 1.
Then, find the largest R̂α;Θ

HN
(⊆ Θ)(independent of σ) such that
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(C1) the probability that a measured value x(∈ Rabn) obtained by ML∞(Rab×R+)(O
abn
G = (X(≡

Rabn),Babn
R , Gabn), S[(µ=(µij | i=1,2,··· ,a,j=1,2,··· ,b),σ)]) satisfies that

E(x) ∈ R̂α;Θ
HN

is less than α.

Now,

‖θ(1) − θ(2)‖Θ =

√√√√ a∑
i=1

b∑
j=1

(
θ
(`)
ij − θ

(`)
ij

)2

(7.56)

(∀θ(`) = (θ
(`)
ij )i=1,2,...,a, j=1,2,...,b ∈ Rab, ` = 1, 2)

and, define the semi-distance dxΘ in Θ by

dxΘ(θ(1), θ(2)) =
‖θ(1) − θ(2)‖Θ√

SS(x)
(∀θ(1), θ(2) ∈ Θ, ∀x ∈ X) (7.57)

E((xijk − µij)i=1,...,a, j=1,2,...b, k=1,2,...,n)

=
(∑n

k=1(xijk − µij)
n

−
∑b

j=1

∑n
k=1(xijk − µij)
bn

−
∑b

j=1

∑n
k=1(xijk − µij)
an

+

∑a
i=1

∑b
j=1

∑n
k=1(xijk − µij)

abn

)
i=1,2,...,a j=1,2,...b,

=
(

(xij· − µij)− (xi·· − µi·)− (x·j· − µ·j) + (x··· − µ··)
)
i=1,2,...,a j=1,2,...b,

=
(
xij· − xi·· − x·j· + x···

)
i=1,2,...,a j=1,2,...b

(Remark:null hypothesis (αβ)ij = 0) (7.58)

Therefore,

E((xijk)i=1,...,a, j=1,2,...b, k=1,2,...,n) = E((xijk − µij)i=1,...,a, j=1,2,...b, k=1,2,...,n) (7.59)

Thus, for each i = 1, ..., a, j = 1, 2, ...b,

Eij(xijk − µij)

=

∑n
k=1(xijk − µij)

n
−

∑b
j=1

∑n
k=1(xijk − µij)
bn

−
∑b

j=1

∑n
k=1(xijk − µij)
an

+

∑a
i=1

∑b
j=1

∑n
k=1(xijk − µij)

abn

=Eij(x)− (αβ)ij
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=xij· − xi·· − x·j· + x··· − (αβ)ij (7.60)

And, we see:

‖E(x)− π(ω)‖2Θ

=||
(
Eij(x)− (αβ)ij

)
i=1,2,...,a j=1,2,...b

||2Θ (7.61)

Recalling that the null hypothesis HN (i.e., (αβ)ij = 0 (∀i = 1, 2, . . . , a, j = 1, 2, . . . , b) ), we
see

=
a∑
i=1

b∑
j=1

(xij· − xi·· − x·j· + x···)2 (7.62)

Thus, for each ω = (µ, σ)( ∈ Ω = Rab × R), define the positive real ηαω ( > 0) such that

ηαω = inf{η > 0 : [G(E−1(BallCdxΘ(π(ω); η))](ω) ≥ α} (7.63)

Recalling the null hypothesisHN (i.e., (αβ)ij = 0 (∀i = 1, 2, . . . , a, j = 1, 2, . . . , b) ), calculate

the ηαωas follows.

E−1(BallCdxΘ(π(ω); η)) = {x ∈ X = Rabn : dxΘ(E(x), π(ω)) > η}

={x ∈ X = Rabn :
abn

∑a
i=1

∑b
j=1(xij· − xi·· − x·j· + x···)2∑a

i=1

∑b
j=1

∑n
k=1(xijk − xij·)2

> η2} (7.64)

Thus, for any ω = ((µij)i=1,2,...,a, j=1,2,...,b, , σ) ∈ Ω = Rab × R+ such that π(ω) ∈ HN(⊆ Rab)

(i.e., (αβ)ij = 0 (∀i = 1, 2, . . . , a, j = 1, 2, . . . , b) ), we see:

[Gabn(E−1(BallCdxΘ(π(ω); η)))(ω)

=
1

(
√

2πσ)abn

∫
· · ·

∫
E−1(BallC

dx
Θ
(π(ω);η))

exp[−
∑a

i=1

∑b
j=1

∑n
k=1(xijk − µij)2

2σ2
]
n

×
k=1

b

×
j=1

a

×
i=1

dxijk

=
1

(
√

2πσ)abn

∫
· · ·

∫
{x∈X : dxΘ(E(x),π(ω)≥η}

exp[−
∑a

i=1

∑b
j=1

∑n
k=1(xijk − µij)2

2σ2
]
n

×
k=1

b

×
j=1

a

×
i=1

dxijk

=
1

(
√

2π)abn

∫
· · ·

∫
∑a
i=1

∑b
j=1

(x
ij·−xi··−x·j·+x···)2∑a

i=1

∑b
j=1

∑n
k=1

(xijk−x
ij·)2 > η2

abn

exp[−
∑a

i=1

∑b
j=1

∑n
k=1(xijk)

2

2
]
n

×
k=1

b

×
j=1

a

×
i=1

dxijk
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=
1

(
√

2π)abn

∫
· · ·

∫
∑a
i=1

∑b
j=1

(x
ij·−xi··−x·j·+x···)2
(a−1)(b−1)∑a

i=1

∑b
j=1

∑n
k=1

(xijk−x
ij·)2

ab(n−1)

>
η2(ab(n−1))
abn(a−1)(b−1)

exp[−
∑a

i=1

∑b
j=1

∑n
k=1(xijk)

2

2
]
n

×
k=1

b

×
j=1

a

×
i=1

dxijk

(7.65)

(C2) Then, by the formula of Gauss integrals 7.8(D) (§7.4) , we see

=

∫ ∞
η2(n−1)

n(a−1)(b−1)

pF((a−1)(b−1),ab(n−1))(t)dt = α( e.g., α = 0.05) (7.66)

where pF((a−1)(b−1),ab(n−1)) is a probability density function of the F -distribution with ((a−1)(b−
1), ab(n− 1)) degrees of freedom.

Hence, it suffices to the following equation:

η2(n− 1)

n(a− 1)(b− 1)
= F

(a−1)(b−1)
ab(n−1),α (= “α-point”) (7.67)

thus, we see,

(ηαω)2 = F
(a−1)(b−1)
ab(n−1),α n(a− 1)(b− 1)/(n− 1) (7.68)

Therefore, we get the (α)-rejection region R̂α;Θ
x̂ (or, R̂α;X

x̂ ; HN = {((αβ)ij)i=1,2,··· ,a,j=1,2,··· ,b :

(αβ)ij = 0 (i = 1, 2, · · · , a, j = 1, 2, · · · , b)}(⊆ Θ = Rab) ):

R̂α;Θ
HN

=
∩

ω=((µij)ai=1
b
j=1,σ)∈Ω(=Ra×R+) such that π(ω)=(αβ)ij∈HN

{E(x)(∈ Θ) : dxΘ(E(x), π(ω)) ≥ ηαω}

= {E(x)(∈ Θ) :
(
∑a

i=1

∑b
j=1(xij· − x···)2)/((a− 1)(b− 1))

(
∑a

i=1

∑b
j=1

∑n
k=1(xijk − xij·)2)/(ab(n− 1))

≥ F
(a−1)(b−1)
ab(n−1),α } (7.69)

Also,

R̂α;X
HN

= E−1(R̂α;Θ
HN

) = {x(∈ X) :
(
∑a

i=1

∑b
j=1(xij· − x···)2)/((a− 1)(b− 1))

(
∑a

i=1

∑b
j=1

∑n
k=1(xijk − xij·)2)/(ab(n− 1))

≥ F
(a−1)(b−1)
ab(n−1),α }

(7.70)

♠Note 7.4. It should be noted that the mathematical part is only the (C2).
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184 Chapter 7 ANOVA( = Analysis of Variance)

7.4 Supplement(the formulas of Gauss integrals)

7.4.1 Normal distribution, chi-squared distribution,
Student t-distribution, F -distribution

Definition 7.6. [Fdistribution ]. Let t ≥ 0, and n1 and n2 be natural numbers. The probability

density function pF(n1,n2)
(t) of F -distribution with the degree of freedom(n1, n2) is defined by

pF(n1,n2)
(t) =

1

B(n1/2, n2/2)

(n1

n2

)n1/2 t(n1−2)/2

(1 + n1t/n2)(n1+n2)/2
(t ≥ 0) (7.71)

where, B(·, ·) is the Beta function, that is, for x, y > 0,

B(x, y) =

∫ 1

0

tx−1(1− t)y−1dt

Note that

F -distribution with degree of freedom(1, n− 1)

= Student t-distribution with the degree of freedom(n− 1)

Define two maps µ : Rn → R and SS : Rn → R as follows.

µ(x) = µ(x1, x2, · · · , xn) =

∑n
k=1 xk
n

SS(x) = SS(x1, x2, · · · , xn) =
n∑
k=1

(xk − µ(x))2

(∀x = (x1, x2, · · · , xn) ∈ Rn)

Formula 7.7. [Gauss integral(normal distribution and chi-squared distribution)]. This was already

mentioned in (6.6) and (6.7).

Formula 7.8. [Gauss integral(F -distribution )]. For c ≥ 0,

(A):
1

(
√

2π)n

∫
· · ·

∫
c≤ n(µ(x))2

SS(x)/(n−1)

exp[−
∑n

k=1(xk)
2

2
]dx1dx2 · · · dxn =

∫ ∞
c

pF(1,n−1)(t)dt (7.72)

(B): For n =
∑a

i=1 ni,

1

(
√

2π)n

∫
· · ·

∫
(
∑a
i=1

ni(x
i·−x··)2/(a−1)

(
∑a
i=1

∑ni
k=1

(xik−x
i·)2)/(n−a)>c

exp[−
∑a

i=1

∑ni
k=1(xik)

2

2
]
a

×
i=1

ni×
k=1

dxik
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7.4 Supplement(the formulas of Gauss integrals) 185

=

∫ ∞
c

pF(a−1,n−a)(t)dt (7.73)

(C):
1

(
√

2π)abn

∫
· · ·

∫
∑a
i=1

∑b
j=1

(x
ij·−x···)2

(a−1)∑a
i=1

∑b
j=1

∑n
k=1

(xijk−x
ij·)2

ab(n−1)

>c

exp[−
∑a

i=1

∑b
j=1

∑n
k=1(xijk)

2

2
]
n

×
k=1

b

×
j=1

a

×
i=1

dxijk

=

∫ ∞
c

pF(a−1,ab(n−1))(t)dt (7.74)

Or, equivalently,

(D):
1

(
√

2π)abn

∫
· · ·

∫
∑a
i=1

∑b
j=1

(x
ij·−xi··−x·j·+x···)2
(a−1)(b−1)∑a

i=1

∑b
j=1

∑n
k=1

(xijk−x
ij·)2

ab(n−1)

>c

exp[−
∑a

i=1

∑b
j=1

∑n
k=1(xijk)

2

2
]
n

×
k=1

b

×
j=1

a

×
i=1

dxijk

=

∫ ∞
c

pF((a−1)(b−1),ab(n−1))(t)dt (7.75)
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Chapter 8

Practical logic–Do you believe in
syllogism?–

The term “practical logic” means the logic in measurement theory. It is certain that pure

logic (=mathematical logic) is merely a kind of rule in mathematics (or meta-mathematics). If

it is so, the mathematical logic is not guaranteed to be applicable to our world. For instance,

mathematical syllogism ( “A ⇒ B” and “B ⇒ C” imply “A ⇒ C” ) does not assure the

following famous statement:

(]1) Since Socrates is a man and all men are mortal, it follows that Socrates is mortal.

That is, we think that

(]2) the above (]1) is not clarified yet.

In this chapter, we prove the (]1) in classical systems. Also, we point out that syllogism does

not hold in quantum systems1

8.1 Marginal observable and quasi-product observable

Definition 8.1. [Image observable ] Consider the basic structure[A ⊆ A ⊆ B(H)]. And

consider the observable O = (X, F, F ) in A. Let (Y,G) be a measurable space, and let

f : X → Y be a measurable map. Then, we can define the image observable f(O) = (X, F,

F ◦ f−1) in A, where F ◦ f−1 is defined by

(F ◦ f−1)(Γ) = F (f−1(Γ)) (∀Γ ∈ G)

1 This chapter is mostly extracted from the following:

(]) Ref. [24]: S. Ishikawa, “Fuzzy Inferences by Algebraic Method,” Fuzzy Sets and Systems, Vol. 87, No. 2,
1997, pp. 181-200. doi:10.1016/S0165-0114(96)00035-8
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188 Chapter 8 Practical logic–Do you believe in syllogism?–

[Marginal observable ] Consider the basic structure[A ⊆ A ⊆ B(H)]. And consider the

observable O12...n = (×n
k=1Xk, � n

k=1Fk, F12...n) in A. For any natural number j such that

1 5 j 5 n, define F
(j)
12...n such that

F
(j)
12...n(Ξj) = F12...n(X1 × · · · ×Xj−1 × Ξj ×Xj+1 × · · · ×Xn) (∀Ξj ∈ Fj)

Then we have the observable O
(j)
12...n = (Xj, Fj, F

(j)
12...n) in A. The O

(j)
12...n is called a marginal

observable of O12...n ( or, precisely, (j)-marginal observable ). Consider a map Pj :×n
k=1Xk →

Xj such that

n

×
k=1
3 (x1, x2, ..., xj, ..., xn) 7→ xj ∈ Xj

Then, the marginal observable O
(j)
12...n is characterized as the image observable Pj(O12...n).

The above can be easily generalized as follows. For example, define O
(12)
12...n = (X1×X2, F1�F2,

F
(12)
12...n) such that

F
(12)
12...n(Ξ1 × Ξ2) = F

(12)
12...n(Ξ1 × Ξ2 ×X3 × · · · ×Xn) (∀Ξ1 ∈ F1,∀Ξ2 ∈ F2)

Then, we have the (12)-marginal observable O
(12)
12...n = (X1×X2, F1 �F2, F

(12)
12...n). Of course, we

also see that F12...n = F
(12...n)
12...n .

The following theorem is often used:

Theorem 8.2. Consider the basic structure

[A ⊆ A ⊆ B(H)]

Let A be a C∗-algebra. Let O1 ≡ (X1,F1, F1) and O2 ≡ (X2,F2, F2) be W ∗-observables in

A such that at least one of them is a projective observable.
(

So, without loss of generality,

we assume that O2 is projective, i.e., F2 = (F2)
2
)

. Then, the following statements are

equivalent:

(i) There exists a quasi-product observable O12 ≡ (X1×X2,F1×F2, F1

qp

×××××××××F2) with marginal
observables O1 and O2.

(ii) O1 and O2 commute, that is, F1(Ξ1)F2(Ξ2) = F2(Ξ2)F1(Ξ1) (∀Ξ1 ∈ F1,∀Ξ2 ∈ F2).

Furthermore, if the above statements (i) and (ii) hold, the uniqueness of the quasi-product
observable O12 of O1 and O2 is guaranteed.

Proof. See refs. [11, 24, 28].
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8.1 Marginal observable and quasi-product observable 189

Consider the measurement MA(O12=(X1×X2,F1�F2, F12), S[ρ]) with the sample probability

space (X1 ×X2,F1 � F2, A∗
(
ρ, F12(·)

)
A).

Put

RepΞ1×Ξ2
ρ [O12] =

[
A∗
(
ρ, F12(Ξ1 × Ξ2)

)
A A∗

(
ρ, F12(Ξ1 × Ξc

2)
)
A

A∗
(
ρ, F12(Ξ

c
1 × Ξ2)

)
A A∗

(
ρ, F12(Ξ

c
1 × Ξc

2)
)
A

]
(∀Ξ1 ∈ F1, ∀Ξ2 ∈ F2)

where, Ξc is the complement of Ξ {x ∈ X | x /∈ Ξ}. Also, note that

A∗
(
ρ, F12(Ξ1 × Ξ2)

)
A + A∗

(
ρ, F12(Ξ1 × Ξc

2)
)
A = A∗

(
ρ, F

(1)
12 ](Ξ1)

)
A

A∗
(
ρ, F12(Ξ

c
1 × Ξc

2)
)
A + A∗

(
ρ, F12(Ξ

c
1 × Ξ2)

)
A = A∗

(
ρ, F

(1)
12 (Ξc

1)
)
A

A∗
(
ρ, F12(Ξ

c
1 × Ξc

2)
)
A + A∗

(
ρ, F12(Ξ1 × Ξc

2)
)
A = A∗

(
ρ, F

(2)
12 (Ξc

2)
)
A

A∗
(
ρ, F12(Ξ1 × Ξc

2)
)
A + A∗

(
ρ, F12(Ξ

c
1 × Ξc

2)
)
A = A∗

(
ρ, F

(2)
12 (Ξc

2)
)
A

We have the following lemma.

Lemma 8.3. [The condition of quasi-product observables] Consider the general basic structure

[A ⊆ A ⊆ B(H)].

Let O1 = (X1,F1, F1) and O2 = (X2,F2, F2) be observables in C(Ω). Let O12 = (X1×X2,F1×
F2, F12=F1

qp

×××××××××F2) be a quasi-product observable of O1 and O2. That is, it holds that

F1 = F
(1)
12 , F2 = F

(2)
12

Then, putting α
Ξ1×Ξ2

ρ = A∗
(
ρ, F12(Ξ1 × Ξ2)

)
A = ρ(F12(Ξ1 × Ξ2)), we see

RepΞ1×Ξ2
ρ [O12] =

[
A∗
(
ρ, F12(Ξ1 × Ξ2)

)
A A∗

(
ρ, F12(Ξ1 × Ξc

2)
)
A

A∗
(
ρ, F12(Ξ

c
1 × Ξ2)

)
A A∗

(
ρ, F12(Ξ

c
1 × Ξc

2)
)
A

]
=

[
α

Ξ1×Ξ2

ρ ρ(F1(Ξ1))− α
Ξ1×Ξ2

ρ

ρ(F2(Ξ2))− α
Ξ1×Ξ2

ρ 1 + α
Ξ1×Ξ2

ρ − ρ(F1(Ξ1))− ρ(F2(Ξ2))

]
(8.1)

and

max{0, ρ(F1(Ξ1)) + ρ(F2(Ξ2))− 1} 5 α
Ξ1×Ξ2

ρ 5

min{ρ(F1(Ξ1)), ρ(F2(Ξ2))}

(∀Ξ1 ∈ F1,∀Ξ2 ∈ F2,∀ρ ∈ Sp(A∗)) (8.2)

Reversely, for any α
Ξ1×Ξ2

ρ satisfying (8.2), the observable O12 defined by (8.1) is a quasi-

product observable of O1 and O2. Also, it holds that
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190 Chapter 8 Practical logic–Do you believe in syllogism?–

ρ(F (Ξ1 × Ξc
2)) = 0 ⇐⇒ α

Ξ1×Ξ2

ρ = ρ(F1(Ξ1))

=⇒ ρ(F1(Ξ1)) 5 ρ(F2(Ξ2)) (8.3)

Proof. Though this lemma is easy, we add a brief proof for completeness. 0 5 ρ(F ((Ξ′1×Ξ′2)))

5 1, (∀Ξ′1 ∈ F1,Ξ
′
2 ∈ F2) we see, by (8.1) that

0 5 α
Ξ1×Ξ2

ρ 5 1

0 5 1 + α
Ξ1×Ξ2

ρ − ρ(F1(Ξ1))− ρ(F2(Ξ2)) 5 1

0 5 ρ(F2(Ξ2))− α
Ξ1×Ξ2

ρ 5 1

0 5 ρ(F1(Ξ1))− α
Ξ1×Ξ2

ρ 5 1

which clearly implies (8.2). Conversely. if α satisfies (8.2),then we easily see (8.1),Also, (8.3)

is obvious. This completes the proof.

Let O12 = (X1×X2,F1�F2, F12=F1

qp

×××××××××F2) be a quasi-product observable of O1 = (X1,F1, F1)

and O2 = (X2,F2, F2) in A. Consider the measurement MA(O12 =(X1×X2,F1�F2, F12=F1

qp

×××××××××F2),

S[ρ])). And assume that a measured value(x1, x2) (∈ X1 ×X2) is obtained. And assume that

we know that x1 ∈ Ξ1. Then, the probability (i.e., the conditional probability) that x2 ∈ Ξ2 is

given by

P =
ρ(F12(Ξ1 × Ξ2))

ρ(F1(Ξ1))
=

ρ(F12(Ξ1 × Ξ2))

ρ(F12(Ξ1 × Ξ2)) + ρ(F12(Ξ1 × Ξc
2))

And further, it is, by (8.2), estimated as follows.

max{0, ρ(F1(Ξ1)) + ρ(F2(Ξ2))− 1}
ρ(F12(Ξ1 × Ξ2)) + ρ(F12(Ξ1 × Ξc

2))
5 P 5

min{ρ(F1(Ξ1)), ρ(F2(Ξ2))}
ρ(F12(Ξ1 × Ξ2)) + ρ(F12(Ξ1 × Ξc

2))

Example 8.4. [Example of tomatoes] Let Ω = {ω1, ω2, ...., ωN} be a set of tomatoes, which is

regarded as a compact Hausdorff space with the discrete topology. Consider the classical basic

structure

[C0(Ω) ⊆ L∞(Ω, ν) ⊆ B(L2(Ω, ν))]

KSTS/RR-15/001 
January 22, 2015



8.1 Marginal observable and quasi-product observable 191

Consider yes-no observables ORD ≡ (XRD, 2
XRD , FRD) and OSW ≡ (XSW, 2

XSW , FSW) in C(Ω) such

that:

XRD = {yRD, nRD} and XSW = {ySW, nSW},

where we consider that “yRD” and “nRD” respectively mean “RED” and “NOT RED”. Similarly,

“ySW” and “nSW” respectively mean “SWEET” and “NOT SWEET”.

For example, the ω1 is red and not sweet, the ω2 is red and sweet, etc. as follows.

ω1

yRD

nSW

ω2

yRD

ySW

ω3

nRD

ySW

· · ·

· · ·
· · ·

ωK

nRD

nSW

Figure 8.1: Tomatoes ( Red or Sweet? )

Next, consider the quasi-product observable as follows.

O12 = (XRD ×XSW, 2
XRD×XSW , F=FRD

qp

×××××××××FSW)

That is,

Rep{(yRD,ySW)}
ωk

[O12] =

[
[F ({(yRD, ySW)})](ωk) [F ({(yRD, nSW)})](ωk)
[F ({(nRD, ySW)})](ωk) [F ({(nRD, nSW)})](ωk)

]
=

[
α{(yRD,ySW)} [FRD({yRD})]− α{(yRD,ySW)}

[FSW({ySW})]− α{(yRD,ySW)} 1 + α{(yRD,ySW)} − [FRD({yRD})]− [FSW({ySW})]

]

where α{(yRD,ySW)}(ωk) satisfies the (8.2). When we know that a tomato ωk is red, the probability

P that the tomato ωk is sweet is given by

P =
[F ({(yRD, ySW)})](ωk)

[F ({(yRD, ySW)})](ωk) + [F ({(yRD, nSW)})](ωk)
=

[F ({(yRD, ySW)})](ωk)
[FRD({yRD})](ωk)

Since [F ({(yRD, ySW)})](ωk) = α{(yRD,ySW)}(ωk), the conditional probability P is estimated by

max{0, [F1({yRD})](ωk) + [F2({ySW})](ωk)− 1}
[FRD({yRD})](ωk)

5 P 5 min[F1({ySW})](ωk), [F2({ySW})](ωk)}
[FRD({yRD})](ωk)
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192 Chapter 8 Practical logic–Do you believe in syllogism?–

8.2 Implication—the definition of “⇒”

8.2.1 Implication and contraposition

In Example 8.4, consider the case that [F ({(yRD, nSW)})](ω) = 0. In this case, we see

[F ({(yRD, ySW)})](ω)

[F ({(yRD, ySW)})](ω) + [F ({(yRD, nSW)})](ω)
= 1

Therefore, when we know that a tomato ω is red, the probability, that the tomato ω is sweet,

is equal to 1. That is,

“[F ({(yRD, nSW)})](ω) = 0” ⇐⇒
[
“Red” =⇒ “Sweet”

]

Motivated by the above argument, we have the following definition.

Definition 8.5. [Implication] Consider the general basic structure

[A ⊆ A ⊆ B(H)]

Let O12 = (X1 × X2, F1 � F2, F12=F1

qp

×××××××××F2) be a quasi-observable in A Let ρ ∈ Sp(A∗), Ξ1

∈ F1, Ξ2 ∈ F2. Then, if it holds that

ρ(F 12(Ξ1 × (Ξc
2))) = 0

this is denoted by

[O
(1)
12 ; Ξ1] =⇒

M
A
(O12,S[ρ])

[O
(2)
12 ; Ξ2] (8.4)

Of course, this (8.4) should be read as follows.

(A) Assume that a measured value (x1, x2)(∈ X1×X2) is obtained by a measurementML∞(Ω)(O12,

S[ω]). When we know that x1 ∈ Ξ1, then we can assure that x2 ∈ Ξ2.

The above argument is generalized as follows. Let O12...n = (×n
k=1Xk, � n

k=1Fk, F12...n =
qp

×××××××××
k=1,2,...,n

Fk) be a quasi-product observable in A. Let Ξ1 ∈ Fi and Ξ2 ∈ Fj. Then, the condition

A∗
(
ρ, F

(ij)
12...n(Ξi × (Ξc

j))
)
A = 0

(where, Ξc = X \ Ξ) is denoted by

[O
(i)
12...n; Ξi] =⇒

M
A
(O12...n,S[ρ])

[O
(j)
12...n; Ξj] (8.5)
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8.2 Implication—the definition of “⇒” 193

Theorem 8.6. [Contraposition] Let O12 = (X1×X2, F1×F2, F12=F1

qp

×××××××××F2) be a quasi-product

observable in A. Let ρ ∈ Sp(A∗). Let Ξ1 ∈ F1 and Ξ2 ∈ F2. If it holds that

[O
(1)
12 ; Ξ1] =⇒

M
A
(O12,S[ρ])

[O
(2)
12 ; Ξ2] (8.6)

then we see:

[O
(1)
12 ; Ξc

1] ⇐=
M

A
(O12,S[ρ])

[O
(2)
12 ; Ξc

2]

Proof. The proof is easy, but we add it. Assume the condition (8.6). That is,

A∗
(
ρ, F12(Ξ1 × (X2 \ Ξ2))

)
A = 0

Since Ξ1 × Ξ2
c = (Ξc

1)
c × Ξc

2 we see

A∗
(
ρ, F12((Ξ

c
1)
c × Ξc

2)
)
A = 0

Therefore, we get

[O
(1)
12 ; Ξc

1] ⇐=
M

A
(O12,S[ρ])

[O
(2)
12 ; Ξc

2]
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8.3 Cogito— I think, therefore I am—

Recall the following figure.

•

observer
(I(=mind))

system
(matter)

�
-

[observable]
[measured value]

a©interfere

b©perceive a reaction

[state]

[Descartes Figure 8.2 (=Figure 3.1) ]:The image of “measurement(= a©+ b©)” in dualism

The following example may be rather unnatural, but this is indispensable for the well-
understanding of dualism.

Example 8.7. [Brain death(cf. ref. p.89 in [37])] Consider the classical basic structure

[C0(Ω) ⊆ L∞(Ω, ν) ⊆ B(L2(Ω, ν))]

Let ωn (∈ Ω = {ω1, ω2, . . . , ωN}) be the state of Peter. Let O12 = (X1 × X2, 2X1×X2 ,

F12=F1

qp

×××××××××F2) be the brain death observable in L∞(Ω) such that X1 = {T, T} X2 = {L,L},
where T = “think”, T = “not think”, L = “live”, L = “not live”. For each ωn (n = 1, 2, . . . , N),
O12 satisfies the condition in Table 8.2.

[Table 8.2 ]: Brain death observable O12 = (X1 ×X2, 2X1×X2 , F12)

F1�F2 [F2({L})](ωn) [F2({L})](ωn)

[F1({T})](ωn) (1 + (−1)n)/2
(=[F12({T}×{L})](ωn))

0
(=[F12({T}×{L})](ωn))

[F1({T})](ωn) 0
(=[F12({T}×{L})](ωn))

(1− (−1)n)/2
(=[F12({T}×{L})](ωn))

Since [F12({T} × {L})](ωn) = 0, the following formula holds:

[O
(1)
12 ; {T}] =⇒

ML∞(Ω)(O12,S[ωn])
[O

(2)
12 ; {L}]

Of course, this implies that

(A1) Peter thinks, therefore, Peter lives.
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8.3 Cogito— I think, therefore I am— 195

This is the same as the statement concerning brain death. Note that in the above example,
we see that

observer←→doctor, system←→Peter,

The above (A1) should not be confused with the following famous Descartes’ saying (=

cogito proposition):

(A2) “I think, therefore I am”.

in which the following identification may be assumed:

observer←→I, system←→I

And thus, the above is not a statement in dualism (=measurement theory). In order to propose

Figure 8.2 (i.e., dualism) ( that is, in order to establish the concept “I” in science), he started

from the ambiguous statement “I think, therefore I am”. Summing up, we want to say the

following irony:

(B) Descartes proposed the dualism (i.e., Figure 8.2 ) by the cogito proposition (A2) which is

not understandable in dualism.

♠Note 8.1. It is not true to consider that every phenomena can be describe in terns of quantum
language. Although readers may think that the following can be described in measurement
theory, but we believe that it is impossible. For example, the followings can not be written by
quantum language:

1© : tense—past, present, future — 2© : Heidegger’s saying“In-der-Welt-sein”

3© : the measurement of a measurement, 4© : Bergson’s subjective time

5© : observer’s space-time,

6© : Only the present exists ( due to Augustinus(354-430))

If we want to understand the above words, we have to propose the other scientific languages (
except quantum language). We have to recall Wittgenstein’s sayings

The limits of my language mean the limits of my world
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8.4 Combined observable —Only one measurement is

permitted —

8.4.1 Combined observable — only one observable

The linguistic interpretation says that

“Only one measurement is permitted”

⇒ “only one observable”⇒ “the necessity of the combined observable”

Thus, we prepare the following theorem.

Theorem 8.8. [The existence theorem of classical combined observable(cf.refs.[24, 28])] Consider

the classical basic structure

[C0(Ω) ⊆ L∞(Ω, ν) ⊆ B(L2(Ω, ν))]

And consider observables O12=(X1 × X2,F1 � F2, F12) and O23= (X2 × X3, F2 � F3, F23) in

L∞(Ω, ν). Here, for simplicity, assume that Xi={x1i , x2i , . . . , x
ni
i } (i = 1, 2, 3) is finite, Also,

assume that Fi = 2Xi . Further assume that

O
(2)
12 = O

(2)
23 (That is, F12(X1 × Ξ2) = F23(Ξ2 ×X3) (∀Ξ2 ∈ 2X2))

Then, we have the observable O123=(X1 ×X2 ×X3,F1 × F2 × F3, F123) in L∞(Ω) such that

O
(12)
123 = O12, O

(23)
123 = O23

That is,

F
(12)
123 (Ξ1 × Ξ2 ×X3) = F12(Ξ1 × Ξ2), F

(23)
123 (X1 × Ξ2 × Ξ3) = F23(Ξ2 × Ξ3) (8.7)

(∀Ξ1 ∈ F1, ∀Ξ2 ∈ F2,∀Ξ3 ∈ F3))

The O123 is called the combined observable of O12 and O23.

Proof. O123 = (X1 ×X2 ×X3, F1 × F2 × F3, F123) is, for example, defined by

[F123({(x1, x2, x3)})](ω)

=



[F12({(x1, x2)})](ω) · [F23({(x2, x3)})](ω)

[F12(X1 × {x2})](ω)
([F12(X1 × {x2})](ω) 6= 0 and )

0
([F12(X1 × {x2})](ω) = 0 and )

KSTS/RR-15/001 
January 22, 2015



8.4 Combined observable —Only one measurement is permitted — 197

(∀ω ∈ Ω, ∀(x1, x2, x3) ∈ X1 ×X2 ×X3)

This clearly satisfies (8.7).

Counter example 8.9. [Counter example in quantum systems] Theorem 8.8 does not hold in

the quantum basic structure

[C(H) ⊆ B(H) ⊆ B(H)]

For example, put H = Cn, and consider the three Hermitian (n × n)-matrices T1, T2, T3 in

B(H) such that

T1T2 = T2T1, T2T3 = T3T2, T1T3 6= T3T1 (8.8)

For each k = 1, 2, 3, define the spectrum decomposition Ok = (Xk,Fk, Fk) in H (which is

regarded as a projective observable) such that

Tk =

∫
Xk

xkFk(dxk) (8.9)

where Xk = R,Fk = BR.

From the commutativity, we have the simultaneous observables

O12=O1 × O2 = (X1 ×X2,F1 � F2, F12 = F1 × F2)

and

O23=O2 × O3 = (X2 ×X3,F2 � F3, F23 = F2 × F3)

It is clear that

O
(2)
12 = O

(2)
23 (that is, F12(X1 × Ξ2) = F2(Ξ2) = F23(Ξ2 ×X3) (∀Ξ2 ∈ F2))

However, it should be noted that there does not exist the observable O123=(X1×X2×X3,F1�
F2 � F3, F123) in B(H) such that

O
(12)
123 = O12, O

(23)
123 = O23

That is because, if O123 exists, Theorem 8.2 says that O1 and O3 commute, and it is in

contradiction with the (8.8). Therefore, the combined observable O123 of O12 and O23 does

not exist.
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8.4.2 Combined observable and Bell’s inequality

Now we consider the following problem:

Problem 8.10. [combined observable and Bell’s inequality (cf. [37])] Consider the basic
structure

[A ⊆ A ⊆ B(H)]

Put X1 = X2 = X3 = X4 = {−1, 1}. Let O13=(X1×X3, 2
X1×2X3 , F13), O14=(X1×X4, 2

X1×
2X4 , F14), O23= (X2 ×X3, 2X2 × 2X3 , F23) and O24= (X2 ×X3, 2X2 × 2X4 , F24) be observables
in L∞(Ω) such that

O
(1)
13 = O

(1)
14 , O

(2)
23 = O

(2)
24 , O

(3)
13 = O

(3)
23 , O

(4)
14 = O

(4)
24

Define the probability measure νab on {−1, 1}2 by the formula (4.48). Assume that there
exists a state ρ0 ∈ Sp(A∗) such that

A∗
(
ρ0, F13({(x1, x3)})

)
A = νa1b1({(x1, x3)},

A∗
(
ρ0, F14({(x1, x4)})

)
A = νa1b2({(x1, x4)}

A∗
(
ρ0, F23({(x2, x3)})

)
A = νa2b1({(x2, x3)},

A∗
(
ρ0, F24({(x2, x4)})

)
A = νa2b2({(x2, x4)}

Now we have the following problem:

(a) Does the observable O1234=(×4
k=1Xk,×4

k=1 Fk, F1234) in A satisfying the following (])
exist?

(]) O
(13)
1234 = O13, O

(14)
1234 = O14, O

(23)
1234 = O23, O

(24)
1234 = O24

In what follows, we show that the above observable O1234 does not exist.

Assume that the observable O1234=(×4
k=1Xk, ×4

k=1 Fk, F1234) exists. Then, it suffices to
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show the contradiction. Define C13(ρ0), C14(ρ0), C23(ρ0) and C24(ρ0) such that

C13(ρ0) =

∫
×4

k=1Xk

x1 · x3 A∗
(
ρ0, F1234(

4

×
k=1

dxk)
)
A(

=
∫
X1×X3

x1 · x3 νa1b1(dx1dx3)
)

C14(ρ0) =

∫
×4

k=1Xk

x1 · x4 A∗
(
ρ0, F1234(

4

×
k=1

dxk)
)
A(

=
∫
X1×X4

x1 · x4 νa1b2(dx1dx4)
)

C23(ρ0) =

∫
×4

k=1Xk

x2 · x3 A∗
(
ρ0, F1234(

4

×
k=1

dxk)
)
A(

=
∫
X2×X3

x2 · x3 νa2b1(dx2dx3)
)

C24(ρ0) =

∫
×4

k=1Xk

x2 · x4 A∗
(
ρ0, F1234(

4

×
k=1

dxk)
)
A(

=
∫
X2×X4

x2 · x4 νa2b2(dx2dx4)
)

Then, we can easily get the following Bell’s inequality: (cf. Bell’s inequality 4.14).

|C13(ρ0)− C14(ρ0)|+ |C23(ρ0) + C24(ρ0)|

5
∫
×4

k=1Xk

|x1| · |x3 − x4| +|x2| · |x3 + x4|
[
F1234(

4

×
k=1

dxk)
]
(ρ0)

5 2 (since xk ∈ {−1, 1}) (8.10)

However, the formula (4.50) says that this (8.10) must be 2
√

2. Thus, by contradiction, we says

that O1234 satisfying (a) does not exist. Thus we can not take a measurement MA(O1234, S[ρ0]).

However, it should be noted that

(b) instead of MA(O1234, S[ρ0]). we can take a parallel measurement M⊗4
k=1A

(O13⊗O14⊗O23⊗
O24, S[⊗4

k=1ρ0]
). In this case, we easily see that (8.10) = 2

√
2 as the formula (4.50).

That is,

(c) in the case of a parallel measurement, Bell’s inequality is broken in both quantum and

classical systems.

♠Note 8.2. In the above argument, Bell’s inequality is used in the framework of measurement
theory. This is of course true. However, since mathematics is of course independent of the
world, now we have the following question:

(]) In order that mathematical Bell’s inequality ( Theorem 4.14) asserts something to quantum
mechanics, what kind of idea do we prepare?

We can not answer this question.
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8.5 Syllogism—Does Socrates die?

8.5.1 Syllogism and its variations

Next, we shall discuss practical syllogism (i.e., measurement theoretical theorem concerning

implication (Definition8.5) ). Before the discussion, we note that

(]) Since Theorem8.8 ( The existence of the combined observable) does not hold in quantum

system, ( cf. Counter Example8.9), syllogism does not hold.

On the other hand, in classical system, we can expect that syllogism holds. This will be proved

in the following theorem.

Theorem 8.11. [Practical syllogism in classical systems] Consider the classical basic structure

[C0(Ω) ⊆ L∞(Ω, ν) ⊆ B(L2(Ω, ν))]

Let O123 = (X1 × X2 × X3, F1 × F2 × F3, F123=
qp

×××××××××k=1,2,3Fk) be an observable in L∞(Ω) Fix
ω ∈ Ω, Ξ1 ∈ F1, Ξ2 ∈ F2, Ξ3 ∈ F3 Then, we see the following (i) – (iii).
(i).(practical syllogism)

[O
(1)
123; Ξ1] =⇒

ML∞(Ω)(O123,S[ω])
[O

(2)
123; Ξ2], [O

(2)
123; Ξ2] =⇒

ML∞(Ω)(O123,S[ω])
[O

(3)
123; Ξ3]

implies

RepΞ1×Ξ3
ω [O

(13)
123 ] =

[
[F

(13)
123 (Ξ1 × Ξ3)](ω) [F

(13)
123 (Ξ1 × Ξc

3)](ω)

[F
(13)
123 (Ξc

1 × Ξ3)](ω) [F
(13)
123 (Ξc

1 × Ξc
3)](ω)

]

=

[
[F

(1)
123(Ξ1)](ω) 0

[F
(3)
123(Ξ3)](ω)− [F

(1)
123(Ξ1)](ω) 1− [F

(3)
123(Ξ3)](ω)

]

That is, it holds:

[O
(1)
123; Ξ1] =⇒

ML∞(Ω)(O123,S[ω])
[O

(3)
123; Ξ3] (8.11)

(ii).

[O
(1)
123; Ξ1] ⇐=

ML∞(Ω)(O123,S[ω])
[O

(2)
123; Ξ2], [O

(2)
123; Ξ2] =⇒

ML∞(Ω)(O123,S[ω])
[O

(3)
123; Ξ3]

implies

RepΞ1×Ξ3
ω [O

(13)
123 ] =

[
[F

(13)
123 (Ξ1 × Ξ3)](ω) [F

(13)
123 (Ξ1 × Ξc

3)](ω)

[F
(13)
123 (Ξc

1 × Ξ3)](ω) [F
(13)
123 (Ξc

1 × Ξc
3)](ω)

]
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=

[
α

Ξ1×Ξ3
[F

(1)
123(Ξ1)](ω)− α

Ξ1×Ξ3

[F
(3)
123(Ξ3)](ω)− α

Ξ1×Ξ3
1− α

Ξ1×Ξ3
− [F

(1)
123(Ξ1)]− [F

(3)
123(Ξ3)]

]

where

max{[F (2)
123(Ξ2)](ω), [F

(1)
123(Ξ1)](ω) + [F

(3)
123(Ξ3)](ω)− 1}

5 α
Ξ1×Ξ3

(ω) 5 min{[F (1)
123(Ξ1)](ω), [F

(3)
123(Ξ3)](ω)} (8.12)

(iii).

[O
(1)
123; Ξ1] =⇒

ML∞(Ω)(O123,S[ω])
[O

(2)
123; Ξ2], [O

(2)
123; Ξ2] ⇐=

ML∞(Ω)(O123,S[ω])
[O

(3)
123; Ξ3]

implies

RepΞ1×Ξ3
ω [O

(13)
123 ] =

[
[F

(13)
123 (Ξ1 × Ξ3)](ω) [F

(13)
123 (Ξ1 × Ξc3)](ω)

[F
(13)
123 (Ξc1 × Ξ3)](ω) [F

(13)
123 (Ξc1 × Ξc3)](ω)

]

=

[
αΞ1×Ξ3

(ω) [F
(1)
123(Ξ1)](ω)− αΞ1×Ξ3

(ω)

[F
(3)
123(Ξ3)](ω)− αΞ1×Ξ3

(ω) 1− αΞ1×Ξ3
(ω)− [F

(1)
123(Ξ1)](ω)− [F

(3)
123(Ξ3)](ω)

]

where

max{0, [F (1)
123(Ξ1)](ω) + [F

(3)
123(Ξ3)](ω)− [F

(2)
123(Ξ2)](ω)}

5 α
Ξ1×Ξ3

(ω) 5 min{[F (1)
123(Ξ1)](ω), [F

(3)
123(Ξ3)](ω)}

Proof. (i): By the condition, we see

0 = [F
(12)
123 (Ξ1 × Ξc

2)](ω) = [F123(Ξ1 × Ξc
2 × Ξ3)](ω) + [F123(Ξ1 × Ξc

2 × Ξc
3)](ω)

0 = [F
(23)
123 (Ξ2 × Ξc

3)](ω) = [F123(Ξ1 × Ξ2 × Ξc
3)](ω) + [F123(Ξ

c
1 × Ξ2 × Ξc

3)](ω)

Therefore,

0 = [F123(Ξ1 × Ξc
2 × Ξ3)](ω) = [F123(Ξ1 × Ξc

2 × Ξc
3)](ω)

0 = [F123(Ξ1 × Ξ2 × Ξc
3)](ω) = [F123(Ξ

c
1 × Ξ2 × Ξc

3)](ω)

Hence,

[F
(13)
123 (Ξ1 × Ξc

3)](ω) = [F123(Ξ1 × Ξ2 × Ξc
3)](ω) + [F

(13)
123 (Ξ1 × Ξc

2 × Ξc
3)](ω) = 0

Thus, we get, (8.11).

For the proof of (ii) and (iii), see refs. [24, 28].
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Example 8.12. [Continued from Example 8.4] Let O1 = OSW = (XSW, 2XSW , FSW) and O3 =

ORD = (XRD, 2XRD , FRD) be as in Example 8.4. Putting XRP = {yRP, nRP}, consider the new

observable O2 = ORP = (XRP, 2
XRP , FRP). Here, “yRP” and “nRP” respectively means “ripe”

and “not ripe”. Put

Rep[O1] =
[
[FSW({ySW})](ωk), [FSW({nSW})](ωk)

]
Rep[O2] =

[
[FRP({yRP})](ωk), [FRP({nRP})](ωk)

]
Rep[O3] =

[
[FRD({yRD})](ωk), [FRD({nRD})](ωk)

]
Consider the following quasi-product observable:

O12 = (XSW ×XRP, 2
XSW×XRP , F12=FSW

qp

×××××××××FRP)

O23 = (XRP ×XRD, 2
XRP×XRD , F23=FRP

qp

×××××××××FRD)

Let ωk ∈ Ω. And assume that

[O
(1)
123; {ySW}] =⇒

ML∞(Ω)(O123,S[ωk]
)

[O
(2)
123; {yRP}],

[O
(2)
123; {yRP}] =⇒

ML∞(Ω)(O123,S[ωk]
)

[O
(3)
123; {yRD}] (8.13)

Then, by Theorem 8.11(i), we get:

Rep[O13] =

[
[F13({ySW} × {yRD})](ωk) [F13({ySW} × {nRD})](ωk)
[F13({nSW} × {yRD})](ωk) [F13({nSW} × {nRD})](ωk)

]
=

[
[FSW({ySW})](ωk) 0

[FRD({yRD})](ωk)− [FSW({ySW})](ωk) 1− [FRD({yRD})](ωk)

]
Therefore, when we know that the tomato ωk is sweet by measurement ML∞(Ω)(O123, S[ωk]), the

probability that ωk is red is given by

[F13({ySW} × {yRD})](ωk)
[F13({ySW} × {yRD})](ωk) + [F13({ySW} × {nRD})](ωk)

=
[FRD({yRD})](ωk)
[FRD({yRD})](ωk)

= 1 (8.14)

Of course, (8.13) means

“Sweet” =⇒ “Ripe” “Ripe” =⇒ “Red”

Therefore, by (8.11), we get the following conclusion.

“Sweet” =⇒ “Red”

However, it is not useful in the market. What we want to know is such as

“Red” =⇒ “Sweet”

This will be discussed in the following example.
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Example 8.13. [Continued from Example 8.4] Instead of (8.13), assume that

O
{y1}
1 ⇐=

ML∞(Ω)(O12,S[δωn ])
O
{y2}
2 , O

{y2}
2 =⇒

ML∞(Ω)(O23,S[δωn ])
O
{y3}
3 . (8.15)

When we observe that the tomato ωn is “RED”, we can infer, by the fuzzy inference ML∞(Ω)(O13,

S[δωn ]), the probability that the tomato ωn is “SWEET” is given by

Q =
[F13({ySW}×{yRD})](ωn)

[F13({ySW}×{yRD})](ωn) + [F13({nSW}×{yRD})](ωn)

which is, by (8.2), estimated as follows:

max

{
[FRP({yRP})](ωn)

[FRD({yRD})](ωn)
,
[FSW({ySW})] + [FRD({yRD})]− 1

[FRD({yRD})](ωn)

}
≤ Q ≤ min{ [FSW({ySW})](ωn)

[FRD({yRD})](ωn)
, 1}.

(8.16)

Note that (8.15) implies (and is implied by)

“RIPE” =⇒ “SWEET” and “RIPE” =⇒ “RED” .

And note that the conclusion (8.16) is somewhat like

“RED” =⇒ “SWEET” .

Therefore, this conclusion is peculiar to “fuzziness”.

///

Remark 8.14. [Syllogism does not hold in quantum system (cf. ref. [34] ) ]

Concerning EPR’s paper[13], we shall add some remark as follows. Let A and B be particles

with the same masses m. Consider the situation described in the following figure:

�

A

-

B

Figure 8.3: The case that “the velocity of A”= −“the velocity of B”.

The position qA (at time t0) of the particle A can be exactly measured, and moreover, the

velocity of vB (at time t0) of the particle B can be exactly measured. Thus, we may conclude

that

(A) the position and momentum (at time t0) of the particle A are respectively and exactly

equal to qA and −mvB ?
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204 Chapter 8 Practical logic–Do you believe in syllogism?–

(As mentioned in Section 4.4.3, this is not in contradiction with Heisenberg’ uncertainty

principle).

However, we have the following question:

Is the conclusion (A) true?

Now we shall describe the above arguments in quantum system:

A quantum two particles system S is formulated in a tensor Hilbert space H = H1 ⊗H1 =

L2(Rq1)⊗ L2(Rq2) = L2(R2
(q1,q2)

). The state u0 ( ∈ H = H1 ⊗H1 = L2(R2
(q1,q2)

))
(

or precisely,

ρ0 = |u0〉〈u0|
)

of the system S is assumed to be

u0(q1, q2) =

√
1

2πεσ
e−

1
8σ2

(q1−q2−2a)2− 1
8ε2

(q1+q2)2 (8.17)

where a positive number ε is sufficiently small. For each k = 1, 2, define the self-adjoint

operators Qk : L2(R2
(q1,q2)

)→ L2(R2
(q1,q2)

) and Pk : L2(R2
(q1,q2)

)→ L2(R2
(q1,q2)

) by

Q1 = q1, P1 =
~∂
i∂q1

Q2 = q2, P2 =
~∂
i∂q2

(8.18)

(]1) Let O1 = (R3,BR3 , F1) be the observable representation of the self-adjoint operator (Q1⊗
P2) × (I ⊗ P2). And consider the measurement MB(H)(O1 = (R3,BR3 , F1), S[|u0〉〈u0|]).

Assume that the measured value (x1, p2, p2)(∈ R3). That is,

(x1, p2)
(the position of A1, the momentum of A2)

=⇒
MB(H)(O1,S[ρ0]

)
p2

the momentum of A2

(]2) Let O2 = (R2,BR2 , F2) be the observable representation of (I⊗P2)×(P1⊗I). And consider

the measurement MB(H)(O2 = (R2,BR2 , F2), S[|u0〉〈u0|]). Assume that the measured value

(p2,−p2)(∈ R3). That is,

p2
the momentum of A2

=⇒
MB(H)(O2,S[ρ0]

)
−p2

the momentum of A1

(]3) Therefore, by (]1) and (]2), “syllogism” may say that

−p2
the momentum of A1

(
that is, the momentum of A1 is equal to −p2

)
Hence, some assert that

KSTS/RR-15/001 
January 22, 2015



8.5 Syllogism—Does Socrates die? 205

(B) The (A) is true

But, the above argument ( particularly, “syllogism”) is not true, thus,

The (A) is not true

That is because

(]4) (Q1 ⊗ P2)× (I ⊗ P2) and (I ⊗ P2)× (P1 ⊗ I) ( Therefore, O1 and O2 ) do not commute,

and thus, the simultaneous observable does not exist.

Thus, we can not test the (]3) experimentally.

After all, we think that EPR-paradox says the following two:

(C1) syllogism does not hold in quantum systems,

(C2) there is something faster than light

We think that the (C1) should be accepted. Thus, we do not need to investigate how to

understand the fact (C1). Although we should effort to understand the “fact (C2)”. recall that

the spirit of quantum language is

“Stop being bothered”
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Chapter 9

Mixed measurement theory (⊃Bayesian
statistics)

Quantum language (= measurement theory ) is classified as follows.

(]) measurement theory
(=quantum language)



pure type
(]1)

{
classical system : Fisher statistics
quantum system : usual quantum mechanics

mixed type
(]2)

{
classical system : including Bayesian statistics, Kalman filter

quantum system : quantum decoherence

In this chapter, we study mixed measurement theory, which includes Bayesian statistics.

9.1 Mixed measurement theory(⊃Bayesian statistics)

9.1.1 Axiom(m) 1 (mixed measurement)

In the previous chapters, we studied Axiom 1 ( pure measurement: §2.7), that is,

pure measurement theory
(=quantum language)

:=
[(pure)Axiom 1]

pure measurement
(cf. §2.7)

+

[Axiom 2]

Causality
(cf. §10.3)︸ ︷︷ ︸

a kind of spell(a priori judgment)

+

[quantum linguistic interpretation]

Linguistic interpretation
(cf. §3.1)︸ ︷︷ ︸

the manual how to use spells

(9.1)

In this chapter, we shall study “Axiom(m) 1(mixed measurement)” in mixed measurement

theory, that is,

mixed measurement theory
(=quantum language)

:=

[(mixed)Axiom(m) 1]

mixed measurement
(cf. §9.1 )

+

[Axiom 2]

Causality
(cf. §10.3)︸ ︷︷ ︸

a kind of spell(a priori judgment)

+

[quantum linguistic interpretation]

Linguistic interpretation
(cf. §3.1)︸ ︷︷ ︸

the manual how to use spells

(9.2)

207

KSTS/RR-15/001 
January 22, 2015
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Now we shall propose Axiom(m) 1 (mixed type) as follows. Firstly we have to recall the

following diagram (in Section 2.1.3).

(A): General basic structure and State spaces

Sp(A∗)
C∗-pure state

⊂ Sm(A∗)
C∗-mixed state

⊂ A∗xdual

A
⊆−−−−−−−−−−−−−→

subalgebra·weak-closure
A

⊆−−−−−−→
subalgebra

B(H)y pre-dual

S
m

(A∗)
W ∗-mixed statespace

⊂ A∗

In the previous chapters, we mainly devoted ourselves to the following (B):

(B) W ∗-pure measurement MA

(
O= (X,F, F ), S[ρ]

)
, where pure state ρ(∈ Sp(A∗))

In this chapter, we introduce two “mixed measurements” as follows.

(C1) W ∗-mixed measurement MA

(
O= (X,F, F ), S[∗](w0)

)
, whereW ∗-mixed state w0(∈ S

m
(A∗))

(C2) C∗-mixed measurement MA

(
O= (X,F, F ), S[∗](ρ0)

)
, where C∗-mixed state ρ0(∈ Sm(A∗))

(C):Axiom(m) 1 (mixed measurement)

Let O= (X,F, F ) be an observable in A

(C1): Let w0 ∈ S
m

(A∗). The probability that a measured value obtained by W ∗-mixed
measurement MA

(
O= (X,F, F ), S[∗](w0)

)
belongs to Ξ (∈ F) is given by

A∗
(w0, F (Ξ))A

(
≡ w0(F (Ξ))

)
(C2): Let ρ0 ∈ Sm(A∗). The probability that a measured value obtained by C∗-mixed
measurement MA

(
O= (X,F, F ), S[∗](ρ0)

)
belongs to Ξ (∈ F) is given by

A∗(ρ0, F (Ξ))A

(
≡ ρ(F (Ξ))

)

As we learned Axiom 1 by rote in pure measurement theory,

we have to learn Axiom(m) 1 by rote, and exercise a lot of examples

The practices will be done in this chapter.
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9.1 Mixed measurement theory(⊃Bayesian statistics) 209

Remark 9.1. In the above Axiom(m) 1, (C1) and (C2) are not so different.

(]1) In the quantum case, (C1)=(C2) clearly holds, since Sm(Tr(H)) = S
m

(Tr(H)) in (2.17).

(]2) In the classical case, we see

L1
+1(Ω.ν) 3 w0

ρ0(D)=
∫
D w0(ω)ν(dω)−−−−−−−−−−−−→ ρ0 ∈M+1(Ω)

Therefore, in this case, we consider that

ML∞(Ω.ν)

(
O=(X,F, F ), S[∗](w0)

)
= ML∞(Ω.ν)

(
O=(X,F, F ), S[∗](ρ0)

)

Hence, (C1) and (C2) are not so different. In oder to avoid the confusion, we use the following

notation: W ∗-state w0 (∈ S
m

(A∗) is written by Roman alphabet (e.g., w0, w, v, ...)

C∗-state ρ0 (∈ Sm(A∗) is written by Greek alphabet (e.g., ρ0, ρ, ...)

///

9.1.2 Simple examples in mixed measurement theory

Recall the following wise sayings:

experience is the best teacher, or custom makes all things

Thus, we exercise the following problem.

Problem 9.2. [(≈ Problem 5.2+“mixed state”) Urn problem and coin tossing]
Putting Ω = {ω1, ω2} with the counting measure ν, prepare a pure measurement
ML∞(Ω,ν)(O=({W,B}, 2{W,B}, F ), S[∗]), where O = ({W,B}, 2{W,B}, F ) is defined by

F ({W})(ω1) = 0.8, F ({B})(ω1) = 0.2

F ({W})(ω2) = 0.4, F ({B})(ω2) = 0.6

Here, consider the following problem:
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p
-

1-p
�[∗]

You do not know which the urn behind the curtain is, U1 or U2, but the “probability”: p and 1− p.

Assume that you pick up a ball from the urn behind the curtain.

How is the probability such that the picked ball is a white ball?

U1 U2

Figure 9.1: How is the probability such that the picked ball is white? ( Mixed measurement)

A mixed measurement is characterized such as

“measurement ML∞(Ω,ν)(O=({W,B}, 2{W,B}, F ), S[∗])”

+ “mixed state” ( “ probabilistic property of the unknown state[∗]”)

Let us explain Figure 9.1. Consider the following two procedures (a) and (b):

(a) Assume an unfair coin-tossing (Tp,1−p) such that (0 5 p 5 1): That is,{
the possibility that “head” appears is 100p%
the possibility that “tail” appears is 100(1− p)%

If “head” [resp. “tail”]appears, put an urn U1(≈ω1) [resp. U2(≈ω2)] behind the curtain.
Assume that you do not know which urn is behind the curtain, U1 or U2). The unknown
urn is denoted by [∗](∈ {ω1, ω2}).
This situation is represented by w ∈ L1

+1(Ω, ν) (with the counting measure ν), that is,

w(ω) =

{
p ( if ω = ω1 )
1− p ( if ω = ω2 )

(b) Consider the “measurement” such that a ball is picked out from the unknown urn. This
“measurement” is denoted by ML∞(Ω,ν)(O, S[∗](w)), and called a mixed measurement.

Now we have the following problems:

(c1) Calculate the probability that a white ball is picked out by the mixed measurement
ML∞(Ω,ν)(O, S[∗](w))!

(This will be answered below)

(c2) And further, when a white ball is picked out by the mixed measurementML∞(Ω,ν)(O,
S[∗](w)), do you infer the unknown urn U1 or U2?
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(This will be answered in Answer 9.10)

Answer (c1) The following is clear:

(i) the possibility that “[ ∗ ] = ω1” is 100p%. Also, the possibility that “[ ∗ ] = ω2” is
100(1− p)%.

Further,

(ii) the probability that a measured value x ( ∈ {W,B}) is obtained by a measurement
ML∞(Ω,ν)(O, S[ω1]) is

[F ({x})](ω1) = 0.8 (when x = W ), = 0.2 (when x = B)

the probability that a measured value x ( ∈ {W,B}) is obtained by a measurement
ML∞(Ω,ν)(O, S[ω2]) is

[F ({x})](ω1) = 0.4 (when x = W ), = 0.6 (when x = B)

Therefore, by (i) and (ii) ( or, Axiom(m) 1(§9.1) ), the probability that a measured value x
( ∈ {W,B}) is obtained by a mixed measurement ML∞(Ω,ν)(O, S[∗](w)) is given by

P ({x}) = L1(Ω,ν)

(
w,F ({x})

)
L∞(Ω,ν)

=

∫
Ω

[F ({x})](ω)w(ω)ν(dω) = p[F ({x})](ω1) + (1− p)[F ({x})](ω2)

=

{
0.8p+ 0.4(1− p) (x = W )
0.2p+ 0.6(1− p) (x = B )

(9.3)

This is the answer to Problem (c1).
Answer(c2) Problem (c2) will be presented in Answer 9.10, which is closely related to
Bayesian statistics.

♠Note 9.1. The following question is natural. That is,

(]1) In the above (i), why is “the possibility that [ ∗ ] = ω1 is 100p% · · · ” replaced by “the
probability that [ ∗ ] = ω1 is 100p% · · · ” ?

However, the linguistic interpretation says that

(]2) there is no probability without measurements.

This is the reason why the term “probability” is not used in (i). However, from the practical
point of view, we are not sensitive to the difference between “probability” and “possibility”.
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Example 9.3. [Mixed spin measurement MB(C2)(O = (X = {↑, ↓}, 2X , F z), S[∗](w))] Consider
the quantum basic structure:

[B(C2) ⊆ B(C2) ⊆ B(C2)]

And consider a particle P1 with spin state ρ1 = |a〉〈a| ∈ Sp(B(C2)), where

a =

[
α1

α2

]
∈ C2 ( ‖a‖ = (|α1|2 + |α2|2)1/2 = 1)

And consider another particle P2 with spin state ρ2 = |b〉〈b| ∈ Sp(B(C2)), where

b =

[
β1
β2

]
∈ C2 ( ‖b‖ = (|β1|2 + |β2|2)1/2 = 1)

Here, assume that

• the “probability” that the “particle” P is

{
a particle P1

a particle P2

}
is given by

{
p
1− p

}
That is,

state ρ1
(Particle P1)

−−−−−−−−→
“probability” p

unknown state [∗]
(Particle P )

←−−−−−−−−−−
“probability” 1−p

state ρ2
(Particle P2)

Here, the unknown state [∗] of Particle P is represented by the mixed statew (∈ Sm(Tr(C2)))
such that

w = pρ1 + (1− p)ρ2 = p|a〉〈a|+ (1− p)|b〉〈b|

Therefore, we have the mixed measurement MB(C2)(Oz = (X, 2X , F z), S[∗](w)) of the z-axis
spin observable Oz = (X,F, F z), where

F z({↑}) =

[
1 0
0 0

]
, F z({↓}) =

[
0 0
0 1

]
And we say that

(a) the probability that a measured value

{
↑
↓

}
is obtained by the mixed measurement

MB(C2)(Oz = (X, 2X , F z), S[∗](w)) is given by
Tr(C2)

(
w,F z({↑})

)
B(C2) = p|α1|2 + (1− p)|β1|2

Tr(C2)

(
w,F z({↓})

)
B(C2) = p|α2|2 + (1− p)|β2|2


Remark 9.4. As seen in the above, we say that
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(a) Pure measurement theory is fundamental. Adding the concept of “mixed state”, we can
construct mixed measurement theory as follows.

mixed measurement theory
ML∞(Ω)(O, S[∗](w))

:= pure measurement theory
ML∞(Ω)(O, S[∗])

+ mixed state
w

Therefore,

There is no mixed measurement without pure
measurement

That is, in quantum language, there is no confrontation between “frequency probability” and
“subjective probability”. The reason that a coin-tossing is used in Problem 9.2 is to emphasize
that the naming of “subjective probability” is improper.
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214 Chapter 9 Mixed measurement theory (⊃Bayesian statistics)

9.2 St. Petersburg two envelope problem

This section is extracted from the following:

Ref. [45]: S. Ishikawa; The two envelopes paradox in non-Bayesian and Bayesian statistics
( arXiv:1408.4916v4 [stat.OT] 2014 )

Now, we shall review the St. Petersburg two envelope problem (cf. [9]1).

Problem 9.5. [The St. Petersburg two envelope problem] The host presents you with a choice
between two envelopes (i.e., Envelope A and Envelope B). You are told that each of them
contains an amount determined by the following procedure, performed separately for each
envelope:

(]) a coin was flipped until it came up heads, and if it came up heads on the k-th trial, 2k

is put into the envelope. This procedure is performed separately for each envelope.

You choose randomly (by a fair coin toss) one envelope. For example, assume that the envelope
is Envelope A. And therefore, the host get Envelope B. You find 2m dollars in the envelope
A. Now you are offered the options of keeping A (=your envelope) or switching to B (= host’s
envelope ). What should you do?

Envelope A Envelope B

Figure 9.2: Two envelope problem

[(P2):Why is it paradoxical?].
You reason that, before opening the envelopes A and B, the expected values E(x) and E(y)
in A and B is infinite respectively. That is because

1× 1

2
+ 2× 1

22
+ 22 × 1

23
+ · · · =∞

For any 2m, if you knew that A contained x = 2m dollars, then the expected value E(y) in B
would still be infinite. Therefore, you should switch to B. But this seems clearly wrong, as your
information about A and B is symmetrical. This is the famous St. Petersburg two-envelope
paradox (i.e., “The Other Person’s Envelope is Always Greener” ).

1 D.J. Chalmers, “The St. Petersburg Two-Envelope Paradox,” Analysis, Vol.62, 155-157, (2002)
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9.2.1 (P2): St. Petersburg two envelope problem: classical mixed
measurement

Here, let us solve the St. Petersburg two-envelope paradox in classical mixed measurement
theory ( without Bayes’ method).

Define the state space Ω such that Ω = {ω = (2m, 2n) | m,n = 1, 2, · · · }, with the counting
measure ν. And define the observable O = (X,F, F ) in L∞(Ω, ν) such that

X = Ω, F = 2X ≡ {Ξ | Ξ ⊆ X}

[F (Ξ)](ω) = χΞ(ω) ≡
{

1 ( if ω ∈ Ξ)
0 ( elsewhere )

(∀Ξ ∈ F, ∀ω ∈ Ω)

Define the mixed state w (∈ L1
+1(Ω, ν), i.e., the probability density function on Ω) such that

w(ω) =
1

2(m+n)
(∀ω = (2m, 2n) ∈ Ω)

Consider the mixed measurement ML∞(Ω,ν)(O = (X,F, F ), S[∗](w)). Axiom(m) 1(C1) (§9.1) says
that

(A1) the probability that a measured value

[
(2m, 2n)
(2n, 2m)

]
is obtained by ML∞(Ω)(O = (X,F, F ),

S[∗](w)) is given by

[
2−(m+n)

2−(m+n)

]
.

Assume that a measured value (2m, 2n) is obtained, that is, your gain is 2m, and the host’s gain
is 2n. Then,

(A2) the switching gain is calculated by

1

2
(2m − 2n) +

1

2
(2n − 2m) = 0

Thus, it is wrong: “The Other Person’s envelope is Always Greener”.

♠Note 9.2. Recall Remark 5.17. That is, the essence of this problem 9.5 is the same as Problem
5.16.

Remark 9.6. Assume that a measured value (2m, y)(∈ X) is obtained by the ML∞(Ω)(O =
(X,F, F ), S[∗](w)). The expectation E(y) is calculated as follows.

E(y) = 1× 1

2
+ 2× 1

22
+ 22 × 1

23
+ · · · =∞

Thus, in this sense, You should switch to the envelope B. Thus, St. Petersburg two envelope
problem teaches us that the criterion is not unique. Therefore, in the sense of the expectation,
it is true: “The Other Person’s envelope is Always Greener”.
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9.3 Bayesian statistics is to use Bayes theorem

Although there may be several opinions for the question “What is Bayesian statistics?”, we
think that

Bayesian statistics is to use Bayes theorem

Thus,

let us start from Bayes theorem.

The following is clear.

Theorem 9.7. [The conditional probability]. Consider the mixed measurement MA

(
O= (X ×

Y,F � G, H), S[∗](w)
)
, which is formulated in the basic structure

[A ⊆ A ⊆ B(H)]

Assume that a measured value (x, y) (∈ X×Y ) is obtained by the mixed measurementMA

(
O=

(X × Y,F � G, H), S[∗](w)
)

belongs to Ξ× Y (∈ F). Then, the probability that y ∈ Γ is given
by

A∗
(w,H(Ξ× Γ))A

A∗
(w,H(Ξ× Y ))A

(∀Γ ∈ G)

Proof. This is due to the property (or, common sense) of conditional probability.

In the classical case, this is rewritten as follows.

Theorem 9.8. [Bayes’ Theorem( in classical mixed measurement)]. Consider the classical basic
structure:

[C0(Ω) ⊆ L∞(Ω, ν) ⊆ B(L2(Ω, ν))]

Let O ≡ (X,F, F ) be an observable in a L∞(Ω, ν). And let O′ ≡ (Y,G, G) be any
observable in L∞(Ω, ν). Consider the product observable O×O′ ≡ (X × Y,F � G, F ×G) in
L∞(Ω, ν). That is,

H(Ξ× Γ) = F (Ξ) ·G(Γ) (∀Ξ ∈ F, ∀Γ ∈ G)

In the case that w0 ∈ L1
+1(Ω, ν), we see as follows. Here, assume that
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(a) we know that the measured value (x, y) obtained by a simultaneous measurement
ML∞(Ω,ν)(O× O′, S[∗](w0)) belongs to Ξ× Y (∈ F � G).

Then, by Axiom(m) 1(C1) (§9.1), we say that

(b) the probability PΞ(G(Γ)) that y belongs to Γ(∈ G) is given by

PΞ(G(Γ)) =

∫
Ω

[F (Ξ) ·G(Γ)](ω) w0(ω) ν(dω)∫
Ω

[F (Ξ)](ω) w0(ω) ν(dω)
(∀Γ ∈ G). (9.4)

Thus, putting

(c) wnew(ω) = [F (Ξ)](ω)·w0(ω)∫
Ω[F (Ξ)](ω)·w0(ω)ν(dω)

( ∀ω ∈ Ω)

we see that

(9.4) =

∫
Ω

[G(Γ)](ω)wnew(ω)ν(dω) (∀Γ ∈ G)

Note that O2 ≡ (Y,G, G) is arbitrary.
Hence, we can conclude that:

(d) When we know that a measured value obtained by a measurement ML∞(Ω,ν)(O ≡
(X,F, F ), S[∗](w0)) belongs to Ξ, there is a reason to infer that the mixed state af-
ter the measurement is equal to wnew (∈ L1

+1(Ω)), where

wnew(ω) =
[F (Ξ)](ω) w0(ω)∫

Ω
[F (Ξ)](ω) w0(ω) ν(dω)

(∀ω ∈ Ω).

After all, we can define the Bayes operator [B0
O(Ξ)] : L1

+1(Ω) → L1
+1(Ω) such that

(pretest state)
w0

(∈L1
+1(Ω))

[B0
O(Ξ)]

−−−−−−−−−−−−−−→
Bayes operator

(posttest state)
wnew

(∈L1
+1(Ω))

(9.5)

—————————————————————————
In the case that ρ0 ∈M+1(Ω), similarly we see, by Axiom(m) 1(C2) (§9.1), that:

(d′) When we know that a measured value obtained by a measurement ML∞(Ω,ν)(O ≡
(X,F, F ), S[∗](ρ0)) belongs to Ξ, there is a reason to infer that the mixed state after the
measurement is equal to ρnew (∈M+1(Ω)), where

ρnew =
[F (Ξ)](ω) ρ0∫

Ω
[F (Ξ)](ω) ρ0 (dω)
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After all, we can define the Bayes operator [B0
O(Ξ)] : M+1(Ω) →M+1(Ω) such that

(pretest state)
ρ0

(∈M+1(Ω))

[B0
O(Ξ)]

−−−−−−−−−−−−−−→
Bayes operator

(posttest state)
ρnew

(∈M+1(Ω))

Remark 9.9. [How to understand Bayes’ Theorem] The above (d) superficially contradicts the
linguistic interpretation, which says that

“a state never moves”.

In this sense, the above (d) (or, (d′)) (i.e., Bayes theorem) is convenient and makeshift.
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Answer 9.10. [Bayes’ Theorem (=Problem9.2 and the answer to (c2)) ]

Here, consider the following problem:

p
-

1-p
�[∗]

You do not know which the urn behind the curtain is, U1 or U2, but the “probability”: p and 1− p.

Assume that you pick up a ball from the urn behind the curtain.

How is the probability such that the picked ball is a white ball?

U1 U2

Figure 9.3: ( Mixed measurement)

If the picked ball is white, how is the probability that the urn behind the curtain is U1?

[ W ∗-algebraic answer to Problem 9.2(c2) in Sec. 9.1.2]
Since “white ball” is obtained by a mixed measurement ML∞(Ω)(O, S[∗](w0)), a new mixed state
wnew(∈ L1

+1(Ω)) is given by

wnew(ω) =
[F ({W})](ω)w0(ω)∫

Ω
[F ({W})](ω)w0(ω)ν(dω)

=


0.8p

0.8p+ 0.4(1− p) (when ω = ω1)

0.4(1− p)
0.8p+ 0.4(1− p) (when ω = ω2)

[ C∗-algebraic answer to Problem 9.2(c2) in Sec. 9.1.2]
Since “white ball” is obtained by a mixed measurement ML∞(Ω)(O, S[∗](ρ0)), a new mixed state
ρnew(∈M+1(Ω)) is given by

ρnew =
F ({W})ρ0∫

Ω
[F ({W})](ω)ρ0(dω)

=
0.8p

0.8p+ 0.4(1− p)
δω1 +

0.4(1− p)
0.8p+ 0.4(1− p)

δω2
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9.4 Two envelope problem (Bayes’ method)

This section is extracted from the following:

ref. [45]: S. Ishikawa; The two envelopes paradox in non-Bayesian and Bayesian statistics (
arXiv:1408.4916v4 [stat.OT] 2014 )

Problem 9.11. [ (=Problem5.16): the two envelope problem ]
The host presents you with a choice between two envelopes (i.e., Envelope A and Envelope
B). You know one envelope contains twice as much money as the other, but you do not know
which contains more. That is, Envelope A [resp. Envelope B] contains V1 dollars [resp. V2
dollars]. You know that

(a) V1
V2

= 1/2 or, V1
V2

= 2

Define the exchanging map x : {V1, V2} → {V1, V2} by

x =

{
V2, ( if x = V1),
V1 ( if x = V2)

You choose randomly (by a fair coin toss) one envelope, and you get x1 dollars (i.e., if you
choose Envelope A [resp. Envelope B], you get V1 dollars [resp. V2 dollars] ). And the host
gets x1 dollars. Thus, you can infer that x1 = 2x1 or x1 = x1/2. Now the host says “You are
offered the options of keeping your x1 or switching to my x1”. What should you do?

Envelope A Envelope B

Figure 9.4: Two envelope problem

[(P1):Why is it paradoxical?]. You get α = x1. Then, you reason that, with probability 1/2,
x1 is equal to either α/2 or 2α dollars. Thus the expected value (denoted Eother(α) at this
moment) of the other envelope is

Eother(α) = (1/2)(α/2) + (1/2)(2α) = 1.25α (9.6)

This is greater than the α in your current envelope A. Therefore, you should switch to B.
But this seems clearly wrong, as your information about A and B is symmetrical. This is the
famous two-envelope paradox (i.e., “The Other Person’s Envelope is Always Greener” ).
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9.4.1 (P1): Bayesian approach to the two envelope problem

Consider the state space Ω such that

Ω = R+(= {ω ∈ R | ω ≥ 0})

with Lebesgue measure ν. Thus, we start from the classical basic structure

[C0(Ω) ⊆ L∞(Ω, ν) ⊆ B(L2(Ω, ν))]

Also, putting Ω̂ = {(ω, 2ω) | ω ∈ R+}, we consider the identification:

Ω 3 ω ←→
(identification)

(ω, 2ω) ∈ Ω̂ (9.7)

Further, define V1 : Ω(≡ R+)→ X(≡ R+) and V2 : Ω(≡ R+)→ X(≡ R+) such that

V1(ω) = ω, V2(ω) = 2ω (∀ω ∈ Ω)

And define the observable O = (X(= R+),F(= BR+
: the Borel field), F ) in L∞(Ω, ν) such

that

[F (Ξ)](ω) =


1 ( if ω ∈ Ξ, 2ω ∈ Ξ)
1/2 ( if ω ∈ Ξ, 2ω /∈ Ξ)
1/2 ( if ω /∈ Ξ, 2ω ∈ Ξ)
0 ( if ω /∈ Ξ, 2ω /∈ Ξ)

(∀ω ∈ Ω,∀Ξ ∈ F)

6

-

α

(α
2
, α) (α, 2α)

X(= R+)

Ω̂(≈ Ω = R+)

Figure 9.5: Two envelope problem

Recalling the identification : Ω̂ 3 (ω, 2ω)←→ ω ∈ Ω = R+, assume that

ρ0(D) =

∫
D

w0(ω)dω (∀D ∈ BΩ = BR+
)

where the probability density function w0 : Ω(≈ R+)→ R+ is assumed to be continuous positive
function. That is, the mixed state ρ0(∈ M+1(Ω(= R+))) has the probability density function
w0.

Axiom(m) 1(§9.1) says that
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222 Chapter 9 Mixed measurement theory (⊃Bayesian statistics)

(A1) The probability P (Ξ) (Ξ ∈ BX = BR+
) that a measured value obtained by the mixed

measurement ML∞(Ω,dω)(O = (X,F, F ), S[∗](ρ0)) belongs to Ξ(∈ BX = BR+
) is given by

P (Ξ) =

∫
Ω

[F (Ξ)](ω)ρ0(dω) =

∫
Ω

[F (Ξ)](ω)w0(ω)dω

=

∫
Ξ

w0(x/2)

4
+
w0(x)

2
dx (∀Ξ ∈ BR+

) (9.8)

Therefore, the expectation is given by∫
R+

xP (dx) =
1

2

∫ ∞
0

x ·
(
w0(x/2)/2 + w0(x)

)
dx =

3

2

∫
R+

xw0(x)dx

Further, Theorem 9.8 ( Bayes’ theorem ) says that

(A2) When a measured value α is obtained by the mixed measurement ML∞(Ω,dω)(O = (X,F, F ),
S[∗](ρ0)), then the post-state ρpost(∈M+1(Ω)) is given by

ραpost =
w0(α/2)

2
h(α/2)

2
+ w0(α)

δ(α
2
,α) +

w0(α)
w0(α/2)

2
+ w0(α)

δ(α,2α) (9.9)

Hence,

(A3) if [∗] =

{
δ(α

2
,α)

δ(α,2α)

}
, then you change

{
α −→ α

2

α −→ 2α

}
, and thus you get the switching gain{

α
2
− α(= −α

2
)

2α− α(= α)

}
.

Therefore, the expectation of the switching gain is calculated as follows:∫
R+

(
(−α

2
)

w0(α/2)
2

w0(α/2)
2

+ w0(α)
+ α

w0(α)
w0(α/2)

2
+ w0(α)

)
P (dα)

=

∫
R+

(−α
2

)
w0(α/2)

4
+ α · w0(α)

2
dα = 0 (9.10)

Therefore, we see that the swapping is even, i.e., no advantage and no disadvantage.
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9.5 Monty Hall problem (The Bayesian approach)

9.5.1 The review of Problem5.14 ( Monty Hall problem in pure
measurement)

Problem 9.12. [Monty Hall problem (The answer to Fisher’s maximum likelihood

method) ]

You are on a game show and you are given the choice of three doors. Behind one door

is a car, and behind the other two are goats. You choose, say, door 1, and the host, who

knows where the car is, opens another door, behind which is a goat. For example, the

host says that

([) the door 3 has a goat.

And further, He now gives you the choice of sticking with door 1 or switching to door

2? What should you do?

? ? ?

door door door
No. 1 No. 2 No. 3

Figure 9.6: Monty Hall problem

Answer: Put Ω = {ω1, ω2, ω3} with the discrete topology dD and the counting measure ν.

Thus consider the classical basic structure:

[C0(Ω) ⊆ L∞(Ω, ν) ⊆ B(L2(Ω, ν))]

Assume that each state δωm(∈ Sp(C0(Ω)∗)) means

δωm ⇔ the state that the car is behind the door 1 (m = 1, 2, 3)

Define the observable O1 ≡ ({1, 2, 3}, 2{1,2,3}, F1) in L∞(Ω) such that

[F1({1})](ω1) = 0.0, [F1({2})](ω1) = 0.5, [F1({3})](ω1) = 0.5,

[F1({1})](ω2) = 0.0, [F1({2})](ω2) = 0.0, [F1({3})](ω2) = 1.0,
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224 Chapter 9 Mixed measurement theory (⊃Bayesian statistics)

[F1({1})](ω3) = 0.0, [F1({2})](ω3) = 1.0, [F1({3})](ω3) = 0.0, (9.11)

where it is also possible to assume that F1({2})(ω1) = α, F1({3})(ω1) = 1 − α (0 < α < 1).

The fact that you say “the door 1” means that we have a measurement ML∞(Ω)(O1, S[∗]). Here,

we assume that

a) “a measured value 1 is obtained by the measurement ML∞(Ω)(O1, S[∗])”

⇔ The host says “Door 1 has a goat”

b) “measured value 2 is obtained by the measurement ML∞(Ω)(O1, S[∗]) ”

⇔ The host says “Door 2 has a goat”

c) “measured value 3 is obtained by the measurement ML∞(Ω)(O1, S[∗]) ”

⇔ The host says “Door 3 has a goat”

Since the host said “Door 3 has a goat”, this implies that you get the measured value “3” by the

measurement ML∞(Ω)(O1, S[∗]). Therefore, Theorem 5.6 (Fisher’s maximum likelihood method)

says that you should pick door number 2. That is because we see that

max{[F1({3})](ω1), [F1({3})](ω2), [F1({3})](ω3)} = max{0.5, 1.0, 0.0}

= 1.0 = [F1({3})](ω2)

and thus, there is a reason to infer that [∗] = δω2 . Thus, you should switch to door 2. This is

the first answer to Monty-Hall problem.

9.5.2 Monty Hall problem in mixed measurement

Next, let us study Monty Hall problem in mixed measurement theory (particularly, Bayesian

statistics).

Problem 9.13. [Monty Hall problem(The answer by Bayes’ method) ]

Suppose you are on a game show, and you are given the choice of three doors (i.e.,
“number 1”, “number 2”, “number 3”). Behind one door is a car, behind the others,
goats. You pick a door, say number 1. Then, the host, who set a car behind a certain
door, says

(]1) the car was set behind the door decided by the cast of the distorted dice. That is,
the host set the car behind the k-th door (i.e., “number k”) with probability pk (or,
weight such that p1 + p2 + p3 = 1, 0 ≤ p1, p2, p3 ≤ 1 ).

And further, the host says, for example,

KSTS/RR-15/001 
January 22, 2015



9.5 Monty Hall problem (The Bayesian approach) 225

([) the door 3 has a goat.

He says to you, “Do you want to pick door number 2?” Is it to your advantage to switch
your choice of doors?

Answer: In the same way as we did in Problem 9.12 (Monty Hall problem:the answer by

Fisher’s maximum likelihood method), consider the state space Ω = {ω1, ω2, ω3} with the

discrete metric dD and the observable O1. Under the hypothesis (]1), define the mixed state ν0

( ∈M+1(Ω)) such that

ν0 = p1δω1 + p2δω2 + p3δω3

namely,

ν0({ω1}) = p1, ν0({ω2}) = p2, ν0({ω3}) = p3

Thus we have a mixed measurement ML∞(Ω)(O1, S[∗](ν0)). Note that

a) “measured value 1 is obtained by the mixed measurement ML∞(Ω)(O1, S[∗](ν0))”

⇔ the host says “Door 1 has a goat”

b) “measured value 2 is obtained by the mixed measurement ML∞(Ω)(O1, S[∗](ν0))”

⇔ the host says “Door 2 has a goat”

c) “measured value 3 is obtained by the mixed measurement ML∞(Ω)(O1, S[∗](ν0))”

⇔ the host says “Door 3 has a goat”

Here, assume that, by the mixed measurement ML∞(Ω)(O1, S[∗](ν0)), you obtain a measured

value 3, which corresponds to the fact that the host said “Door 3 has a goat”. Then, Theorem

9.8 (Bayes’ theorem) says that the posterior state νpost ( ∈M+1(Ω)) is given by

νpost =
F1({3})× ν0〈
ν0, F1({3})

〉 .
That is,

νpost({ω1}) =
p1
2

p1
2

+ p2
, νpost({ω2}) =

p2
p1
2

+ p2
, νpost({ω3}) = 0.

Particularly, we see that

(]2) if p1 = p2 = p3 = 1/3, then it holds that νpost({ω1}) = 1/3, νpost({ω2}) = 2/3,

νpost({ω3}) = 0, and thus, you should pick Door 2.
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♠Note 9.3. It is not natural to assume the rule (]1) in Problem 9.13. That is because the host may
intentionally set the car behind a certain door. Thus we think that Problem 9.13 is temporary.
For our formal assertion, see Problem 9.14 latter.
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9.6 Monty Hall problem (The principle of equal weight)

9.6.1 The principle of equal weight— The most famous unsolved
problem

Let us reconsider Monty Hall problem (Problem 9.11, Problem9.12) in what follows. We

think that the following is one of the most reasonable answers (also, see Problem 19.5).

Problem 9.14. [Monty Hall problem (The principle of equal weight) ]

Suppose you are on a game show, and you are given the choice of three doors (i.e.,
“number 1”, “number 2”, “number 3”). Behind one door is a car, behind the others,
goats.

(]2) You choose a door by the cast of the fair dice, i.e., with probability 1/3.

According to the rule (]2), you pick a door, say number 1, and the host, who knows
where the car is, opens another door, behind which is a goat. For example, the host
says that

([) the door 3 has a goat.

He says to you, “Do you want to pick door number 2?” Is it to your advantage to switch
your choice of doors?

Answer: By the same way of Problem9.12 and Problem9.13 (Monty Hall problem), define

the state space Ω = {ω1, ω2, ω3} and the observable O = (X,F, F ). And the observable

O = (X,F, F ) is defined by the formula (9.11). The map φ : Ω→ Ω is defined by

φ(ω1) = ω2, φ(ω2) = ω3, φ(ω3) = ω1

we get a causal operator Φ : L∞(Ω)→ L∞(Ω) by [Φ(f)](ω) = f(φ(ω)) (∀f ∈ L∞(Ω), ∀ω ∈ Ω).

Assume that a car is behind the door k (k = 1, 2, 3). Then, we say that

(a) By the dice-throwing, you get

 1, 2
3, 4
5, 6

 , then, take a measurement

 ML∞(Ω)(O, S[ωk])
ML∞(Ω)(ΦO, S[ωk])
ML∞(Ω)(Φ

2O, S[ωk])


We, by the argument in Chapter 11 (cf. the formula (11.7))2, see the following identifications:

ML∞(Ω)(ΦO, S[ωk]) = ML∞(Ω)(O, S[φ(ωk)]), ML∞(Ω)(Φ
2O, S[ωk]) = ML∞(Ω)(O, S[φ2(ωk)]).

Thus, the above (a) is equal to

2Thus, from the pure theoretical point of view, this problem should be discussed after Chapter 11
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(b) By the dice-throwing, you get

 1, 2
3, 4
5, 6

 then, take a measurement

 ML∞(Ω)(O, S[ωk])
ML∞(Ω)(O, S[φ(ωk)])
ML∞(Ω)(O, S[φ2(ωk)])


Here, note that 1

3
(δωk + δφ(ωk) + δφ2(ωk)) = 1

3
(δω1 + δω2 + δω3) (∀k = 1, 2, 3). Thus, this (b) is

identified with the mixed measurement ML∞(Ω)(O, S[∗](νe)) , where

νe =
1

3
(δω1 + δω2 + δω3)

Therefore, Problem 9.14 is the same as Problem 9.13. Hence, you should choose the door 2.

♠Note 9.4. The above argument is easy. That is, since you have no information, we choose the
door by a fair dice throwing. In this sense, the principle of equal weight — unless we have
sufficient reason to regard one possible case as more probable than another, we treat them as
equally probable — is clear in measurement theory. However, it should be noted that the above
argument is based on dualism.

From the above argument, we have the following theorem.

Theorem 9.15. [The principle of equal weight] Consider a finite state space Ω, that is,

Ω = {ω1, ω2, . . . , ωn}. Let O = (X,F, F ) be an observable in L∞(Ω, ν), where ν is the counting

measure. Consider a measurement ML∞(Ω)(O, S[∗]). If the observer has no information for the

state [∗], there is a reason to that this measurement is identified with the mixed measurement

ML∞(Ω)(O, S[∗](we))
(

or, ML∞(Ω)(O, S[∗](νe))
)

, where

we(ωk) = 1/n (∀k = 1, 2, ..., n) or νe =
1

n

n∑
k=1

δωk

Proof. The proof is a easy consequence of the above Monty Hall problem (or, see [28, 31]).

♠Note 9.5. We have two “the principle of equal weight”. This will be again discussed in Proclaim
19.4 in Chapter 19.
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9.7 Averaging information ( Entropy )

As one of applications (of Bayes theorem), we now study the “entropy (cf. [64])” of the
measurement. This section is due to the following refs.

(]) Ref. [25]: S. Ishikawa, A Quantum Mechanical Approach to Fuzzy Theory, Fuzzy Sets
and Systems, Vol. 90, No. 3, 277-306, 1997, doi: 10.1016/S0165-0114(96)00114-5

(]) Ref. [28]: S. Ishikawa, “Mathematical Foundations of Measurement Theory,” Keio Uni-
versity Press Inc. 2006.

Let us begin with the following definition.

Definition 9.16. [Entropy (cf. [25, 28]) ] Assume

Classical basic structure [C0(Ω) ⊆ L∞(Ω, ν) ⊆ B(L2(Ω, ν))]

Consider a mixed measurement ML∞(Ω,ν) (O = (X, 2X , F ), S[∗](w0)) with a countable measured

value space X = {x1, x2, . . .}. The probability P ({xn}) that a measured value xn is obtained

by the mixed measurement ML∞(Ω)(O, S[∗](w0)) is given by

P ({xn}) =

∫
Ω

[F ({xn})](ω)w0(ω)ν(dω) (9.12)

Further, when a measured value xn is obtained, the information I({xn}) is, from Bayes’ theorem

9.8, is calculated as follows.

I({xn}) =

∫
Ω

[F ({xn})](ω)∫
Ω

[F ({xn})](ω)w0(ω)ν(dω)
log

[F ({xn})](ω)∫
Ω

[F ({xn})](ω)w0(ω)ν(dω)
w0(ω)ν(dω)

Therefore, the averaging informationH
(
ML∞(Ω)(O, S[∗](w0))

)
of the mixed measurement ML∞(Ω)

(O, S[∗](w0)) is naturally defined by

H
(
ML∞(Ω)(O, S[∗](w0))

)
=
∞∑
n=1

P ({xn}) · I({xn}) (9.13)

Also, the following is clear:

H
(
ML∞(Ω)(O, S[∗](w0))

)
=
∞∑
n=1

∫
Ω

[F ({xn})](ω) log[F ({xn})](ω)w0(ω)ν(dω)

−
∞∑
n=1

P ({xn}) logP ({xn}) (9.14)
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Example 9.17. [The offender is man or female? fast or slow?] Assume that

(a) There are 100 suspected persons such as {s1, s2, . . . , s100}, in which there is one criminal.

Define the state space Ω = {ω1, ω2, . . . , ω100} such that

stateωn · · · the state such that suspect sn is a criminal (n = 1, 2, ..., 100)

Assume the counting measure ν such that ν({ωk}) = 1(∀k = 1, 2, · · · , 100) Define a male-

observable Om = (X = {ym, nm}, 2X ,M) in L∞(Ω) by

[M({ym})](ωn) = mym(ωn) =

{
0 (n is odd)
1 (n is even)

[M({nm})](ωn) = mnm(ωn) = 1− [M({ym})](ωn)

For example,

Taking a measurement ML∞(Ω)(Om, S[ω17]) — the sex of the criminal s17 —, we get the

measured value nm(=female).

Also, define the fast-observable Of = (Y = {yf , nf}, 2Y , F ) in L∞(Ω) by

[F ({yf})](ωn) = fyf (ωn) =
n− 1

99
,

[F ({nf})](ωn) = fnf
(ωn) = 1− [F ({yf})](ωn)

0

1

Ω
100

f{yf}
f{nf}

According to the principle of equal weight (=Theorem 9.15 ), there is a reason to consider

that a mixed state w0 (∈ L1
+1(Ω)) is equal to the state we such that w0(ωn) = we(ωn) = 1/100

(∀n). Thus, consider two mixed measurement ML∞(Ω)(Om, S[∗](we)) and ML∞(Ω)(Of , S[∗](we)).

Then, we see:

H
(
ML∞(Ω)(Om, S[∗](we))

)
=

∫
Ω

mym(ω)we(ω)ν(dω) · log

∫
Ω

mym(ω)we(ω)ν(dω)

−
∫
Ω

m{nm}(ω)we(ω)ν(dω) · log

∫
Ω

mnm(ω)we(ω)ν(dω)
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= −1

2
log

1

2
− 1

2
log

1

2
= log2 2 = 1 (bit)3.

Also,

H
(
ML∞(Ω)(Of , S[∗](we))

)
=

∫
Ω

fyf (ω) log fyf (ω)we(ω)ν(dω)

+

∫
Ω

fnf
(ω) log fnf

(ω)we(ω)ν(dω)−
∫
Ω

fyf (ω)we(ω)ν(dω) · log

∫
Ω

fyf (ω)we(ω)ν(dω)

−
∫
Ω

fnf
(ω)we(dω) · log

∫
Ω

fnf
(ω)we(ω)ν(dω)

+2

∫ 1

0

λ log2 λdλ+ 1 = − 1

2 loge 2
+ 1 = 0.278 · · · (bit)

Therefore, as eyewitness information, “male or female” has more valuable than “fast or

slow”.
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9.8 Fisher statistics:Monty Hall problem [three prison-

ers problem]

This section is extracted from the following:

Ref. [44]: S. Ishikawa; The Final Solutions of Monty Hall Problem and Three Prisoners

Problem ( arXiv:1408.0963v1 [stat.OT] 2014 )

It is usually said that

Monty Hall problem and three prisoners problem are

so-called isomorphism problem

But, we think that the meaning of “isomorphism problem” is not clarified, or, it is not able to

be clarified without measurement (or, the dualism).

Therefore, in order to understand “isomorphism”, we simultaneously discuss the two

•
{

Monty Hall problem
three prisoners problem

9.8.1 Fisher statistics: Monty Hall problem [resp. three prisoners
problem]

Problem 9.18. (=Problem9.12: [Monty Hall problem]).

Suppose you are on a game show, and you are given the choice of three doors (i.e., “Door

A1”, “Door A2”, “Door A3”). Behind one door is a car, behind the others, goats. You do

not know what’s behind the doors

However, you pick a door, say “Door A1”, and the host, who knows what’s behind the

doors, opens another door, say “Door A3”, which has a goat.

He says to you, “Do you want to pick Door A2?” Is it to your advantage to switch your

choice of doors?

? ? ?

Door A1 Door A2 Door A3
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Problem 9.19. [three prisoners problem].

Three prisoners, A1, A2, and A3 were in jail. They knew that one of them was to be set

free and the other two were to be executed. They did not know who was the one to be

spared, but the emperor did know. A1 said to the emperor, “I already know that at least

one the other two prisoners will be executed, so if you tell me the name of one who will

be executed, you won’t have given me any information about my own execution”. After

some thinking, the emperor said, “A3 will be executed.” Thereupon A1 felt happier

because his chance had increased from 1
3(=Num{A1,A2,A3}]) to 1

2(=Num{A1,A2}]) . This prisoner

A1’s happiness may or may not be reasonable?

E A1 A2 A3
- -

“ A3 will be executed”

(Emperor)

9.8.2 The answer in Fisher statistics: Monty Hall problem [resp.
three prisoners problem]

Let rewrite the spirit of dualism (Descartes figure) as follows.

•

observer
(I(=mind))

system
(matter)

�
-

[observable]
[measured value]

a©interfere

b©perceive a reaction

[state]

Descartes Figure 9.7: The image of “measurement(= a©+ b©)” in dualism
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In the dualism, we have the confrontation

“observer←→system”

as follows.

Table 9.1: Correspondence: observer · system

Problems� dualism Mind(=I=Observer) Matter(=System)

Monty Hall problem you Three doors

Three prisoners problem Prisoner A1 Emperor’s mind

In what follows, we present the first answer to

[
Problem 9.18 (Monty-Hall problem)
Problem 9.19 (Three prisoners problem)

]
in classical pure measurement theory. The two will be simultaneously solved as follows. The

spirit of dualism (in Figure 9.7) urges us to declare that

(A)

[
“observer ≈ you” and “system ≈ three doors” in Problem 9.18
“observer ≈ prisoner A1” and “system ≈ emperor’s mind” in Problem 9.19

]
Put Ω = {ω1, ω2, ω3} with the discrete topology. Assume that each state δωm(∈ Sp(C(Ω)∗))

means [
δωm ⇔ the state that the car is behind the door Am
δωm ⇔ the state that the prisoner Am is will be executed

]
(m = 1, 2, 3) (9.15)

Define the observable O1 ≡ ({1, 2, 3}, 2{1,2,3}, F1) in L∞(Ω) such that

[F1({1})](ω1) = 0.0, [F1({2})](ω1) = 0.5, [F1({3})](ω1) = 0.5,

[F1({1})](ω2) = 0.0, [F1({2})](ω2) = 0.0, [F1({3})](ω2) = 1.0,

[F1({1})](ω3) = 0.0, [F1({2})](ω3) = 1.0, [F1({3})](ω3) = 0.0, (9.16)

where it is also possible to assume that F1({2})(ω1) = α, F1({3})(ω1) = 1 − α (0 < α < 1).

Thus we have a measurement ML∞(Ω)(O1, S[∗]), which should be regarded as the measurement

theoretical representation of the measurement that

[
you say “Door A1”
“Prisoner A1” asks to the emperor

]
.

Here, we assume that

a) “measured value 1 is obtained by the measurement ML∞(Ω)(O1, S[∗])”

⇔
[

the host says “Door A1 has a goat”
the emperor says “Prisoner A1 will be executed”

]
b) “measured value 2 is obtained by the measurement ML∞(Ω)(O1, S[∗]) ”

⇔
[

the host says “Door A2 has a goat”
the emperor says “Prisoner A2 will be executed”

]
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c) “measured value 3 is obtained by the measurement ML∞(Ω)(O1, S[∗]) ”

⇔
[

the host says “Door A3 has a goat”
the emperor says “Prisoner A3 will be executed”

]

Recall that

[
the host said “Door 3 has a goat”

the emperor said “Prisoner A3 will be executed”

]
.

This implies that

[
you
Prisoner A1

]
get the measured value “3” by the measurement ML∞(Ω)(O1,

S[∗]). Note that

[F1({3})](ω2) = 1.0 = max{0.5, 1.0, 0.0}

= max{[F1({3})](ω1), [F1({3})](ω2), [F1({3})](ω3)}, (9.17)

Therefore, Theorem 5.6 (Fisher’s maximum likelihood method) says that

(B1) In Problem 9.18 (Monty-Hall problem), there is a reason to infer that [∗] = δω2 . Thus,

you should switch to Door A2.

(B2) In Problem 9.19 (Three prisoners problem), there is a reason to infer that [∗] = δω2 .

However, there is no reasonable answer for the question: whether Prisoner A1’s happiness

increases. That is, Problem 9.19 is not within Fisher’s maximum likelihood method.

KSTS/RR-15/001 
January 22, 2015



236 Chapter 9 Mixed measurement theory (⊃Bayesian statistics)

9.9 Bayesian statistics: Monty Hall problem [three pris-

oners problem]

This section is extracted from the following:

Ref. [44]: S. Ishikawa; The Final Solutions of Monty Hall Problem and Three Prisoners

Problem ( arXiv:1408.0963v1 [stat.OT] 2014 )

9.9.1 Bayesian statistics: Monty Hall problem [resp. three prison-
ers problem]

Problem 9.20. [(=Problem9.13)Monty Hall problem (the case that the host throws the dice)].

Suppose you are on a game show, and you are given the choice of three doors (i.e., “Door

A1”, “Door A2”, “Door A3”). Behind one door is a car, behind the others, goats. You do

not know what’s behind the doors.

However, you pick a door, say “Door A1”, and the host, who knows what’s behind the

doors, opens another door, say “Door A3”, which has a goat. And he adds that

(]1) the car was set behind the door decided by the cast of the (distorted) dice. That is,

the host set the car behind Door Am with probability pm (where p1 + p2 + p3 = 1,

0 ≤ p1, p2, p3 ≤ 1 ).

He says to you, “Do you want to pick Door A2?” Is it to your advantage to switch your

choice of doors?

? ? ?

Door A1 Door A2 Door A3

Problem 9.21. [three prisoners problem].

Three prisoners, A1, A2, and A3 were in jail. They knew that one of them was to be set

free and the other two were to be executed. They did not know who was the one to be
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spared, but they know that

(]2) the one to be spared was decided by the cast of the (distorted) dice. That is, Prisoner

Am is to be spared with probability pm (where p1 + p2 + p3 = 1, 0 ≤ p1, p2, p3 ≤ 1 ).

but the emperor did know the one to be spared. A1 said to the emperor, “I already

know that at least one the other two prisoners will be executed, so if you tell me the

name of one who will be executed, you won’t have given me any information about

my own execution”. After some thinking, the emperor said, “A3 will be executed.”

Thereupon A1 felt happier because his chance had increased from 1
3(=Num[{A1,A2,A3}]) to

1
2(=Num[{A1,A2}]) . This prisoner A1’s happiness may or may not be reasonable?

E A1 A2 A3
- -

“A3 will be executed”

(Emperor)

9.9.2 The answer in Bayesian statistics: Monty Hall problem [resp.
three prisoners problem]

In the dualism, we have the confrontation

“observer←→system”

as follows.

Table 9.2: Correspondence: observer · system

Problems� dualism Mind(=I=Observer) Matter(=System)

Monty Hall problem you Three doors

Three prisoners problem Prisoner A Emperor’s mind

In what follows we study these problems. Let Ω and O1 be as in Section 9.8. Under the

hypothesis

{
(]1)
(]2)

}
, define the mixed state ν0 ( ∈Mm

+1(Ω)) such that:

ν0({ω1}) = p1, ν0({ω2}) = p2, ν0({ω3}) = p3 (9.18)
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Thus we have a mixed measurement ML∞(Ω)(O1, S[∗](ν0)). Note that

a) “measured value 1 is obtained by the measurement ML∞(Ω)(O1, S[∗])”

⇔
[

the host says “Door A1 has a goat”
the emperor says “Prisoner A1 will be executed”

]
b) “measured value 2 is obtained by the measurement ML∞(Ω)(O1, S[∗]) ”

⇔
[

the host says “Door A2 has a goat”
the emperor says “Prisoner A2 will be executed”

]
c) “measured value 3 is obtained by the measurement ML∞(Ω)(O1, S[∗]) ”

⇔
[

the host says “Door A3 has a goat”
the emperor says “Prisoner A3 will be executed”

]
Here, assume that, by the statistical measurement ML∞(Ω)(O1, S[∗](ν0)), you obtain a measured

value 3, which corresponds to the fact that

[
the host said “Door A3 has a goat”
the emperor said “Prisoner A3 is to be executed”

]
Then, Bayes’ theorem 9.8 says that the posterior state νpost ( ∈Mm

+1(Ω)) is given by

νpost =
F1({3})× ν0〈
ν0, F1({3})

〉 . (9.19)

That is,

νpost({ω1}) =
p1
2

p1
2

+ p2
, νpost({ω2}) =

p2
p1
2

+ p2
, νpost({ω3}) = 0. (9.20)

Then,

(I1) In Problem 9.20,
if νpost({ω1}) < νpost({ω2}) (i.e., p1 < 2p2), you should pick Door A2

if νpost({ω1}) = νpost({ω2}) (i.e., p1 < 2p2), you may pick Doors A1 or A2

if νpost({ω1}) > νpost({ω2}) (i.e., p1 < 2p2), you should not pick Door A2

(I2) In Problem 9.21,
if ν0({ω1}) < νpost({ω1}) (i.e., p1 < 1− 2p2), the prisoner A1’s happiness increases
if ν0({ω1}) = νpost({ω1}) (i.e., p1 = 1− 2p2), the prisoner A1’s happiness is invariant
if ν0({ω1}) > νpost({ω1}) (i.e., p1 > 1− 2p2), the prisoner A1’s happiness decreases
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9.10 Equal probability: Monty Hall problem [three pris-

oners problem]

This section is extracted from the following:

ref. [44]: S. Ishikawa; The Final Solutions of Monty Hall Problem and Three Prisoners

Problem ( arXiv:1408.0963v1 [stat.OT] 2014 )

Problem 9.22. [(=Problem9.13)Monty Hall problem (the case that you throws the dice)].

Suppose you are on a game show, and you are given the choice of three doors (i.e., “Door

A1”, “Door A2”, “Door A3”). Behind one door is a car, behind the others, goats. You do

not know what’s behind the doors. Thus,

(]1) you select Door A1 by the cast of the fair dice. That is, you say “Door A1” with

probability 1/3.

The host, who knows what’s behind the doors, opens another door, say “Door A3”, which

has a goat. He says to you, “Do you want to pick Door A2?” Is it to your advantage

to switch your choice of doors?

? ? ?

Door A1 Door A2 Door A3

Problem 9.23. [three prisoners problem( the case that the prisoner throws the dice)].

Three prisoners, A1, A2, and A3 were in jail. They knew that one of them was to be set

free and the other two were to be executed. They did not know who was the one to be

spared, but the emperor did know. Since three prisoners wanted to ask the emperor,

(]2) the questioner was decided by the fair die throw. And Prisoner A1 was selected with

probability 1/3

Then, A1 said to the emperor, “I already know that at least one the other two prisoners
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will be executed, so if you tell me the name of one who will be executed, you won’t

have given me any information about my own execution”. After some thinking, the

emperor said, “A3 will be executed.” Thereupon A1 felt happier because his chance

had increased from 1
3(=Num[{A1,A2,A3}]) to 1

2(=Num[{A1,A2}]) . This prisoner A1’s happiness

may or may not be reasonable?

E A1 A2 A3
- -

“A3 will be executed”

(Emperor)

Answer By Theorem 9.15(The principle of equal weight), the above Problems 9.22 and 9.23

is respectively the same as Problems 9.20 and 9.21 in the case that p1 = p2 = p3 = 1/3. Then,

the formulas (9.18) and (9.20) say that

(A1) In Problem9.22, since νpost({ω1}) = 1/3 < 2/3 = νpost({ω2}), you should pick Door A2.

(A2) In Problem9.23, since ν0({ω1}) = 1/3 = νpost({ω1}), the prisoner A1’s happiness is invari-

ant.

Therefore,

(B1) Problem9.22 [Monty Hall problem ( the case that you throw a fair dice)]

νpost({ω1}) < νpost({ω2}) (i.e., p1 = 1/3 < 2/3 = 2p2),

thus, you should choose the door A2

(B2) Problem9.23 [three prisoners problem ( the case that the emperor throws a fair dice)],

ν0({ω1}) = νpost({ω1}) (i.e., p1 = 1/3 = 1− 2p2),

Thus, the happiness of the prisoner A1 is invariant
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♠Note 9.6. These problems (i.e., Monty Hall problem and the three prisoners problem) continued

attracting the philosopher’s interest. This is not due to that these are easy to make a mistake

for high school students, but

these problems include the essence of “dualism”.
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9.11 Bertrand’s paradox( “randomness” depends on how

you look at)

Theorem9.15(the principle of equal weight) implies that

• the “randomness” may be related to the invariant probability measure.

However, this is due to the finiteness of the state space. In the case of infinite state space,

“randomness” depends on how you look at

This is explained in this section.

9.11.1 Bertrand’s paradox(“randomness” depends on how you look
at)

Let us explain Bertrand’s paradox as follows.

Consider classical basic structure:

[C0(Ω) ⊆ L∞(Ω,m) ⊆ B(L2(Ω,m))]

We can define the exact observable OE = (Ω,BΩ, FE) in L∞(Ω,m) such that

[FE(Ξ)](ω) = χ
Ξ
(ω) =

{
1 (ω ∈ Ξ)
0 (ω /∈ Ξ)

(∀ω ∈ Ω, Ξ ∈ BΩ)

Here, we have the following problem:

(A) Can the measurement ML∞(Ω,m)(OE, S[∗](ρ)) that represents “at random” be determined

uniquely?

This question is of course denied by so-called Bertrand paradox. Here, let us review the

argument about the Bertrand paradox (cf. [20, 28, 42]). Consider the following problem:

Problem 9.24. (Bertrand paradox) Given a circle with the radius 1. Suppose a chord of the

circle is chosen at random. What is the probability that the chord is shorter than
√

3?
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-x1
1

6
x2

l

Figure 9.8: Bertrand’ paradox

Define the rotation map T θrot : R2 → R2 (0 ≤ θ < 2π) and the reverse map Trev : R2 → R2

such that

T θrotx =

[
cos θ − sin θ
sin θ cos θ

]
·
[
x1
x2

]
, Trevx =

[
0 1
1 0

]
·
[
x1
x2

]

Problem 9.25. (Bertrand paradox and its answer) Given a circle with the radius 1.

-x1
1

6
x2

l

Figure 9.9: Bertrand’ paradox

Put Ω = {l | l is a chord}, that is, the set of all chords.

(B) Can we uniquely define an invariant probability measure on Ω?

Here, “invariant” means “invariant concerning the rotation map T θrot and reverse map Trev”.
In what follows, we show that the above invariant measure exists but it is not determined

uniquely.
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α

β

(Fig.2)(Fig.1)

(x, y)•

0 10 1

l(α,β) l(x,y)

Figure 9.10: Two cases in Bertrand’ paradox

[The first answer (Fig.1(in Figure 9.10))]. In Fig.1, we see that the chord l is represented

by a point (α, β) in the rectangle Ω1 ≡ {(α, β) | 0 < α ≤ 2π, 0 < β ≤ π/2(radian)}. That is,

we have the following identification:

Ω(= the set of all chords) 3 l(α,β) ←→
identification

(α, β) ∈ Ω1(⊂ R2).

Note that we have the natural probability measure nu1 on Ω1 such that ν1(A) = Meas[A]
Meas[Ω1]

=

Meas[A]
π2 (∀A ∈ BΩ1), where “ Meas” = “ Lebesgue measure”. Transferring the probability

measure ν1 on Ω1 to Ω, we get ρ1 on Ω. That is,

M+1(Ω) 3 ρ1 ←→
identification

ν1 ∈M+1(Ω1)

(]) It is clear that the measure ρ1 is invariant concerning the rotation map T θrot and reverse

map Trev.

Therefore, we have a natural measurement ML∞(Ω,m)(OE ≡ (Ω,BΩ, FE), S[∗](ρ1)). Consider

the identification:

Ω ⊇ Ξ√3 ←→
identification

{(α, β) ∈ Ω1 : “the length of l(α,β)” <
√

3} ⊆ Ω1

Then, Axiom(m) 1 says that the probability that a measured value belongs to Ξ√3 is given by∫
Ω

[FE(Ξ√3)](ω) ρ1(dω) =

∫
Ξ√

3

1 ρ1(dω)

=m1({l(α,β) ≈ (α, β) ∈ Ω1 | “the length of l(α,β)” ≤
√

3})

=
Meas[{(α, β) | 0 ≤ α ≤ 2π, π/6 ≤ β ≤ π/2}]
Meas[{(α, β) | 0 ≤ α ≤ 2π, 0 ≤ β ≤ π/2}]
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=
2π × (π/3)

π2
=

2

3
.

[The second answer (Fig.2(in Figure 9.10))]. In Fig.2, we see that the chord l is repre-

sented by a point (x, y) in the circle Ω2 ≡ {(x, y) | x2 + y2 < 1}.
That is, we have the following identification:

Ω(= the set of all chords) 3 l(x,y) ←→
identification

(x, y) ∈ Ω2(⊂ R2).

We have the natural probability measure ν2 on Ω2 such that ν2(A) = Meas[A]
Meas[Ω2]

= Meas[A]
π

(∀A ∈ BΩ2). Transferring the probability measure ν2 on Ω2 to Ω, we get ρ2 on Ω. That is,

M+1(Ω) 3 ρ2 ←→
identification

ν2 ∈M+1(Ω2)

(]) It is clear that the measure ρ2 is invariant concerning the rotation map T θrot and reverse

map Trev.

Therefore, we have a natural measurement ML∞(Ω,m)(OE ≡ (Ω,BΩ, FE), S[∗](ρ2)).

Consider the identification:

Ω ⊇ Ξ√3 ←→
identification

{(x, y) ∈ Ω2 : “the length of l(α,β)” <
√

3} ⊆ Ω1

Then, Axiom(m) 1 says that the probability that a measured value belongs to Ξ√3 is given

by ∫
Ω

[FE(Ξ√3)](ω) ρ2(dω) =

∫
Ξ√

3

1 ρ2(dω)

=ν2({l(x,y) ≈ (x, y) ∈ Ω2 | “the length of l(x,y)” ≤
√

3})

=
Meas[{(x, y) | 1/4 ≤ x2 + y2 ≤ 1}]

π
=

3

4
.

Conclusion 9.26. Thus, even if there is a custom to regard a natural probability measure

(i.e., an invariant measure concerning natural maps) as “random”, the first answer and the

second answer say that

(]) the uniqueness in (B) of Problem 9.25 is denied.
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Chapter 10

Axiom 2—causality

Measurement theory has the following classification:

(A) measurement theory
(=quantum language)



pure type
(A1)

{
classical system : Fisher statistics
quantum system : usual quantum mechanics

mixed type
(A2)

{
classical system : including Bayesian statistics, Kalman filter

quantum system : quantum decoherence

This is formulated as follows.

(B)



(B1): pure measurement theory
(=quantum language)

:=
[(pure)Axiom 1]

pure measurement
(cf. §2.7)

+

[Axiom 2]

Causality
(cf. §10.3)︸ ︷︷ ︸

a kind of spell(a priori judgment)

+

[quantum linguistic interpretation]

Linguistic interpretation
(cf. §3.1)︸ ︷︷ ︸

the manual how to use spells

(B2): mixed measurement theory
(=quantum language)

:=

[(mixed)Axiom(m) 1]

mixed measurement
(cf. §9.1)

+

[Axiom 2]

Causality
(cf. §10.3)︸ ︷︷ ︸

a kind of spell(a priori judgment)

+

[quantum linguistic interpretation]

Linguistic interpretation
(cf. §3.1)︸ ︷︷ ︸

the manual how to use spells

In this chapter, we devote ourselves to the last theme (i.e., “causality”):

[Axiom 2]

Causality
(cf. §10.3)

which is common to both (B1) and (B2).
The importance of “measurement” and “causality” should be reconfirmed in the following famous
maxims:

247
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(C1) There is no science without measurement.

(C2) Science is the knowledge about causal relationship.

which should be also regarded as one of the linguistic interpretation in the wide sense.

10.1 The most important unsolved problem—what is

causality?

This section is extracted from ref.[37].

10.1.1 Modern science started from the discovery of “causality.”

When a certain thing happens, the cause always exists. This is called causality. You

should just remember the proverb of

“smoke is not located on the place which does not have fire.”

It is not so simple although you may think that it is natural. For example, if you consider

This morning I feel good. Is it because that I slept sound yesterday? or is it because I

go to favorite golf from now on?

you may be able to understand the difficulty of how to use the word “causality”. In daily

conversation, it is used in many cases, mixing up “a cause (past)”, “a reason (connotation)”,

and “the purpose and a motive (future).”

It may be supposed that the pioneers of research of movement and change are
Heraclitus(BC.540 -BC.480): “Everything changes.”

Parmenides (born around BC. 515): “Movement does not exist.”
(Zeno’s teacher)

though their assertions are not clear. However, these two pioneers (i.e., Heraclitus and

Parmenides ) noticed first that “movement and change” were the primary importance keywords

in science(= “world description”) , i.e., it is

[The beginning of World description ]

=[The discovery of movement and change ] =


Heraclitus(BC.540 -BC.480)

Parmenides(born around BC. 515)

However, Aristotle(BC384–BC322) further investigated about the essence of movement and

change, and he thought that
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all the movements had the “purpose.”

For example, supposing a stone falls, that is because the stone has the purpose that the stone

tries to go downward. Supposing smoke rises, that is because smoke has the purpose that

smoke rises upwards. Under the influence of Aristotle, “Purpose” continued remaining as a

mainstream idea of “Movement” for a long time of 1500 years or more.

Although “the further investigation” of Aristotle was what should be praised, it was not

able to be said that “the purpose was to the point.” In order to free ourselves from Purpose and

for human beings to discover that the essence of movement and change is “causal relationship”,

we had to wait for the appearance of Galileo, Bacon, Descartes, Newton, etc.

Revolution to “Causality” from “Purpose”

is the greatest history-of-science top paradigm shift. It is not an overstatement even if we call

it “birth of modern science”.

the birth of world description

Movement
(Heraclitus, Parmenides, Zeno)

“purpose”−−−−−−−−−−−−−−−−−→
Aristotle :( About 1500 years)

the birth of modern science

Causality
( Galileo, Bacon, Descartes, Newton)

10.1.2 Four answers to “what is causality?”

As mentioned above, about “what is an essence of movement and change?”, it was once

settled with the word “causality.” However, not all were solved now. We do not yet understand

“causality” fully. In fact,

Problem 10.1. Problem:

“What is causality?”

is the most important outstanding problems in modern science.

Answer this problem!

There may be some readers who are surprised with saying like this, although it is the outstanding

problems in the present. Below, I arrange the history of the answer to this problem.

(a) [Realistic causality]: Newton advocated the realistic describing method of Newtonian

mechanics as a final settlement of accounts of ideas, such as Galileo, Bacon, and Descartes,

and he thought as follows. :
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“Causality” actually exists in the world. Newtonian equation described faithfully

this “causality”. That is, Newtonian equation is the equation of a causal chain.

This realistic causality may be a very natural idea, and you may think that you cannot think

in addition to this. In fact, probably, we may say that the current of the realistic causal

relationship which continues like

“Newtonian mechanics−→ Electricity and magnetism−→ Theory of relativity−→ · · · ”

is a scientific flower.

However, there are also other ideas, i.e., three “non-realistic causalities” as follows.

(b) [Cognitive causality]: David Hume, Immanuel Kant, etc. who are philosophers

thought as follows. :

We can not say that “Causality” actually exists in the world, or that it does not

exist in the world. And when we think that “something” in the world is “causality”,

we should just believe that the it has “causality”.

Most readers may regard this as “a kind of rhetoric”, however, several readers may be convinced

in “Now that you say that, it may be so.” Surely, since you are looking through the prejudice

“causality”, you may look such. This is Kant’s famous “Copernican revolution”, that is,

“recognition constitutes the world.”

which is considered that the recognition circuit of causality is installed in the brain, and when it

is stimulated by “something” and reacts, “there is causal relationship.” Probably, many readers

doubt about the substantial influence which this (b) had on the science after it. However, in

this book, I adopted the friendly story to the utmost to Kant.

(c) [Mathematical causality(Dynamical system theory)]: Since dynamical system

theory has developed as the mathematical technique in engineering, they have not inves-

tigated “What is causality?” thoroughly. However,

In dynamical system theory, we start from the state equation (i.e., simultaneous

ordinary differential equation of the first order) such that
dω1

dt
(t) = v1(ω1(t), ω2(t), . . . , ωn(t), t)

dω2

dt
(t) = v2(ω1(t), ω2(t), . . . , ωn(t), t)

· · · · · ·
dωn
dt

(t) = vn(ω1(t), ω2(t), . . . , ωn(t), t)

(10.1)
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and, we think that

(]) the phenomenon described by the state equation has “causality.”

This is the spirit of dynamical system theory (= statistics ). Although this is proposed under

the confusion of mathematics and world description, it is quite useful. In this sense, I think

that (c) should be evaluated more.

(d) [Linguistic causal relationship (MeasurementTheory)]: The causal relationship

of measurement theory is decided by the Axiom 2 (causality; §10.3) of this chapter. If I

say in detail,:

Although measurement theory consists of the two Axioms 1 and 2, it is the Axiom 2

that is concerned with causal relationship. When describing a certain phenomenon

in quantum language (i.e., a language called measurement theory) and using Axiom

2 (causality; §10.3) , we think that the phenomenon has causality.

The above is summarized as follows.

(a) World is first

(b) Recognition is first

(c) Mathematics(buried into ordinary language) is first

(d) Language (= quantum language) is first

Now, in measurement theory, we assert the next as said repeatedly:

Quantum language is a basic language which describes various sciences.

Supposing this is recognized, we can assert the next. Namely,

In science, causality is just as mentioned in the above (d).

This (d) is my answer to “What is causality?”, and I explain these details after the following

paragraph.
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10.2 Causality—Mathematical preparation

10.2.1 The Heisenberg picture and the Schrödinger picture

First, let us review the general basic structure (cf. §2.1.3 ) as follows.

(A): General basic structure and State spaces

Sp(A∗)
C∗-pure state

⊂ Sm(A∗)
C∗-mixed state

⊂ A∗xdual

A
⊆−−−−−−−−−−−−−→

subalgebra·weak-closure
A

⊆−−−−−−→
subalgebra

B(H)y pre-dual

(10.2)

S
m

(A∗)
W ∗-mixed state

⊂ A∗

Remark 10.2. [A∗ ⊆ A∗] : Consider the basic structure [A ⊆ A]B(H). For each ρ ∈ A∗,

F ∈ A(⊆ A ⊆ B(H)), we see that∣∣∣
A∗

(
ρ, F

)
A

∣∣∣ ≤ C‖F‖B(H) = C‖F‖A (10.3)

Thus, we can consider that ρ ∈ A∗. That is, in the sense of (10.3), we consider that

A∗ ⊆ A∗

When ρ(∈ A∗) is regarded as the element of A∗, it is sometimes denoted by ρ̂. Therefore,

A∗

(
ρ, F

)
A

=
A∗

(
ρ̂, F

)
A

(∀F ∈ A(⊆ A)) (10.4)

Definition 10.3. [Causal operator (= Markov causal operator)] Consider two basic structures:

[A1 ⊆ A1 ⊆ B(H1)] and [A2 ⊆ A2 ⊆ B(H2)]

A continuous linear operator Φ1,2 : A2 → A1 is called a causal operator(or, Markov causal
operator , the Heisenberg picture of “causality”), if it satisfies the following (i)—(iv):

(i) F2 ∈ A2 F2 = 0 =⇒ Φ12F2 = 0

(ii) Φ12IA2
= IA1

(where, IA1
(∈ A1) is the identity)
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10.2 Causality—Mathematical preparation 253

(iii) there exists the continuous linear operator (Φ1,2)∗ : (A1)∗ → (A2)∗ such that

(a)
(A1)∗

(
ρ1,Φ1,2F2

)
A1

=
(A2)∗

(
(Φ1,2)∗ρ1, F2

)
A2

(∀ρ1 ∈ (A1)∗, ∀F2 ∈ A2) (10.5)

(b) (Φ1,2)∗(S
m

((A1)∗)) ⊆ S
m

((A2)∗) (10.6)

This (Φ1,2)∗ is called the pre-dual causal operator of Φ1,2.

(iv) there exists the continuous linear operator Φ∗1,2 : A∗1 → A∗2 such that

(a)
(A1)∗

(
ρ1,Φ1,2F2

)
A1

=
A

∗
2

(
Φ∗1,2ρ̂1, F2

)
A2

(∀ρ1 = ρ̂1 ∈ (A1)∗(⊆ A∗1), ∀F2 ∈ A2)

(10.7)

(b) (Φ1,2)
∗(Sp(A∗1)) ⊆ Sm(A∗2) (10.8)

This Φ∗1,2 is called the dual operator of Φ1,2.

In addition, the causal operator Φ1,2 is called a deterministic causal operator , if it satisfies
that

(Φ1,2)
∗(Sp(A∗1)) ⊆ Sp(A∗2) (10.9)

♠Note 10.1. [ Causal operator in Classical systems] Consider the two basic structures:

[C0(Ω1) ⊆ L∞(Ω1, ν1)]B(H1) and [C0(Ω2) ⊆ L∞(Ω2, ν2)]B(H2)

A continuous linear operator Φ1,2 : L
∞(Ω2)→ L∞(Ω1) called a causal operator, if it satisfies

the following (i)—(iii):

(i) f2 ∈ L∞(Ω2), f2 = 0 =⇒ Φ12f2 = 0

(ii) Φ1212 = 11 where, 1k(ωk) = 1 (∀ωk ∈ Ωk, k = 1, 2)

(iii) There exists a continuous linear operator (Φ1,2)∗ : L1(Ω1) → L1(Ω2) (and (Φ1,2)∗ :
L1
+1(Ω1)→ L1

+1(Ω2) ) such that∫
Ω1

[Φ1,2f2](ω1) ρ1(ω1)ν1(dω1) =

∫
Ω2

f2(ω2) [(Φ1,2)∗ρ1](ω2)ν2(dω2)

(∀ρ1 ∈ L1(Ω1),∀f2 ∈ L∞(Ω2))

This (Φ1,2)∗ is called a pre-dual causal operator of Φ1,2.

(iv) There exists a continuous linear operator Φ∗1,2 : M(Ω1) → M(Ω2) (and Φ∗1,2 : M+1(Ω1) →
M+1(Ω2) ) such that

L1(Ω1)

(
ρ1,Φ1,2F2

)
L∞(Ω1)

=
M(Ω2)

(
Φ∗1,2ρ̂1, F2

)
C0(Ω2)

(∀ρ1 = ρ̂1 ∈M(Ω1),∀F2 ∈ C0(Ω2))

where, ρ̂1(D) =
∫
D ρ1(ω1)ν1(dω1) (∀D ∈ BΩ1). This (Φ1,2)

∗ is called a dual causal
operator of Φ1,2.
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254 Chapter 10 Axiom 2—causality

In addition, a causal operator Φ1,2 is called a deterministic causal operator, if there exists
a continuous map φ1,2 : Ω1 → Ω2 such that

[Φ1,2f2](ω1) = f2(φ1,2(ω1)) (∀f2 ∈ C(Ω2),∀ω1 ∈ Ω1) (10.10)

This φ1,2 : Ω1 → Ω2 is called a deterministic causal map. Here, it is clear that

Ω1 ≈ Sp(C0(Ω1)
∗) 3 δω1 −−→

Φ∗
12

δφ12(ω1) ∈ Sp(C0(Ω2)
∗) ≈ Ω2

ω1 φ1,2(ω1)
Ω2Ω1

f2Φ1,2f2

Figure 10.1: Deterministic causal map φ1,2 and deterministic causal operator Φ1,2

Theorem 10.4. [Continuous map and deterministic causal map] Let (Ω1,BΩ1 , ν1) and

(Ω2,BΩ2 , ν2) be measure spaces. Assume that a continuous map φ1,2 : Ω1 → Ω2 satisfies:

D2 ∈ BΩ2 , ν2(D2) = 0 =⇒ ν1(φ
−1
1,2(D2)) = 0.

Then, the continuous map φ1,2 : Ω1 → Ω2 is deterministic, that is, the operator Φ1,2 :

L∞(Ω2, ν2)→ L∞(Ω1, ν1) defined by (10.10) is a deterministic causal operator.

Proof. For each ρ1 ∈ L1(Ω1, ν1), define a measure µ2 on (Ω2,BΩ2) such that

µ2(D2) =

∫
φ−1
1,2(D2)

ρ1(ω1) ν1(dω1) (∀D2 ∈ BΩ2)

Then, it suffices to consider the Radon-Nikodym derivative (cf. [69]) [Φ1,2]∗(ρ1) = dµ2/dν2.

That is because

D2 ∈ BΩ2 , ν2(D2) = 0 =⇒ ν1(φ
−1
1,2(D2)) = 0 =⇒ µ2(D2) = 0 (10.11)

Thus, by the Radon-Nikodym theorem, we get a continuous linear operator [Φ1,2]∗ : L1(Ω1, ν1)→
L1(Ω2, ν2).
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10.2 Causality—Mathematical preparation 255

Theorem 10.5. Let Φ1,2 : L∞(Ω2) → L∞(Ω1) be a deterministic causal operator. Then, it

holds that

Φ1,2(f2 · g2) = Φ1,2(f2) · Φ1,2(g2) (∀f2, ∀g2 ∈ L∞(Ω2))

Proof. Let f2, g2 be in L∞(Ω2). Let φ1,2 : Ω1 → Ω2 be the deterministic causal map of the

deterministic causal operator Φ1,2. Then, we see

[Φ1,2(f2 · g2)](ω1) = (f2 · g2)(φ1,2(ω1)) = f2(φ1,2(ω1)) · g2(φ1,2(ω1))

=[Φ1,2(f2)](ω1) · [Φ1,2(g2)](ω1) = [Φ1,2(f2) · Φ1,2(g2)](ω1) (∀ω1 ∈ Ω1)

This completes the theorem.

10.2.2 Simple example—Finite causal operator is represented by
matrix

Example 10.6. [Deterministic causal operator, deterministic dual causal operator, deterministic

causal map ] Define the two states space Ω1 and Ω2 such that Ω1 = Ω2 = R with the Lebesgue

measure ν. Thus we have the classical basic structures:

[C0(Ωk) ⊆ L∞(Ωk, ν) ⊆ B(L2(Ωk, ν))] (k = 1, 2)

Define the deterministic causal map φ1,2 : Ω1 → Ω2 such that

ω2 = φ1,2(ω1) = 3(ω1)
2 + 2 (∀ω1 ∈ Ω1 = R)

Then, by (10.10), we get the deterministic dual causal operator Φ∗1,2 : M(Ω1) → M(Ω2) such

that

Φ∗1,2δω1 = δ3(ω1)2+2 (∀ω1 ∈ Ω1)

where δ(·) is the point measure. Also, the deterministic causal operatorΦ1,2 : L∞(Ω2)→ L∞(Ω1)

is defined by

[Φ1,2(f2)](ω1) = f2(3(ω1)
2 + 2) (∀f2 ∈ C0(Ω2), ∀ω1 ∈ Ω1)
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256 Chapter 10 Axiom 2—causality

Example 10.7. [Dual causal operator, causal operator] Recall Remark 2.13, that is, if Ω

(= {1, 2, ..., n}) is finite set ( with the discrete metric dD and the counting measure ν,), we can

consider that

C0(Ω) = L∞(Ω, ν) = Cn, M(Ω) = L1(Ω, ν) = Cn, M+1(Ω) = L1
+1(Ω, ν)

For example, put Ω1 = {ω1
1, ω

2
1, ω

3
1} and Ω2 = {ω1

2, ω
2
2}. And define ρ1(∈M+1(Ω1)) such that

ρ1 = a1δω1
1

+ a2δω2
1

+ a3δω3
1

(0 5 a1, a2, a3 5 1, a1 + a2 + a3 = 1)

Then, the dual causal operator Φ∗1,2 : M+1(Ω1)→M+1(Ω2) is represented by

Φ∗1,2(ρ1) =(c11a1 + c12a2 + c13a3)δω1
2

+ (c21a1 + c22a2 + c23a3)δω2
2

(0 5 cij 5 1,
2∑
i=1

cij = 1)

and, consider the identification:M(Ω1) ≈ C3, M(Ω2) ≈ C2, That is,

M(Ω1) 3 α1δω1
1

+ α2δω2
1

+ α3δω3
1

←→
(identification)

α1

α2

α3

 ∈ C3

M(Ω2) 3 β1δω1
2

+ β2δω2
2

←→
(identification)

[
β1
β2

]
∈ C2

Then, putting

Φ∗1,2(ρ1) = β1δω1
2

+ β2δω1
2

=

[
β1
β2

]
,

ρ1 = α1δω1
1

+ α2δω2
1

+ α3δω3
1

=

α1

α2

α3


write, by matrix representation, as follows.

Φ∗1,2(ρ1) =

[
β1
β2

]
=

[
c11 c12 c13
c21 c22 c23

]α1

α2

α3


Next, from this dual causal operator Φ∗1,2 : M(Ω1) → M(Ω2), we shall construct a causal

operator Φ1,2 : C0(Ω2) → C0(Ω1). Consider the identification:C0(Ω1) ≈ C3, C0(Ω2) ≈ C2, that

is,

C0(Ω1) 3 f1 ←→
(identification)

f1(ω1
1)

f1(ω
2
1)

f1(ω
3
1)

 ∈ C3, C0(Ω2) 3 f2 ←→
(identification)

[
f2(ω

1
2)

f2(ω
2
2)

]
∈ C2
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10.2 Causality—Mathematical preparation 257

Let f2 ∈ C0(Ω2), f1 = Φ1,2f2. Then, we seef1(ω1
1)

f1(ω
2
1)

f1(ω
3
1)

 = f1 = Φ1,2(f2) =

c11 c21
c12 c22
c13 c23

[
f2(ω

1
2)

f2(ω
2
2)

]

Therefore, the relation between the dual causal operatorΦ∗1,2 and causal operatorΦ1,2 is repre-

sented as the the transposed matrix.

Example 10.8. [ Deterministic dual causal operator, deterministic causal map, deterministic causal

operator ] Consider the case that dual causal operator Φ∗1,2 : M(Ω1)(≈C3)→M(Ω2)(≈C2) ha

s the matrix representation such that

Φ∗1,2(ρ1) =

[
b1
b2

]
=

[
0 1 1
1 0 0

]a1a2
a3


In this case, it is the deterministic dual causal operator. This deterministic causal operator

Φ1,2 : C0(Ω2)→ C0(Ω1) is represented byf1(ω1
1)

f1(ω
2
1)

f1(ω
3
1)

 = f1 = Φ1,2(f2) =

0 1
1 0
1 0

[
f2(ω

1
2)

f2(ω
2
2)

]

with the deterministic causal map φ1,2 : Ω1 → Ω2 such that

φ1,2(ω
1
1) = ω2

2, φ1,2(ω
2
1) = ω1

2, φ1,2(ω
3
1) = ω1

2

10.2.3 Sequential causal operator — A chain of causalities

Let (T,≤) be a finite tree1, i.e., a tree like semi-ordered finite set such that “t1 ≤ t3 and

t2 ≤ t3” implies “t1 ≤ t2 or t2 ≤ t1”. Assume that there exists an element t0 ∈ T , called the

root of T , such that t0 ≤ t (∀t ∈ T ) holds.

Put T 2
≤ = {(t1, t2) ∈ T 2 : t1 ≤ t2}. An element t0 ∈ T is called a root if t0 ≤ t (∀t ∈ T )

holds. Since we usually consider the subtree Tt0 ( ⊆ T ) with the root t0, we assume that the

tree has a root. In this chapter, assume, for simplicity, that T is finite (though it is sometimes

infinite in applications).

For simplicity, assume that T is finite, or a finite subtree of a whole tree. Let T ( =

{0, 1, ..., N}) be a tree with the root 0. Define the parent map π : T \ {0} → T such that

1In Chapter 14, we discuss the infinite case
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258 Chapter 10 Axiom 2—causality

π(t) = max{s ∈ T : s < t}. It is clear that the tree (T ≡ {0, 1, ..., N},≤ ) can be identified

with the pair (T ≡ {0, 1, ..., N}, π : T \ {0} → T ). Also, note that, for any t ∈ T \ {0}, there

uniquely exists a natural number h(t) (called the height of t ) such that πh(t)(t) = 0. Here,

π2(t) = π(π(t)), π3(t) = π(π2(t)), etc. Also, put {0, 1, ..., N}2
≤

= {(m,n) | 0 ≤ m ≤ n ≤ N}.
In Fig. 10.2, see the root t0, the parent map: π(t3) = π(t4) = t2, π(t2) = π(t5) = t1, π(t1) =

π(t6) = π(t7) = t0

t0

t1

t2
t3

t4

t5
t6

t7

)
i

k

+

k

)
k

π

π

π

π

π

π

π

Figure 10.2: Tree: (T = {t0, t1, ..., t7}, π : T \ {t0} → T )

Definition 10.9. [Sequential causal operator; Heisenberg picture of causality] The family

{Φt1,t2 : At2 → At1}(t1,t2)∈T 2
5

(
or, { At2

Φt1,t2→ At1}(t1,t2)∈T 2
5

)
is called a sequential causal

operator, if it satisfies that

(i) For each t (∈ T ), a basic structure [At ⊆ At ⊆ B(Ht)] is determined.

(ii) For each (t1, t2) ∈ T 2
5, a causal operator Φt1,t2 : At2 → At1 is defined such as Φt1,t2Φt2,t3 =

Φt1,t3 (∀(t1, t2), ∀(t2, t3) ∈ T 2
5). Here, Φt,t : At → At is the identity operator.

A0

A1

A2

A3

A4

A5A6

A7

)
i

k

+

k

)
k

Φ0,6

Φ0,1

Φ0,7

Φ1,2

Φ1,5

Φ2,3

Φ2,4

Figure 10.3: Heisenberg picture( sequential causal operator)

Definition 10.10. (i): [pre-dual sequential causal operator : Schrödinger picture of causality ]

The sequence {(Φt1,t2)∗ : (At1)∗ → (At1)∗}(t1,t2)∈T 2
5

is called a pre-dual sequential causal

operator of {Φt1,t2 : At2 → At1}(t1,t2)∈T 2
5
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10.2 Causality—Mathematical preparation 259

(ii): [Dual sequential causal operator : Schrödinger picture of causality ] A sequence {Φ∗t1,t2 :

A∗t1 → A∗t1}(t1,t2)∈T 2
5

is called a dual sequential causal operator of {Φt1,t2 : At2 → At1}(t1,t2)∈T 2
5
.

(A0)∗

(A1)∗

(A2)∗
(A3)∗

(A4)∗

(A5)∗(A6)∗

(A7)∗

1
z

s

3

s

:

z

(Φ0,6)∗

(Φ0,1)∗

(Φ0,7)∗

(Φ1,2)∗

(Φ1,5)∗

(Φ2,3)∗

(Φ2,4)∗

(i):pre-dual sequential causal operator

A∗0

A∗1

A∗2
A∗3

A∗4

A∗5A∗6

A∗7

1
z

s

3

s

:

z

Φ∗0,6

Φ∗0,1

Φ∗0,7

Φ∗1,2

Φ∗1,5

Φ∗2,3

Φ∗2,4

(ii):dual sequential causal operator

Figure 10.4: Schrödinger picture ( dual sequential causal operator)

Remark 10.11. [The Heisenberg picture is formal; the Schrödinger picture is makeshift ]
The Schrödinger picture is intuitive and handy. Consider the Schrödinger picture{Φ∗t1,t2 :
A∗t1 → A∗t1}(t1,t2)∈T 2

5
. For C∗-mixed state ρt1(∈ Sm(A∗t1) (i.e., a state at time t1),

• C∗-mixed state ρt2(∈ Sm(A∗t2)) (at time t2(≥ t1)) is defined by

ρt2 = Φ∗t1,t2ρt1

However, the linguistic interpretation says “state does not move”, and thus, we consider that

•


the Heisenberg picture is formal

the Schrödinger picture is makeshift
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260 Chapter 10 Axiom 2—causality

10.3 Axiom 2 —Smoke is not located on the place which

does not have fire

10.3.1 Axiom 2 (A chain of causal relations)

Now we can propose Axiom 2 (i.e., causality), which is the measurement theoretical repre-

sentation of the maxim (Smoke is not located on the place which does not have fire ):

(C): Axiom 2 (A chain of causalities)

(Under the preparation to this section, we can read this)

For each t(∈ T=“tree”)), consider the basic structure:

[At ⊆ At ⊆ B(Ht)]

Then, the chain of causalities is represented by a sequential causal operator {Φt1,t2 :
At2 → At1}(t1,t2)∈T 2

5
.

10.3.2 Sequential causal operator—State equation, etc.

In what follows, we shall exercise the chain of causality in terms of quantum language.

Example 10.12. [State equation] Let T = R be a tree which represents the time axis. (Don’t

mind the infinity of T . Cf. Chapter 14.) For each t(∈ T ), consider the state space Ωt = Rn

(n-dimensional real space). And consider simultaneous ordinary differential equation of the

first order 
dω1

dt
(t) = v1(ω1(t), ω2(t), . . . , ωn(t), t)

dω2

dt
(t) = v2(ω1(t), ω2(t), . . . , ωn(t), t)

· · · · · ·
dωn
dt

(t) = vn(ω1(t), ω2(t), . . . , ωn(t), t)

(10.12)

which is called a state equation . Let φt1,t2 : Ωt1 → Ωt2 , (t1 5 t2) be a deterministic causal

map induced by the state equation (10.12). It is clear that φt2,t3(φt1,t2(ωt1)) = φt1,t3(ωt1) (ωt1 ∈
Ωt1 , t1 5 t2 5 t3). Therefore, we have the deterministic sequential causal operator {Φt1,t2 :

L∞(Ωt2)→ L∞(Ωt1)}(t1,t2)∈T 2
5
.

Example 10.13. [Difference equation of the second order] Consider the discrete time T =

{0, 1, 2, . . .} with the parent map π : T \ {0} → T such that π(t) = t − 1 (∀t = 1, 2, ...). For

each t(∈ T ), consider a state space Ωt such that Ωt = R ( with the Lebesgue measure). For
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10.3 Axiom 2 —Smoke is not located on the place which does not have fire 261

example, consider the following difference equation, that is, φ : Ωt × Ωt+1 → Ωt+2 satisfies as

follows.

ωt+2 = φ(ωt, ωt+1) = ωt + ωt+1 + 2 (∀t ∈ T )

Here, note that the state ωt+2 depends on both ωt+1 and ωt (i.e., multiple markov property).

This must be modified as follows. For each t(∈ T ) consider a new state space Ω̃t = Ωt×Ωt+1 =

R× R. And define the deterministic causal map φ̃t,t+1 : Ω̃t → Ω̃t+1 as follows.

(ωt+1, ωt+2) = φ̃t,t+1(ωt, ωt+1) = (ωt+1, ωt + ωt+1 + 2)

(∀(ωt, ωt+1) ∈ Ω̃t, ∀t ∈ T )

Therefore, by Theorem 10.4, the deterministic causal operator Φ̃t,t+1 : L∞(Ω̃t+1)→ L∞(Ω̃t) is

defined by

[Φ̃t,t+1f̃t](ωt, ωt+1) = f̃t(ωt+1, ωt + ωt+1 + 2)

(∀(ωt, ωt+1) ∈ Ω̃t,∀f̃t ∈ L∞(Ω̃t+1),∀t ∈ T \ {0}))

Thus, we get the deterministic sequential causal operator {Φ̃t,t+1 : L∞(Ω̃t+1)→ L∞(Ω̃t)}t∈T\{0}.

♠Note 10.2. In order to analyze multiple markov process and time-lag process, such ideas in
Example 10.13 are needed.
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10.4 Kinetic equation (in classical mechanics and quan-

tum mechanics)

10.4.1 Hamiltonian ( Time-invariant system)

In this section, we consider the simplest kinetic equation in classical system and quantum

system.

Consider the state space Ω such that Ω = R2, that is,

R2 = Rq × Rp={(q, p) = (position , momentum ) | q, p ∈ R} (10.13)

Hamiltonian H(q, p) is defined by the total energy, for example, as the typical case (m:

particle mass), we consider that

[Hamiltonian (= H(q, p))]

=[kinetic energy(=
p2

2m
)] + [potential energy(= V (q))] (10.14)

10.4.2 Newtonian equation(=Hamilton’s canonical equation)

Concerning Hamiltonian H(q, p), Hamilton’s canonical equation is defined by

Hamilton’s canonical equation =


dp
dt

= −H(q,p)
∂q

dq
dt

= H(q,p)
∂p

(10.15)

And thus, in the case of (10.14), we get

Hamilton’s canonical equation =


dp
dt

= −H(q,p)
∂q

= −∂V (q,p)
∂q

dq
dt

= ∂H(q,p)
∂p

= p
m

(10.16)

which is the same as Newtonian equation. That is,

m
d2q

dt2
= [Mass]× [Acceleration] = −∂V (q, p)

∂q
(= Force)

Now, let us describe the above (10.16) in terms of quantum language. For each t ∈ T = R,

define the state space Ωt by

Ωt = Ω = R2 = Rq × Rp={(q, p) = (position , momentum ) | q, p ∈ R} (10.17)
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10.4 Kinetic equation (in classical mechanics and quantum mechanics) 263

and assume Lebesgue measure ν.

Then, we have the classical basic structure:

[C0(Ωt) ⊆ L∞(Ωt) ⊆ B(L2(Ωt))] (∀t ∈ T = R)

The solution of the canonical equation (10.16) is defined by

Ωt1 3 ωt1 7→ φt1,t2(ωt1) = ωt2 ∈ Ωt2 (10.18)

Since (10.18) determines the deterministic causal map, we have the deterministic sequential

causal operator {Φt1,t2 : L∞(Ωt2)→ L∞(Ωt1) }(t1,t2)∈T 2
≤

such that

[Φt1,t2(ft2)](ωt1) = ft2(φt1,t2(ωt1)) (∀ft2 ∈ L∞(Ω2),∀ωt1 ∈ Ωt1 , t1 ≤ t2) (10.19)

10.4.3 Schrödinger equation (quantizing Hamiltonian)

The quantization is the following procedure:

quantization2



total energyE −−−−−−−−→
quantumization

~
√
−1∂
∂t

momentum p −−−−−−−−→
quantumization

~∂√
−1∂q

position q −−−−−−−−→
quantumization

q

(10.20)

Substituting the quantumization (10.20) to the classical Hamiltonian:

E = H(q, p) =
p2

2m
+ V (q)

we get

~
√
−1

∂

∂t
= H(q,

~√
−1

∂

∂q
) = − ~2

2m

∂2

∂q2
+ V (q) (10.21)

And therefore, we get the Schrödinger equation:

~
√
−1

∂u(t, q)

∂t
= H(q,

~√
−1

∂

∂q
)u(t, q) = − ~2

2m

∂2

∂q2
u(t, q) + V (q)u(t, q) (10.22)

Putting u(t, ·) = ut ∈ L2(R) (∀t ∈ T = R) we denote the Schrödinger equation (10.22) by

ut =
1

~
√
−1

Hut

2 Learning the (10.20) by rote, we can derive Schrödinger equation (10.22). However, the meaning of
“quantumization” is not clear.
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264 Chapter 10 Axiom 2—causality

Solving this formally, we see

ut = e
H

~
√
−1
t
u0 (Thus, the state representation is |ut〉〈ut| = |e

H

~
√
−1
t
u0〉〈e

H

~
√

−1
t
u0| ) (10.23)

where, u0 ∈ L2(R) is an initial condition.

Now, put Hilbert spaceHt = L2(R) (∀t ∈ T = R), and consider the quantum basic structure:

[C(L2(R)) ⊆ B(L2(R)) ⊆ B(L2(R))]

The dual sequential causal operator {Φ∗t1,t2 : Tr(Ht1)→ Tr(Ht2)}(t1,t2)∈T 2
≤

is defined by

Φ∗t1,t2(ρ) = e
H

~
√

−1
(t2−t1)ρe

−H

~
√

−1
(t2−t1) (∀ρ ∈ Tr(Ht1) = (B(Ht1))∗ = C(Ht1)

∗) (10.24)

And therefore, the sequential causal operator {Φt1,t2 : B(Ht2)→ B(Ht1)}(t1,t2)∈T 2
≤

is defined by

Φt1,t2(A) = e
−H

~
√

−1
(t2−t1)Ae

H

~
√
−1

(t2−t1) (∀A ∈ B(Ht2)) (10.25)

Also, since

Φ∗t1,t2(S
p(C(Ht1)

∗) ⊆ Sp(C(Ht2)
∗),

the sequential causal operator {Φt1,t2 : B(Ht2) → B(Ht1)}(t1,t2)∈T 2
≤

is deterministic. Since we

deal with the time-invariant system, putting t = t2 − t1, we see that (10.25) is equal to

At = Φt(A0) = e
−H

~
√

−1
t
A0e

H

~
√

−1
t

(10.26)

And thus, we get the differential equation:

dAt
dt

=
−H
~
√
−1

e
−H

~
√

−1
t
A0e

H

~
√

−1
t
+
−H
~
√
−1

e
−H

~
√

−1
t
A0e

H

~
√

−1
t H

~
√
−1

=
−H
~
√
−1

At + At
H

~
√
−1

=
1

~
√
−1

(
AtH −HAt

)
(10.27)

which is just Heisenberg’s kinetic equation.
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10.5 Exercise:Solve Schrödinger equation by variable sep-

aration method

Consider a particle with the mass m in the box (i.e., the closed interval [0, 2]) in the one

dimensional space R. The motion of this particle (i.e., the wave function of the particle) is

represented by the following Schrödinger equation

i~
∂

∂t
ψ(q, t) = − ~2∂2

2m∂q2
ψ(q, t) + V0(q)ψ(q, t) ( in H = L2(R))

where

V0(q) =

{
0 (0 ≤ q ≤ 2)
∞ ( otherwise )

q
R

ψ(q, t)

V0(q)
∞

-

0 2

Figure 10.5: Particle in a box

Put

φ(q, t) = T (t)X(q) (0 ≤ q ≤ 2).

And consider the following equation:

i~
∂

∂t
φ(q, t) = − ~2∂2

2m∂q2
φ(q, t).

Then, we see

iT ′(t)

T (t)
= − X ′′(q)

2mX(q)
= K(= constant ).

Then,

φ(q, t) = T (t)X(q) = C3 exp(iKt)
(
C1 exp(i

√
2mK/~ q) + C2 exp(− i

√
2mK/~ q).

)
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266 Chapter 10 Axiom 2—causality

Since X(0) = X(2) = 0 (perfectly elastic collision), putting K = n2π2~
8m

, we see

φ(q, t) = T (t)X(q) = C3 exp(
in2π2~t

8m
) sin(nπq/2) (n = 1, 2, ...).

Assume the initial condition:

ψ(q, 0) = c1 sin(πq/2) + c2 sin(2πq/2) + c3 sin(3πq/2) + · · · .

where
∫
R |ψ(q, 0)|2dq = 1. Then we see

ψ(q, t)

=c1 exp(
iπ2~t
8m

) sin(πq/2) + c2 exp(
i4π2~t

8m
) sin(2πq/2) + c3 exp(

i9π2~t
8m

) sin(3πq/2) + · · · .

And thus, we have the time evolution of the state by

ρt = |ψ(·, t)〉〈ψ(·, t)| (∈ Sp(Tr(H)) ⊆ B(H)) (∀t ≥ 0)
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10.6 Random walk and quantum decoherence 267

10.6 Random walk and quantum decoherence

10.6.1 Diffusion process

Example 10.14. [Random walk] Let the state space Ω be Z = {0,±1,±2, . . .} with the

counting measure ν. Define the dual causal operator Φ∗ : M+1(Z)→M+1(Z) such that

Φ∗(δi) =
δi−1 + δi+1

2
(i ∈ Z)

where δ(·)(∈ M+1(Z)) is a point measure. Therefore, the causal operator Φ : L∞(Z)→ L∞(Z)

is defined by

[Φ(F )](i) =
F (i− 1) + F (i+ 1)

2
(∀F ∈ L∞(Z), ∀i ∈ Z)

and the pre-dual causal operator Φ∗ : L1(Z)→ L1(Z) is defined by

[Φ∗(f)](i) =
f(i− 1) + F (i+ 1)

2
(∀f ∈ L1(Z), ∀i ∈ Z)

Now, consider the discrete time T = {0, 1, 2, . . . , N}, where the parent map π : T \ {0} → T

is defined by π(t) = t− 1 (t = 1, 2, ...). For each t(∈ T ), a state space Ωt is define by Ωt = Z.

Then, we have the sequential causal operator {Φπ(t),t(= Φ) : L∞(Ωt)→ L∞(Ωπ(t))}t∈T\{0}
.

10.6.2 Quantum decoherence: non-deterministic causal operator

Consider the quantum basic structure:

[C(H) ⊆ B(H) ⊆ B(H)]

Let P = {Pn}∞n=1 be the spectrum decomposition in B(H), that is,

Pn is a projection (i.e., Pn = (Pn)2 ), and,
∞∑
n=1

Pn = I

Define the operator (ΨP)∗ : Tr(H)→ Tr(H) such that

(ΨP)∗(|u〉〈u|) =
∞∑
n=1

|Pnu〉〈Pnu| (∀u ∈ H)

Clearly we see

〈v, (ΨP)∗(|u〉〈u|)v〉 = 〈v, (
∞∑
n=1

|Pnu〉〈Pnu|)v〉 =
∞∑
n=1

|〈v, |Pnu〉|2 ≥ 0 (∀u, v ∈ H)
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268 Chapter 10 Axiom 2—causality

and,

Tr((ΨP)∗(|u〉〈u|))

=Tr(
∞∑
n=1

|Pnu〉〈Pnu|) =
∞∑
n=1

∞∑
k=1

|〈ek, Pnu〉|2 =
∞∑
n=1

‖Pnu‖2 = ‖u‖2 (∀u ∈ H)

where {ek}∞k=1 is CONS in H.

And so,

(ΨP)∗(Tr
p
+1(H)) ⊆ Tr+1(H)

Therefore, ΨP(= ((ΨP)∗)
∗) : B(H) → B(H) is a causal operator, but it is not deterministic.

In this note, a non-deterministic (sequential) causal operator is called a quantum decoherence.

Remark 10.15. [Quantum decoherence] For the relation between quantum decoherence and

quantum Zeno effect, see § 11.3. Also, for the relation between quantum decoherence and

Schrödinger’s cat, see § 11.4.

In tis note, we assume that the don-deterministic causal operator belongs to the mixed

measurement theory. Thus, we consider that quantum language (= measurement theory ) is

classified as follows.

(A) measurement theory
(=quantum language)


pure type

(A1)

{
classical system : Fisher statistics
quantum system : usual quantum mechanics

mixed type
(A2)

{
classical system : including Bayesian statistics, Kalman filter

quantum system : quantum decoherence
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10.7 Leibniz=Clarke Correspondence: What is space-

time?

The problems (“What is space?” and “What is time?”) are the most important in modern

science as well as the traditional philosophies. In this section, we give my answer to this

problem.

10.7.1 “What is space?” and “What is time?”)

10.7.1.1 Space in quantum language
( How to describe “space” in quantum language)

In what follows, let us explain “space” in measurement theory (= quantum language ).

For example, consider the simplest case, that is,

(A) “space”=Rq( one dimensional space)

Since classical system and quantum system must be considered, we see

(B)


(B1): a classical particle in the one dimensional space Rq

(B2): a quantum particle in the one dimensional space Rq

In the classical case, we start from the following state:

(q, p) = (“position”, “momentum”) ∈ Rq × Rp

Thus, we have the classical basic structure:

(C1) [C0(Rq × Rp) ⊆ L∞(Rq × Rp) ⊆ B(L2(Rq × Rp)]

Also, concerning quantum system, we have the quantum basic structure:

(C2) [C(L2(Rq) ⊆ B(L2(Rq) ⊆ B(L2(Rq)]

Summing up, we have the basic structure

(C) [A ⊆ A ⊆ B(H)]


(C1): classical [C0(Rq × Rp) ⊆ L∞(Rq × Rp) ⊆ B(L2(Rq × Rp)]

(C2): quantum [C(L2(Rq) ⊆ B(L2(Rq) ⊆ B(L2(Rq)]

Since we always start from a basic structure in quantum language, we consider that

How to describe “space” in quantum language

⇔ How to describe [(A):space] by [(C):basic structure] (10.28)
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270 Chapter 10 Axiom 2—causality

This is done in the following steps.

Assertion 10.16. How to describe “space” in quantum language

(D1) Begin with the basic structure:

[A ⊆ A ⊆ B(H)]

(D2) Next, consider a certain commutative C∗-algebra A0(= C0(Ω)) such that

A0 ⊆ A

(D3) Lastly, the spectrum Ω (≈ Sp(A∗)) is used to represent “space”.

For example,

(E1) in the classical case (C1):

[C0(Rq × Rp) ⊆ L∞(Rq × Rp) ⊆ B(L2(Rq × Rp))]

we have the commutative C0(Rq) such that

C0(Rq) ⊆ L∞(Rq × Rp)

And thus, we get the space Rq as mentioned in (A)

(E2) in the quantum case (C2):

[C(L2(Rq) ⊆ B(L2(Rq)) ⊆ B(L2(Rq))]

we have the commutative C0(Rq) such that

C0(Rq) ⊆ B(L2(Rq))

And thus, we get the space Rq as mentioned in (A)

10.7.1.2 Time in quantum language
( How to describe “time” in quantum language)

In what follows, let us explain “time” in measurement theory (= quantum language ).

This is easily done in the following steps.

Assertion 10.17. How to describe “time” in quantum language
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(F1) Let T be a tree. (Don’t mind the finiteness or infinity of T . Cf. Chapter 14.) For each
t ∈ T , consider the basic structure:

[At ⊆ At ⊆ B(Ht)]

(F2) Next, consider a certain linear subtree T ′(⊆ T ), which can be used to represent “time”.

10.7.2 Leibniz-Clarke Correspondence

The above argument urges us to recall Leibniz-Clarke Correspondence (1715–1716: cf. [1]),

which is important to know both Leibniz’s and Clarke’s (=Newton’s) ideas concerning space

and time.

(G) [The realistic space-time]

Newton’s absolutism says that the space-time should be regarded as a receptacle

of a “thing.” Therefore, even if “thing” does not exits, the space-time exists.

On the other hand,

(H) [The metaphysical space-time]

Leibniz’s relationalism says that

(H1) Space is a kind of state of “thing”.

(H2) Time is an order of occurring in succession which changes one after another.

Therefore, I regard this correspondence as

Newton (≈ Clarke)

(realistic view)

←→
v.s.

Leibniz
(linguistic view)

which should be compared to

Einstein
(realistic view)

←→
v.s.

Bohr
(linguistic view)

(also, recall Note 4.4).

♠Note 10.3. Many scientists may think that
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Newton’s assertion is understandable, in fact, his idea was inherited by Einstein. On the
other, Leibniz’s assertion is incomprehensible and literary. Thus, his idea is not related to
science.

However, recall the classification of the world-description (Figure 1.1):

1© : Newton, Clarke
(realistic world view)

· · ·
(space-time in physics)

realistic space-time
“What is space-time?”

(successors: Einstein, etc.)

2© : Leibniz
(linguistic world view)

· · ·
(space-time in measurement theory)

linguistic space-time
“How should space-time be represented?”

(i.e., spectrum, tree)

in which Newton and Leibniz respectively devotes himself to 1© and 2©. Although Leibniz’s
assertion is not clear, we believe that

• Leibniz found the importance of “linguistic space and time” in science,

Also, it should be noted that

(]) Newton proposed the scientific language called Newtonian mechanics,
on the other hand,
Leibniz could not propose a scientific language

Summing up, I have the following opinion:

Table 10.1 : The realistic world view vs the linguistic world view

Dispute � R vs. L the realistic world view the linguistic world view

Greek philosophy Aristotle Plato

Problem of universals Realismus(Anselmus) Nominalisme(William of Ockham)

Space·times Clarke( Newton) Liebniz

Quantum mechanics Einstein (cf. [13]) Bohr (cf. [5])

I want to believe that “realistic” vs. “linguistic” is always hidden behind the greatest disputes
in the history of the world view.

♠Note 10.4. The space-time in measuring object is well discussed in the above. However, we have
to say something about “observer’s time”. We conclude that observer’s time is meaningless in
measurement theory as mentioned the linguistic interpretation in Chap. 1. That is, the following
question is nonsense in measurement theory:

(]1) When and where does an observer take a measurement

(]2) Therefore, there is no tense (present, past, future) in sciences.

Thus, some may recall

McTaggart’s paradox: “Time does not exist”
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(cf. ref.[53]). Although McTaggart s logic is not clear, we believe that his assertion is the same
as “Subjective time (e.g., Augustinus’ times, Bergson’s times, etc. ) does not exist in science”.
If it be so,

(]3) McTaggart’s assertion as well as Leibniz’ assertion are one of the linguistic
interpretation.

After all, we conclude that

(]4) the cause of philosophers’ failure is not to propose a language.

Talking cynically, we say that

(]5) Philosophers continued investigating “linguistic interpretation” (=“how to use Axioms 1
and 2”) without language (i.e., Axiom 1(measurement:§2.7) and Axiom 2(causality:§10.3)).
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Chapter 11

Simple measurement and causality

Until the previous chapter, we studied all of quantum language, that is,

(])



(]1): pure measurement theory
(=quantum language)

:=
[(pure)Axiom 1]

pure measurement
(cf. §2.7)

+

[Axiom 2]

Causality
(cf. §10.3)︸ ︷︷ ︸

a kind of spell(a priori judgment)

+

[quantum linguistic interpretation]

Linguistic interpretation
(cf. §3.1)︸ ︷︷ ︸

the manual how to use spells

(]2): mixed measurement theory
(=quantum language)

:=

[(mixed)Axiom(m) 1]

mixed measurement
(cf. §9.1)

+

[Axiom 2]

Causality
(cf. §10.3)︸ ︷︷ ︸

a kind of spell(a priori judgment)

+

[quantum linguistic interpretation]

Linguistic interpretation
(cf. §3.1)︸ ︷︷ ︸

the manual how to use spells

However, what is important is

• to exercise the relationship of measurement and causality

Since measurement theory is a language, we have to note the following wise sayings:

• experience is the best teacher, or custom makes all things

11.1 The Heisenberg picture and the Schrödinger pic-

ture

11.1.1 State does not move— the Heisenberg picture —

We consider that

“only one measurement” =⇒“state does not move”

275
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276 Chapter 11 Simple measurement and causality

That is because

(a) In order to see the state movement, we have to take measurement at least more than

twice. However, the “plural measurement” is prohibited. Thus, we conclude “state does

not move”

We want to believe that this is associated with Parmenides’ words:

There is no movement

which is related to the Heisenberg picture. This will be explained in what follows.

Theorem 11.1. [Causal operator and observable] Consider the basic structure:

[Ak ⊆ Ak ⊆ B(Hk)] (k = 1, 2)

Let Φ1,2 : A2 → A1 be a causal operator, and let O2 = (X,F, F2) be an observable in A2.
Then, Φ1,2O2 = (X,F,Φ1,2F2) is an observable in A2.

Proof. Let Ξ (∈ F). And consider the countable decomposition {Ξ1,Ξ2, . . . ,Ξn, . . .} of Ξ(
i.e., Ξ =

∞∪
n=1

Ξn, Ξn ∈ F, (n = 1, 2, . . .), Ξm ∩ Ξn = ∅ (m 6= n)
)

. Then we see, for any

ρ1(∈ (A1)∗),

(A1)∗

(
ρ1,Φ1,2F2(

∞∪
n=1

Ξn)
)
A1

=
(A1)∗

(
(Φ1,2)∗ρ1, F2(

∞∪
n=1

Ξn)
)
A2

=
∞∑
n=1

(A1)∗

(
(Φ1,2)∗ρ1, F2(Ξn)

)
A2

=
∞∑
n=1

(A1)∗

(
ρ1,Φ1,2F2(Ξn)

)
A2

Thus,Φ1,2O2 = (X,F,Φ1,2F2) is an observable in A1.

Let us begin from the simplest case. Consider a tree T = {0, 1}. For each t ∈ T , consider

the basic structure:

[At ⊆ At ⊆ B(Ht)] (t = 0, 1)

And consider the causal operator Φ0,1 : A1 → A0. That is,

A0
Φ0,1←−− A1 (11.1)

Therefore, we have the pre-dual operator (Φ0,1)∗ and the dual operator Φ∗0,1:

(A0)∗ −−−−→
(Φ0,1)∗

(A1)∗ A∗0 −−→
Φ∗

0,1

A∗1 (11.2)
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If Φ0,1 : A1 → A0 is deterministic, we see that

A∗0 ⊃ Sp(A∗0) 3 ρ −−→
Φ∗

0,1

Φ∗0,1ρ ∈ Sp(A∗1) ⊂ A∗1 (11.3)

Under the above preparation, we shall explain the Heisenberg picture and the Schrödinger

picture in what follows.

Assume that

(A1) Consider a deterministic causal operator Φ0,1 : A1 → A0.

(A2) a state ρ0 ∈ Sp(A∗0) : pure state

(A3) Let O1 = (X1,F1, F1) be an observable in A1.

Explanation 11.2. [the Heisenberg picture].
The Heisenberg picture is just the following (a):

(a1) To identify an observable O1 in A1 with an Φ0,1O1 in A0 . That is,

Φ0,1O1

( in A0)

Φ0,1←−−−−−−−−
identification

O1
( in A1)

Therefore,

(a2) a measurement of an observable O1 (at time t = 1) for a pure state ρ0 (at time t = 0)
∈ Sp(A∗0) is represented by

MA0
(Φ0,1O1, S[ρ0])

Thus, Axiom 1 ( measurement: §2.7) says that

(a3) the probability that a measured value belongs to Ξ(∈ F) is given by

A∗
0

(
ρ0,Φ0,1(F1(Ξ)

)
A0

(11.4)

Explanation 11.3. [the Schrödinger picture]. The Schrödinger picture is just the
following (b):

(b1) To identify a pure state Φ∗0,1ρ0(∈ Sp(A∗1)) with ρ0(∈ Sp(A∗0)), That is,

A∗0 ⊃ Sp(A∗0) 3 ρ0
Φ∗

0,1−−−−−−−−→
identification

Φ∗0,1ρ0 ∈ Sp(A∗1) ⊂ A∗1

Therefore, Axiom 1 ( measurement: §2.7) says that

(b2) a measurement of an observable O1 (at time t = 1) for a pure state ρ0 (at time t = 0)
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∈ Sp(A∗1) is represented by

MA1
(O1, S[Φ∗

0,1ρ0]
)

Thus,

(a3) the probability that a measured value belongs to Ξ(∈ F) is given by

A∗
1

(
Φ∗0,1ρ0, F1(Ξ)

)
A1

(11.5)

which is equal to

A∗
0

(
ρ0,Φ0,1(F1(Ξ))

)
A0

(11.6)

In the above sense (i.e., (11.5) and (11.6) ), we conclude that, under the condition (A1),

the Heisenberg picture and the Schrödinger picture are equivalent

That is,

MA0
(Φ0,1O1, S[ρ0])

(Heisenberg picture)

←→
(identification)

MA1
(O1, S[Φ∗

0,1ρ0]
)

(Schrödenger picture)

(11.7)

Remark 11.4. In the above, the conditions (A1) is indispensable, that is,

(A1) Consider a deterministic causal operator Φ0,1 : A1 → A0.

Without the deterministic conditions (A1), the Schrödinger picture can not be formulated

completely. That is because Φ∗0,1ρ0 is not necessarily a pure state. In this sense, we consider

that

•


the Heisenberg picture is formal

the Schrödinger picture is makeshift
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11.2 de Broglie’s paradox(non-locality=faster-than-light)

In this section, we explain de Broglie’s paradox in B(L2(R)) (cf. §2.10:de Broglie’s paradox

in B(C2) ).

Putting q = (q1, q2, q3) ∈ R3, and

∇2 =
∂2

∂q21
+

∂2

∂q22
+

∂2

∂q23

consider Schrödinger equation (concerning one particle):

i~
∂

∂t
ψ(q, t) =

[−~2
2m
∇2 + V (q, t)

]
ψ(q, t) (11.8)

where, m is the mass of the particle, V is a potential energy.

In order to demonstrate in the picture, regard R3 as R. Therefore, consider the Hilbert

space H = L2(R, dq). Putting Ht = H (t ∈ R), consider the quantum basic structure:

[C(H) ⊆ B(H) ⊆ B(H)]

Equation 11.5. [Schrödinger equation]. There is a particle P (with mass m) in the box (that
is, the closed interval [0, 2](⊆ R)). Let ρt0 = |ψt0〉〈ψt0 | ∈ Sp(C(H)∗) be an initial state
(at time t0) of the particle P . Let ρt = |ψt〉〈ψt| (t0 ≤ t ≤ t1) be a state at time t, where
ψt = ψ(·, t) ∈ H = L2(R, dq) satisfies the following Schrödinger equation:

initial state:ψ(·, t0) = ψt0

i~ ∂
∂t
ψ(q, t) =

[
−~2
2m

∂2

∂q2
+ V (q, t)

]
ψ(q, t)

(11.9)

Consider the same situation in §10.5, i.e., a particle with the mass m in the box (i.e., the

closed interval [0, 2]) in the one dimensional space R.

R

ψ(q, t)

V0(q)
∞

-

0 2 Figure 11.1(1)
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Now let us partition the box [0, 2]] into [0, 1]] and [1, 2]. That is, we change V0(q) to V1(q),

where

V1(q) =


0 (0 ≤ q < 1)
∞ (q = 1)
0 (1 < q ≤ 2)
∞ ( otherwise )

ψ1(q, t)0 1

ψ2(q, t)

V1(q)
∞

-

1 2 Figure 11.1(2)

Next, we carry the box [0, 1]
[
resp. the box [1, 2]

]
to New York (or, the earth)

[
resp. Tokyo

(or, the polar star)
]
.

New York

0 1

ψ1(q, t1)

ψ2(q, t1)

Tokyo

a+1 a+2

-

Figure 11.1(3)

Here, 1� a. Solving the Schrödinger equation (11.9), we see that

ψ1(·, t1) + ψ2(·, t1) = Ut0,t1ψt0

where Ut0,t1 : L2(Rt1)→ L2(Rt0) is the unitary operator.

Put T = {t0, t1}. And consider the observable O = (X = {N, T.E}, 2X , F ) in B(L2(Rt1))

(where “N”=New York, “T”=Tokyo, “E”=elsewhere ) such that

[F ({N})](ω) =

{
1 0 ≤ ω < 1
0 elsewhere

, [F ({T})](ω) =

{
1 a+ 1 ≤ ω < a+ 2
0 elsewhere

,
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[F ({E})](ω) = 1− [F ({N})](ω)− [F ({T})](ω)

Define the causal operator Φt0,t1 : B(L2(Rt2))→ B(L2(Rt1)) by

Φt0,t1(A) = U∗t0,t1AUt0,t1 (∀A ∈ B(L2(Rt2)))

Thus, according to Heisenberg picture, we see, by Axiom 1 ( measurement: §2.7), that

(A1) the probability that a measured value

 N
T
E

 is obtained by the measurement

MB(L2(Rt0 ))

(
Φt0,t1O, S[|ψt0〉〈ψt0 |]

)
is given by 〈ut0 ,Φt0.t1F ({N})ut0〉 =

∫ 1

0
|ψ1(q, t1)|2dq

〈ut0 ,Φt0.t1F ({T})ut0〉 =
∫ a+2

a+1
|ψ2(q, t1)|2dq

〈ut0 ,Φt0.t1F ({E})ut0〉 = 0


Also, according to Schrödinger picture, we see, Axiom 1 ( measurement: §2.7), that

(A2) the probability that a measured value

 N
T
E

 is obtained by the measurement

MB(L2(Rt0 ))

(
O, S[Φ∗

t0,t1
(|ψt0 〉〈ψt0 |)]

)
is given by

Tr
(

Φ∗t0,t1(|ψt0〉〈ψt0 |) · F ({N})
)

= 〈Ut0,t1ψt0 , F ({N})Ut0,t1ψt0〉 =
∫ 1

0
|ψ1(q, t1)|2dq

Tr
(

Φ∗t0,t1(|ψt0〉〈ψt0 |) · F ({T})
)

= 〈Ut0,t1ψt0 , F ({T})Ut0,t1ψt0〉 =
∫ a+2

a+1
|ψ2(q, t1)|2dq

Tr
(

Φ∗t0,t1(|ψt0〉〈ψt0 |) · F ({E})
)

= 〈Ut0,t1ψt0 , F ({E})Ut0,t1ψt0〉 = 0


Note that the probability that we find the particle in the box [0, 1]

[
resp. the box [a+1, a+2]

]
is given by

∫
R |ψ1(q, t1)|2dq

[
resp.

∫
R |ψ2(q, t1)|2dq

]
. That is,

(A1)=(A2)

Remark 11.6. In the above, assume that we get a measured value “N”, that is, we open the

box [0, 1] at New York. And assume that we find the particle in the box [0, 1]. Then, there may

be an opinion that quantum mechanics says that at the moment the wave function ψ2 vanishes.

New York

0 1

“Vanish”

Tokyo

a+1 a+2Figure 11.1(4)
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However, this kind of “the collapse of wave function” is not assured in quantum language (which

says that “state does not move”). In this sense, we consider that

• the description (A1) may not be paradoxical.

Also, note that New York
[
resp. Tokyo

]
may be the earth

[
resp. the polar star

]
. Thus,

• the above argument (in both cases (A1) and (A2)) implies that there is something faster

than light.

This is called “the de Broglie paradox”(cf. [12, 63]). This is a true paradox, which is not

clarified even in quantum language.
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11.3 Quantum Zeno effect

This section is extracted from

• Ref. [38]: S. Ishikawa; Heisenberg uncertainty principle and quantum Zeno effects in the

linguistic interpretation of quantum mechanics ( arXiv:1308.5469 [quant-ph] 2014 )

11.3.1 Quantum decoherence: non-deterministic sequential causal
operator

Let us start from the review of Section 10.6.2 (quantum decoherence). Consider the quantum

basic structure:

[C(H) ⊆ B(H) ⊆ B(H)]

Let P = [Pn]∞n=1 be the spectrum decomposition in B(H), that is,

Pn is a projection, and,
∞∑
n=1

Pn = I

Define the operator (ΨP)∗ : Tr(H)→ Tr(H) such that

(ΨP)∗(|u〉〈u|) =
∞∑
n=1

|Pnu〉〈Pnu| (∀u ∈ H)

Clearly we see

〈v, (ΨP)∗(|u〉〈u|)v〉 = 〈v, (
∞∑
n=1

|Pnu〉〈Pnu|)v〉 =
∞∑
n=1

|〈v, |Pnu〉|2 ≥ 0 (∀u, v ∈ H)

and,

Tr((ΨP)∗(|u〉〈u|))

=Tr(
∞∑
n=1

|Pnu〉〈Pnu|) =
∞∑
n=1

∞∑
k=1

|〈ek, Pnu〉|2 =
∞∑
n=1

‖Pnu‖2 = ‖u‖2 (∀u ∈ H)

And so,

(ΨP)∗(Tr
p
+1(H)) ⊆ Tr+1(H)

Therefore,

(]) ΨP(= ((ΨP)∗)
∗) : B(H)→ B(H) is a causal operator, but it is not deterministic.
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In this note, a non-deterministic (sequential) causal operator is called a quantum deco-

herence.

Example 11.7. [Quantum decoherence in quantum Zeno effect cf. [35]]. Further consider a

causal operator (Ψ∆t
S )∗ : Tr(H)→ Tr(H) such that

(Ψ∆t
S )∗(|u〉〈u|) = |e−

iH∆t
~ u〉〈e−

iH∆t
~ u| (∀u ∈ H)

where the Hamiltonian H (cf. (10.22) ) is, for example, defined by

H =
[−~2

2m

∂2

∂q2
+ V (q, t)

]
Let P = [Pn]∞n=1 be the spectrum decomposition in B(H), that is, for each n, Pn ∈ B(H) is

a projection such that

∞∑
n=1

Pn = I

Define the (ΨP)∗ : Tr(H)→ Tr(H) such that

(ΨP)∗(|u〉〈u|) =
∞∑
n=1

|Pnu〉〈Pnu| (∀u ∈ H)

Also, we define the Schrödinger time evolution (Ψ∆t
S )∗ : Tr(H)→ Tr(H) such that

(Ψ∆t
S )∗(|u〉〈u|) = |e−

iH∆t
~ u〉〈e−

iH∆t
~ u| (∀u ∈ H)

where H is the Hamiltonian (10.21). Consider t = 0, 1. Putting ∆t = 1
N

, H = H0 = H1, we

can define the (Φ
(N)
0,1 )∗ : Tr(H0)→ Tr(H1) such that

(Φ
(N)
0,1 )∗ = ((Ψ

1/N
S )∗(ΨP)∗)

N

which induces the Markov operator Φ
(N)
0,1 : B(H1) → B(H0) as the dual operator Φ

(N)
0,1 =

((Φ
(N)
0,1 )∗)

∗. Let ρ = |ψ〉〈ψ| be a state at time 0. Let O1 :=(X,F, F ) be an observable in B(H1).

Then, we see

ρ=|ψ〉〈ψ|

B(H0) ←−−−
Φ

(N)
0,1

B(H1)
O1 :=(X,F,F )

Thus, we have a measurement:

MB(H0)(Φ
(N)
0,1 O1, S[ρ])(

or more precisely, MB(H0)(Φ
(N)
0,1 O :=(X,F,Φ

(N)
0,1 F ), S[|ψ〉〈ψ|])

)
. Here, Axiom 1 ( §2.7) says that
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(A) the probability that the measured value obtained by the measurement belongs to Ξ(∈ F)

is given by

Tr(|ψ〉〈ψ| · Φ(N)
0,1 F (Ξ)) (11.10)

Now we shall explain “quantum Zeno effect” in the following example.

Example 11.8. [Quantum Zeno effect] Let ψ ∈ H such that ‖ψ‖ = 1. Define the spectrum

decomposition

P = [P1(= |ψ〉〈ψ|), P2(= I − P1)] (11.11)

And define the observable O1 :=(X,F, F ) in B(H1) such that

X = {x1, x2}, F = 2X

and

F ({x1}) = |ψ〉〈ψ|(= P1), F ({x2}) = I − |ψ〉〈ψ|(= P2),

Now we can calculate (11.10)(i.e., the probability that a measured value x1 is obtained) as

follows.

(11.10) = 〈ψ, ((Ψ1/N
S )∗(ΨP)∗)

N(|ψ〉〈ψ|)ψ〉

≥ |〈ψ, e−
iH
~N ψ〉〈ψ, e

iH
~N ψ〉|N

≈
(

1− 1

N2

(
||(H

~
)ψ||2 − |〈ψ, (H

~
)ψ〉|2

))N
→ 1

(N →∞) (11.12)

Thus, if N is sufficiently large, we see that

MB(H0)(Φ
(N)
0,1 O1, S[|ψ〉〈ψ|]) ≈ MB(H0)(ΦIO1, S[|ψ〉〈ψ|])

(where ΦI : B(H1)→ B(H0) is the identity map)

= MB(H0)(O1, S[|ψ〉〈ψ|])

Hence, we say, roughly speaking in terms of the Schrödinger picture, that

the state |ψ〉〈ψ| does not move.
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Remark 11.9. The above argument is motivated by B. Misra and E.C.G. Sudarshan [55].

However, the title of their paper: “The Zeno’s paradox in quantum theory” is not proper.

That is because

(B) the spectrum decomposition P should not be regarded as an observable (or moreover,

measurement).

The effect in Example 11.8 should be called “brake effect” and not “watched pot effect”.
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11.4 Schrödinger’s cat and Laplace’s demon

Let us explain Schrödinger’s cat paradox in the Schrödinger picture.

Problem 11.10. [Schrödinger’s cat]

(a) Suppose we put a cat in a cage with a radioactive atom, a Geiger counter, and a poison

gas bottle; further suppose that the atom in the cage has a half-life of one hour, a fifty-

fifty chance of decaying within the hour. If the atom decays, the Geiger counter will

tick; the triggering of the counter will get the lid off the poison gas bottle, which will

kill the cat. If the atom does not decay, none of the above things happen, and the cat

will be alive.

Geiger counter

radioactive atom

· · ·

cat

poison gas

Figure 11.2: Schrödinger’s cat

Here, we have the following question:

(b) Is the cat dead or alive after 1 hour (= 6060 seconds ) ?

Of course, we say that it is half-and-half whether the cat is alive. However, our problem

is

Clarify the meaning of “half-and-half”

Answer 11.11. [The ordinary answer to Problem11.10(i.e., the answer without quantum lan-

guage)].

Put q = (q11, q12, q13, q21, q22, q23, . . . , qn1, qn2, qn3) ∈ R3n. And put

∇2
i =

∂2

∂q2i1
+

∂2

∂q2i2
+

∂2

∂q2i3
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Consider the quantum system basic structure:

[C(H) ⊆ B(H) ⊆ B(H)] ( where, H = L2(R3n, dq) )

And consider the Schrödinger equation (concerning n-particles system):
i~ ∂

∂t
ψ(q, t) =

[∑n
i=1

−~2
2mi
∇2
i + V (q, t)

]
ψ(q, t)

ψ0(q) = ψ(q, 0) : initial condition

(11.13)

where, mi is the mass of a particle Pi, V is a potential energy.

If we believe in quantum mechanics, it suffices to solve this Schrödinger equation (11.13). That

is,

(A1) Assume that the wave function ψ(·, 602) = U0,602ψ0 after one hour (i.e., 602 seconds) is

calculated. Then, the state ρ602 (∈ Trp+1(H)) after 602 seconds is represented by

ρ602 = |ψ602〉〈ψ602 | (11.14)

(where, ψ602 = ψ(·, 602)).

Now, define the observable O = (X = {life, death}, 2X , F ) in B(H) as follows.

(A2) that is, putting

Vlife(⊆ H) =
{
u ∈ H | “ the state

|u〉〈u|
‖u‖2

”⇔ “cat is alive”
}

Vdeath(⊆ H) = the orthogonal complement space of Vlife

= {u ∈ H | 〈u, v〉 = 0 (∀v ∈ Vlife)}

define F ({life})(∈ B(H)) is the projection of the closed subspace Vlife and F ({death}) =

I − F ({life}),

Here,

(A3) Consider the measurement MB(H)(O = (X, 2X , F ), S[ρ602]). The probability that a mea-

sured value

[
life
death

]
is obtained is given by

 Tr(H)

(
ρ602 , F ({life})

)
B(H) = 〈ψ602 , F ({life})ψ602〉 = 0.5

Tr(H)

(
ρ602 , F ({death})

)
B(H) = 〈ψ602 , F ({death})ψ602〉 = 0.5
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Therefore, we can assure that

ψ602 =
1√
2

(ψlife + ψdeath) (11.15)

(where, ψlife ∈ Vlife, ‖ψlife‖ = 1 ψdeath ∈ Vdeath, ‖ψdeath‖ = 1)

Hence. we can conclude that

(A4) the state (or, wave function) of the cat (after one hour ) is represented by (11.15), that

is,

“Fig.(]1)”+“Fig.(]2)”√
2

Fig. (]1) ≈ ψlife

Geiger counter

radioactive atom

· · ·
click!

6
Geiger counter

radioactive atom

Fig. (]2)≈ ψdeath

cat

poison gas

cat

poison gas

Figure 11.3: Schrödinger’s cat(half and half)

And,

(A5) After one hour (i.e, to the moment of opening a window), It is decided “the cat is dead”

or “the cat is vigorously alive.” That is,

“half-dead”
(

=
1

2
(|ψlife + ψdeath〉〈ψlife + ψdeath|)

)
to the moment of opening a window−−−−−−−−−−−−−−−−−−−−−−−−→

the collapse of wave function


“alive”(= |ψlife〉〈ψlife|)

“dead”(= |ψdeath〉〈ψdeath|)

Answer 11.12. [The quantum linguistic answer to Problem11.10)].

In quantum language, the quantum decoherence is permitted. That is, we can assume that
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(B1) the state ρ′602 after one hour is represented by the following mixed state

ρ′602 =
1

2

(
|ψlife〉〈ψlife|+ |ψdeath〉〈ψdeath|

)
That is, we can assume the decoherent causal operator Φ0,602 : B(H)→ B(H) such that

(Φ0,602)∗(ρ0) = ρ′602

Here, consider the measurement MB(H)(O = (X, 2X , F ), S[ρ
′
602 ]), or, its Heisenberg picture

MB(H)(Φ0,602O = (X, 2X ,Φ0,602F ), S[ρ
′
0]). Of course we see:

(B2) The probability that a measured value

[
life
death

]
is obtained by the measurement

MB(H)(Φ0,602O = (X, 2X ,Φ0,602F ), S[ρ
′
0]) is given by Tr(H)

(
ρ0,Φ0,602F ({life})

)
B(H) = 〈ψ′602 , F ({life})ψ602〉 = 0.5

Tr(H)

(
ρ0,Φ0,602F ({death})

)
B(H) = 〈ψ′602 , F ({death})ψ602〉 = 0.5


Also, “the moment of measuring” and “the collapse of wave function” are prohibited in the

linguistic interpretation, but the statement (B2) is within quantum language.

Summary 11.13. [Schrödinger’s cat in quantum language]
Here, let us examine

Answer11.11 :(A5) v.s. Answer11.12 :(B2)

(C1) the answer (A5) may be unnatural, but it is an argument which cannot be confuted,

On the other hand,

(C2) the answer (B2) is natural. but the non-deterministic time evolution is used.

Since the non-deterministic causal operator (i.e., quantum decoherence) is permitted in quan-
tum language, we conclude that

(C3) Answer11.12:(B2) is superior to Answer11.11:(A1)

For the reason that the non-deterministic causal operator (i.e., quantum decoherence) is

permitted in quantum language, we add the following.

• If Newtonian mechanics is applied to the whole universe, Laplace’s demon appears.

Also, if Newtonian mechanics is applied to the microworld, chaos appears. This kind

of supremacy of physics is not natural, and thus, we consider that these are out of “the

limit of Newtonian mechanics”
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And,

• when we want to apply Newton mechanics to phenomena out of “the limit of Newtonian

mechanics”, we often use the stochastic differential equation (and Brownian motion). This

approach is called “dynamical system theory”, which is not physics but metaphysics.

Newtonian mechanics
physics

out of the limits−−−−−−−−−−−−→
linguistic turn

dynamical system theory; statistics
metaphysics

In the same sense, we consider that quantum mechanics has “the limit”. That is,

• Schrödinger’s cat is out of quantum mechanics.

And thus,

• When we want to apply quantum mechanics to phenomena out of “the limit of quantum

mechanics”, we often use the quantum decoherence. Although this approach is not physics

but metaphysics, it is quite powerful.

quantum mechanics
physics

out of the limits−−−−−−−−−−−−→
linguistic turn

quantum language
metaphysics

♠Note 11.1. If we know the present state of the universe and the kinetic equation (=the theory of
everything), and if we calculate it, we can know everything (from past to future). There may be
a reason to believe this idea. This intellect is often referred to as Laplace’s demon. Laplace’s
demon is sometimes discussed as the realistic-view over which the degree passed. Thus, we
consider the following correspondence:

Laplace’s Demon

Newtonian mechanics

←→
correspondence

Schrödinger’s cat in Answer 11.11

quantum mechanics
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11.5 Wheeler’s Delayed choice experiment: “Particle or

wave?” is a foolish question

This section is extracted from

(]) [43] S. Ishikawa, The double-slit quantum eraser experiments and Hardy’s paradox in the

quantum linguistic interpretation, arxiv:1407.5143[quantum-ph],( 2014)

11.5.1 “Particle or wave?” is a foolish question

In the conventional quantum mechanics, the question: “particle or wave?” may frequently

appear. However, this is a foolish question.

On the other hand, the argument about the “particle vs. wave” is clear in quantum language.

As seen in the following table, this argument is traditional:

Table 11.1: Particle vs. Wave in several world-views (cf. Table 2.1, Table 3.1)

World-views \ P or W Particle(=symbol) Wave(= mathematical representation )

Aristotle hyle eidos

Newton mechanics point mass state (=(position, momentum))

Statistics population parameter

Quantum mechanics particle state (≈ wave function)

Quantum language system (=measuring object) state

In the table 11.1, Newtonian mechanics (i.e., mass point↔ state) may be easiest to understand.

Thus, “particle” and “wave” are not confrontation concepts.

Concerning “particle or wave”, we have the following statements:

(A1) “Particle or wave” is a foolish question.

(A2) Wheeler’s delayed choice experiment is related to the question “particle or wave”

If so, it may be interesting to answer the following:

(A3) How is Wheeler’s delayed choice experiment described in terms of quantum mechanics?

This is the purpose of this section. And we answer it in the conclusion (H).
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11.5.2 Preparation

Let us start from the review of Section 2.10 (de Broglie paradox in B(C2))

Let H be a two dimensional Hilbert space, i.e., H = C2. Consider the basic structure

[B(C2) ⊆ B(C2) ⊆ B(C2)]

Let f1, f2 ∈ H such that

f1 =

[
1
0

]
, f2 =

[
0
1

]
Put

u =
f1 + f2√

2

Thus, we have the state ρ = |u〉〈u| (∈ Sp(B(C2))).

Let U(∈ B(C2)) be an unitary operator such that

U =

[
1 0
0 eiπ/2

]
and let Φ : B(C2)→ B(C2) be the homomorphism such that

Φ(F ) = U∗FU (∀F ∈ B(C2))

Consider two observable Of = ({1, 2}, 2{1,2}, F ) and Og = ({1, 2}, 2{1,2}, G) in B(C2) such

that

F ({1}) = |f1〉〈f1|, F ({2}) = |f2〉〈f2|

and

G({1}) = |g1〉〈g1|, G({2}) = |g2〉〈g2|

where

g1 =
f1 + f2√

2
, g2 =

f1 − f2√
2
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294 Chapter 11 Simple measurement and causality

11.5.3 de Broglie’s paradox in B(C2) (No interference)

D1(= (|f1〉〈f1|))
(photon detector)

D2(= (|f2〉〈f2|))
(photon detector)

u= 1√
2
(f1+f2)

−−−−−−−−→
1√
2
f1

?

√
−1√
2
f2

?

1√
2
f1

1√
2
f1

-

√
−1√
2
f2

√
−1√
2
f2

-

half mirror 1

Figure 11.4(1). [D1 +D2]=ObservableOf

mirror 2

mirror 1course 1

course 2

Photon P

Now we shall explain, by the Schrödinger picture, Figure 11.4(1) as follows.

The photon P with the state u = 1√
2
(f1 + f2) ( precisely, ρ = |u〉〈u| ) rushed into the

half-mirror 1,

(B1) the f1 part in u = 1√
2
(f1 +f2) passes through the half-mirror 1, and goes along the course

1. And it is reflected in the mirror 1, and goes to the photon detector D1.

(B2) the f2 part in u = 1√
2
(f1 + f2) rebounds on the half-mirror 1 (and strictly saying, the f2

changes to
√
−1f2, we are not concerned with it ), and goes along the course 2. And it

is reflected in the mirror 2, and goes to the photon detector D2.

This is, by the Heisenberg picture, represented by the following measurement:

MB(C2)(ΦOf , S[ρ]) (11.16)

Then, we see:

(C) the probability that

[
a measured value 1
a measured value 2

]
is obtained by MB(C2)(ΦOf , S[ρ]) is given by

[
〈Uu, F ({1})Uu〉
〈Uu, F ({2})Uu〉

]
=

[
|〈Uu, f1〉|2
|〈Uu, f2〉|2

]
=

[
1
2
1
2

]
(11.17)
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11.5.4 Mach-Zehnder interferometer (Interference)

Next, consider the following figure:

D1(= (|g2〉〈g2|))
(photon detector)

D2(= (|g1〉〈g1|))
(photon detector)

u= 1√
2
(f1+f2)

−−−−−−−−→
1√
2
f1

?

√
−1√
2
f2

?

1√
2
f1

1√
2
f1 − 1√

2
f2

-

√
−1√
2
f2 0

-

half mirror 1

half mirror 2

Figure 11.4(2). [D1 +D2]=ObservableOg

mirror 1

mirror 2course 1

course 2

Photon P

Now we shall explain, by the Schrödinger picture, Figure 11.4(2) as follows.

The photon P with the state u = 1√
2
(f1 + f2) ( precisely, ρ = |u〉〈u| ) rushed into the

half-mirror 1,

(D1) the f1 part in u = 1√
2
(f1 +f2) passes through the half-mirror 1, and goes along the course

1. And it is reflected in the mirror 1, and passes through the half-mirror 2, and goes to

the photon detector D1.

(D2) the f2 part in u = 1√
2
(f1 + f2) rebounds on the half-mirror 1 (and strictly saying, the

f2 changes to
√
−1f2, we are not concerned with it ), and goes along the course 2. And

it is reflected in the mirror 2, and further reflected in the half-mirror 2, and goes to the

photon detector D2.

This is, by the Heisenberg picture, represented by the following measurement:

MB(C2)(Φ
2Og, S[ρ]) (11.18)

Then, we see:

(E) the probability that

[
a measured value 1
a measured value 2

]
is obtained by MB(C2)(Φ

2Og, S[ρ]) is given by[
〈u,Φ2G({1})u〉
〈u,Φ2G({2})u〉

]
=

[
|〈u, UUg1〉|2
|〈u, UUg2〉|2

]
=

[
0
1

]
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296 Chapter 11 Simple measurement and causality

11.5.5 Another case

Consider the following Figure 11.4(3).

D2(= (|f2〉〈f2|))
(photon detector)

D1(= (|f1〉〈f1|))
(photon detector)

u= 1√
2
(f1+f2)

−−−−−−−−→
1√
2
f1

?

√
−1√
2
f2

?

−1√
2
f2

-

√
−1√
2
f2

-

half mirror 1

half mirror 2mirror

Figure 11.4(3). [D2 +D1] =ObservableOf

mirror 1

mirror 2course 1

course 2

Photon P

Now we shall explain, by the Schrödinger picture, Figure 11.4(3) as follows.

The photon P with the state u = 1√
2
(f1 + f2) ( precisely, ρ = |u〉〈u| ) rushed into the

half-mirror 1,

(F1) the f1 part in u = 1√
2
(f1 +f2) passes through the half-mirror 1, and goes along the course

1. And it reaches to the photon detector D1.

(F2) the f2 part in u = 1√
2
(f1 + f2) rebounds on the half-mirror 1 (and strictly saying, the f2

changes to
√
−1f2, we are not concerned with it ), and goes along the course 2. And it

is again reflected in the mirror 1, and further reflected in the half-mirror 2, and goes to

the photon detector D2.

This is, by the Heisenberg picture, represented by the following measurement:

MB(C2)(Φ
2Of , S[ρ]) (11.19)

Therefore, we see the following:

(G) The probability that

[
measured value 1
measured value 2

]
is obtained by the measurement MB(C2)(Φ

2Of , S[ρ])

is given by[
Tr(ρ · Φ2F ({1}))
Tr(ρ · Φ2F ({2}))

]
=

[
〈UUu, F ({1})UUu〉
〈UUu, F ({2})UUu〉

]
=

[
|〈UUu, f1〉|2
|〈UUu, f2〉|2

]
=

[
1
2
1
2

]
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Therefore, if the photon detector D1 does not react, it is expected that the photon detector

D2 reacts.

11.5.6 Conclusion

The above argument is just Wheeler’s delayed choice experiment. It should be noted that

the difference among Examples in §11.5.3 (Figure 11.4(1))– §11.5 (Figure 11.4(3)) is that of the

observables (= measuring instrument ). That is,
§11.5.3 (Figure 11.4(1)) −−−−−−−−−−→

Heisenberg picture
ΦOf

§11.5.4 (Figure 11.4(2)) −−−−−−−−−−→
Heisenberg picture

Φ2Og

§11.5.5 (Figure 11.4(3)) −−−−−−−−−−→
Heisenberg picture

Φ2Of

Hence, it should be noted that

(H) Wheeler’s delayed choice experiment can not be described paradoxically in

quantum language.

However, it should be noted that the non-locality paradox (i.e., “there is some thing faster than

light”) is not solved even in quantum language.

♠Note 11.2. What we want to assert in this book may be the following:

(]) everything (except “there is some thing faster than light”) can not be described paradox-
ically in terms of quantum language
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298 Chapter 11 Simple measurement and causality

11.6 Hardy’s paradox

In this section, we shall introduce the Hardy’s paradox (cf. ref.[16]) in terms of quantum

language1.

Let H be a two dimensional Hilbert space, i.e., H = C2. Let f1, f2, g1, g2 ∈ H such that

f1 = f ′1 =

[
1
0

]
, f2 = f ′2 =

[
0
1

]
, g1 = g′1 =

f1 + f2√
2

, g2 = g′2 =
f1 − f2√

2

Put

u =
f1 + f2√

2

(
= g1

)
Consider the tensor Hilbert space H ⊗H = C2 ⊗ C2 and define the state ρ̂ such that

û = u⊗ u′ = f1 + f2√
2
⊗ f ′1 + f ′2√

2
, ρ̂ = |u⊗ u′〉〈u⊗ u′|

As shown in the next section (e.g., annihilation (i.e., f1 ⊗ f1 7→ 0), etc.), define the operator

P : C2 ⊗ C2 → C2 ⊗ C2 such that

P (α11f1 ⊗ f1 + α12f1 ⊗ f2 + α21f2 ⊗ f1 + α22f2 ⊗ f2) = −α12f1 ⊗ f2 − α21f2 ⊗ f1 + α22f2 ⊗ f2

Here, it is clear that

P 2(α11f1 ⊗ f1 + α12f1 ⊗ f2 + α21f2 ⊗ f1 + α22f2 ⊗ f2) = α12f1 ⊗ f2 + α21f2 ⊗ f1 + α22f2 ⊗ f2

hence, we see that P 2 : C2 ⊗ C2 → C2 ⊗ C2 is a projection.

Also, define the causal operator Ψ̂ : B(C2 ⊗ C2)→ B(C2 ⊗ C2) by

Ψ̂(Â) = PÂP (Â ∈ B(C2 ⊗ C2))

Here, it is easy to see that Ψ̂ : B(C2 ⊗ C2)→ B(C2 ⊗ C2) satisfies

(A1) Ψ̂(Â∗Â) ≥ 0 (∀Â ∈ B(C2 ⊗ C2))

(A2) Ψ̂(I) = P 2

Since it is not always assured that Ψ̂(I) = I, strictly speaking, the Ψ̂ : B(C2⊗C2)→ B(C2⊗C2)

is a causal operator in the wide sense.

1This section is extracted from

(]) [43] S. Ishikawa, The double-slit quantum eraser experiments and Hardy’s paradox in the quantum lin-
guistic interpretation, arxiv:1407.5143[quantum-ph],( 2014)
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11.6 Hardy’s paradox 299

11.6.1 Observable Og ⊗ Og

Consider the following figure

D′1(= (|g′2〉〈g′2|))
(Detector)

D′2(= (|g′1〉〈g′1|))
(Detector)

?

1√
2
(f ′1 + f ′2)

√
−1√
2
f ′2

?

1√
2
f ′1

?

√
−1√
2
f ′2

-
if no annihilation, 1√

2
f ′1

-

half mirror 2′

half mirror 1′

mirror 2′

mirror 1′

course 2′

course 1′

Positron P′

D1(= (|g2〉〈g2|))
(Detector)

D2(= (|g1〉〈g1|))
(Detector)

1√
2
(f1+f2)

−−−−−−→
1√
2
f1

?

√
−1√
2
f2

?

if no annihilation,
1√
2
f1

-

√
−1√
2
f2

-

half mirror 1

half mirror 2

Figure 11.5(1). Electron P and Positron P′ are annihilated at •

mirror 1

mirror 2course 1

course 2

Electron P

In the above, Electron P and Positron P ′ rush into the half-mirror 1 and the half-mirror 1′

respectively. Here, “half-mirror” has the following property:[
1
0

]
(= f1 = f ′1) −−−−−−−−−−−−−−−−−−−→

pass through half-mirror

[
1
0

]
(= f1 = f ′1)[

0
1

]
(= f2 = f ′2) −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

be reflected in half-mirror, and ×
√
−1

√
−1

[
0
1

]
(= f2 = f ′2)

Assume that the initial state of Electron P [resp. Positron P ′] is β1f1 +β2f2 [resp. β′1f
′
1 +β′2f

′
2].

Then, we see, by the Schrödinger picture, that

(β1f1 + β2f2)⊗ (β′1f
′
1 + β′2f

′
2) = β1β

′
1f1 ⊗ f ′1 + β1β

′
2f1 ⊗ f ′2 + β2β

′
1f2 ⊗ f ′1 + β2β

′
2f2 ⊗ f ′2

−−−−−−−−→
(half-mirror)
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300 Chapter 11 Simple measurement and causality

β1β
′
1f1 ⊗ f ′1 +

√
−1β1β

′
2f1 ⊗ f ′2 +

√
−1β2β

′
1f2 ⊗ f ′1 − β2β′2f2 ⊗ f ′2

−−−−−−−−−−−−−−−−−−−−→
(annihilation(i.e., f1 ⊗ f ′

1 = 0))
√
−1β1β

′
2f1 ⊗ f ′2 +

√
−1β2β

′
1f2 ⊗ f ′1 − β2β′2f2 ⊗ f ′2

−−−−−−−−−−−−−→
(second half-mirror)

− β1β′2f1 ⊗ f ′2 − β2β′1f2 ⊗ f ′1 + β2β
′
2f2 ⊗ f ′2

The above is written by the Schrödinger picture Ψ̂∗ : Tr(C2 ⊗ C2) → Tr(C2 ⊗ C2). Thus,

we have the Heisenberg picture (i.e., the causal operator ) Ψ̂ : B(C2 ⊗ C2) → B(C2 ⊗ C2) by

Ψ̂ = (Ψ̂∗)
∗.

Define the observable Ôgg = ({1, 2} × {1, 2}, 2{1,2}×{1,2}, Ĥgg) in B(C2 ⊗ C2) by the tensor

observable Og ⊗ Og, that is,

Ĥgg({(1, 1)}) = |g1 ⊗ g1〉〈g1 ⊗ g1|, Ĥgg({(1, 2)}) = |g1 ⊗ g2〉〈g1 ⊗ g2|,

Ĥgg({(2, 1)}) = |g2 ⊗ g1〉〈g2 ⊗ g1|, Ĥgg({(2, 2)}) = |g2 ⊗ g2〉〈g2 ⊗ g2|

Consider the measurement:

MB(C2⊗C2)(Ψ̂Ôgg, S[ρ̂]) (11.20)

Then, the probability that a measured value (2, 2) is obtained by MB(C2⊗C2)(Ψ̂Ô, S[ρ̂]) is given

by

〈u⊗ u, PĤgg({(2, 2)})P (u⊗ u)〉

=
|〈(f1 − f2)⊗ (f1 − f2), f1 ⊗ f2 + f2 ⊗ f1 + f2 ⊗ f2〉|2

16

=
|〈f1 ⊗ f1 − f1 ⊗ f2 − f2 ⊗ f1 + f2 ⊗ f2, f1 ⊗ f2 + f2 ⊗ f1 + f2 ⊗ f2〉|2

16
=

1

16

Also, the probability that a measured value (1, 1) is obtained by MB(C2⊗C2)(Ψ̂Ôgg, S[ρ̂]) is given

by

〈u⊗ u, PĤgg({(1, 1)})P (u⊗ u)〉

=
|〈(f1 + f2)⊗ (f1 + f2), f1 ⊗ f2 + f2 ⊗ f1 + f2 ⊗ f2〉|2

16

=
|〈f1 ⊗ f1 + f1 ⊗ f2 + f2 ⊗ f1 + f2 ⊗ f2, f1 ⊗ f2 + f2 ⊗ f1 + f2 ⊗ f2〉|2

16
=

9

16

Further, the probability that a measured value (1, 2) is obtained by MB(C2⊗C2)(Ψ̂Ôgg, S[ρ̂]) is

given by

〈u⊗ u, PĤgg({(1, 2)})P (u⊗ u)〉
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11.6 Hardy’s paradox 301

=
|〈(f1 + f2)⊗ (f1 − f2), f1 ⊗ f2 + f2 ⊗ f1 + f2 ⊗ f2〉|2

16

=
|〈f1 ⊗ f1 − f1 ⊗ f2 + f2 ⊗ f1 − f2 ⊗ f2, f1 ⊗ f2 + f2 ⊗ f1 + f2 ⊗ f2〉|2

16
=

1

16

Similarly,

〈u⊗ u, PĤgg({(2, 1)})P (u⊗ u)〉 =
1

16

Remark 11.14. Note that

1

16
+

9

16
+

1

16
+

1

16
=

3

4
< 1

which is due to the annihilation. Thus, the probability that no measured value is obtained by

the measurement MB(C2⊗C2)(Ψ̂Ô, S[ρ̂]) is equal to 1
4
.

11.6.2 The case that there is no half-mirror 2′

Consider the case that there is no half-mirror 2′, the case described in the following figure:

D′1(= (|f ′2〉〈f ′2|))
(Detector)

D′2(= (|f ′1〉〈f ′1|))
(Detector)

?

1√
2
(f ′1 + f ′2)

√
−1√
2
f ′2

?

1√
2
f ′1

?

√
−1√
2
f ′2

-
if no annihilation, 1√

2
f ′1

-
half mirror 1′

mirror 2′

mirror 1′

course 2′

course 1′

Positron P′

D1(= (|g2〉〈g2|))
(Detector)

D2(= (|g1〉〈g1|))
(Detector)

1√
2
(f1+f2)

−−−−−−→
1√
2
f1

?

√
−1√
2
f2

?

if no annihilation,
1√
2
f1

-

√
−1√
2
f2

-

half mirror 1

half mirror 2

Figure 11.5(2). Electron P and Positron P′ are annihilated at •

mirror 1

mirror 2course 1

course 2

Electron P

KSTS/RR-15/001 
January 22, 2015



302 Chapter 11 Simple measurement and causality

Define the observable Ôgf = ({1, 2} × {1, 2}, 2{1,2}×{1,2}, Ĥgf ) in B(C2 ⊗ C2) by the tensor

observable Og ⊗ Of , that is,

Ĥgf ({(1, 1)}) = |g1 ⊗ f1〉〈g1 ⊗ f1|, Ĥgf ({(1, 2)}) = |g1 ⊗ f2〉〈g1 ⊗ f2|,

Ĥgf ({(2, 1)}) = |g2 ⊗ f1〉〈g2 ⊗ f1|, Ĥgf ({(2, 2)}) = |g2 ⊗ f2〉〈g2 ⊗ f2|

Since the causal operator Ψ̂ : B(C2⊗C2)→ B(C2⊗C2) is the same, we get the measurement:

MB(C2⊗C2)(Ψ̂Ôgf , S[ρ̂]) (11.21)

Then, the probability that a measured value (2, 2) is obtained by MB(C2⊗C2)(Ψ̂Ôgf , S[ρ̂]) is given

by

〈u⊗ u, PĤgf ({(2, 2)})P (u⊗ u)〉

=
|〈(f1 − f2)⊗ f2, f1 ⊗ f2 + f2 ⊗ f1 + f2 ⊗ f2〉|2

8
= 0

Also, the probability that a measured value (1, 1) is obtained by MB(C2⊗C2)(Ψ̂Ôgf , S[ρ̂]) is given

by

〈u⊗ u, PĤgf ({(1, 1)})P (u⊗ u)〉

=
|〈(f1 + f2)⊗ f1, f1 ⊗ f2 + f2 ⊗ f1 + f2 ⊗ f2〉|2

8
=

1

8

Further, the probability that a measured value (1, 2) is obtained by MB(C2⊗C2)(Ψ̂Ôgf , S[ρ̂]) is

given by

〈u⊗ u, PĤgf ({(1, 2)})P (u⊗ u)〉

=
|〈(f1 + f2)⊗ f2, f1 ⊗ f2 + f2 ⊗ f1 + f2 ⊗ f2〉|2

16
=

4

8

Similarly,

〈u⊗ u, PĤgf ({(2, 1)})P (u⊗ u)〉

=
|〈(f1 − f2)⊗ f1, f1 ⊗ f2 + f2 ⊗ f1 + f2 ⊗ f2〉|2

8
=

1

8

Remark 11.15. It is usual to consider that “Which way pass problem” is nonsense. It should

be noted that, in the Heisenberg picture, the observable (= measuring instrument ) does not

only include detectors but also mirrors.
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11.7 quantum eraser experiment 303

11.7 quantum eraser experiment

Let us explain quantum eraser experiment(cf. [66]). This section is extracted from

(]) [43] S. Ishikawa, The double-slit quantum eraser experiments and Hardy’s paradox in the

quantum linguistic interpretation, arxiv:1407.5143[quantum-ph],( 2014)

11.7.1 Tensor Hilbert space

Let C2 be the two dimensional Hilbert space, i,e., C2 =
{[

z1
z2

]
| z1, z2 ∈ C

}
. And put

e1 =

[
1
0

]
, e2 =

[
0
1

]
Here, define the observable Ox = ({−1, 1}, 2{−1,1}, Fx) in B(C2) such that

Fx({1}) =
1

2

[
1 1
1 1

]
, Fx({−1}) =

1

2

[
1 −1
−1 1

]
,

Here, note that

Fx({1})e1 =
1

2
(e1 + e2), Fx({1})e2 =

1

2
(e1 + e2)

Fx({−1})e1 =
1

2
(e1 − e2), Fx({−1})e2 =

1

2
(−e1 + e2)

Let H be a Hilbert space such that L2(R). And let O = (X,F, F ) be an observable in

B(H). For example, consider the position observable, that is, X = R, F = BR, and

[F (Ξ)](q) =

{
1 (q ∈ Ξ ∈ F)
0 (q /∈ Ξ ∈ F)

Let u1 and u2 (∈ H) be orthonormal elements, i.e., ‖u1‖H = ‖u2‖H = 1 and 〈u1, u2〉 = 0. Put

u = α1u1 + α2u2

where αi ∈ C such that |α1|2 + |α2|2 = 1.

Further, define ψ ∈ C2 ⊗H ( the tensor Hilbert space of C2 and H) such that

ψ = α1e1 ⊗ u1 + α2e2 ⊗ u2

where αi ∈ C such that |α1|2 + |α2|2 = 1.
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11.7.2 Interference

Consider the measurement:

MB(C2⊗H)(Ox ⊗ O, S[|ψ〉〈ψ|]) (11.22)

Then, we see:

(A1) the probability that a measured value (1, x)(∈ {−1, 1} ×X) belongs to {1} × Ξ is given

by

〈ψ, (Fx({1})⊗ F (Ξ))ψ〉

=〈α1e1 ⊗ u1 + α2e2 ⊗ u2, (Fx({1} ⊗ F (Ξ)))(α1e1 ⊗ u1 + α2e2 ⊗ u2)〉

=
1

2
〈α1e1 ⊗ u1 + α2e2 ⊗ u2, α1(e1 + e2)⊗ F (Ξ)u1 + α2(e1 + e2)⊗ F (Ξ)u2〉

=
1

2

(
|α1|2〈u1, F (Ξ)u1〉+ |α2|2〈u2, F (Ξ)u2〉+ α1α2〈u1, F (Ξ)u2〉+ α1α2〈u2, F (Ξ)u1〉

)
=

1

2

(
|α1|2〈u1, F (Ξ)u1〉+ |α2|2〈u2, F (Ξ)u2〉+ 2[Real part](α1α2〈u1, F (Ξ)u2〉)

)
where the interference term (i.e., the third term) appears.

Define the probability density function p1 by∫
Ξ

p1(q)dq =
〈ψ, (Fx({1})⊗ F (Ξ))ψ〉
〈ψ, (Fx({1})⊗ I)ψ〉

(∀Ξ ∈ F)

Then, by the interference term (i.e., 2[Real part](α1α2〈u1, F (Ξ)u2〉) ), we get the following

graph.

-

q

p1

Figure 11.6(1): The graph of p1

Also, we see:

(A2) the probability that a measured value (−1, x)(∈ {−1, 1} × X) belongs to {−1} × Ξ is

given by

〈ψ, (Fx({−1})⊗ F (Ξ))ψ〉

=〈α1e1 ⊗ u1 + α2e2 ⊗ u2, (Fx({−1} ⊗ F (Ξ)))(α1e1 ⊗ u1 + α2e2 ⊗ u2)〉
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=
1

2
〈α1e1 ⊗ u1 + α2e2 ⊗ u2, α1(e1 − e2)⊗ F (Ξ)u1 + α2(−e1 + e2)⊗ F (Ξ)u2〉

=
1

2

(
|α1|2〈u1, F (Ξ)u1〉+ |α2|2〈u2, F (Ξ)u2〉 − α1α2〈u1, F (Ξ)u2〉 − α1α2〈u2, F (Ξ)u1〉

)
=

1

2

(
|α1|2〈u1, F (Ξ)u1〉+ |α2|2〈u2, F (Ξ)u2〉 − 2[Real part](α1α2〈u1, F (Ξ)u2〉)

)
where the interference term (i.e., the third term) appears.

Define the probability density function p2 by∫
Ξ

p2(q)dq =
〈ψ, (Fx({−1})⊗ F (Ξ))ψ〉
〈ψ, (Fx({−1})⊗ I)ψ〉

(∀Ξ ∈ F)

Then, by the interference term (i.e., −2[Real part](α1α2〈u1, F (Ξ)u2〉) ), we get the following

graph.

-

q

p2

Figure 11.6(2): The graph of p2

11.7.3 No interference

Consider the measurement:

MB(C2⊗H)(Ox ⊗ O, S[|ψ〉〈ψ|]) (11.23)

Then, we see

(A3) the probability that a measured value (u, x)(∈ {1,−1} × X) belongs to {1,−1} × Ξ is

given by

〈ψ, (I ⊗ F (Ξ))ψ〉

=〈α1e1 ⊗ u1 + α2e2 ⊗ u2, (I ⊗ F (Ξ))(α1e1 ⊗ u1 + α2e2 ⊗ u2)〉

=〈α1e1 ⊗ u1 + α2e2 ⊗ u2, α1e1 ⊗ F (Ξ)u1 + α2e2 ⊗ F (Ξ)u2〉

=|α1|2〈u1, F (Ξ)u1〉+ |α2|2〈u2, F (Ξ)u2〉

where the interference term disappears.

Define the probability density function p3 by∫
Ξ

p3(q)dq = 〈ψ, (I ⊗ F (Ξ))ψ〉 (∀Ξ ∈ F)
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306 Chapter 11 Simple measurement and causality

Since there is no interference term, we get the following graph.

-

q

p1

p2

p3 = p1 + p2

Figure 11.6(3): The graph of p3 = p1 + p2

Remark 11.16. Note that

(A3)

no interference

= (A1)+(A2)

interferences are canceled

This was experimentally examined in [66].
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Chapter 12

Realized causal observable in general
theory

Until the previous chapter, we studied all of quantum language, that is,

(])



(]1): pure measurement theory
(=quantum language)

:=
[(pure)Axiom 1]

pure measurement
(cf. §2.7)

+

[Axiom 2]

Causality
(cf. §10.3)︸ ︷︷ ︸

a kind of spell(a priori judgment)

+

[quantum linguistic interpretation]

Linguistic interpretation
(cf. §3.1)︸ ︷︷ ︸

the manual how to use spells

(]2): mixed measurement theory
(=quantum language)

:=

[(mixed)Axiom(m) 1]

mixed measurement
(cf. §9.1)

+

[Axiom 2]

Causality
(cf. §10.3)︸ ︷︷ ︸

a kind of spell(a priori judgment)

+

[quantum linguistic interpretation]

Linguistic interpretation
(cf. §3.1)︸ ︷︷ ︸

the manual how to use spells

As mentioned in the previous chapter, what is important is

• to exercise the relationship of measurement and causality

In this chapter, we discuss the relationship more systematically.

12.1 Finite realized causal observable

In this chapter, we devote ourselves to finite realized causal observable. ( For the infinite

realized causal observable, see Chapter 14.) The readers should understand:

• “realized causal observable” is a direct consequence of the linguistic interpretation, that

is,

only one measurement is permitted

307
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308 Chapter 12 Realized causal observable in general theory

Now we shall review the following theorem:

Theorem 12.1. [=Theorem 11.1:Causal operator and observable] Consider the basic structure:

[Ak ⊆ Ak ⊆ B(Hk)] (k = 1, 2)

Let Φ1,2 : A2 → A1 be a causal operator, and let O2 = (X,F, F2) be an observable in A2. Then,

Φ1,2O2 = (X,F,Φ1,2F2) is an observable in A1.

Proof. See the proof of Theorem 11.1

In this section, we consider the case that the tree ordered set T (t0) is finite. Thus, putting

T (t0) = {t0, t1, . . . , tN}, consider the finite tree (T (t0), 5 ) with the root t0, which is represented

by (T={t0, t1, . . . , tN}, π : T \ {t0} → T ) with the the parent map π. .

Definition 12.2. [(finite)sequential causal observable] Consider the basic structure:

[Ak ⊆ Ak ⊆ B(Hk)] (t ∈ T (t0) = {t0, t1, · · · , tn})

in which, we have a sequential causal operator {Φt1,t2 : At2 → At1}(t1,t2)∈T 2
5

(cf. Definition

10.9 ) such that

(i) for each (t1, t2) ∈ T 2
5, a causal operator Φt1,t2 : At2 → At1 satisfies that Φt1,t2Φt2,t3 = Φt1,t3

(∀(t1, t2), ∀(t2, t3) ∈ T 2
5). Here, Φt,t : At → At is the identity.

[A0 : O0]

[A1 : O1]

[A2 : O2]
[A3 : O3]

[A4 : O4]

[A5 : O5][A6 : O6]

[A7 : O7]

)
i

k

+

k

)
k

Φ0,6

Φ0,1

Φ0,7

Φ1,2

Φ1,5

Φ2,3

Φ2,4

Figure 12.1 : Simple example of sequential causal observable

For each t ∈ T , consider an observable Ot=(Xt,Ft, Ft) in At. The pair [{Ot}t∈T , {Φt1,t2 :

At2 → At1}(t1,t2)∈T 2
5

] is called a sequential causal observable, denoted by [OT ] or [OT (t0)].

That is, [OT ] = [{Ot}t∈T , {Φt1,t2 : At2 → At1}(t1,t2)∈T 2
5

]. Using the parent map π : T \{t0} → T ,

[OT ] is also denoted by [OT ] = [{Ot}t∈T , {At

Φπ(t),t−−−→ Aπ(t)}t∈T\{t0})].
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12.1 Finite realized causal observable 309

Now we can show our present problem.

Problem 12.3. We want to formulate the measurement of a sequential causal observable[OT ]
= [{Ot}t∈T , {Φt1,t2 : At2 → At1}(t1,t2)∈T 2

5
] for a system S with an initial state ρt0(∈ Sp(A∗t0)).

How do we formulate this measurement?

Now let us solve this problem as follows. Note that the linguistic interpretation says that

only one measurement (and thus, only one observable) is permitted

Thus, we have to combine many observables in a sequential causal observable[OT ] = [{Ot}t∈T ,
{Φt1,t2 : At2 → At1}(t1,t2)∈T 2

5
]. This is realized as follows.

Theorem 12.4. [(finite) realized causal observable ] We assert as follows.

[Definition 12.4]: Let T (t0) = {t0, t1, . . . , tN} be a finite tree. Let [OT (t0)] =

[{Ot}t∈T , {Φπ(t),t : At

Φπ(t),t−−−→ Aπ(t)}t∈T\{t0} ] be a sequential causal observable.

For each s (∈ T ), put Ts = {t ∈ T | t = s}. Define the observable Ôs=(×t∈Ts Xt, � t∈TsFt, F̂s)
in As such that

Ôs =


Os ( if s ∈ T \ π(T ) )

Os×(×t∈π−1({s}) Φπ(t),tÔt) ( if s ∈ π(T ) )

(12.1)

(In quantum case, the existence of Ôs is not always guaranteed). And further, iteratively, we

get the observable Ôt0 = (×t∈T Xt, � t∈TFt, F̂t0) in At0 . Put Ôt0 = ÔT (t0).

The observable ÔT (t0) = (×t∈T Xt, � t∈TFt, F̂t0) is called the (finite) realized causal

observable of the sequential causal observable[OT (t0)] = [{Ot}t∈T , {Φπ(t),t : At → Aπ(t)}t∈T\{t0}
].

Summing up the above arguments, we have the following theorem:
[Theorem 12.4]: In the classical case, the realized causal observable ÔT (t0) = (×t∈T Xt,

� t∈TFt, F̂t0) exists.

♠Note 12.1. In the above (12.1), the product “×” may be generalized as the quasi-product “
qp
×××××××××”.

However, in this note we are not concerned with such generalization.
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310 Chapter 12 Realized causal observable in general theory

Example 12.5. [A simple classical example ] Suppose that a tree (T ≡ {0, 1, ..., 6, 7}, π) has

an ordered structure such that π(1) = π(6) = π(7) = 0, π(2) = π(5) = 1, π(3) = π(4) = 2.

[L∞(Ω0) : O0]

[L∞(Ω1) : O1]

[L∞(Ω2) : O2]
[L∞(Ω3) : O3]

[L∞(Ω4) : O4]

[L∞(Ω5) : O5][L∞(Ω6) : O6]

[L∞(Ω7) : O7]

)
i

k

+

k

)
k

Φ0,6

Φ0,1

Φ0,7

Φ1,2

Φ1,5

Φ2,3

Φ2,4

Figure 12.2 : Simple classical example of sequential causal observable

Consider a sequential causal observable [OT ] = [{Ot}t∈T , {L∞(Ωt)
Φπ(t),t
→ L∞(Ωπ(t))}t∈T\{0})].

Now, we shall construct its realized causal observable ÔT (t0) = (×t∈T Xt, � t∈TFt, F̂t0) in what

follows.

Put

Ôt = Ot and thus F̂t = Ft (t = 3, 4, 5, 6, 7).

First we construct the product observable Ô2 in L∞(Ω2) such as

Ô2 = (X2 ×X3 ×X4,F2 � F3 � F4, F̂2) where F̂2 = F2×( ×
t=3,4

Φ2,tF̂t),

Iteratively, we construct the following:

L∞(Ω0)
Φ0,1←−−− L∞(Ω1)P

Φ1,2←−−− L∞(Ω2)

F0×Φ0,6F̂6×Φ0,7F̂7 F1×Φ1,5F̂5y y
F̂0

(F0×Φ0,6F̂6×Φ0,7F̂7×Φ0,1F̂1)

Φ0,1←−−− F̂1
(F1×Φ1,5F̂5×Φ1,2F̂2)

Φ1,2←−−− F̂2
(F2×Φ2,3F̂3×Φ2,4F̂4)

.

That is, we get the product observable Ô1 ≡ (×5
t=1Xt, � 5

t=1Ft, F̂1) of O1, Φ1,2Ô2 and Φ1,5Ô5,

and finally, the product observable

Ô0 ≡ (×7
t=0Xt, � 7

t=0Ft, F̂0(= F0 × ( ×
t=1,6,7

Φ0,tF̂t))

of O0, Φ0,1Ô1, Φ0,6Ô6 and Φ0,7Ô7. Then, we get the realization of a sequential causal observable

[{Ot}t∈T , {L∞(Ωt)
Φπ(t),t→ L∞(Ωπ(t))}t∈T\{0}]. For completeness, F̂0 is represented by
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12.1 Finite realized causal observable 311

F̂0(Ξ0 × Ξ1 × Ξ2 × Ξ3 × Ξ4 × Ξ5 × Ξ6 × Ξ7)]

=F0(Ξ0)× Φ0,1

(
F1(Ξ1)× Φ1,5F5(Ξ5)× Φ1,2

(
F2(Ξ2)× Φ2,3F3(Ξ3)× Φ2,4F4(Ξ4)

))
× Φ0,6(F6(Ξ6))× Φ0,7(F7(Ξ7)) (12.2)

(In quantum case, the existence of Ô0 in not guaranteed).

Remark 12.6. In the above example, consider the case that Ot (t = 2, 6, 7) is not determined.

In this case,it suffices to define Ot by the existence observable O
(exi)
t =(Xt, {∅, Xt}, F (exi)

t ). Then,

we see that

F̂0(Ξ0 × Ξ1 ×X2 × Ξ3 × Ξ4 × Ξ5 ×X6 ×X7)

=F0(Ξ0)× Φ0,1

(
F1(Ξ1)× Φ1,5F5(Ξ5)× Φ1,2

(
Φ2,3F3(Ξ3)× Φ2,4F4(Ξ4)

))
(12.3)

This is true. However, the following is not wrong. Putting T ′ = {0, 1, 3, 4, 5}, consider the [OT ′ ]

= [{Ot}t∈T ′ , {Φt1,t2 : L∞(Ωt2) → L∞(Ωt1)}(t1,t2)∈(T ′)25
]. Then, the realized causal observable

ÔT ′(0) = (×t∈T ′ Xt, � t∈T ′Ft, F̂
′
0) is defined by

F̂ ′0(Ξ0 × Ξ1 × Ξ3 × Ξ4 × Ξ5) = F0(Ξ0)

× Φ0,1

(
F1(Ξ1)× Φ1,5F5(Ξ5)× Φ1,4F4(Ξ4)× Φ1,3F3(Ξ3)× Φ1,4F4(Ξ4)

)
(12.4)

which is different from the true (12.2). We may sometimes omit “existence observable”. How-

ever, if we do so, we omit it on the basis of careful cautions.

Thus, we can answer Problem 12.3 as follows.

Problem [=Problem 12.3] (written again)

We want to formulate the measurement of a sequential causal observable[OT ] =
[{Ot}t∈T , {Φt1,t2 : At2 → At1}(t1,t2)∈T 2

5
] for a system S with an initial state ρt0(∈ Sp(A∗t0)).

How do we formulate the measurement?

Answer 12.7. If the realized causal observable Ôt0 exists, the measurement is formulated by

measurement MAt0
(Ôt0 , S[ρt0 ]

)
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312 Chapter 12 Realized causal observable in general theory

Thus, according to Axiom 1 ( measurement: §2.7), we see that

(A) The probability that a measured value (xt)t∈T obtained by the measurement MAt0
(ÔT , S[ρt0 ]

)

belongs to Ξ̂(∈ � t∈TFt) is given by

A∗
0

(
ρt0 , F̂t0(Ξ̂)

)
At0

(12.5)

The following theorem, which holds in classical systems, is frequently used.

Theorem 12.8. [The realized causal observable of deterministic sequential causal observable in

classical systems ] Let (T (t0), 5 ) be a finite tree. For each t ∈ T (t0), consider the classical

basic structure

[C0(Ωt) ⊆ L∞(Ωt, νt) ⊆ B(L2(Ωt, νt))]

Let [OT ] = [{Ot}t∈T , {Φt1,t2 : L∞(Ωt2)→ L∞(Ωt1)}(t1,t2)∈T 2
5

] be deterministic causal observable.

Then, the realization Ôt0 ≡ (×t∈TXt, � t∈TFt, F̂t0) is represented by

Ôt0 = ×
t∈T

Φt0,tOt

That is, it holds that

[F̂t0(×
t∈T

Ξt )](ωt0) = ×
t∈T

[Φt0,tFt(Ξt)](ωt0) = ×
t∈T

[Ft(Ξt)](φt0,tωt0)

(∀ωt0 ∈ Ωt0 ,∀Ξt ∈ Ft)

Proof. It suffices to prove the simple classical case of Example 12.5. Using Theorem 10.5

repeatedly, we see that

F̂0 = F0 × ( ×
t=1,6,7

Φ0,tF̂t)

=F0 × (Φ0,1F̂1 × Φ0,6F̂6 × Φ0,7F̂7) = F0 × (Φ0,1F̂1 × Φ0,6F6 × Φ0,7F7)

=
(
×

t=0,6,7
Φ0,tFt

)
× (Φ0,1F̂1) =

(
×

t=0,6,7
Φ0,tFt

)
× Φ0,1(F1 × ( ×

t=2,5
Φ1,tF̂t))

=
(
×

t=0,1,6,7
Φ0,tFt

)
× Φ0,1( ×

t=2,5
Φ1,tF̂t) =

(
×

t=0,1,6,7
Φ0,tFt

)
× Φ0,1(Φ1,2F̂2 × Φ1,5F̂5)

=
(
×

t=0,1,5,6,7
Φ0,tFt

)
× Φ0,1(Φ1,2F̂2) =

(
×

t=0,1,5,6,7
Φ0,tFt

)
× Φ0,1(Φ1,2(F2 × ( ×

t=3,4
Φ2,tF̂t)))
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=
7

×
t=0

Φ0,tFt

This completes the proof.
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314 Chapter 12 Realized causal observable in general theory

12.2 Double-slit experiment

This section is extracted from

(]) [43] S. Ishikawa, The double-slit quantum eraser experiments and Hardy’s paradox in the

quantum linguistic interpretation, arxiv:1407.5143[quantum-ph],( 2014)

Let us start from the explanation of Fig. 12.9 and Fig.12.10.

Picture 12.9.

-

6 6

x

y y

ρ1(y)P •
→ a

A
u1

B
u2 (b,−δ)

b
(b, δ)
(b, 2δ)

Figure 12.3 Potential V1(x, y) =∞ on the thick line, = 0 (elsewhere)

Picture 12.10.

-

6 6

x

y y

ρ2(y)P •
→ a

A
u′1

B
(b,−δ)
b

(b, δ)
(b, 2δ)

Figure 12.4 Potential V2(x, y) =∞ on the thick line, = 0 (elsewhere)
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12.2 Double-slit experiment 315

That is,

V2 = V1 + “the line segment B”

Consider a tree (T,≤) with the two branches such that

T = {0} ∪ T1 ∪ T2

where

T1 = {(1, s) | s > 0}, T2 = {(2, s) | s > 0}

0 ≤ (i, si) (i = 1, 2, 0 < si)

(i, si) ≤ (i, s′i) (i = 1, 2, si ≤ s′i)

0 •

(1, s1) T1

(2, s2)

T2

9

•

y

•

Figure 12.5: Tree (T = {0} ∪ T1 ∪ T2)

For each t ∈ T , define the quantum basic structure

[C(Ht) ⊆ B(Ht) ⊆ B(Ht)]

where Ht = L2(R2) (∀t ∈ T ).

Let u0 ∈ H0 = L2(R2) be an initial wave-function such that (k0 > 0, small σ > 0):

u0(x, y) ≈ ψx(x, 0)ψy(y, 0) =
1√
π1/2σ

exp
(
ik0x−

x2

2σ2

)
· 1√

π1/2σ
exp

(
− y2

2σ2

)
where the average momentum (p01, p

0
2) is calculated by

(p01, p
0
2) =

(∫
R
ψx(x, 0) · ~∂ψx(x, 0)

i∂x
dx,

∫
R
ψy(y, 0) · ~∂ψy(y, 0)

i∂y
dy

)
= (~k0, 0)

That is, we assume that the initial state of the particle P ( in Figures 12.3 and 12.4 ) is equal

to |u0〉〈u0|.
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316 Chapter 12 Realized causal observable in general theory

As mentioned in the above, consider two branches T1 and T2.

Thus, concerning a branch T1, we have the following Schrödinger equation:

i~
∂

∂t
ψt(x, y) = H1ψt(x, y), H1 = − ~2

2m

∂2

∂x2
− ~2

2m

∂2

∂y2
+ V1(x, y)

Also, concerning a branch T2, we have the following Schrödinger equation:

i~
∂

∂t
ψt(x, y) = H2ψt(x, y), H2 = − ~2

2m

∂2

∂x2
− ~2

2m

∂2

∂y2
+ V2(x, y)

Let s1, s2 be sufficiently large positive numbers. Put t1 = (1, s1) ∈ T1, t2 = (2, s2) ∈ T2.
Define the subtree T ′(⊆ T ) such that T ′ = {0, t1, t2} and 0 < t1, 0 < t2. Thus, we have the
causal relation: {Φ0,ti

1 : B(Hsi)→ B(H0)}i=1,2 where

Φ0,t1
1 F = e

H1s1
i~ F1e

−H1s1
i~ (∀F1 ∈ B(Ht1) = B(L2(R2)))

Φ0,t2
2 F = e

H2s2
i~ F1e

−H2s2
i~ (∀F2 ∈ B(Ht2) = B(L2(R2)))

0 •

(1, t1)

(2, t2)

T1

T2

9

•Φ0,t1
1

y

•Φ0,t2
2

Figure 12.6: Sequential causal operator

Put Z = {0,±1,±2, · · · }. Let δ be a sufficiently small positive number. For each n ∈ Z,

define the region Dn(⊆ R2) such that

D0 = {(x, y) ∈ R2 | x < b}

Dn =


{(x, y) ∈ R2 | b ≤ x, δ(n− 1) < y ≤ δn} (n = 1, 2, · · · )

{(x, y) ∈ R2 | b ≤ x, δn < y ≤ δ(n+ 1)} (n = −1,−2, · · · )

Define the observable (Z, 2Z, F ) in B(L2(R2) such that

[F ({n})](x, y) = χ
Dn

(x, y) (∀n ∈ Z,∀(x, y) ∈ R2)

where χ
Dn

(x, y) = 1 ((x, y) ∈ Dn), = 0 (elsewhere).
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Hence, we can consider the two observables Ot1 = (Z, 2Z, F ) in B(Ht1)(= B(L2(R2)) and

Ot2 = (Z, 2Z, F ) in B(Ht2)(= B(L2(R2)).

Since Φ0,t1
1 Ot1 = (Z, 2Z,Φ0,t1

1 F ) is the observable in B(H0), we have the measurement

MB(H0)(Φ
0,t1
1 Ot1 , S[ρ0]) (12.6)

We consider that this is just the description of the standard double-slit experiment. The

following is well known:

(A1) The measured date (x1, x2. · · · , xK) ∈ Zk obtained by the parallel measurement⊗Kk=1MB(H0)

(Φ0,t1
1 Ot1 , S[ρ0]) will show the interference fringes. See Figure 12.3.

Also, since Φ0,t2
2 Ot2 = (Z, 2Z,Φ0,t2

2 F ) is the observable in B(H0), we have the measurement

MB(H0)(Φ
0,t2
2 Ot2 , S[ρ0]) (12.7)

(A2) The measured date (x1, x2, · · · , xK) ∈ Zk obtained by the parallel measurement⊗Kk=1MB(H0)

(Φ0,t2
2 Ot2 , S[ρ0]) will not show the interference fringes. See Figure 12.4.

Also, we see that

(A3) if we get the positive measured value n by the measurement MB(H0)(Φ
0,t2
2 Ot2 , S[ρ0]), we

may conclude that the particle P passed through the hole A.

Further, note that we have the sequential causal observable [OT ′ ] = [{Oti}i=1,2, {Φ0,ti
i : B(Hti)→

B(H0)}i=1,2]. However, it should be noted that

(A4) the sequential causal observable [OT ′ ] can not be realized, since the commutativity does

not generally hold, that is, it generally holds that

Φ0,t1
1 F (Ξ) · Φ0,t2

2 F (Γ) 6= Φ0,t2
2 F (Γ) · Φ0,t1

1 F (Ξ) (∀Ξ,Γ ∈ 2Z)

Remark 12.11. Although, strictly speaking, we have to say that the statement “the particle

P passed through the hole A” can not be described in terms of quantum language, it should

be allowed to say the statement (A2). Also, concerning the statement (A3), note that

Ot1 = (Z, 2Z, F ) = Ot2 ,

but the observables Ot1 and Ot2 are in different worlds (i.e., different branches), except while

Φ0,t1
1 = Φ0,t2

2 .
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12.3 Wilson cloud chamber in double slit experiment

In this section, we shall analyze a discrete trajectory of a quantum particle, which is assumed

one of the models of the Wilson cloud chamber ( i.e., a particle detector used for detecting

ionizing radiation). The main idea is due to. [22, 23, (1991, 1994, S. Ishikawa, et al.)].

12.3.1 Trajectory of a particle is non-sense

We shall consider a particle P in the one-dimensional real line R, whose initial state function

is u(x) ∈ H = L2(R). Since our purpose is to analyze the discrete trajectory of the particle in

the double-slit experiment, we choose the state u(x) as follows:

u(x) =

 l/
√

2, x ∈ (−3/2,−1/2) ∪ (1/2, 3/2)

0, otherwise
(12.8)

0

1/
√

2
6

-3/2 -1/2 1/2 3/2

-

x

Figure 12.7 The initial wave function u(x)

Let A0 be a position observable in H, that is,

(A0v)(x) = xv(x) (∀x ∈ R, ( for v ∈ H = L2(R)

which is identified with the observable O = (R,BR, EA0) defined by the spectral representation:

A0 =
∫
R xEA0(dx).

We treat the following Heisenberg’s kinetic equation of the time evolution of the observable

A, (−∞ < t <∞) in a Hilbert space H with a Hamiltonian H such that H = −(~2/2m)∂2/∂x2

(i.e., the potential V (x) = 0), that is,

−i~dAt
dt

= HAt − AtH, −∞ < t <∞, where A0 = A (12.9)

The one-parameter unitary group Ut is defined by exp(−itA). An easy calculation shows that

At = U∗t AUt = U∗t xUt = x+
~t
im

d

dx
(12.10)
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12.3 Wilson cloud chamber in double slit experiment 319

Put t = 1/4, ~/m = 1. And put

A = A0(= x), B = A1/4(= x+
1

4i

d

dx
) = U∗1/4A0U1/4 = Φ0,1/4A0

Thus, we have the sequential causal observable

position observable: A0

B(H0)
initial wave function:u0

←−−−−−−
Φ0,1/4

position observable: A0

B(H1/4)

However, A0(= A) and Φ0,1/4A0(= B) do not commute, that is, we see:

AB −BA = x(x+
1

4i

d

dx
)− (x+

1

4i

d

dx
)x = i/4 6= 0

Therefore, the realized causal observable does not exist. In this sense,

the trajectory of a particle is non-sense

12.3.2 Approximate measurement of trajectories of a particle

In spite of this fact, we want to consider “trajectories” as follows. That is, we consider the

approximate simultaneous measurement of self-adjoint operators {A,B} for a particle P with

an initial state u(x).

Recall Definition 4.10, that is,

Definition 12.12. (=Definition 4.10). The quartet (K, s, Â, B̂) is called an approximately
simultaneous observable of A and B, if it satisfied that

(A1) K is a Hilbert space. s ∈ K, ‖s‖K = 1, Â and B̂ are commutative self-adjoint operators
on a tensor Hilbert space H ⊗K that satisfy the average value coincidence condition,
that is,

〈u⊗ s, Â(u⊗ s)〉 = 〈u,Au〉, 〈u⊗ s, B̂(u⊗ s)〉 = 〈u,Bu〉 (12.11)

(∀u ∈ H, ‖u‖H = 1)

Also, the measurement MB(H⊗K)(OÂ × OB̂, S[ρ̂us]) is called the approximately simultaneous
measurement of MB(H)(OA, S[ρu]) and MB(H)(OB, S[ρu]), where

ρ̂us = |u⊗ s〉〈u⊗ s| (‖s}K = 1)

And we define that

(A2) ∆ρ̂us

N̂1
(= ‖(Â− A⊗ I)(u⊗ s)‖) and ∆ρ̂us

N̂2
(= ‖(B̂ − B ⊗ I)(u⊗ s)‖) are called errors of

the approximate simultaneous measurement measurement MB(H⊗K)(OÂ × OB̂, S[ρ̂us])
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320 Chapter 12 Realized causal observable in general theory

Now, let us constitute the approximately observable (K, s, Â, B̂) as follows.

Put

K = L2(Ry), s(y) ==
(ω1

π

)1/4

exp
(
− ω1|y|2

2

)
where ω1 is assumed to be ω1 = 4, 16, 64 later. It is easy to show that ‖s‖L2(Ry) = 1 (i.e.,

‖s‖K = 1 ) and

〈s, As〉 = 〈s, Bs〉 = 0 (12.12)

And further, put

Â = A⊗ I + 2I ⊗ A

B̂ = B ⊗ I − 1

2
I ⊗B

Note that the two commute (i.e., ÂB̂ = B̂Â ). Also, we see, by (12.12),

〈u⊗ s, Â(u⊗ s)〉 = 〈u⊗ s, (A⊗ I + 2I ⊗ A)(u⊗ s)〉 = 〈u,Au〉 (12.13)

〈u⊗ s, Â(u⊗ s)〉 = 〈u⊗ s, (B ⊗ I − 2I ⊗ A)(u⊗ s)〉 = 〈u,Bu〉 (12.14)

(∀u ∈ H, i = 1, 2)

Thus, we have the approximately simultaneous measurement MB(H⊗K)(OÂ × OB̂, S[ρ̂us]), and

the errors are calculated as follows:

δ0 = ∆ρ̂us

N̂1
= ‖(Â− A⊗ I)(u⊗ s)‖ = ‖2(I ⊗ A)(u⊗ s)‖ = 2‖As‖ (12.15)

δ1/4 = ∆ρ̂us

N̂2
= ‖(B̂ −B ⊗ I)(u⊗ s)‖ = (1/2)‖(I ⊗B)(u⊗ s)‖ = (1/2)‖Bs‖ (12.16)
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12.3 Wilson cloud chamber in double slit experiment 321

By the parallel measurement
⊗N

k=1MB(H⊗K)(OÂ×OB̂, S[ρ̂us]), assume that a measured value:(
(x1, x

′
1), (x2, x

′
2), · · · , (xN , x′N)

)
is obtained. This is numerically calculated as follows.

Figure 12.8: The lines connecting two points (i.e., xk and x′k) (k = 1, 2, ...)

Here, note that δθ(= δ1/4) and δ0 are depend on ω1.

KSTS/RR-15/001 
January 22, 2015



322 Chapter 12 Realized causal observable in general theory

♠Note 12.2. For the further arguments, see the following refs.

(]1) [22]: S. Ishikawa, Uncertainties and an interpretation of nonrelativistic quantum theory,
International Journal of Theoretical Physics 30, 401–417 (1991)
doi: 10.1007/BF00670793

(]2) [23]: Ishikawa, S., Arai, T. and Kawai, T. Numerical Analysis of Trajectories of a Quantum
Particle in Two-slit Experiment, International Journal of Theoretical Physics, Vol. 33, No.
6, 1265-1274, 1994
doi: 10.1007/BF00670793
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12.4 Two kinds of absurdness — idealism and dualism

This section is extracted from ref. [37].

Measurement theory (= quantum language ) has two kinds of absurdness. That is,

(]) Two kinds of absurdness


idealism· · ·linguistic world-view
The limits of my language mean the limits of my world

dualism · · ·Descartes=Kant philosophy
The dualistic description for monistic phenomenon

In what follows, we explain these.

12.4.1 The linguistic interpretation — A spectator does not go up
to the stage

Problem 12.13. [A spectator does not go up to the stage]
Consider the elementary problem with two steps (a) and (b):

(a) Consider an urn, in which 3 white balls and 2 black balls are. And consider the following
trial:

• Pick out one ball from the urn. If it is black, you return it in the urn If it is white,
you do not return it and have it. Assume that you take three trials.

.

(b) Then, calculate the probability that you have 2 white ball after (a)(i.e., three trials).

Answer Put N0 = {0, 1, 2, . . .} with the counting measure. Assume that there are m white

balls and n black balls in the urn. This situation is represented by a state (m,n) ∈ N2
0. We

can define the dual causal operator Φ∗ : M+1(N2
0) →M+1(N2

0) such that

Φ∗(δ(m,n)) =

{
m

m+n
δ(m−1,n) + n

m+n
δ(m,n) (when m 6= 0 )

δ(0,n) (when m = 0 ).
(12.17)

where δ(·) is the point measure.

Let T = {0, 1, 2, 3} be discrete time. For each t ∈ T , put Ωt = N2
0. Thus, we see:

[Φ∗]3(δ(3,2)) = [Φ∗]2
(

3

5
δ(2,2) +

2

5
δ(3,2)

)
=Φ∗

(
(
3

5
(
2

4
δ(1,2) +

2

4
δ(2,2)) +

2

5
(
3

5
δ(2,2) +

2

5
δ(3,2))

)
=Φ∗

(
3

10
δ(1,2) +

27

50
δ(2,2) +

4

25
δ(3,2)

)
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=
3

10
(
1

3
δ(0,2) +

2

3
δ(1,2)) +

27

50
(
2

4
δ(1,2) +

2

4
δ(2,2)) +

4

25
(
3

5
δ(2,2) +

2

5
δ(3,2))

=
1

10
δ(0,2) +

47

100
δ(1,2) +

183

500
δ(2,2) +

8

125
δ(3,2) (12.18)

Define the observable O = (N0, 2
N0 , F ) in L∞(Ω3) such that

[F (Ξ)](m,n) =

{
1 (m,n) ∈ Ξ× N0 ⊆ Ω3

0 (m,n) /∈ Ξ× N0 ⊆ Ω3

Therefore, the probability that a measured value “2” is obtained by the measurement ML∞(N2
0)

(Φ3O,

S[(3,2)]) is given by

[Φ3(F ({2}))](3, 2) =

∫
Ω3

[F ({2})](ω)([Φ∗]3(δ(3,2)))(dω) =
183

500
(12.19)

The above may be easy, but we should note that

(c) the part (a) is related to causality, and the part (b) is related to measurement.

Thus, the observer is not in the (a). Figuratively speaking, we say:

A spectator does not go up to the stage

Thus, someone in the (a) should be regard as “robot”.

♠Note 12.3. The part (a) is not related to “probability”. That is because The spirit of measure-
ment theory says that

there is no probability without measurements.

although something like “probability” in the (a) is called “Markov probability”.

12.4.2 In the beginning was the words—Fit feet to shoes

Remark 12.14. [The confusion between measurement and causality ( Continued from Exam-

ple2.29)] Recall Example2.29 [The measurement of “cold or hot” for water]. Consider the

measurement ML∞(Ω)(Och, S[ω]) where ω = 5( ◦C). Then we say that

(a) By the measurement ML∞(Ω)(Och, S[ω(=5)]), the probability that a measured value

x(∈ X = {c, h}) belongs to a set


∅(= empty set)

{c}
{h}
{c, h}

 is equal to


0

[F ({c})](5) = 1
[F ({h})](5) = 0

1
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Here, we should not think:

“5 ◦C” is the cause and “cold” is a result.

That is, we never consider that

(b) 5 ◦C
(cause)

−→ cold
(result)

That is because Axiom 2 (causality; §10.3) is not used in (a), though the (a) may be sometimes

regarded as the causality (b) in ordinary language.

♠Note 12.4. However, from the different point of view, the above (b) can be justified as follows.
Define the dual causal operator Φ∗ : M([0, 100])→M({c, h}) by

[Φ∗δω](D) = fc(ω) · δC(D) + fh(ω) · δH(D) (∀ω ∈ [0, 100], ∀D ⊆ {c, h})

Then, the (b) can be regarded as “causality”. That is,

(]) “measurement or causality” depends on how to describe a phenomenon.

This is the linguistic world-description method.

Remark 12.15. [Mixed measurement and causality ] Reconsider Problem 9.2(urn prob-

lem:mixed measurement). That is, consider a state space Ω = {ω1, ω2}, and define the

observable O = ({w, b}, 2{w,b}, F ) in L∞(Ω) in Problem 9.2. Define the mixed state by

ρm = pδω1 + (1 − p)δω2 . Then the probability that a measured value x ( ∈ {w, b}) is obtained

by the mixed measurement ML∞(Ω)(O, S[∗](ρ
m)) is, by (9.3), given by

P ({x}) =

∫
Ω

[F ({x})](ω)ρm(dω) = p[F ({x})](ω1) + (1− p)[F ({x})](ω2)

=

{
0.8p+ 0.4(1− p) (when x = w )
0.2p+ 0.6(1− p)) (when x = b )

(12.20)

Now, define a new state space Ω0 by Ω0 = {ω0}. And define the dual (non-deterministic)

causal operator Φ∗ : M+1(Ω0) → M+1(Ω) by Φ∗(δω0) = pδω1 + (1 − p)δω2 . Thus, we have the

(non-deterministic) causal operator Φ : L∞(Ω)→ L∞(Ω0). Here, consider a pure measurement

ML∞(Ω0)(ΦO, S[ω0]). Then, the probability that a measured value x ( ∈ {w, b}) is obtained by

the measurement is given by

P ({x}) = [Φ(F ({x}))](ω0) =

∫
Ω

[F ({x})](ω)ρm(dω)
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=

{
0.8p+ 0.4(1− p) (when x = w )
0.2p+ 0.6(1− p)) (when x = b )

which is equal to the (12.20). Therefore, the mixed measurement ML∞(Ω)(O, S[∗](ν0)) can be

regarded as the pure measurement ML∞(Ω0)(ΦO, S[ω0]).

♠Note 12.5. In the above arguments, we see that

(]) Concept depends on the description

This is the linguistic world-description method. As mentioned frequently, we are not concerned
with the question “what is ©©?”. The reason is due to this (]). “Measurement or Causality”
depends on the description. Some may recall Nietzsche’s famous saying:

There are no facts, only interpretations.

This is just the linguistic world-description method with the spirit: “Fit feet (=world) to shoes
(language)”.

♠Note 12.6. In the book “The astonishing hypothesis” ([10] by F. Click (the most noted for
being a co-discoverer of the structure of the DNA molecule in 1953 with James Watson)), Dr.
Click said that

(a) You, your joys and your sorrows, your memories and your ambitions,your sense of personal
identity and free will,are in fact no more than the behavior of a vast assembly of nerve cells
and their associated molecules.

It should be note that this (a) and the dualism do not contradict. That is because quantum
language says:

(b) Describe any monistic phenomenon by the dualistic language (= quantum lan-
guage )!

Also, if the above (a) is due to David Hume, he was a scientist rather than a philosopher.
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Fisher statistics (II)

Measurement theory (= quantum language ) is formulated as follows.

• measurement theory
(=quantum language)

:=

[Axiom 1]

Measurement
(cf. §2.7)

+

[Axiom 2]

Causality
(cf. §10.3)︸ ︷︷ ︸

a kind of spell(a priori judgment)

+

[quantum linguistic interpretation]

Linguistic interpretation
(cf. §3.1)︸ ︷︷ ︸

manual how to use spells

In Chapter 5 (Fisher statistics (I)), we discuss “inference” in the relation of “measurement”. In

this chapter, we discuss “inference” in the relation of “measurement” and “causality”. Thus,

we devote ourselves to regression analysis. This chapter is extracted from the following:

(]) Ref. [28]: S. Ishikawa, “Mathematical Foundations of Measurement Theory,” Keio Uni-

versity Press Inc. 2006.

13.1 “Inference” = “Control”

It is usually considered that{
• statistics is closely related to inference
• dynamical system theory is closely related to control

However, in this chapter, we show that

“inference” = “control”

In this sense, we conclude that statistics and dynamical system theory are essentially the same.

13.1.1 Inference problem(statistics)

327
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Problem 13.1. [Inference problem and regression analysis]

Let Ω ≡ {ω1, ω2, ..., ω100} be a set of all students of a certain high school. Define h : Ω →
[0, 200] and w : Ω→ [0, 200] such that:

h(ωn) = “the height of a student ωn” (n = 1, 2, ..., 100)

w(ωn) = “the weight of a student ωn” (n = 1, 2, ..., 100) (13.1)

For simplicity, put, N = 5. For example, see Table 13.1.

Table 13.1: Height and weight

Height· Weight � Student ω1 ω2 ω3 ω4 ω5

Height (h(ω) cm) 150 160 165 170 175

Weight(w(ω) kg) 65 55 75 60 65

ω

h(ω)

w(ω)

Ω

0 100 200

0 100 200

Assume that:

(a1) The principal of this high school knows the both functions h and w. That is, he knows

the exact data of the height and weight concerning all students.

Also, assume that:

(a2) Some day, a certain student helped a drowned girl. But, he left without reporting the

name. Thus, all information that the principal knows is as follows:

(i) he is a student of his high school.

(ii) his height [resp. weight] is about 170 cm [resp. about 80 kg].

Now we have the following question:

(b) Under the above assumption (a1) and (a2), how does the principal infer who is he?

This will be answered in Answer 13.5.
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13.1.2 Control problem(dynamical system theory)

Adding the measurement equation g : R3 → R to the state equation, we have dynamical

system theory(13.2). That is,

dynamical system theory =


(i) : dω(t)

dt
= v(ω(t), t, e1(t), β)
(initialω(0)=α)

· · · ( state equation)

(ii) : x(t) = g(ω(t), t, e2(t)) · · · ( measurement)

(13.2)

where α, β are parameters, e1(t) is noise, e2(t) is measurement error.

The following example is the simplest problem concerning inference.

Problem 13.2. [Control problem and regression analysis] We have a rectangular water tank

filled with water.

h(t)

?

6

Figure 13.1: Water tank

Assume that the height of water at time t is given by the following function h(t):

dh

dt
= β0, then h(t) = α0 + β0t, (13.3)

where α0 and β0 are unknown fixed parameters such that α0 is the height of water filling the

tank at the beginning and β0 is the increasing height of water per unit time. The measured

height hm(t) of water at time t is assumed to be represented by

hm(t) = α0 + β0t+ e(t),
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where e(t) represents a noise (or more precisely, a measurement error) with some suitable

conditions. And assume that we obtained the measured data of the heights of water at t = 1, 2, 3

as follows:

hm(1) = 0.5, hm(2) = 1.6, hm(3) = 3.3. (13.4)

Under this setting, we consider the following problem:

(c1) [Control]: Settle the state (α0, β0) such that measured data (13.4) will be obtained.

or, equivalently,

(c2) [Inference]: when measured data (13.4) is obtained, infer the unknown state (α0, β0).

This will be answered in Answer 13.6.

Note that

(c1)=(c2)

from the theoretical point of view. Thus we consider that

(d) Inference problem and control problem are the same problem. And these are

characterized as the reverse problem of measurements.

Remark 13.3. [Remark on dynamical system theory (cf. [28]) ] Again recall the formulation

(13.2) of dynamical system theory, in which

(]) the noise e1(t) and the measurement error e2(t) have the same mathematical structure

(i.e., stochastic processes ).

This is a weak point of dynamical system theory. Since the noise and the measurement error are

different, I think that the mathematical formulations should be different. In fact, the confusion

between the noise and the measurement error frequently occur. This weakness is clarified in

quantum language, as shown in Answer 13.6.
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13.2 Regression analysis

According to Fisher’s maximum likelihood method (Theorem5.6) and the existence theorem

of the realized causal observable, we have the following theorem:

Theorem 13.4. [Regression analysis (cf. [28]) ] Let (T={t0, t1, . . . , tN}, π : T \ {t0} → T )

be a tree. Let ÔT =(×t∈T Xt, � t∈TFt, F̂t0) be the realized causal observable of a sequential
causal observable [{Ot}t∈T , {Φπ(t),t : L∞(Ωt)→ L∞(Ωπ(t))}t∈T\{t0} ]. Consider a measurement

ML∞(Ωt0 )
(ÔT=(×

t∈T
Xt, � t∈TFt, F̂t0), S[∗])

Assume that a measured value obtained by the measurement belongs to Ξ̂ (∈ � t∈TFt). Then,
there is a reason to infer that

[ ∗ ] = ωt0

where ωt0 (∈ Ωt0) is defined by

[F̂t0(Ξ̂)](ωt0) = max
ω∈Ωt0

[F̂t0(Ξ̂)](ω)

The poof is a direct consequence of Axiom 2 (causality; §10.3) and Fisher maximum likelihood
method (Theorem 5.6). Thus, we omit it.
It should be noted that

(]) regression analysis is related to Axiom 1 (measurement; §2.7) and Axiom 2
(causality; §10.3)

Now we shall answer Problem13.1 in terms of quantum language, that is, in terms of re-
gression analysis (Theorem13.4).

Answer 13.5. [(Continued from Problem13.1(Inference problem))Regression analysis] Let (T=
{0, 1, 2}, π : T \ {0} → T ) be the parent map representation of a tree, where it is assumed that

π(1) = π(2) = 0

Put Ω0 = {ω1, ω2, . . . , ω5}, Ω1 = interval[100, 200], Ω2 = interval[30, 110]. Here, we consider
that

Ω0 3 ωn · · · · · · a state such that “the girl is helped by a student ωn” (n = 1, 2, ..., 5)

For each t (∈ {1, 2}), the deterministic map φ0,t : Ω0 → Ωt is defined by φ0,1 = h(height
function), φ0,2 = w(weight function). Thus, for each t (∈ {1, 2}), the deterministic causal
operator Φ0,t : L∞(Ωt)→ L∞(Ω0) is defined by

[Φ0,tft](ω) = ft(φ0,t(ω)) (∀ω ∈ Ω0, ∀ft ∈ L∞(Ωt))
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332 Chapter 13 Fisher statistics (II)

L∞(Ω1)

L∞(Ω0)

L∞(Ω2)

+

k

Φ0,1

Φ0,2

For each t = 1, 2, let OGσt
=(R,BR, Gσt) be the normal observable with a standard deviation

σt > 0 in L∞(Ωt). That is,

[Gσt(Ξ)](ω) =
1√

2πσ2
t

∫
Ξ

e
− (x−ω)2

2σ2t dx (∀Ξ ∈ BR,∀ω ∈ Ωt)

Thus, we have a deterministic sequence observable [{OGσt
}t=1,2, {Φ0,t : L∞(Ωt)→ L∞(Ω0)}t=1,2].

Its realization ÔT = (R2,FR2 , F̂0) is defined by

[F̂0(Ξ1 × Ξ2)](ω) = [Φ0,1Gσ1 ](ω) · [Φ0,2Gσ2 ](ω) = [Gσ1(Ξ1)](φ0,1(ω)) · [Gσ2(Ξ2)](φ0,2(ω))

(∀Ξ1,Ξ2 ∈ BR, ∀ω ∈ Ω0 = {ω1, ω2, . . . , ω5})

Let N be sufficiently large. Define intervals Ξ1,Ξ2 ⊂ R by

Ξ1 =

[
165− 1

N
, 165 +

1

N

]
, Ξ2 =

[
65− 1

N
, 65 +

1

N

]
The measured data obtained by a measurement ML∞(Ω0)(ÔT , S[∗]) is

(165, 65) (∈ R2)

Thus, measured value belongs to Ξ1×Ξ2. Using regression analysis ( Theorem 13.4) is charac-
terized as follows:

(]) Find ω0 (∈ Ω0) such as

[F̂0({Ξ1 × Ξ2)](ω0) = max
ω∈Ω

[F̂0({Ξ1 × Ξ2)](ω)

Since N is sufficiently large,

(]) =⇒max
ω∈Ω0

1√
(2π)2σ2

1σ
2
2

∫ ∫
Ξ1×Ξ2

exp [− (x1 − h(ω))2

2σ2
1

− (x2 − w(ω))2

2σ2
2

]dx1dx2

=⇒max
ω∈Ω0

exp [− (165− h(ω))2

2σ2
1

− (65− w(ω))2

2σ2
2

]

=⇒ min
ω∈Ω0

[
(165− h(ω))2

2σ2
1

+
(65− w(ω))2

2σ2
2

] ( for simplicity, assume that σ1 = σ2)
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=⇒When ω4, minimum value
(165− 170)2 + (65− 60)2

2σ2
1

is obtained

=⇒The student is ω4

Therefore, we can infer that the student who helps the girl is ω4.

Now, let us answer Problem 13.2 in terms of quantum language (or, by using regression
analysis (Theorem13.4)).

Answer 13.6. [(Continued from Problem 13.2(Control problem))Regression analysis] In Problem

13.2, it is natural to consider that the tree T = {0, 1, 2, 3} is discrete time, that is, the linear

ordered set with the parent map π : T \ {0} → T such that π(t) = t − 1 (t = 1, 2, 3). For

example, put

Ω0 = [0, 1]× [0, 2], Ω1 = [0, 4]× [0, 2], Ω2 = [0, , 6]× [0, 2], Ω3 = [0, 8]× [0, 2]

For each t = 1, 2, 3, define the deterministic causal map φπ(t),t : Ωπ(t) → Ωt by (13.3), that is,

φ0,1(ω0) = (α + β, β) (∀ω0 = (α, β) ∈ Ω0 = [0, 1]× [0, 2])

φ1,2(ω1) = (α + β, β) (∀ω1 = (α, β) ∈ Ω1 = [0, 4]× [0, 2])

φ2,3(ω2) = (α + β, β) (∀ω2 = (α, β) ∈ Ω2 = [0, 6]× [0, 2])

Thus, we get the deterministic sequence causal map {φπ(t),t : Ωπ(t) → Ωt}t∈{1,2,3}, and the

deterministic sequence causal operator {Φπ(t),t : L∞(Ωt)→ L∞(Ωπ(t))}t∈{1,2,3}. That is,

(Φ0,1f1)(ω0)=f1(φ0,1(ω0)) (∀f1 ∈ L∞(Ω1),∀ω0 ∈ Ω0)

(Φ1,2f2)(ω1)=f2(φ1,2(ω1)) (∀f2 ∈ L∞(Ω2),∀ω1 ∈ Ω1)

(Φ2,3f3)(ω2)=f3(φ2,3(ω2)) (∀f3 ∈ L∞(Ω3),∀ω1 ∈ Ω2).

Illustrating by the diagram, we see

L∞(Ω0)
Φ0,1←−L∞(Ω1)

Φ1,2←−L∞(Ω2)
Φ2,3←−L∞(Ω3)

And thus, φ0,2(ω0) = φ1,2(φ0,1(ω0)), φ0,3(ω0) = φ2,3(φ1,2(φ0,1(ω0))), Therefore, note that Φ0,2 =

Φ0,1 · Φ1,2, Φ0,3 = Φ0,1 · Φ1,2 · Φ2,3.

L∞(Ω1)

L∞(Ω0) L∞(Ω2)

L∞(Ω3)

+
�
k

Φ0,1

Φ0,2

Φ0,3
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334 Chapter 13 Fisher statistics (II)

Let R be the set of real numbers. Fix σ > 0. For each t = 0, 1, 2, define the normal

observable Ot≡(R,BR, Gσ) in L∞(Ωt) such that

[Gσ(Ξ)](ωt) =
1√

2πσ2

∫
Ξ

exp(−(x− α)2

2σ2
)dx

(∀Ξ ∈ BR,∀ωt = (α, β) ∈ Ωt=[0, 2t+ 2]× [0, 2]).

Thus, we have the deterministic sequential causal observable [{Ot}t=1,2,3, {Φπ(t),t : L∞(Ωt) →
L∞(Ωπ(t))}t∈{1,2,3}].

And thus, we have the realized causal observable ÔT = (R3,FR3 , F̂0) in L∞(Ω0) such that (

using Theorem 12.8 )

[F̂0(Ξ1 × Ξ2 × Ξ3)](ω0) =
[
Φ0,1

(
Gσ(Ξ1)Φ1,2(Gσ(Ξ2)Φ2,3(Gσ(Ξ3)))

)]
(ω0)

=[Φ0,1Gσ(Ξ1)](ω0) · [Φ0,2Gσ(Ξ2)](ω0) · [Φ0,3Gσ(Ξ3)](ω0)

=[Gσ(Ξ1)](φ0,1(ω0)) · [Gσ(Ξ2)](φ0,2(ω0)) · [Gσ(Ξ3)](φ0,3(ω0))

(∀Ξ1,Ξ2,Ξ3 ∈ BR, ∀ω0 = (α, β) ∈ Ω0 = [0, 1]× [0, 2])

Our problem (i.e., Problem 13.2) is as follows,

(]1) Determine the parameter (α, β) such that the measured value of ML∞(Ω0)( ÔT , S[∗]) is

equal to (1.9, 3.0, 4.7)

For a sufficiently large natural number N , put

Ξ1 =

[
1.9− 1

N
, 1.9 +

1

N

]
,Ξ2 =

[
3.0− 1

N
, 3.0 +

1

N

]
,Ξ3 =

[
4.7− 1

N
, 4.7 +

1

N

]

Fisher’s maximum likelihood method (Theorem 5.6)) says that the above (]1) is equivalent

to the following problem

(]2) Find (α, β) (= ω0 ∈ Ω0) such that

[F̂0(Ξ1 × Ξ2 × Ξ3)](α, β) = max
(α,β)

[F̂0(Ξ1 × Ξ2 × Ξ3)]

Since N is assumed to be sufficiently large, we see

(]2) =⇒ max
(α,β)∈Ω0

[F̂0(Ξ1 × Ξ2 × Ξ3)](α, β)

=⇒ max
(α,β)∈Ω0

1
√

2πσ2
3

∫ ∫ ∫
Ξ1×Ξ2×Ξ3

e[−
(x1−(α+β))2+(x2−(α+2β))2+(x3−(α+3β))2

2σ2
]
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× dx1dx2dx3

=⇒ max
(α,β)∈Ω0

exp(−J/(2σ2))

=⇒ min
(α,β)∈Ω0

J

where

J = (1.9− (α + β))2 + (3.0− (α + 2β))2 + (4.7− (α + 3β))2

( ∂
∂α
{· · · } = 0, ∂

∂β
{· · · } = 0 and thus, )

=⇒
{

(1.9− (α + β)) + (3.0− (α + 2β)) + (4.7− (α + 3β)) = 0
(1.9− (α + β)) + 2(3.0− (α + 2β)) + 3(4.7− (α + 3β)) = 0

=⇒ (α, β) = (0.4, 1.4)

Therefore, in order to obtain a measured value (1.9, 3.0, 4.7), it suffices to put

(α, β) = (0.4, 1.4)

Remark 13.7. For completeness, note that,

• From the theoretical point of view,

“inference” = “control”

Thus, we conclude that statistics and dynamical system theory are essentially the same.
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Chapter 14

Realized causal observable in classical
systems

As mentioned in the previous chapters, what is important is

• to exercise the relationship of measurement and causality

In this chapter, we discuss the relationship more systematically. That is, we add the further

argument concerning the realized causal observable. This field is too vast, thus, we mainly

concentrate our interest to classical systems, particularly, Zeno’s paradox. That is,

([) to describe the flying arrow ( the best work in Zeno’s paradoxes ) in terms of quantum

language (cf. refs.[35, 37])1

We believe that this is the final answer to Zeno’s paradox.

14.1 Infinite realized causal observable in classical sys-

tems

In what follows, we shall generalize the argument ( concerning the finite realized causal

observable in Chapter 12) to infinite case. In the case of infinite trees, it is impossible to

discuss quantum system deeply. thus, in this chapter,

we devote ourselves to classical systems

1 This chapter is extracted from

[35]: S. Ishikawa, “Zeno’s paradoxes in the Mechanical World View,” arXiv:1205.1290v1 [physics.hist-ph],
(2012)

[37]: S. Ishikawa, Measurement Theory in the Philosophy of Science, arXiv:1209.3483 [physics.hist-ph]
2012, (177 pages)

337
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338 Chapter 14 Realized causal observable in classical systems

Let (T,≤) be an infinite tree, i.e., an infinite tree like semi-ordered set such that

“t1 5 t3 and t2 5 t3” =⇒ “t1 5 t2 or t2 5 t1”

Put T 2
≤ = {(t1, t2) ∈ T 2 : t1 ≤ t2}. An element t0 ∈ T is called a root if t0 ≤ t (∀t ∈ T )

holds. If T has the root t0, we sometimes denote T by T (t0). T
′(⊆ T ) is called lower bounded

if there exists an element ti(∈ T ) such that ti 5 t (∀t ∈ T ′). Therefore, if T has the root,

any T ′(⊆ T ) is lower bounded. We always assume that T is complete, that is, for any T ′(⊆ T )

which is lower bounded, there exists an element InfT (T ′)(∈ T ) that satisfies the following (i)

and (ii):

(i) InfT (T ′) 5 t (∀t ∈ T ′)

(ii) If s 5 t (∀t ∈ T ′), then it holds that s 5 InfT (T ′)

///

Let (T (t0), 5 ) be an infinite tree with the root t0. For each t ∈ T , consider the classical

basic structure:

[C0(Ωt) ⊆ L∞(Ωt, νt) ⊆ B(L2(Ωt, νt))]

Also, for each t ∈ T , define the separable complete metric space Xt, and the Borel field BXt ,

and further, define the observable Ot=(Xt,Ft, Ft) in L∞(Ωt, νt). That is, we have a sequential

causal observable:

[OT (t0)] = [{Ot}t∈T , {Φt1,t2 : L∞(Ωt2 , νt2)→ L∞(Ωt1 , νt1)}(t1,t2)∈T 2
5
]

Now let us construct the realized causal observable in what follows:

Here, define, P0(T ) (= P0(T (t0)) ⊆ P(T )) such that

P0(T (t0))

={T ′ ⊆ T | T ′ is finite, t0 ∈ T ′ and satisfies InfT ′S = InfTS (∀S ⊆ T ′)}

Let T ′(t0) ∈ P0(T (t0)). Since (T ′(t0), 5 ) is finite, we can put (T ′={t0, t1, . . . , tN}, π : T ′ \
{t0} → T ′), where π is a parent map.

Review 14.1. [The review of Theorem 12.4]. Let T ′(= T ′(t0)) ∈ P0(T ). Consider the sequen-
tial causal observable [{Ot}t∈T ′ , {Φπ(t),t : L∞(Ωt, νt) → L∞(Ωπ(t), νπ(t))}t∈T ′\{t0} ]. For each s

( ∈ T ′), putting Ts = {t ∈ T ′ | t = s}, define the observable Ôs=(×t∈Ts Xt, ×t∈Ts Ft, F̂s) in
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14.1 Infinite realized causal observable in classical systems 339

L∞(Ωt, νt) such that

Ôs =


Os (s ∈ T ′ \ π(T ′) and )

Os×( ×
t∈π−1({s})

Φπ(t),tÔt) (s ∈ π(T ′) and )
(14.1)

And further, iteratively, we get Ôt0=(×t∈T ′ Xt, ×t∈T ′ Ft, F̂t0), which is also denoted by

ÔT ′=(×t∈T ′ Xt,×t∈T ′ Ft, F̂T ′).(
In classical cases, the existence is guaranteed by Theorem 12.4

)
For any subsets T1 ⊆ T2( ⊆ T ), define the natural map πT1,T2 :×t∈T2 Xt −→×t∈T1 Xt by

×
t∈T2

Xt 3 (xt)t∈T2 7→ (xt)t∈T1 ∈ ×
t∈T1

Xt

It is clear that the observables
{

ÔT ′=(×t∈T ′ Xt, ×t∈T ′ Ft, F̂T ′) | T ′ ∈ P0(T )
}

in

L∞(Ωt0 , νt0) satisfy the following consistency condition, that is,

• for any T1, T2 (∈ P0(T )) such that T1 ⊆ T2, it holds that

F̂T2
(
π−1T1,T2(ΞT1)

)
= F̂T1

(
ΞT1

)
(∀ΞT1 ∈ ×

t∈T1
Ft)

Then, by Theorem 4.1[ Kolmogorov extension theorem in measurement theory ], there uniquely

exists the observable ÔT =
(×t∈T Xt, � t∈T Ft, F̂T

)
in L∞(Ωt0 , νt0) such that:

F̂T
(
π−1T ′,T (ΞT ′)

)
= F̂T ′

(
ΞT ′

)
(∀ΞT ′ ∈ �

t∈T ′
Ft, ∀T ′ ∈ P0(T ))

This observable ÔT = (×t∈T Xt, � t∈T Ft, F̂T ) is called the realization of the sequential causal

observable [OT (t0)] = [{Ot}t∈T , {Φt1,t2 : L∞(Ωt2 , νt2) → L∞(Ωt1 , νt1)}(t1,t2)∈T 2
5

].

Summing up the above argument, we have the following theorem in classical systems. This

is the infinite version of Theorem 12.4.

Theorem 14.2. [The existence theorem of an infinite realized causal observable in classical
systems] Let T be an infinite tree with the root t0. For each t ∈ T , consider the basic
structure:

[C0(Ωt) ⊆ L∞(Ωt, νt) ⊆ B(L2(Ωt, νt))]

Also, for each t ∈ T , define the separable complete metric space Xt, the Borel field
(Xt,Ft) and an observable Ot=(Xt,Ft, Ft) in L∞(Ωt, νt). And, consider the sequential causal
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340 Chapter 14 Realized causal observable in classical systems

observable[OT (t0)] = [{Ot}t∈T , {Φt1,t2 : L∞(Ωt2 , νt2) → L∞(Ωt1 , νt1)}(t1,t2)∈T 2
5

]. Then, there

uniquely exists the realized causal observable ÔT =
(×t∈T Xt, � t∈TFt, F̂T

)
in L∞(Ωt0 , νt0),

that is, it satisfies that

F̂T
(
π−1T ′,T (ΞT ′)

)
= F̂T ′

(
ΞT ′

)
(∀ΞT ′ ∈ � t∈T ′Ft, ∀T ′ ∈ P0(T )) (14.2)
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14.2 Is Brownian motion a motion?

14.2.1 Brownian motion in probability theory

There is a reason to consider that

(A) Brownian motion should be understood in measurement theory.

That is because Brownian motion is not in Newtonian mechanics. As one of applications of

Theorem 14.2, we discuss the Brown motion in quantum language.

t
ω0

-

B(t, λ) = ω̂( ≡ (ωt)t∈R+)

R
6

Let us explain the above figure as follows.

Definition 14.3. [The review of Brownian motion in probability theory [50]].
Let (Λ,FΛ, P ) be a probability space. For each λ ∈ Λ, define the real-valued continuous

function B(·, λ) : T (=[0,∞))→ R such that, for any t0 = 0 < t1 < t2 < · · · < tn,

P ({λ ∈ Λ | B(tk, λ) ∈ Ξk ∈ BR (k = 1, 2, . . . , n)})

=

∫
Ξ1

(
· · · (

∫
Ξtn−1

(

∫
Ξtn

n

×
k=1

G√tk−tk−1
(ωk − ωk−1)dωn)dωn−1) · · ·

)
dω1 (14.3)

where, ω0 ∈ R, dωk is the Lebesgue measure on R, and G√t(q) = 1√
2πt

exp
[
− q2

2t

]
.

The B(·, λ) : T (=[0,∞))→ R is called the Brownian motion.
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14.2.2 Brownian motion in quantum language

Now consider the diffusion equation:

∂ρt(q)

∂t
=
∂2ρt(q)

∂q2
, (∀q ∈ R,∀t ∈ T=R+ = [t0 = 0,∞) )

By the solution ρt, we get predual operator {[Φt1,t2 ]∗ : L1(R, dq)→ L1(R, dq)} as follows. That

is, for each ρt1 ∈ L1(R,m), define(
[Φt1,t2 ]∗(ρt1)

)
(q) = ρt2(q) =

∫ ∞
−∞

ρt1(y)G√t2−t1(q − y)m(dy) (∀q ∈ R, ∀(t1, t2) ∈ T 2
5)

For simplicity, we put (Ωt.BΩt , dωt) = (Ω,B, dω) = (Rq,BRq , dq). And thus, for each t ∈ T ,

consider the classical basic structure:

[C0(Ωt) ⊆ L∞(Ωt, dωt) ⊆ B(L2(Ωt, dωt))]

Putting Φt1,t2 = ([Φt1,t2 ]∗)
∗, we get the sequential causal operator

{Φt1,t2 : L∞(Ωt2 , dωt2)→ L∞(Ωt1 , dωt1) | (t1, t2) ∈ T 2
≤
}

For each t ∈ T , consider the exact observable O
(exa)
t = (Ω,BΩ, F

(exa)) in L∞(Ω, dω). Thus, we

get the sequential causal exact observable [OT ] = [{O(exa)
t }t∈T ; {Φt1,t2 | (t1, t2) ∈ T 2

≤
}]. The

existence theorem of the infinite classical realized causal observable (Theorem 14.2) says that

OT has the realized causal observable Ôt0 = (ΩT ,B(ΩT ), F̂t0) in L∞(Ω, dω).

Assume that

(B) a measured value ω̂ (= (ωt)t∈T ∈ ΩT ) is obtained by ML∞(Ω)(Ôt0 , S[δω0 ]
).

Let T ′ = {t0, t1, t2, · · · , tn} be a finite subset of T , where t0 = 0 < t1 < t2 < · · · < tn. Put

Ξ̂ =×T ′

t∈TΞt

(
∈ BR+)

where Ξt = Ω (∀t /∈ T ′). Then, by Axiom 1 (measurement; §2.7) , we see

the probability that ω̂( = (ωt)t∈T ) belongs to the set Ξ̂ ≡ ×T ′

t∈TΞt is given by

[F̂t0(×T ′

t∈TΞt)](ω0)

where

[F̂t0(×T ′

t∈TΞt)](ω0)

=
(
F (Ξ0)Φ0,t1

(
F (Ξt1) · · ·Φtn−2,tn−1

(
F (Ξtn−1)

(
Φtn−1,tnF (Ξtn)

))
· · ·

)
(ω0)

=

∫
Ξ1

(
· · · (

∫
Ξtn−1

(

∫
Ξtn

×n
k=1G

√
tk−tk−1

(ωk − ωk−1)dωn)dωn−1) · · ·
)
dω1 (14.4)
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which is equal to the (14.3).

Thus, we see that

probability theory(
B(t, ·)

)
t∈T

Brownian motion

=

quantum language(
ω̂t

)
t∈T

measured value

♠Note 14.1. Thus, the following assertion has a reason in some sense:

• The Brownian motion B(t, λ) is not a motion but a measured value. Some may recall
Parmenides’ saying:

(]) There are no “plurality”, but only “one”. And therefore, there is no movement.

which is the same as the essence of the linguistic interpretation.

That is, the spirit of quantum language says that

(]) Describe “plurality” as if only “one”.

(]) Describe moving one as if not moving.
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14.3 The Schrödinger picture of the sequential deter-

ministic causal operator

14.3.1 The preparation of the next section (§14.4: Zeno’s paradox)

The linguistic interpretation (§3.1) says that

a state does no move,

which is called the Heisenberg picture (i.e., a state does not move, and, an observable moves).

This is formal. On the other hand, we sometimes use the Schrödinger picture (i.e., a state

moves, and, an observable does not move), which is handy and makeshift.

In this section, we explain something about the Schrödinger picture in classical deterministic

systems.

This section is the preparation of the next section (Zeno’s paradoxes).

Let (T (t0), 5 ) be an infinite tree with the root t0. For each t ∈ T , consider the classical

basic structure:

[C0(Ωt) ⊆ L∞(Ωt, νt) ⊆ B(L2(Ωt, νt))]

Definition 14.4. [State changes — the Schrödinger picture] Let {Φt1,t2 : L∞(Ωt2 , νt2) →
L∞(Ωt1), νt1)}(t1,t2)∈T 2

5
be a deterministic causal relation with the deterministic causal maps

φt1,t2 : Ωt1 → Ωt2 (∀(t1, t2) ∈ T 2
5). Let ωt0 ∈ Ωt0 be an initial state. Then, the {φt0,t(ωt0)}t∈T

(or, {δφt0,t(ωt0 )}t∈T is called the Schrödinger picture representation.

The following is the infinite version of Theorem12.8.

Theorem 14.5. [Deterministic sequential causal operator and realized causal observable ] Let

(T (t0), 5 ) be an infinite tree with the root t0. Let [OT ] = [{Ot}t∈T , {Φt1,t2 : L∞(Ωt2 , νt2) →
L∞(Ωt1 , νt1)}(t1,t2)∈T 2

5
] be a deterministic sequential causal observable. Then, the realization

Ôt0 ≡ (×t∈TXt, � t∈TFt, F̂t0) is represented by

Ôt0 = ×
t∈T

Φt0,tOt

That is, it holds that

[F̂t0(×
t∈T

Ξt )](ωt0) = ×
t∈T

[Φt0,tFt(Ξt)](ωt0) = ×
t∈T

[Ft(Ξt)](φt0,t(ωt0))
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(∀ωt0 ∈ Ωt0 ,∀Ξt ∈ Ft)

Proof. The proof is similar to that of Theorem12.8

Theorem 14.6. Let [OT (t0)] = [{O(exa)
t }t∈T , {Φt1,t2 : L∞(Ωt2 , νt2) → L∞(Ωt1 , νt1)}(t1,t2)∈T 2

5
] be

a deterministic sequential causal exact observable, which has the deterministic causal maps

φt1,t2 : Ωt1 → Ωt2 (∀(t1, t2) ∈ T 2
5). And let Ôt0 = (×t∈T Xt,×t∈T Ft, F̂T ) be its realized causal

observable in L∞(Ωt0 , νt0). Assume that the measured value (xt)t∈T is obtained by ML∞(Ωt0 )
(ÔT

= (×t∈T Xt,×t∈T Ft, F̂0), S[ωt0 ]
). Then, we surely believe that

xt = φt0,t(ωt0) (∀t ∈ T )

Thus, we say that, as far as a deterministic sequential causal observable,

(a) exact measured value (xt)t∈T = the Schrödinger picture representation (φt0,t(ωt0))t∈T

Proof. Let D = {t1, t2, . . . , tn}(⊆ T ) be any finite subset of T . Put Ξ̂ = ×D
t∈TΞt =

(×t∈D Ξt) × (×t∈T\DXt), where Ξt ⊆ Xt(= Ωt) is an open set such that φt0,t(ωt0) ∈ Ξt

(∀t ∈ D). Then, we see that

(b) the probability that the measured value (xt)t∈T belongs to Ξ̂ =×D
t∈TΞt is equal to 1.

That is because Theorem 14.5 says that(
F̂T (Ξ̂)

)
(ωt0) =

( n

×
k=1

(
Φt0,tkF

(exa)(Ξtk)
))

(ωt0)

=
( n

×
k=1

F (exa)(φ−1t0,tk(Ξtk)
))

(ωt0) =
n

×
k=1

χ
Ξtk

(φt0,tk(ωt0)) = 1

Thus, from the arbitrariness of Ξt, we surely believe that

(c) (xt)t∈T = φt0,t(ωt0) (∀t ∈ T )

♠Note 14.2. Note that “(b) ⇔(c)” in the above. That is, (b) is the definition of (c).

Thus, we have the following corollary, which is the generalization of Theorem 3.15.
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Corollary 14.7. [System quantity and exact observable]. For each t ∈ T (t0), consider

the exact observable O
(exa)
t = (X,Ft, F

(exa))(= (Ωt,Bt, χ)) in L∞(Ωt, νt) and a system quantity

gt : Ωt → R on Ωt. Let O′t = (R,BR, Gt) be the observable representation of the quantity gt in

L∞(Ωt). Assuming the simultaneous observable O
(exa)
t ×O′t, define the sequential deterministic

causal observable:

[OT (t0)] = [{O(exa)
t × O′t}t∈T , {Φt1,t2 : L∞(Ωt2 , νt2)→ L∞(Ωt1 , νt1)}(t1,t2)∈T 2

5
]

Let φt1,t2 : Ωt1 → Ωt2 (∀(t1, t2) ∈ T 2
5) be the deterministic causal map. Let Ôt0 =

(×t∈T (Xt×R),

�t∈T (Ft � BR), F̂t0
)

be the realized causal observable. Thus, we have the measurement

ML∞(Ωt0 )
(Ôt0 , S[ωt0 ]

). Let (xt, yt)t∈T be the measured value obtained by the measurement

ML∞(Ωt0 )
(Ôt0 , S[ωt0 ]

). Then, we can surely believe that

xt = φt0,t(ωt0) and yt = gt(φt0,t(ωt0)) (∀t ∈ T )

Remark 14.8. [Why doesn’t Newtonian mechanics have measurement?]. Newtonian mechan-

ics and quantum mechanics are formulated as follows:

(])


Newtoinan mechanics = Nothing + Causality

(Newtonian equation)

quantum mechanics = Measurement
(Born’s quantum measurement)

+ Causality
(Heisenberg (and Schrödinger) equation)

Thus, the following question is natural:

(]) Why doesn’t Newtonian mechanics have measurement?

I think that the reason is due to Theorem 14.6 (or, Corollary 14.7 ). That is because Theorem

14.6 says that we need only φt0,t(ωt0) and not xt.
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14.4 Zeno’s paradoxes—Flying arrow is not moving

In this section, we explain our opinion for Zeno’s paradox ( the oldest paradox in science ):

that is,

What is the meaning of Zeno’s paradox?

14.4.1 What is Zeno’s paradox?

Although Zeno’s paradox has some types (i.e., “flying arrow”, “Achilles and a tortoise”,

“dichotomy”, “stadium”, etc.), I think that these are essentially the same problem. And

I think that the flying arrow expresses the essence of the problem exactly and is the first

masterpiece in Zeno’s paradoxes. However, since “Achilles and the tortoise” may be more

famous, I will also describe this as follows.

Paradox 14.9. [Zeno’s paradox]

[Flying arrow is not moving]

• Consider a flying arrow. In any one instant of time, the arrow is not moving. Therefore,

If the arrow is motionless at every instant, and time is entirely composed of instants,

then motion is impossible.

[Achilles and a tortoise]

• I consider competition of Achilles and a tortoise. Let the start point of a tortoise (a late

runner) be the front from the starting point of Achilles (a quick runner). Suppose that

both started simultaneously. If Achilles tries to pass a tortoise, Achilles has to go to the

place in which a tortoise is present now. However, then, the tortoise should have gone

ahead more. Achilles has to go to the place in which a tortoise is present now further.

Even Achilles continues this infinite, he can never catch up with a tortoise.
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348 Chapter 14 Realized causal observable in classical systems

In order to explain

“What is Zeno’s paradox?”

we have to start from the following Figure. That is, we assert that

Zeno’s paradox can not be understood without the following figure:

Figure 14.10. [=Figure 1.1: The location of quantum language in the history of world-description
(cf. ref.[30]) ]

Parmenides
Socrates

0©:Greek
philosophy

Plato
Aristotle

Schola-−−−−→
sticism

1©

−−→
(monism)

Newton
(realism)

2©
→

relativity
theory −−−−−−→ 3©

→
quantum
mechanics −−−−−−→ 4©

−→

(dualism)

Descartes
Locke,...
Kant
(idealism)

6©−→

(linguistic view)

linguistic
philosophy

language−−−−−→ 8©

language−−−−−−→ 7©


5©−→

(unsolved)

theory of
everything

(quantum phys.)


10©−→

(=MT)

quantum
language
(language)

Figure 1.1: The history of the world-view

statistics
system theory

language−−−−−→ 9©

the linguistic view

the realistic view

It is clear that

(A) Descartes=Kant philosophy and the philosophy of language have no power to describe

Zeno’s paradox 14.9.

KSTS/RR-15/001 
January 22, 2015



14.4 Zeno’s paradoxes—Flying arrow is not moving 349

However, we have the following problems:

(B1) How do we describe Zeno’s paradox 14.9 in terms of Newtonian mechanics?

(B2) How do we describe Zeno’s paradox 14.9 in terms of quantum mechanics?

(B3) How do we describe Zeno’s paradox 14.9 in terms of the theory of relativity?

(B4) How do we describe Zeno’s paradox 14.9 in terms of statistics (i.e., the dynamical system

theory) ?

(B5) How do we describe Zeno’s paradox 14.9 in terms of quantum language?

And, finally, we have

(C) What is the most proper world description for Zeno’s paradox 14.9?

We assert that

(D) “to solve Zeno’s paradox 14.9” ⇐⇒ “to answer the above (C)”

and conclude that

(E) The answer of the above (C) is just quantum language

Therefore, it suffices to answer the above (B5), that is,

Problem 14.11. [The meaning of Zeno’s paradox]

Describe “flying arrow” and “Achilles an a tortoise” in (classical) quantum
language!

14.4.2 The answer to (B4): the dynamical system theoretical answer
to Zeno’s paradox

Before the answer of Problem 14.11, we give the answer to the Problem (B4), i.e., the

dynamical system theoretical answer. However, in order to do it, we have to start from the

formulation of dynamical system theory in what follows

.
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14.4.2.1 The formulation of dynamical system theory

Although statistics and dynamical system theory have no clear formulations, as mentioned

in Chapter 13, we have the opinion that statistics and dynamical system theory are the same

things. At least, the following formulation (i.e., the formulation of dynamical system theory in

the narrow sense) should belong to statistics.

Formulation 14.12. [The formulation of dynamical system theory in the narrow sense]

Dynamical system theory is formulated as follows.

Dynamical system theory = 1©:State equation + 2©:Measurement equation (14.5)

1©: State equation is as follows. Let T = R be the time axis. For each t(∈ T ), consider

the state space Ωt = Rn (n-dimensional real space). The state equation (Chap. 13(13.2)) is

defined by the following simultaneous ordinary differential equation of the first order

State equation =


dω1

dt
(t) = v1(ω1(t), ω2(t), . . . , ωn(t), ε1(t), t)

dω2

dt
(t) = v2(ω1(t), ω2(t), . . . , ωn(t), ε2(t), t)

· · · · · ·
dωn
dt

(t) = vn(ω1(t), ω2(t), . . . , ωn(t), εn(t), t)

(14.6)

where εk(t) is a noise (k = 1, 2, · · · , n).

2©: Measurement equation is as follows. Consider the measured value space X = Rm (m-

dimensional real space). The measurement equation (Chap. 13(13.2)) is defined by

Measurement equation =


x1(t) = g1(ω1(t), ω2(t), . . . , ωn(t), η1(t), t)
x2(t) = g2(ω1(t), ω2(t), . . . , ηn(t), η2(t), t)
· · · · · ·
xm(t) = gm(ω1(t), ω2(t), . . . , ηn(t), ηn(t), t)

(14.7)

where g(= (g1, g2, · · · , gn)) : Ω × R2 → X is the system quantity and ηk(t) is a noise (k =

1, 2, · · · ,m). Here, x(t)(= (x1(t), x2(t), · · · , xn(t))) is called a motion function.

14.4.2.2 The dynamical system theoretical answer to Zeno’s paradox

Answer 14.13. [The dynamical system theoretical answer to “flying arrow (in
Paradox 14.9)”]

Let q(t) be the position of the flying arrow at time t. That is, consider the motion function
q(t).
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• Note that the following logic (i.e., Zeno’s logic ) is wrong:

• for each time t, the position q(t) of the flying arrow is determined.
=⇒
the motion function q is a constant function

Thus, Zeno’s logic is wrong.

[The dynamical system theoretical answer to “Achilles and a tortoise (in Paradox

14.9)”] For example, assume that the velocity vq [resp. vs] of the quickest [resp. slowest]

runner is equal to v(> 0) [resp. γv (0 < γ < 1)]. And further, assume that the position

of the quickest [resp. slowest] runner at time t = 0 is equal to 0 [resp. a (> 0)]. Thus, we

can assume that the position ξ(t) of the quickest runner and the position η(t) of the slowest

runner at time t (≥ 0) is respectively represented by{
ξ(t) = vt
η(t) = γvt+ a

(14.8)

• Calculations

The formula (14.8) can be calculated as follows (i.e., (i) or (ii)):

[(i): Algebraic calculation of (14.8)]:

Solving ξ(s0) = η(s0), that is,

vs0 = γvs0 + a

we get s0 = a
(1−γ)v . That is, at time s0 = a

(1−γ)v , the fast runner catches up with the slow

runner.

[(ii): Iterative calculation of (14.8)]:

Define tk (k = 0, 1, ...) such that, t0 = 0 and

tk+1 = γvtk + a (k = 0, 1, 2, ...)

Thus, we see that tk = (1−γk)a
(1−γ)v (k = 0, 1, ...). Then, we have that

(
ξ(tk), η(tk)

)
=

((1− γk)a
1− γ

,
(1− γk+1)a

1− γ
)

→
( a

1− γ
,

a

1− γ
)

(14.9)

KSTS/RR-15/001 
January 22, 2015



352 Chapter 14 Realized causal observable in classical systems

as k →∞. Therefore, the quickest runner catches up with the slowest at time s0 = a
(1−γ)v .

[(iii): Conclusion]: After all, by the above (i) or (ii), we can conclude that

(]) the quickest runner can overtake the slowest at time s0 = a
(1−γ)v .

-

6

t

6

q1(t) = vt

?

q2(t) = γvt+ a

0
(= t0)

a
v

(= t1)

(1−γ2)a
(1−γ)v
(= t2)

(1−γ3)a
(1−γ)v
(= t3)

a
(1−γ)v
(= s0)

· · ·

· · · · · ·

... ......

a

(1−γ2)a
1−γ

(1−γ3)a
1−γ

a
1−γ

q1, q2

The graph of q1(t) = vt, q2(t) = γvt+ a

14.4.2.3 Why isn’t the Answer 14.13 authorized?

We believe that the Answer 14.13 is not the wrong answer of Zeno’s paradox. If so, we have

to answer the following question:

(F) Why isn’t the Answer 14.13 accepted as the final answer of Zeno’s paradox?

We of course believe that

(G1) the reason is due to the fact that statistics (=dynamical system theory) is not

accepted as the world-view in Figure 14.10.

Or equivalently,

(G1) the linguistic world-view is not accepted as the world-view in Figure 14.10.

If so, the readers note that

(H) the purpose of this note is to assert that the linguistic world view should be

authorized in Figure 14.10.
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14.4.3 Quantum linguistic answer to Zeno’s paradoxes

Before reading Answer 14.14 ( Zeno’s paradox(flying arrow) ), confirm our spirit:

(I) The theory described in ordinary language should be described in a certain world de-

scription. That is because almost ambiguous problems are due to the lack of “the world-

description method”.

Therefore,

(J) it suffices to describe “motion function q(t) in Answer 14.13 (flying arrow)” in terms

of quantum language. Here, the motion function should be a measured value, in which

the causality is concealed.

This will be done as follows.

Answer 14.14. [The answer to Problem14.11] or [Answer to Problem 14.9: Zeno’s paradox(flying
arrow) (cf. ref. [35, 37])] In Corollary 14.7, putting

q(t) = yt(= gt(φt0,t(ωt0)))

we get the time-position function q(t).

Although there may be several opinions, we consider that the followings (i.e., (K1) and (K2))

are equivalent:

(K1) to accept Figure 14.10:[The history of the world-view]

(K2) to believe in Answer 14.14 as the final answer of Zeno’s paradox

♠Note 14.3. I think that “the flying arrow” is Zeno’s best work. If readers agree to the above
answer, they can easily answer the other Zeno’s paradoxes. Also, it should be noted that Zeno
of Elea (BC. 490-430) was a Greek philosopher (about 2500 years ago). Hence, we are not
concerned with the historical aspect of Zeno’s paradoxes. Therefore, we think that

(]) “How did Zeno think Zeno’s paradoxes?” is not important from the scientific point of view.

and

(]) What is important is “How do we think Zeno’s paradoxes?”

Also, for the quantum linguistic space-time, see §10.7 ( Leibniz=Clarke correspondence). I
doubt great philosophers’ opinions concerning Zeno’s paradoxes.
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Chapter 15

Least-squares method and Regression
analysis

Although regression analysis has a great history, we consider that it has always continued being

confused. For example, the fundamental terms in regression analysis (e.g., “regression”, “least-

squares method”, “explanatory variable”, “response variable”, etc.) seem to be historically

conventional, that is, these words do not express the essence of regression analysis. In this

chapter, we show that the least squares method acquires a quantum linguistic story as follows.

The least squares method
(Section 15.1)

describe by−−−−−−−−−−−→
quantum language

Regression analysis
(Section 15.2)

natural−−−−−−−−→
generalization

Generalized linear model
(Section 15.4)

(])

In this story, the terms “explanatory variable” and “response variable” are clarified in terms of
quantum language. As the general theory of regression analysis, it suffices to devote ourselves
to Theorem 13.4. However, from the practical point of view, we have to add the above story
(])1.

15.1 The least squares method

Let us start from the simple explanation of the least-squares method. Let {(ai, xi)}ni=1 be

a sequence in the two dimensional real space R2. Let φ(β1,β2) : R → R be the simple function

such that

R 3 a 7→ x = φ(β1,β2)(a) = β1a+ β0 ∈ R (15.1)

1This chapter is extracted from

• Ref. [41]: S. Ishikawa; Regression analysis in quantum language ( arxiv:1403.0060[math.ST],( 2014) )
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356 Chapter 15 Least-squares method and Regression analysis

where the pair (β1, β2)(∈ R2) is assumed to be unknown. Define the error σ by

σ2(β1, β2) =
1

n

n∑
i=1

(xi − φ(β1,β2)(ai))
2
(

=
1

n

n∑
i=1

(xi − (β1ai + β0))
2
)

(15.2)

Then, we have the following minimization problem:

Problem 15.1. [The least squares method].

Let {(ai, xi)}ni=1 be a sequence in the two dimensional real space R2.
Find the (β̂0, β̂1) (∈ R2) such that

σ2(β̂0, β̂1) = min
(β1,β2)∈R2

σ2(β1, β2)
(

= min
(β1,β2)∈R2

1

n

n∑
i=1

(xi − (β1ai + β0))
2
)

(15.3)

where (β̂0, β̂1) is called “sample regression coefficients”.

This is easily solved as follows. Taking partial derivatives with respect to β0, β1, and

equating the results to zero, gives the equations (i.e., “likelihood equations”),

∂σ2(β1, β2)

∂β0
=

n∑
i=1

(xi − β0 − β1ai) = 0, (i = 1, ..., n) (15.4)

∂σ2(β1, β2)

∂β1
=

n∑
i=1

(xi − β0 − β1ai)ai = 0, (i = 1, ..., n) (15.5)

Solving it, we get that

β̂1 =
sax
saa

, β̂0 = x− sax
saa

a, σ̂2(=
1

n

n∑
i=1

(xi − (β̂1ai + β̂0))
2
)

= sxx −
s2ax
saa

(15.6)

where

ā =
a1 + · · ·+ an

n
, x̄ =

x1 + · · ·+ xn
n

, (15.7)

saa =
(a1 − ā)2 + · · ·+ (an − ā)2

n
, sxx =

(x1 − x̄)2 + · · ·+ (xn − x̄)2

n
, (15.8)

sax =
(a1 − ā)(x1 − x̄) + · · ·+ (an − ā)(xn − x̄)

n
. (15.9)

Remark 15.2. [Applied mathematics]. Note that the above result is in (applied) mathematics,

that is,

• the above is neither in statistics nor in quantum language.

The purpose of this chapter is to add a quantum linguistic story to Problem 15.1 (i.e., the

least-squares method) in the framework of quantum language.
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15.2 Regression analysis in quantum language

Put T = {0, 1, 2, · · · , i, · · · , n}. And let (T, τ : T \ {0} → T ) be the parallel tree such that

τ(i) = 0 (∀i = 1, 2, · · · , n) (15.10)

1

2

n

0

+

)

k

τ

τ

· · · · · ·
· · · · · ·

τ

Figure 15.1: Parallel structure

♠Note 15.1. In regression analysis, we usually devote ourselves to “classical deterministic causal
relation”. Thus, Theorem 12.8 is important, which says that it suffices to consider only the
parallel structure.

For each i ∈ T , define a locally compact space Ωi such that

Ω0 = R2 =
{
β =

[
β0
β1

]
: β0, β1 ∈ R

}
(15.11)

Ωi = R =
{
µi : µi ∈ R

}
(i = 1, 2, · · · , n) (15.12)

where the Lebesgue measures mi are assumed.

Assume that

ai ∈ R (i = 1, 2, · · · , n), (15.13)

which are called explanatory variables in the conventional statistics. Consider the deterministic

causal map ψai : Ω0(= R2)→ Ωi(= R) such that

Ω0 = R2 3 β = (β0, β1) 7→ ψai(β0, β1) = β0 + β1ai = µi ∈ Ωi = R (15.14)

which is equivalent to the deterministic causal operator Ψai : L∞(Ωi)→ L∞(Ω0) such that

[Ψai(fi)](ω0) = fi(ψai(ω0)) (∀fi ∈ L∞(Ωi), ∀ω0 ∈ Ω0,∀i ∈ 1, 2, · · · , n) (15.15)
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L∞(Ω1(≡ R))

L∞(Ω2(≡ R))

L∞(Ωn(≡ R))

L∞(Ω0(≡ R2))

+

)

k

Ψa1

Ψa2

· · · · · ·
· · · · · ·

Ψan

Figure 15.2: Parallel structure (Causal relation Ψai)

Thus, under the identification: ai ⇔ Ψai , the term “explanatory variable” means a kind of

causal relation Ψai .

For each i = 1, 2, · · · , n, define the normal observable Oi≡(R,BR, Gσ) in L∞(Ωi(≡ R)) such

that

[Gσ(Ξ)](µ) =
1

(
√

2πσ2)

∫
Ξ

exp
[
−(x− µ)2

2σ2

]
dx (∀Ξ ∈ BR, ∀µ ∈ Ωi(≡ R)) (15.16)

where σ is a positive constant.

Thus, we have the observable Oai
0 ≡(R,BR,ΨaiGσ) in L∞(Ω0(≡ R2)) such that

[Ψai(Gσ(Ξ))](β) = [(Gσ(Ξ))](ψai(β)) =
1

(
√

2πσ2)

∫
Ξ

exp
[
−(x− (β0 + aiβ1))

2

2σ2

]
dx (15.17)

(∀Ξ ∈ BR,∀β = (β0, β1) ∈ Ω0(≡ R2)

Hence, we have the simultaneous observable ×n
i=1O

ai
0 ≡(Rn,BRn ,×n

i=1 ΨaiGσ) in L∞(Ω0(≡
R2)) such that

[(
n

×
i=1

ΨaiGσ)(
n

×
i=1

Ξi)](β) =
n

×
i=1

(
[ΨaiGσ)(Ξi)](β)

)
=

1

(
√

2πσ2)n

∫
· · ·

∫
×n

i=1 Ξi

exp
[
−
∑n

i=1(xi − (β0 + aiβ1))
2

2σ2

]
dx1 · · · dxn

=

∫
· · ·

∫
×n

i=1 Ξi

p(β0,β1,σ)(x1, x2, · · · , xn)dx1 · · · dxn (15.18)

(∀
n

×
i=1

Ξi ∈ BRn , ∀β = (β0, β1) ∈ Ω0(≡ R2))

Assuming that σ is variable, we have the observable O =
(
Rn(= X),BRn(= F), F

)
in L∞(Ω0×

R+) such that

[F (
n

×
i=1

Ξi)](β, σ) = [(
n

×
i=1

ΨaiGσ)(
n

×
i=1

Ξi)](β) (∀Ξi ∈ BR, ∀(β, σ) ∈ R2(≡ Ω0)× R+) (15.19)
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15.2 Regression analysis in quantum language 359

Problem 15.3. [Regression analysis in quantum language]

Assume that a measured value x =


x1
x2
...
xn

 ∈ X = Rn is obtained by the measurement

ML∞(Ω0×R+)(O ≡ (X,F, F ), S[(β0,β1,σ)]). (The measured value is also called a response vari-
able.) And assume that we do not know the state (β0, β1, σ

2).
Then,

• from the measured value x = (x1, x2, . . . , xn) ∈ Rn, infer the β0, β1, σ!

That is, represent the (β0, β1, σ) by (β̂0(x), β̂1(x), σ̂(x)) (i.e., the functions of x).

Answer.

Taking partial derivatives with respect to β0, β1, σ
2, and equating the results to zero, gives

the log-likelihood equations. That is, putting

L(β0, β1, σ
2, x1, x2, · · · , xn) = log

(
p(β0,β1,σ)(x1, x2, · · · , xn)

)
,

(where “log” is not essential), we see that

∂L

∂β0
= 0 =⇒

n∑
i=1

(xi − (β0 + aiβ1)) = 0 (15.20)

∂L

∂β1
= 0 =⇒

n∑
i=1

ai(xi − (β0 + aiβ1)) = 0 (15.21)

∂L

∂σ2
= 0 =⇒ − n

2σ2
+

1

2σ4

n∑
i=1

(xi − β0 − β1ai)2 = 0 (15.22)

Therefore, using the notations (15.7)-(15.9), we obtain that

β̂0(x) = x− β̂1(x)a = x− sax
saa

a, β̂1(x) =
sax
saa

(15.23)

and

(σ̂(x))2 =

∑n
i=1

(
xi − (β̂0(x) + aiβ̂1(x))

)2

n

=

∑n
i=1

(
xi − (x− sax

saa
a)− ai saxsaa

)2

n
=

∑n
i=1

(
(xi − x) + (a− ai) saxsaa

)2

n

=sxx − 2sax
sax
saa

+ saa(
sax
saa

)2 = sxx −
s2ax
saa

(15.24)
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360 Chapter 15 Least-squares method and Regression analysis

Note that the above (15.23) and (15.24) are the same as (15.6). Therefore, Problem 15.3

(i.e., regression analysis in quantum language) is a quantum linguistic story of the least squares

method (Problem 15.1).

Remark 15.4. Again, note that

(A) the least squares method (15.6) and the regression analysis (15.23) and (15.24) are the

same.

Therefore, a small mathematical technique (the least squares method) can be understood in a

grand story (regression analysis in quantum language). The readers may think that

(B) Why do we choose “complicated (Problem 15.3)” rather than “simple (Prob-

lem 15.1)”?

Of course, such a reason is unnecessary for quantum language! That is because

(C) the spirit of quantum language says that

“Everything should be described by quantum language”

However, this may not be a kind answer. The reason is that the grand story has a merit

such that statistical methods (i.e., the confidence interval method and the statistical hypothesis

testing ) can be applicable. This will be mentioned in the following section.
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15.3 Regression analysis(distribution , confidence interval and statistical hypothesis testing)361

15.3 Regression analysis(distribution , confidence inter-

val and statistical hypothesis testing)

As mentioned in Problem 15.3 ( regression analysis), consider the measurement ML∞(Ω0×R+)(O ≡
(X(= Rn),F, F ), S[(β0,β1,σ)])

For each (β, σ) ∈ R2 × R+, define the sample probability space (X,F, P(β,σ)), where

P(β,σ)(Ξ) = [F (Ξ)](β0, β1, σ) (∀Ξ ∈ F)

Define L2(X,P(β,σ)) (or in short, L2(X)) by

L2(X) = {measurable function f : X → R | [

∫
X

|f(x)|2P(β,σ)(dx)]1/2 <∞}. (15.25)

Further, for each f, g ∈ L2(X), define E(f) and V (f) such that

E(f) =

∫
X

f(x)P(β,σ)(dx), V (f) =

∫
X

|f(x)− E(f)|2P(β,σ)(dx). (15.26)

Our main assertion is to mention Problem 15.3 (i.e., regression analysis in quantum lan-

guage). This section should be regarded as an easy consequence of Problem 15.3 ( regression

analysis). For the detailed proof of Lemma 15.5, see standard books of statistics (e.g., ref. [8]).

Lemma 15.5. Consider the measurement ML∞(Ω0×R+)(O ≡ (X,F, F ), S[(β0,β1,σ)]) in Problem

15.3 ( regression analysis). And assume the above notations. Then, we see:

(A1) (1): V (β̂0) = σ2

n
(1 + a2

saa
), (2): V (β̂1) = σ2

n
1
saa
,

(A2) [Studentization]. Motivated by the (A1), we see:

Tβ0 :=

√
n(β̂0 − β0)√

σ̂2(1 + a2/saa)
∼ tn−2, Tβ1 :=

√
n(β̂1 − β1)√
σ̂2/saa

∼ tn−2 (15.27)

where tn−2 is the student’s distribution with n− 2 degrees of freedom.

For the proof. see ref. [8].

Let ML∞(Ω0(=R2)×R+)(O ≡ (X(= Rn),F, F ), S[(β0,β1,σ)]) be the measurement in Problem 15.3

( regression analysis). For each k = 0, 1, define the estimator Êk : X(= Rn) → Θk(= R) and

the quantity πk : Ω(= R2 × R+)→ Θk(= R) as follows.

Ê0(x)(= β̂0(x)) = x− sax
saa

a, Ê1(x)(= β̂1(x)) =
sax
saa

, π0(β0, β1, σ) = β0. π1(β0, β1, σ) = β1,

(15.28)
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362 Chapter 15 Least-squares method and Regression analysis

(∀(β0, β1, σ) ∈ R2 × R+)

Let α be a real number such that 0 < α � 1, for example, α = 0.05. For any state

ω = (β, σ)( ∈ Ω = R2 × R+), define the positive number ηαω,k ( > 0) by (6.9), (6.15), that is,

ηαω,k(= δ1−αω,k ) = inf{η > 0 : [F ({x ∈ X : dxΘk(Êk(x), πk(ω)) ≥ η})](ω) ≤ α} (15.29)

where, for each θ0k, θ
1
k(∈ Θk), the semi-distance dxΘk in Θk is defined by

dxΘk(θ
0
k, θ

1
k) =


√
n|θ00−θ10 |√

σ̂2(1+a2/saa)
(if k = 0)

√
n|θ01−θ11 |√
σ̂2/saa

(if k = 1)

(15.30)

Therefore, we see, by Lemma 15.5, that

ηαω,k =


inf{η > 0 : [F ({x ∈ X :

√
n|β̂0(x)−β0|√
σ̂2(1+a2/saa)

≥ η})](ω) ≤ α} (if k = 0)

inf{η > 0 : [F ({x ∈ X :
√
n|β̂1(x)−β1|√
σ̂2(x)/saa

≥ η})](ω) ≤ α} (if k = 1)

(15.31)

= tn−2(α/2) (15.32)

Summing up the above arguments, we have the following proposition:

Proposition 15.6. [confidence interval]. Assume that a measured value x ∈ X is obtained by

the measurement ML∞(Ω0×R+)(O ≡ (X,F, F ), S[(β0,β1,σ)]). Here, the state (β0, β1, σ) is assumed

to be unknown. Then, we have the (1−α)-confidence interval I1−αx,k in Corollary 6.6 as follows.

I1−αx,k = {πk(ω)(∈ Θk) : dxΘk(Êk(x), πk(ω)) < η1−αω,k }

=


I1−αx,0 =

{
β0 = π0(ω)(∈ Θ0) : |β̂0(x)−β0|√

σ̂2(x)
n

(1+a2/saa)
≤ tn−2(α/2)

}
(if k = 0)

I1−αx,1 =
{
β1 = π1(ω)(∈ Θ1) : |β̂1(x)−β1|√

σ̂2(x)
n

(1/saa)
≤ tn−2(α/2)

}
(if k = 1)

(15.33)

Proposition 15.7. [Statistical hypothesis testing]. [Hypothesis test]. Consider the measurement

ML∞(Ω0×R+)(O ≡ (X,F, F ), S[(β0,β1,σ)]). Here, the state (β0, β1, σ) is assumed to be unknown.

Then, according to Corollary 6.6, we say:
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15.3 Regression analysis(distribution , confidence interval and statistical hypothesis testing)363

(B1) Assume the null hypothesis HN = {β0}(⊆ Θ0 = R). Then, the rejection region is as

follows:

R̂α;X
HN

= Ê−10 (R̂α;Θ0

HN
) =

∩
ω∈Ω such that π0(ω)∈HN

{x(∈ X) : dxΘ0
(Ê0(x), π0(ω)) ≥ ηαω}

=
{
x ∈ X :

|β̂0(x)− β0|√
σ̂2(x)
n

(1 + a2/saa)
≥ tn−2(α/2)

}
(15.34)

(B2) Assume the null hypothesis HN = {β1}(⊆ Θ1 = R). Then, the rejection region is as

follows:

R̂α;X
HN

= Ê−11 (R̂α;Θ1

HN
) =

∩
ω∈Ω such that π1(ω)∈HN

{x(∈ X) : dxΘ1
(Ê1(x), π1(ω)) ≥ ηαω}

=
{
x ∈ X :

|β̂1(x)− β1|√
σ̂2(x)
n

(1/saa)
≥ tn−2(α/2)

}
(15.35)
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364 Chapter 15 Least-squares method and Regression analysis

15.4 Generalized linear model

Put T = {0, 1, 2, · · · , i, · · · , n}, which is the same as the tree (15.10), that is,

τ(i) = 0 (∀i = 1, 2, · · · , n) (15.36)

1

2

n

0

+

)

k

τ

τ

· · · · · ·
· · · · · ·

τ

Figure 15.3: Parallel structure

For each i ∈ T , define a locally compact space Ωi such that

Ω0 = Rm+1 =
{
β =


β0
β1
...
βm

 : β0, β1, · · · , βm ∈ R
}

(15.37)

Ωi = R =
{
µi : µi ∈ R

}
(i = 1, 2, · · · , n) (15.38)

Assume that

aij ∈ R (i = 1, 2, · · · , n, j = 1, 2, · · · ,m, (m+ 1 ≤ n)) (15.39)

which are called explanatory variables in the conventional statistics. Consider the deterministic

causal map ψai• : Ω0(= Rm+1)→ Ωi(= R) such that

Ω0 = Rm+1 3 β = (β0, β1, · · · , βm) 7→ ψai•(β0, β1, · · · , βm) = β0 +
m∑
j=1

βjaij = µi ∈ Ωi = R

(15.40)

(i = 1, 2, · · · , n)

Summing up, we see

β =


β0
β1
β2
...
βm

 7→

ψa1•(β0, β1, · · · , βm)
ψa2•(β0, β1, · · · , βm)
ψa3•(β0, β1, · · · , βm)

...
ψan•(β0, β1, · · · , βm)

 =



1 a11 a12 · · · a1m
1 a21 a22 · · · a2m
1 a31 a32 · · · a3m
1 a41 a42 · · · a4m
...

...
...

...
...

1 an1 an2 · · · anm


·


β0
β1
β2
...
βm

 (15.41)
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15.4 Generalized linear model 365

which is equivalent to the deterministic Markov operator Ψai• : L∞(Ωi)→ L∞(Ω0) such that

[Ψai•(fi)](ω0) = fi(ψai•(ω0)) (∀fi ∈ L∞(Ωi), ∀ω0 ∈ Ω0,∀i ∈ 1, 2, · · · , n) (15.42)

Thus, under the identification: aij ⇔ Ψai• , the term “explanatory variable” means a kind of

causality.

L∞(Ω1(≡ R))

L∞(Ω2(≡ R))

L∞(Ωn(≡ R))

L∞(Ω0(≡ Rm+1))

+

)

k

Ψa1•

Ψa2•

· · · · · ·
· · · · · ·

Ψan•

Figure 15.4: Parallel structure(Causal relation Ψai•)

Therefore, we have the observable Oai•
0 ≡(R,BR,Ψai•Gσ) in L∞(Ω0(≡ Rm+1)) such that

[Ψai•(Gσ(Ξ))](β) = [(Gσ(Ξ))](ψai•(β)) =
1

(
√

2πσ2)

∫
Ξ

exp
[
−

(x− (β0 +
∑m

j=1 aijβj))
2

2σ2

]
dx

(15.43)

(∀Ξ ∈ BR,∀β = (β0, β1, · · · , βm) ∈ Ω0(≡ Rm+1))

Hence, we have the simultaneous observable ×n
i=1O

ai•
0 ≡(Rn,BRn ,×n

i=1 Ψai•Gσ) in L∞(Ω0(≡
Rm+1)) such that

[(
n

×
i=1

Ψai•Gσ)(
n

×
i=1

Ξi)](β) =
n

×
i=1

(
[Ψai•Gσ)(Ξi)](β)

)
=

1

(
√

2πσ2)n

∫
· · ·

∫
×n

i=1 Ξi

exp
[
−
∑n

i=1(xi − (β0 +
∑m

j=1 aijβj))
2

2σ2

]
dx1 · · · dxn (15.44)

(∀
n

×
i=1

Ξi ∈ BRn ,∀β = (β0, β1, · · · , βm) ∈ Ω0(≡ Rm+1))

Assuming that σ is variable, we have the observable O =
(
Rn(= X),BRn(= F), F

)
in L∞(Ω0×

R+) such that

[F (
n

×
i=1

Ξi)](β, σ) = [(
n

×
i=1

Ψai•Gσ)(
n

×
i=1

Ξi)](β) (∀
n

×
i=1

Ξi ∈ BRn , ∀(β, σ) ∈ Rm+1(≡ Ω0)× R+)

(15.45)
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366 Chapter 15 Least-squares method and Regression analysis

Thus, we have the following problem.

Problem 15.8. [Generalized linear model in quantum language]

Assume that a measured value x =


x1
x2
...
xn

 ∈ X = Rn is obtained by the measurement

ML∞(Ω0×R+)(O ≡ (X,F, F ), S[(β0,β1,··· ,βm,σ)]). (The measured value is also called a response
variable.) And assume that we do not know the state (β0, β1, · · · , βm, σ2).
Then,

• from the measured value x = (x1, x2, . . . , xn) ∈ Rn, infer the β0, β1, · · · , βm, σ!

That is, represent the (β0, β1, · · · , βm, σ) by (β̂0(x), β̂1(x), · · · , βm(x), σ̂(x)) (i.e., the functions
of x).

The answer is easy, since it is a slight generalization of Problem 15.3. Also, it suffices to

follow ref. [8]. However, note that the purpose of this chapter is to propose Problem 15.8 (i.e,

the quantum linguistic formulation of the generalized linear model) and not to give the answer

to Problem 15.8.

Remark 15.9. As a generalization of regression analysis, we also see measurement error model

(cf. §5.5 (117 page) in ref. [28]), That is, we have two different generalizations such as

Regression analysis −−−−−−−→
generalization


1© : generalized linear model

2© : measurement error model
(15.46)

However, we believe that the 1© is the main street.
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Chapter 16

Kalman filter (calculation)

The Kalman filter [48, 52] is located as in the following (]):

(]) : Statistics


Fisher’s maximum likelihood method

+ causality−−−−−−−−−−−−→
usually deterministic

regression analysis

Bayes’ method
+ causality−−−−−−−−−−→

non-deterministic
Kalman filter

Thus, I can not emphasize too much the importance of the Kalman filter. Though Kalman filter

belongs to Bayes’ statistics, this fact may not be a common sense. This present state is due

to the confusion between Fisher’s statistics and Bayes’ statistics. I hope that such confusion

should be clarified by the above (]) (based on quantum language). This chapter is extracted

from the following paper:

• S. Ishikawa, K. Kikuchi: Kalman filter in quantum language, arXiv:1404.2664 [math.ST]

2014.

16.1 Bayes=Kalman method (in L∞(Ω,m))

Recall Theorem 9.8(Bayes’ theorem), particularly, the Bayes operator (9.5). This will be

generalized as Bayes=Kalman operator as follows.

Let t0 be the root of a tree T . For each t ∈ T , consider the classical basic structure:

[C0(Ωt) ⊆ L∞(Ωt,mt) ⊆ B(L2(Ωt,mt))]

Let [OT ] = [{Ot( ≡ (Xt, Ft, Ft))}t∈T , {Φt1,t2 : L∞(Ωt2) → L∞(Ωt1)}(t1,t2)∈T 2
≤

] be a sequential

causal observable with the realization Ôt0 ≡ (×t∈T Xt, � t∈TGt, F̂t0) in L∞(Ωt0).

For example,

367
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368 Chapter 16 Kalman filter (calculation)

[L∞(Ω0) : O0]

[L∞(Ω1) : O1]

[L∞(Ω2) : O2]
[L∞(Ω3) : O3]

[L∞(Ω4) : O4]

[L∞(Ω5) : O5][L∞(Ω6) : O6]

[L∞(Ω7) : O7]

)
i

k

+

k

)
k

Φ0,6

Φ0,1

Φ0,7

Φ1,2

Φ1,5

Φ2,3

Φ2,4

Figure 16.1 : Simple classical example of sequential causal observable

For each t ∈ T , consider another observable O′t = (Yt,Gt, Gt) in L∞(Ωt,mt), and the simul-

taneous observable O × O′t = (Xt × Yt,Ft � Gt, Ft × Gt) in L∞(Ωt,mt). And let [O×T ] =

[{O×t ( ≡ (Xt×Yt, Ft�Gt, Ft×Gt))}t∈T , {Φt1,t2 : L∞(Ωt2)→ L∞(Ωt1)}(t1,t2)∈T 2
≤

] be a sequential

causal observable with the realization Ô×t0 ≡ (×t∈T (Xt× Yt), � t∈T (Ft�Gt), Ĥt0) in L∞(Ωt0).

For example,

[L∞(Ω0) : O×0 ]

[L∞(Ω1) : O×1 ]

[L∞(Ω2) : O×2 ]
[L∞(Ω3) : O×3 ]

[L∞(Ω4) : O×4 ]

[L∞(Ω5) : O×5 ][L∞(Ω6) : O×6 ]

[L∞(Ω7) : O×7 ]

)
i

k

+

k

)
k

Φ0,6

Φ0,1

Φ0,7

Φ1,2

Φ1,5

Φ2,3

Φ2,4

Figure 16.2 : Simple classical example of sequential causal observable

Thus we have the mixed measurement ML∞(Ωt0 )
(Ô×t0 , S[∗](z0)), where z0 ∈ L1

+1(Ωt0). Assume

that we know that the measured value (x, y) (= ((xt)t∈T , (yt)t∈T , ) ∈ (×t∈T Xt)×(×t∈T Yt))

obtained by the measurement ML∞(Ωt0)
(Ô×t0 , S[∗](z0)) belongs to (×t∈T Ξt)× (×t∈T Yt) (∈

(�t∈TFt) � (�t∈TGt)). Then, by Axiom(m) 1(§9.1), we can infer that

(A) the probability P×t∈TΞt((Gt(Γt))t∈T ) that y belongs to×t∈T Γt(∈ �t∈TGt) is given by

P×t∈TΞt((Gt(Γt))t∈T )

=

∫
Ω0

[Ĥt0((×t∈T Ξt)×(×t∈T Γt))](ω0) z0(ω0) m0(dω0)∫
Ω0

[Ĥt0(×t∈T Ξt)×(×t∈T Yt)](ω0) z0(ω0) m0(dω0)
(16.1)

(∀Γt ∈ Gt, t ∈ T ).
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16.1 Bayes=Kalman method (in L∞(Ω,m)) 369

Let s ∈ T be fixed. Assume that

Γt = Yt (∀t ∈ T such that t 6= s)

Thus, putting P̂×t∈TΞt(Gs(Γs)) = P×t∈TΞt((Gt(Γt))t∈T ), we see that P̂×t∈TΞt ∈ L1
+1(Ωs,ms).

That is, there uniquely exists zas ∈ L1
+1(Ωs,ms) such that

P̂×t∈TΞt((Gs(Γs)) =
L1(Ωs)

〈zas , Gs(Γs)〉L∞(Ωs)
=

∫
Ωs

[Gs(Γs)](ωs)z
a
s (ωs)ms(dωs)

for any observable (Ys,Gs, Gs) in L∞(Ωs). That is because the linear functional P̂×t∈TΞt :

L∞(Ωs)→ C (complex numbers) is weak∗ continuous. After all,

(B) we can define the Bayes-Kalman operator [Bs
Ôt0

(×t∈T Ξt)] : L1
+1(Ωt0)→ L1

+1(Ωs) such

that

(pretest state)
z0

(∈L1
+1(Ωt0 ))

[Bs
Ôt0

(×t∈T Ξt)]
−−−−−−−−−−−−−−−−−−−→

Bayes-Kalman operator

(posttest state)

zas
(∈L1

+1(Ωs))

(16.2)

which is the generalization of the Bayes operator (9.5).

Remark 16.1. We have frequently discussed the Bayes=Kalman filter, for example, in [28, 31].

However, these arguments are too theoretical. In this chapter, we devote ourselves to the

numerical aspect of the Kalman filter.
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370 Chapter 16 Kalman filter (calculation)

16.2 Problem establishment (concrete calculation)

In the previous section, we study the general theory of Kalman filter. In this section,

we devote ourselves to the calculation of Kalman filter in the case of a linear ordered tree

T = {0, 1, 2, · · · , n} such that the parent map π : T \ {0} → T is defined by π(k) = k − 1:

0
π←−−−− 1

π←−−−− 2
π←−−−− · · · π←−−−− n− 1

π←−−−− n

Figure 16.3: Linear ordered tree

For each k ∈ T , consider the classical basic structure:

[C0(Ωk) ⊆ L∞(Ωk,mk) ⊆ B(L∞(Ωk,mk))]
(

= [C0(R) ⊆ L∞(R, dω) ⊆ B(L2(R, dω))]
)

where dω is the Lebesgue measure on R.

Consider the sequential causal observable [OT ] = [{Ot}t∈T , {Φt−1,t : L∞(Ωt) →
L∞(Ωt−1)}T=1,2,··· ,n ], and assume the initial state z0 ∈ L1

+1(Ω0,m0).
Thus, we have the following situation:

initial state z0
L∞(Ω0,m0)

O0=(X0,F0F0)

Φ0,1

←−− L∞(Ω1,m1)

O1=(X1,F1F1)

Φ1,2

←−− · · · Φs−1,s

←−−−− L∞(Ωs,ms)

Os=(Xs,FsFs)

Φs,s+1

←−−−− · · · Φn−1,n

←−−−− L∞(Ωn,mn)

On=(Xn,FnFn)

or, equivalently,

initial state z0

L1(Ω0,m0)

O0=(X0,F0,F0)

Φ0,1
∗−−→ L1(Ω1,m1)

O1=(X1,F1,F1)

Φ1,2
∗−−→ · · · Φs−1,s

∗−−−−→ L1(Ωs,ms)

Os=(Xs,Fs,Fs)

Φs,s+1
∗−−−−→ · · · Φn−1,n

∗−−−−→ L1(Ωn,mn)

On=(Xn,Fn,Fn)

In the above, the initial state z0(∈ L1
+1(Ω0,m0)) is defined by

z0(ω0) =
1√

2πσ0
exp[−(ω0 − µ0)

2

2σ2
0

] (∀ω0 ∈ Ω0) (16.3)

where it is assumed that µ0 and σ0 are known.
Also, for each t ∈ T = {0, 1, · · · , n}, consider the observable Ot = (Xt,Ft, Ft) = (R,BR, Ft)

in L∞(Ωt,mt) such that

[Ft(Ξt)](ωt) =

∫
Ξt

1√
2πqt

exp[−(xt − ctωt − dt)2

2q2t
]dxt ≡

∫
Ξt

fxt(ωt)dxt (∀Ξt ∈ Ft, ∀ωt ∈ Ωt)

(16.4)

where it is assumed that ct, dt and qt are known (t ∈ T ).
And further, the causal operator Φt−1.t : L∞(Ωt)→ L∞(Ωt−1) is defined by

[Φt−1,tf̃xt ](ωt−1) =

∫ ∞
−∞

1√
2πrt

exp[−(ωt − atωt−1 − bt)2

2r2t
]f̃xt)dωt ≡ ft−1(ωt−1) (16.5)
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16.2 Problem establishment (concrete calculation) 371

(∀f̃xt ∈ L∞(Ωt,mt), ∀ωt−1 ∈ Ωt−1)

where it is assumed that at, bt and rt are known (t ∈ T ).
Or, equivalently, the pre-dual causal operator Φt−1.t

∗ : L1
+1(Ωt−1)→ L1

+1(Ωt) is defined by

[Φt−1,t
∗ z̃t−1](ωt) =

∫ ∞
−∞

1√
2πrt

exp[−(ωt − atωt−1 − bt)2

2r2t
]z̃t−1(ωt−1)dωt−1 (16.6)

(∀z̃t−1 ∈ L1
+1(Ωt−1,mt−1), ∀ωt ∈ Ωt)

Now we have the sequential causal observable

[OT ] = [{Ot}t∈T , {Φt−1,t : L∞(Ωt)→ L∞(Ωt−1)}T=1,2,··· ,n

Let Ô0 (×n
t=0Xt,�n

t=0Ft, F̂ ) be its realization. Then we have the following problem:

Problem 16.2. [Kalman filter; calculation]

Assume that a measured value (x0, x2, · · · , xn) (∈×n
t=0Xt) is obtained by the measure-

ment ML∞(Ω0) (Ô0, S[∗](z0)). Let s(∈ T ) be fixed. Then, calculate the Bayes-Kalman
operator [Bs

Ô0
(×t∈T{xt})](z0) in (16.2), where

[Bs
Ô0

(×
t∈T
{xt})](z0) = zas = lim

Ξt→xt (t∈T )
[Bs

Ô0
(×
t∈T

Ξt)](z0)

That is,

L1
+1(Ω0) 3 z0

measured value:(x0,x1,...,xn)−−−−−−−−−−−−−−−−→
Bs

Ô0
(×t∈T {xt})

zas ∈ L1
+1(Ωs)
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372 Chapter 16 Kalman filter (calculation)

16.3 Bayes=Kalman operator Bs
Ô0
(×t∈T{xt})

In what follows, we solve Problem 16.2. For this, it suffices to find the zs ∈ L1
+1(Ωs) such that

lim
Ξt→xt (t∈T )

∫
Ω0

[F̂0((×n
t=0 Ξt)× Γs)](ω0) z0(ω0)dω0∫

Ω0
[F̂0(×n

t=0 Ξt)](ω0) z0(ω0)dω0

=

∫
Ωs

[Gs(Γs)](ωs) zs(ωs)dωs (∀Γs ∈ Fs)

Let us calculate zs = [Bs
Ô0

(×t∈T{xt})](z0) as follows.

∫
Ω0

[F̂0((
n

×
t=0

Ξt)× Γs)](ω0) z0(ω0)dω0

=
L1(Ω0)

〈z0, F̂0((
n

×
t=0

Ξt)× Γs)〉L∞(Ω0)

=
L1(Ω1)

〈Φ0,1
∗ (F0(Ξ0)z0), F̂1((

n

×
t=1

Ξt)× Γs)〉L∞(Ω1)
(16.7)

(A) and, putting z̃0 = F0(Ξ0)z0 (or, exactly, its normalization, i.e., z̃0 = limΞ0→x0
F0(Ξ0)z0∫

Ω0
F0(Ξ0)z0dω0

)

, z̃1 = F1(Ξ1)Φ
0,1
∗ (z̃0), z̃2 = F2(Ξ2)Φ

1,2
∗ (z̃1), · · · , z̃s−1 = Fs−1(Ξs−1)Φ

s−2,s−1
∗ (z̃s−2), we see

that

(16.7) =
L1(Ω1)

〈Φ0,1
∗ (z̃0), F̂1((

n

×
t=1

Ξt)× Γs)〉L∞(Ω1)

=
L1(Ω2)

〈Φ1,2
∗ (z̃1), F̂2((

n

×
t=2

Ξt)× Γs)〉L∞(Ω2)

· · · · · ·

=
L1(Ωs+1)

〈Φs,s+1
∗ (z̃s), F̂s+1((

n

×
t=s+1

Ξt)× Γs)〉L∞(Ωs+1)

=
L1(Ωs)

〈Φs−1,s
∗ (z̃s−1), F̂s((

n

×
t=s

Ξt)× Γs)〉L∞(Ωs)

=
L1(Ωs)

〈Φs−1,s
∗ (z̃s−1), Fs(Ξs)Gs(Γs)Φ

s,s+1F̂s+1(
n

×
t=s+1

Ξt)〉L∞(Ωs)

=
L1(Ωs)

〈
(
Fs(Ξs)Φ

s,s+1F̂s+1(
n

×
t=s+1

Ξt)
)(

Φs−1,s
∗ (z̃s−1)

)
, Gs(Γs)〉L∞(Ωs)

(16.8)

Thus, we see

[Bs
Ô0

(×
t∈T
{xt})](z0) = lim

Ξt→xt (t∈T )

(
Fs(Ξs)Φ

s,s+1F̂s+1(×n
t=s+1 Ξt)

)
×

(
Φs−1,s
∗ z̃s−1)

)
∫
Ω0

[F̂0(×n
t=0 Ξt)](ω0) z0(ω0)dω0

(16.9)
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16.4 Calculation: prediction part 373

16.4 Calculation: prediction part

16.4.1 Calculation: zs = Φs−1,s
∗ (z̃s−1) in (16.9)

We prepare the following lemma.

Lemma 16.3. It holds that

(B1)
∫∞
−∞

1√
2πA

exp[− (x−By)2
2A2 ] 1√

2πC
exp[− (y−D)2

2C2 ]dy = 1√
2π
√
A2+B2C2 exp[− (x−BD)2

2(A2+B2C2)
]

(B2) exp[− (Aω−B)2

2E2 ] exp[− (Cω−D)2

2F 2 ] ≈ exp[−1
2
(A

2F 2+C2E2

E2F 2 )
(
ω − (ABF 2+CDE2)

(A2F 2+C2E2)

)2

]

where the notation “≈” means as follows:

“f(ω) ≈ g(ω)”⇐⇒ “there exists a positive K such that f(ω) = Kg(ω) (∀ω ∈ Ω)”

Proof. It is easy, thus we omit the proof.

We see, by (16.3) and (A), that

z̃0(ω0) = lim
Ξ0→x0

F (Ξ0)z0∫
R F (Ξ0)z0dω0

≈ 1√
2πq0

exp[−(x0 − c0ω0 − d0)2

2q20
]

1√
2πσ0

exp[−(ω0 − µ0)
2

2σ2
0

]

≈ 1√
2πσ̃0

exp[−(ω0 − µ̃0)
2

2σ̃2
0

] (16.10)

where

σ̃2
0 =

q20σ
2
0

q20 + c20σ
2
0

, µ̃0 = µ0 + σ̃2
0(
c0
q20

)(x0 − d0 − c0µ0) (16.11)

Further, the (B1) in Lemma 16.3 and (16.6) imply that

z1(ω1) = [Φ0,1
∗ z̃0](ω1)

=

∫ ∞
−∞

1√
2πr1

exp[−(ω1 − a1ω0 − b1)2

2r21
]

1√
2πσ̃0

exp[−(ω0 − µ̃0)
2

2σ̃2
0

]dω0

=
1√

2πσ1
exp[−(ω1 − µ1)

2

2σ12
] (16.12)

where

σ2
1 = a21σ̃

2
0 + r21, µ1 = a1µ̃0 + b1 (16.13)

Thus, we see, by (B2) in Lemma 16.3, that

z̃t−1(ωt−1) = lim
Ξt−1→xt−1

F (Ξt−1)zt−1∫
R F (Ξt−1)zt−1dωt−1
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374 Chapter 16 Kalman filter (calculation)

≈ 1√
2πqt−1

exp[−(xt−1 − ct−1ωt−1 − dt−1)2

2q2t−1
]

1√
2πσt−1

exp[−(ωt−1 − µt−1)2

2σ2
t−1

]

≈ 1√
2πσ̃t−1

exp[−(ωt−1 − µ̃t−1)2

2σ̃2
t−1

] (16.14)

where

σ̃2
t−1 =

q2t−1σ
2
t−1

q2t−1 + c2t−1σ
2
t−1

= σ2
t−1

q2t−1 + c2t−1σ
2
t−1 + q2t−1 − q2t−1 − c2t−1σ2

t−1

q2t−1 + c2t−1σ
2
t−1

= σ2
t−1(1−

c2t−1σ
2
t−1

q2t−1 + c2t−1σ
2
t−1

)

µ̃t−1 = µt−1 + σ̃2
t−1(

ct−1
q2t−1

)(xt−1 − ct−1µt−1) (16.15)

Further, we see, by (B1) in Lemma 16.3, that

zt(ωt) = [Φt−1,t
∗ z̃t−1](ωt)

≈
∫ ∞
−∞

1√
2πrt

exp[−(ωt − atωt−1 − bt)2

2r2t
]

1√
2πσ̃t−1

exp[−(ωt−1 − µ̃t−1)2

2σ̃2
t−1

]dωt−1

≈ 1√
2πσt

exp[−(ωt − µt)2

2σt2
] (16.16)

where

σ2
t = a2t σ̃

2
t−1 + r2t , µt = atµ̃t−1 + bt (16.17)

Summing up the above (16.10)–(16.17), we see:

z0
µ0,σ0

x0−−−−−→
(16.11)

z̃0
µ̃0,σ̃0

Φ0,1
∗−−−−−→

(16.13)
z1

µ1,σ1

x1−−→ · · ·
Φt−2,t−1

∗−−−−−−−→ zt−1

µt−1,σt−1

xt−1−−−−−→
(16.15)

z̃t−1

µ̃t−1,σ̃t−1

Φt−1,t
∗−−−−−→

(16.17)
zt

µt,σt

xt+1−−−−→ · · ·
Φs−1,s

∗−−−−−→ zs
µs,σs

And thus, we get

zs = Φs−1,s
∗ (z̃s−1) (16.18)

in (16.9).
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16.5 Calculation: Smoothing part 375

16.5 Calculation: Smoothing part

16.5.1 Calculation:
(
Fs(Ξs)Φ

s,s+1F̂s+1(×n
t=s+1 Ξt)

)
in (16.9)

Put

f̃xn(ωn) =
1√

2πqn
exp[−(xn − cnωn − dn)2

2q2n
]

≈ exp[−(cnωn − (xn − dn))2

2q2n
] ≡ exp[−1

2

(
ũnωn − ṽn

)2

] (16.19)

where it is assumed that cn, dn and qn are known (t ∈ T ). And thus, put

ũn =
cn
qn
, ṽn =

xn − dn
qn

(16.20)

And further, Lemma 16.3 implies that the causal operator Φt−1.t : L∞(Ωt) → L∞(Ωt−1) is
defined by

ft−1(ωt−1) = [Φt−1,tf̃xt ](ωt−1)

≈
∫ ∞
−∞

1√
2πrt

exp[−(ωt − atωt−1 − bt)2

2r2t
] exp[−(ũtωt − ṽt)2

2
]dωt

≈ exp[−1

2

( ṽt√
1 + r2t ũ

2
t

− ũt(atωt−1 + bt)√
1 + r2t ũ

2
t

)2

] ≈ exp[−1

2

(
ut−1ωt−1 − vt−1

)2

] (16.21)

where

ut−1 = − atũt√
1 + r2t ũ

2
t

, vt−1 =
btũt − ṽt√
1 + r2t ũ

2
t

(16.22)

And also, Lemma 16.3 implies that

f̃xt−1(ωt−1) = exp[−(ct−1ωt−1 + dt−1 − xt−1)2

2q2t−1
] exp[−(ut−1ωt−1 − vt−1)2

2
]

≈ exp[−1

2
(
c2t−1 + u2t−1q

2
t−1

q2t−1
)
(
ωt−1 −

ct−1(dt−1 − tt−1) + ut−1vt−1q
2
t−1

c2t−1 + u2t−1q
2
t−1

)2

]

≈ exp[−1

2

(
ũt−1ωt−1 − ṽt−1

)2

] (16.23)

where

ũt−1 =

√
c2t−1 + u2t−1q

2
t−1

qt−1
, ṽt−1 =

ct−1(dt−1 − tt−1) + ut−1vt−1q
2
t−1

qt−1
√
c2t−1 + u2t−1q

2
t−1

(16.24)

Summing up the above (16.19)-(16.24), we see:

ũs,ṽs

f̃xs
w̃s

xs←−− · · · Φt−2,t−1

←−−−−−−−

ũt−1,ṽt−1

f̃xt−1

w̃t−1

xt−1←−−−−−
(16.24)

ut−1,vt−1

ft−1

wt−1

Φt−1,t

←−−−−−
(16.22)

ũt,ṽt

f̃xt
w̃t

xt←−− · · ·
xn−1←−−−−

un−1,vn−1

fn−1

wn−1

Φn−1,n

←−−−−−
ũnṽn

f̃xn=(16.19)

w̃n
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376 Chapter 16 Kalman filter (calculation)

And thus, we get

f̃xs ≈ lim
Ξt→xt (t∈{s.s+1,··· ,n})

(
Fs(Ξs)Φ

s,s+1F̂s+1(×n
t=s+1 Ξt)

)
‖Fs(Ξs)Φs,s+1F̂s+1(×n

t=s+1 Ξt)
)
‖L∞(Ωs)

(16.25)

in (16.9)

After all, we solve Problem16.2(Kalman Filter), that is,

Answer 16.4. [The answer to Problem16.2(Kalman Filter)]

(A) Assume that a measured value (x0, x2, · · · , xn) (∈ ×n
t=0Xt) is obtained by the mea-

surement ML∞(Ω0) (Ôt0 , S[∗](z0)). Let s(∈ T ) be fixed. Then, we get the Bayes-Kalman
operator [Bs

Ôt0
(×t∈T{xt})](z0), that is,

(
[Bs

Ôt0
(×
t∈T
{xt})]z0

)
(ωs) =

f̃xs(ωs) · zs(ωs)∫∞
−∞ f̃xs(ωs) · zs(ωs)dωs

= zas (ωs) (∀ωs ∈ Ωs)

where zs in (16.18) and f̃xs in (16.25) can be iteratively calculated as mentioned in this
section.

Remark 16.5. The following classification is usual

(B1) Smoothing: in the case that 0 ≤ s < n

(B2) Filter: in the case that s = n

(B3) Prediction: in the case that s = n and, for any m such that n0 ≤ m < n, the existence
observable (Xm,Fm, Fm) = ({1}, {∅, {1}}, Fm) is defined by Fm(∅) ≡ 0, Fm({1}) ≡ 1,
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Chapter 17

Equilibrium statistical mechanics

In this chapter, we study and answer the following fundamental problems concerning classical

equilibrium statistical mechanics:

(A) Is the principle of equal a priori probabilities indispensable for equilibrium statistical me-

chanics?

(B) Is the ergodic hypothesis related to equilibrium statistical mechanics?

(C) Why and where does the concept of “probability” appear in equilibrium statistical me-

chanics?

Note that there are several opinions for the formulation of equilibrium statistical mechanics.

In this sense, the above problems are not yet answered. Thus we propose the measurement

theoretical foundation of equilibrium statistical mechanics, and clarify the confusion between

two aspects (i.e., probabilistic and kinetic aspects in equilibrium statistical mechanics), that is,

we discuss{
the kinetic aspect (i.e, causality) · · · in Section 17.1
the probabilistic aspect (i.e., measurement) · · · in Section 17.2

And we answer the above (A) and (B), that is, we conclude that

(A) is “No”, but, (B) is “Yes”.

and further, we can understand the problem (C).

This chapter is extracted from the following: [33] S. Ishikawa, “Ergodic Hypothesis and Equi-
librium Statistical Mechanics in the Quantum Mechanical World View,” World Journal of Me-
chanics, Vol. 2, No. 2, 2012, pp. 125-130. doi: 10.4236/wim.2012.22014.

17.1 Equilibrium statistical mechanical phenomena con-

cerning Axiom 2 (causality)

377
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378 Chapter 17 Equilibrium statistical mechanics

17.1.1 Equilibrium statistical mechanical phenomena

Hypothesis 17.1. [ Equilibrium statistical mechanical hypothesis ]. Assume that about
N(≈1024 ≈ 6.02 × 1023 ≈ “the Avogadro constant”) particles (for example, hydrogen
molecules) move in a box with about 20 liters. It is natural to assume the following phe-
nomena 1© – 4©:

1© Every particle obeys Newtonian mechanics.

2© Every particle moves uniformly in the box. For example, a particle does not halt in a
corner.

3© Every particle moves with the same statistical behavior concerning time.

4© The motions of particles are (approximately) independent of each other.
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(17.1)

In what follows we shall devote ourselves to the problem:

(D) how to describe the above equilibrium statistical mechanical phenomena 1© –

4© in terms of quantum language ( =measurement theory).

17.1.2 About 1© in Hypothesis 17.1

In Newtonian mechanics, any state of a system composed of N( ≈ 1024) particles is repre-

sented by a point (q, p)
(
≡ (position, momentum) = (q1n, q2n, q3n, p1n, p2n, p3n)Nn=1

)
in a phase

(or state) space R6N . Let H : R6N → R be a Hamiltonian such that

H
(
(q1n, q2n, q3n, p1n, p2n, p3n)Nn=1

)
= momentum energy + potential energy
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17.1 Equilibrium statistical mechanical phenomena concerning Axiom 2 (causality) 379

=[
N∑
n=1

∑
k=1,2,3

(pkn)2

2× particle’s mass
]+U((q1n, q2n, q3n)Nn=1). (17.2)

Fix a positive E > 0. And define the measure ν
E

on the energy surface Ω
E

(≡ {(q, p) ∈
R6N | H(q, p) = E}) such that

ν
E

(B) =

∫
B

|∇H(q, p)|−1dm6N−1 (∀B ∈ BΩ
E
, the Borel field of Ω

E
)

where

|∇H(q, p)| = [
N∑
n=1

∑
k=1,2,3

{( ∂H
∂pkn

)2 + (
∂H

∂qkn
)2}]1/2

and dm6N−1 is the usual surface Lebesgue measure on Ω
E

. Let {ψE
t }−∞<t<∞ be the flow on the

energy surface Ω
E

induced by the Newton equation with the Hamiltonian H, or equivalently,

Hamilton’s canonical equation:

dqkn
dt

=
∂H

∂pkn
,

dpkn
dt

= − ∂H

∂qkn
, (17.3)

(k = 1, 2, 3, n = 1, 2, . . . , N).

Liouville’s theorem (cf.[51]) says that the measure ν
E

is invariant concerning the flow

{ψE
t }−∞<t<∞. Defining the normalized measure ν

E
such that ν

E
=

ν
E

ν
E
(Ω
E
)
, we have the nor-

malized measure space (Ω
E
,BΩ

E
, ν

E
).

Putting A = C0(ΩE
) = C(Ω

E
) (from the compactness of Ω

E
), we have the classical basic

structure:

[C(Ω
E

) ⊆ L∞(Ω
E
, ν

E
) ⊆ B(L2(Ω

E
, ν

E
))]

Thus, putting T = R, and solving the (17.4), we get ωt = (q(t), p(t)), φt1.t2 = ψEt2−t1 ,

Φ∗t1.t2δωt1 = δφt1.t2 (ωt1 ) (∀ωt1 ∈ Ω
E

), and further we define the sequential deterministic causal

operator {Φt1,t2 : L∞(Ω
E

)→ L∞(Ω
E

)}(t1.t2)∈T 2
≤

(cf. Definition 10.3).

17.1.3 About 2© in Hypothesis 17.1

Now let us begin with the well-known ergodic theorem (cf. [51]). For example, consider one

particle P1. Put

SP1 = {ω ∈ Ω
E
| a state ω such that the particle P1 stays around a corner of the box }

Clearly, it holds that SP1 ( Ω
E

. Also, if ψE
t (SP1) ⊆ SP1 (0 5 ∀t < ∞), then the particle P1

must always stay a corner. This contradicts 2©. Therefore, 2© means the following:
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380 Chapter 17 Equilibrium statistical mechanics

2©′ [Ergodic property]: If a compact set S(⊆ Ω
E
, S 6= ∅) satisfies ψE

t (S) ⊆ S (0 5 ∀t < ∞),

then it holds that S = Ω
E

.

The ergodic theorem (cf. [51]) says that the above 2©′ is equivalent to the following equality:∫
Ω
E

f(ω)ν
E

(dω)

((state) space average)

= lim
T→∞

1

T

∫ α+T

α

f(ψE
t (ω0))dt

(time average)

(17.4)

(∀α ∈ R,∀f ∈ C(Ω
E

), ∀ω0 ∈ Ω
E

)

After all, the ergodic property 2©′ (⇔ (17.4) ) says that if T is sufficiently large, it holds that∫
Ω
E

f(ω)ν
E

(dω)≈ 1

T

∫ α+T

α

f(ψE
t (ω0))dt. (17.5)

Putm
T
(dt) = dt

T
. The probability space ([α, α+T ],B[α,α+T ],mT

) (or equivalently, ([0, T ],B[0,T ],

m
T
) ) is called a (normalized) first staying time space, also, the probability space (Ω

E
,BΩ

E
, ν

E
)

is called a (normalized)second staying time space. Note that these mathematical probability

spaces are not related to “probability” (Recall the linguistic interpretation (§3.1) :there is no

probability without measurement).

17.1.4 About 3© and 4© in Hypothesis 17.1

Put KN = {1, 2, . . . , N(≈1024)}. For each k ( ∈ KN), define the coordinate map πk : Ω
E

( ⊂
R6N)→ R6 such that

πk(ω) = πk(q, p) =πk((q1n, q2n, q3n, p1n, p2n, p3n)Nn=1)

=(q1k, q2k, q3k, p1k, p2k, p3k) (17.6)

for all ω = (q, p) = (q1n, q2n, q3n, p1n, p2n, p3n)Nn=1 ∈ Ω
E

( ⊂ R6N).

Also, for any subset K ( ⊆ KN= {1, 2, . . . , N (≈1024)}), define the distribution map D
(·)
K

: Ω
E

( ⊂ R6N) →Mm
+1(R6) such that

D
(q,p)
K =

1

][K]

∑
k∈K

δπk(q,p) (∀(q, p) ∈ Ω
E

( ⊂ R6N))

where ][K] is the number of the elements of the set K.

Let ω0(∈ Ω
E

) be a state. For each n (∈ KN), we define the map Xω0
n : [0, T ] → R6 such

that

Xω0
n (t) = πn(ψE

t (ω0)) (∀t ∈ [0, T ]). (17.7)
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17.1 Equilibrium statistical mechanical phenomena concerning Axiom 2 (causality) 381

And, we regard {Xω0
n }Nn=1 as random variables (i.e., measurable functions ) on the probability

space ([0, T ],B[0,T ],mT
). Then, 3© and 4© respectively means

3©′ {Xω0
n }Nn=1 is a sequence with the approximately identical distribution concerning time. In

other words, there exists a normalized measure ρ
E

on R6 (i.e., ρ
E
∈Mm

+1(R6)) such that:

m
T
({t ∈ [0, T ] : Xω0

n (t) ∈ Ξ})≈ ρ
E

(Ξ) (17.8)

(∀Ξ ∈ BR6 , n = 1, 2, . . . , N)

4©′ {Xω0
n }Nn=1 is approximately independent, in the sense that, for any K0 ⊂ {1, 2, . . . ,

N(≈1024)} such that 1 5 ][K0]� N ( that is, ][K0]
N
≈0 ), it holds that

m
T
({t ∈ [0, T ] : Xω0

k (t) ∈ Ξk(∈ BR6), k ∈ K0})

≈ ×
k∈K0

m
T
({t ∈ [0, T ] : Xω0

k (t) ∈ Ξk(∈ BR6)}).

Here, we can assert the advantage of our method in comparison with Ruelle’s method

(cf.[61]) as follows.

Remark 17.2. [About the time interval [0, T ]]. For example, as one of typical cases, consider

the motion of 1024 particles in a cubic box (whose long side is 0.3m). It is usual to consider

that “averaging velocity”=5× 102m/s, “mean free path”=10−7m. And therefore, the collisions

rarely happen among ][K0] particles in the time interval [0, T ], and therefore, the motion is

“almost independent”. For example, putting ][K0] = 1010, we can calculate the number of

times a certain particle collides with K0-particles in [0,T] as (10−7 × 1024

1010
)−1 × (5× 102) × T

≈ 5 × 10−5 × T . Hence, in order to expect that 3©′ and 4©′ hold, it suffices to consider that

T ≈ 5 seconds. ///

Also, we see, by (17.7) and (17.5), that, for K0(⊆ KN) such that 1 ≤ ][K0]� N ,

m
T
({t ∈ [0, T ] : Xω0

k (t) ∈ Ξk(∈ BR6), k ∈ K0})

=m
T
({t ∈ [0, T ] : πk(ψE

t (ω0) ∈ Ξk(∈ BR6), k ∈ K0})

=m
T
({t ∈ [0, T ] : ψE

t (ω0) ∈ ((πk)k∈K0)
−1(×

k∈K0

Ξk)})

≈ ν
E

(
((πk)k∈K0)

−1( ×
k∈K0

Ξk)
)

≡
(
ν
E
◦ ((πk)k∈K0)

−1)( ×
k∈K0

Ξk). (17.9)
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382 Chapter 17 Equilibrium statistical mechanics

Particularly, putting K0 = {k}, we see:

m
T
({t ∈ [0, T ] : Xω0

k (t) ∈ Ξ})≈ (ν
E
◦ π−1k )(Ξ)

(∀Ξ ∈ BR6). (17.10)

Hence, we can describe the 3© and 4© in terms of {πk} in what follows.

Hypothesis 17.3. [ 3© and 4© ]. Put KN = {1, 2, . . . , N(≈1024)}. Let H, E, ν
E

, ν
E

, πk :

Ω
E
→ R6 be as in the above. Then, summing up 3© and 4©, by (17.9) we have:

(E) {πk : Ω
E
→ R6}Nk=1 is approximately independent random variables with the identical

distribution in the sense that there exists ρ
E

(∈Mm
+1(R6)) such that⊗

k∈K0

ρ
E

(= “product measure”)≈ ν
E
◦ ((πk)k∈K0)

−1. (17.11)

for all K0 ⊂ KN and 1 5 ][K0] � N .

Also, a state (q, p)(∈ Ω
E

) is called an equilibrium state if it satisfies D
(q,p)
KN
≈ρ

E
.

17.1.5 Ergodic Hypothesis

Now, we have the following theorem (cf.[33]):

Theorem 17.4. [Ergodic hypothesis]. Assume Hypothesis 17.3 ( or equivalently, 3© and 4© ).

Then, for any ω0 = (q(0), p(0)) ∈ Ω
E

, it holds that

[D
(q(t),p(t))
KN

](Ξ)≈ m
T
({t ∈ [0, T ] : Xω0

k (t) ∈ Ξ})

(∀Ξ ∈ BR6 , k = 1, 2, . . . , N(≈1024)) (17.12)

for almost all t. That is, 0 5 m
T
({t ∈ [0, T ] : (17.12) does not hold}) � 1.

Proof. Let K0 ⊂ KN such that 1 � ][K0] ≡ N0 � N (that is, 1
][K0]
≈0≈ ][K0]

N
). Then, from

Hypothesis A, the law of large numbers (cf. [50]) says that

D
(q(t),p(t))
K0

≈ ν
E
◦ π−1k ( ≈ ρ

E
) (17.13)

for almost all time t. Consider the decomposition KN = {K(1), K(2), . . . , K(L)}. (i.e., KN =∪L
l=1K(l), K(l) ∩K(l′) = ∅ (l 6= l′) ), where ][K(l)]≈N0 (l = 1, 2, . . . , L). From (7.13), it holds

that, for each k ( = 1, 2, . . . , N (≈1024)),

D
(q(t),p(t))
KN

=
1

N

L∑
l=1

[][K(l)]×D(q(t),p(t))
K(l)

]
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≈ 1

N

L∑
l=1

[][K(l)]× ρE ]≈ ν
E
◦ π−1k ( ≈ ρ

E
), (17.14)

for almost all time t. Thus, by (17.10), we get (17.12). Hence, the proof is completed.

We believe that Theorem 17.4 is just what should be represented by the “ergodic hypothesis”

such that

“population average of N particles at each t”

=“time average of one particle”.

Thus, we can assert that the ergodic hypothesis is related to equilibrium statistical mechanics

(cf. the (B) in the abstract). Here, the ergodic property 2©′ (or equivalently, equality (17.5))

and the above ergodic hypothesis should not be confused. Also, it should be noted that the

ergodic hypothesis does not hold if the box ( containing particles ) is too large.

Remark 17.5. [The law of increasing entropy]. The entropy H(q, p) of a state (q, p)(∈ Ω
E

) is

defined by

H(q, p) = k log[ν
E

({(q′, p′) ∈ Ω
E

: D
(q,p)
KN
≈ D

(q′,p′)
KN

)})]

where

k = [Boltzmann constant]/([Plank constant]3NN !)

Since almost every state in Ω
E

is equilibrium, the entropy of almost every state is equal

k log ν
E

(Ω
E

). Therefore, it is natural to assume that the law of increasing entropy holds.
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384 Chapter 17 Equilibrium statistical mechanics

17.2 Equilibrium statistical mechanical phenomena con-

cerning Axiom 1 ( Measurement)

In this section we shall study the probabilistic aspects of equilibrium statistical mechanics.

For completeness, note that

(F) the argument in the previous section is not related to “probability”

since Axiom 1 (measurement; §2.7) does not appear in Section 17.1. Also, Recall the linguistic

interpretation (§3.1) : there is no probability without measurement.

Note that the (17.12) implies that the equilibrium statistical mechanical system at almost

all time t can be regarded as:

(G) a box including about 1024 particles such as the number of the particles whose states

belong to Ξ ( ∈ BR6) is given by ρ
E

(Ξ)× 1024.

Thus, it is natural to assume as follows.

(H) if we, at random, choose a particle from 1024 particles in the box at time t, then the

probability that the state (q1, q2, q3, p1, p2, p3) (∈ R6) of the particle belongs to Ξ ( ∈ BR6)

is given by ρ
E

(Ξ).

In what follows, we shall represent this (H) in terms of measurements. Define the observable

O0 = (R6,BR6 , F0) in L∞(Ω
E

) such that

[F0(Ξ)](q, p) = [D
(q,p)
KN

](Ξ)
(
≡ ][{k | πk(q, p) ∈ Ξ}]

][KN ]

)
(∀Ξ ∈ BR6 ,∀(q, p) ∈ Ω

E
( ⊂ R6N)). (17.15)

Thus, we have the measurement ML∞(ΩE)(O0 := (R6,BR6 , F0), S[δψt(q0 ,p0 )]). Then we say, by

Axiom 1 (measurement; §2.7) , that

(I) the probability that the measured value obtained by the measurement ML∞(ΩE)(O0 :=

(R6,BR6 , F0), S[δψt(q0 ,p0 )]) belongs to Ξ(∈ BR6) is given by ρ
E

(Ξ). That is because Theorem

A says that [F0(Ξ)](ψt(q0 , p0)) ≈ ρ
E

(Ξ) (almost every time t).

Also, let ΨE
t : L∞(Ω

E
) → L∞(Ω

E
) be a deterministic Markov operator determined by the

continuous map ψE
t : Ω

E
→ Ω

E
(cf. Section 17.1.2). Then, it clearly holds ΨE

t O0 = O0.

And, we must take a ML∞(Ω
E
)(O0, S[(q(tk),p(tk))]) for each time t1, t2, . . . , tk, . . . , tn. However,

the linguistic interpretation (§3.1) :( there is no probability without measurement) says that it

suffices to take the simultaneous measurement MC(Ω
E
)(×n

k=1O0, S[δ(q(0),p(0))]).
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Remark 17.6. [The principle of equal a priori probabilities ]. The (H) (or equivalently, (I))

says “choose a particle from N particles in box”, and not “choose a state from the state space

Ω
E

”. Thus, as mentioned in the abstract of this chapter, the principle of equal (a priori)

probability is not related to our method. If we try to describe Ruele’s method [61] in terms of

measurement theory, we must use mixed measurement theory (cf. Chapter 9). However, this

trial will end in failure.

17.3 Conclusions

Our concern in this chapter may be regarded as the problem: “What is the classical me-

chanical world view?” Concretely speaking, we are concerned with the problem:

“our method” vs. “Ruele’s method [61] ( which has been authorized for a long time )”

And, we assert the superiority of our method to Ruele’s method in Remarks 17.2, 17.5, 17.6.
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Chapter 18

The reliability in psychological test

In this chapter, we shall introduce the measurement theoretical approach to a problem of ana-

lyzing scores of tests for students. The obtained score is assumed to be the sum of a true value

and a measurement error caused by the test, in which a student’s score is subject to a system-

atic error (=noise) depending on his/her health or psychological condition at the test. In such

cases, statistical measurements are convenient since these two errors (i.e., measurement error

and systematic error) in measurement theory can be characterized in the different mathematical

structures respectively. As a result, we show that

“reliability coefficient” = “correlation coefficient”

in the clearer formulation1.

18.1 Reliability in psychological tests

18.1.1 Preparation

In this section, let us consider the reliability of the psychological tests for a group of students.

We introduce the examples which is a measurement theoretical characterization of the tests

which measure the mathematical intelligences of students.

Let Θ := {θ1, θ2, . . . , θn} be a set of students, say, there are n students θ1, θ2, . . . , θn. Define

the counting measure νc on Θ such that νc({θi}) = 1 (i = 1, 2, . . . , n). The Θ will be regarded

as the state. For each θi (∈ Θ), we define 1θi (∈ L1
+1(Θ, νc)) by 1θi(θ) = 1 (if θ = θi), =

0 (if θ 6= θi). Recall that Θ can be identified with the {1θi | θi ∈ Θ} under the identification:

Θ 3 θi ↔ 1θi ∈ {1θ | θ ∈ Θ}.

1 This chapter is extracted from the following.

(]) [46] K. Kikuchi, S. Ishikawa, “Psychological tests in Measurement Theory,” Far east journal of theoretical
statistics, 32(1) 81-99, (2010) ISSN: 0972-0863

which is mainly due to Dr. Kohshi Kikuchi.
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388 Chapter 18 The reliability in psychological test

For simplicity, we shall start with the test for one student θi (∈ Θ). Let (ΩR,FΩR , dω) be

the Lebesgue measure space where ΩR = R.

Example 18.1. (Mathematics test for a student θi) Let Θ := {θ1, θ2, . . . , θn} be a state

space which is identified with the set of the students. The mathematical intelligence of the

student θi (∈ Θ) is assumed to be represented by a statistical state Φ∗(1θi) (∈ L1
+1(ΩR, dω))

(i = 1, 2, . . . , n) where Φ∗ : L1(Θ, νc) → L1(ΩR, dω) is a pre-dual Markov causal operator of

Φ : L∞(ΩR, dω)→ L∞(Θ, νc).

θ1

θ2

θn
Φ∗(1θ1 ) Φ∗(1θ2 )Φ∗(1θn )

Θ = {1θ | θ ∈ Θ}

ΩR

Φ∗

=⇒

Let O := (XR,FXR , F ) be an observable in L∞(ΩR, dω). Axiom(m) 1(§9.1) asserts that

(A) the probability that the score (measured value) of the student θi (∈ Θ) obtained by the

statistical measurement ML∞(ΩR,dω)(O, S[∗](Φ∗(1θi))) belongs to a set Ξ (∈ FXR) is given

by

L1(ΩR,dω)
〈Φ∗(1θi), F (Ξ)〉

L∞(ΩR,dω)

(
=

∫
ΩR

[F (Ξ)](ω) [Φ∗(1θi)](ω) dω
)
.

Remark 18.2. In the above, readers may have the question such that

(B) What is the unknown pure state [∗] in S[∗]?

Imaging the deterministic causal map ψ : Θ→ ΩR, we may consider that

[∗] = ψ(θi) =

∫
ΩR

ω[Φ∗(1θi)](ω) dω

Also, note that the [∗] does not play an important role in this chapter.

KSTS/RR-15/001 
January 22, 2015



18.1 Reliability in psychological tests 389

Remark 18.3. It should be kept in mind that the variance σ2
i of the intelligence of θi (∈ Θ)

(i = 1, 2, . . . , n) is not constant, that is to say, we do not assume that σ2
i = σ2

j (∀i, ∀j):

σ2
i :=

∫
ΩR

(ω − µi)2 [Φ∗(1θi)](ω) dω (i = 1, 2, . . . , n), (18.1)

where µi is an expectation of Φ∗(1θi):

µi :=

∫
ΩR

ω [Φ∗(1θi)](ω) dω (i = 1, 2, . . . , n). (18.2)

18.1.2 Group measurement (= parallel measurement)

The above example is the test for a student θi (∈ Θ). Keeping this in mind, we will

next consider the test for a group of n students. Let Ωn
R = Rn, and let (Ωn

R,FΩnR
, dωn) be a

n-dimensional Lebesgue measure space. Further, let O := (XR,FXR , F ) and ML∞(ΩR,dω)(O,

S[∗](Φ∗(1θi))) (i = 1, 2, . . . , n) be as in above example. Here, we consider a parallel measurement

ML∞(ΩnR ,dω
n)(Ô, S[∗](ρ̂)) where Ô := (Xn

R,FXn
R
, F̂ ) is an observable in L∞(Ωn

R, dω
n). If

[F̂ (Ξ1 × Ξ2 × · · · × Ξn)](ω1, ω2, . . . , ωn) = [F (Ξ1)](ω1) · [F (Ξ2)](ω2) · · · [F (Ξn)](ωn),

and

ρ̂(ω1, ω2, . . . , ωn) = [Φ∗(1θ1)](ω1) · [Φ∗(1θ2)](ω2) · · · [Φ∗(1θn)](ωn),

then, the parallel measurement ML∞(ΩnR ,dω
n)(Ô, S[∗](ρ̂)) is denoted by

⊗θi∈ΘML∞(ΩR,dω)(O, S[∗](Φ∗(1θi))).

In addition, we introduce the following notations concerning tensor product:

⊗nk=1L
∞(ΩR, dω) = L∞(Ωn

R, dω
n) and ⊗nk=1 L

1(ΩR, dω) = L1(Ωn
R, dω

n).

By the way, we introduce the text observable.

Definition 18.4. [Test observable] The Oτ = (XR,FXR , Fτ ) is called a test observable in

L∞(ΩR, dω), if Fτ satisfies the following no-bias condition:∫
XR

x [Fτ (dx)](ω) = ω (∀ω ∈ ΩR). (18.3)

KSTS/RR-15/001 
January 22, 2015



390 Chapter 18 The reliability in psychological test

Recall that the normal observable (cf. Example 2.22 ) and the exact observable (cf.
Example 2.23 ).

For each θi (∈ Θ), we use the notation M
(i)
Oτ

to the test for θi (∈ Θ) (the measurement of

the test observable Oτ for the statistical state Φ∗(1θi)):

M
(i)
Oτ

:= ML∞(ΩR,dω)(Oτ , S[∗](Φ∗(1θi))). (18.4)

Now we are ready to consider the test for a set of the n students in our measurement theory.

Definition 18.5. [Test, Group test] Let Θ := {θ1, θ2, . . . , θn}, XR = ΩR = R and Φ∗ :

L1
+1(Θ, νc)→ L1

+1(ΩR, dω) be as in Example 18.1. Let Oτ := (XR,FXR , Fτ ) be a test observable

in L∞(ΩR, dω). The measurement ML∞(ΩR,dω)(Oτ , S[∗](Φ∗(1θi))) is called a test for a student

θi (∈ Θ) and symbolized by M
(i)
Oτ

for short. And the measurement

⊗θi∈ΘML∞(ΩR,dω)(Oτ , S[∗](Φ∗(1θi))) (or in short, ⊗θi∈ΘM
(i)
Oτ

), (18.5)

is called a group test and symbolized by M⊗Oτ for short.

Axiom(m) 1(§9.1) says that

(C) the probability that the score (x1, x2, . . . , xn) (∈ Xn
R) obtained by the group test

⊗θi∈ΘML∞(ΩR,dω) (Oτ , S[∗](Φ∗(1θi))) (or in short, M⊗Oτ ) belongs to the set×n
i=1 Ξi (∈ FXn

R
)

is given by

×
θi∈Θ

L1(ΩR,dω)
〈Φ∗(1θi), Fτ (Ξi)〉L∞(ΩR,dω)

(
=: P̂1(

n

×
i=1

Ξi) =
n

×
i=1

Pi(Ξi)
)
. (18.6)

Here, (XR,FXR , Pi) is a sample probability space of M
(i)
Oτ

.

Let W : Xn
R → R be a statistics (i.e., measurable function). Then, EM⊗

Oτ
[W ], the expectation

of W , is defined by

EM⊗
Oτ

[W ] =

∫
XR

· · ·
∫
XR

W (x1, x2, . . . , xn) P̂1(dx1 dx2 · · · dxn).

Definition 18.6. Let Oτ := (XR,FXR , Fτ ) be a test observable in L∞(ΩR, dω).

(i: Score of θi) Let ML∞(ΩR,dω)(Oτ , S[∗](Φ∗(1θi))) (or in short, M
(i)
Oτ

) be a test for a student

θi (∈ Θ). Here, we consider the expectation of xi (∈ XR) and its variance.
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1. Av[M
(i)
Oτ

] := E
M

(i)
Oτ

[xi],

2. Var[M
(i)
Oτ

] := E
M

(i)
Oτ

[
(xi − Av[M

(i)
Oτ

])2
]
.

(ii: Scores of n students) Let ⊗θi∈ΘML∞(ΩR,dω)(Oτ , S[∗](Φ∗(1θi))) (or in short, M⊗Oτ ) be a group

test. Here, we consider the expectation of 1
n
(x1 + x2 + · · ·+ xn) and its variance.

1. Av[M⊗
Oτ

] := EM⊗
Oτ

[1

n
(x1 + x2 + · · ·+ xn)

]
,

2. Var[M⊗Oτ ] := EM⊗
Oτ

[ 1

n

n∑
k=1

(xk − Av[M⊗Oτ ])
2
]
.

From the no-bias condition (18.3), we get

Av[M
(i)
Oτ

] = Av[M
(i)
OE

] =

∫
ΩR

ω [Φ∗(1θi)](ω) dω = µi, (18.7)

Av[M⊗Oτ ] =
1

n

n∑
i=1

Av[M
(i)
Oτ

] = Av[M⊗OE ] =
1

n

n∑
i=1

Av[M
(i)
OE

] =
1

n

n∑
i=1

µi =: µ, (18.8)

where OE := (XR,FXR , E) is an exact observable in L∞(ΩR, dω).

18.1.3 Reliability coefficient

When we suppose the group test, we can consider the reliability coefficient which can be

represented by a proportion of variance of mathematical intelligences to obtained variance.

Definition 18.7. [Reliability coefficient] Let Oτ := (XR,FXR , Fτ ) [resp. OE := (XR,FXR , E)]

be a test observable [resp. an exact observable] in L∞(ΩR, dω). And, let

M⊗Oτ := ⊗θi∈ΘML∞(ΩR,dω)(Oτ , S[∗](Φ∗(1θi)))

be a group test. The reliability coefficient RC[M⊗Oτ ] of the group test M⊗Oτ is defined by

RC[M⊗Oτ ] =
Var[M⊗OE ]

Var[M⊗Oτ ]
.

Now let us consider the measurement error. First, when the intelligence (true value) is

ω (∈ Ω), the measurement error ∆ω is as follows:

∆ω :=
(∫

XR

(x− ω)2 [Fτ (dx)](ω)
)1/2

(∀ω ∈ Ω). (18.9)
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392 Chapter 18 The reliability in psychological test

Note that the error ∆ω (∀ω ∈ Ω) depends on ω (∈ Ω) in general , that is, we do not assume

that ∆ω = ∆ω′ (∀ω, ∀ω′ ∈ Ω). Next, for each θi (∈ Θ), the error ∆i for the student θi (∈ Θ) is

as follows:

∆i :=
(∫

XR

∆ω [Φ∗(1θi)](ω) dω
)1/2

=
(∫

ΩR

(∫
XR

(x− ω)2 [Fτ (dx)](ω)
)

[Φ∗(1θi)](ω) dω
)1/2

(i = 1, 2, . . . , n). (18.10)

Finally, the group average of the student θi’s error ∆i (i = 1, 2, . . . , n) is as follows:

∆g :=
( 1

n

n∑
i=1

∆2
i

)1/2

. (18.11)

From what we have seen, we can get the following theorem.

Theorem 18.8. (i: The variance Var[M
(i)
Oτ

]) Let M
(i)
Oτ

:= ML∞(ΩR,dω)(Oτ , S[∗](Φ∗(1θi))) be the

measurement of test observable Oτ for the statistical state Φ∗(1θi). Then, we see

Var[M
(i)
Oτ

] = Var[M
(i)
OE

] + ∆2
i . (18.12)

(ii: The variance Var[M⊗Oτ ]) We consider the group test M⊗Oτ := ⊗θi∈ΘM
(i)
Oτ

= ⊗θi∈ΘML∞(ΩR,dω)(Oτ ,

S[∗](Φ∗(1θi))). And, we obtain the following:

Var[M⊗Oτ ] = Var[M⊗OE ] + ∆2
g (18.13)

Proof. Let µi be an expectation of Φ∗(1θi). Then, we see

Var[M
(i)
Oτ

] =

∫
ΩR

(∫
XR

(x− µi)2 [Fτ (dx)](ω)
)

[Φ∗(1θi)](ω) dω

=

∫
ΩR

(ω − µi)2 [Φ∗(1θi)](ω) dω +

∫
ΩR

(∫
XR

(x− ω)2 [Fτ (dx)](ω)
)

[Φ∗(1θi)](ω) dω

+

∫
ΩR

(∫
XR

2(x− ω)(ω − µi) [Fτ (dx)](ω)
)

[Φ∗(1θi)](ω) dω

= Var[M
(i)
OE

] + ∆2
i .

From the above formula, the group average of Var[M
(i)
Oτ

] follows that

Var[M⊗Oτ ] =

∫
ΩR

· · ·
∫
ΩR

(∫
XR

· · ·
∫
XR

1

n

n∑
i=1

(xi − µ)2
n

×
i=1

[Fτ (dxi)](ωi)
) n

×
i=1

[Φ∗(1θi)](ωi) dωi

=
1

n

n∑
i=1

∫
ΩR

(∫
XR

(ω − µ+ x− ω)2 [Fτ (dx)](ω)
)

[Φ∗(1θi)](ω) dω
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18.2 Correlation coefficient: How to calculate the reliability coefficient 393

=
1

n

n∑
i=1

∫
ΩR

(ω − µ)2 [Φ∗(1θi)](ω) dω

+
1

n

n∑
i=1

∫
ΩR

(∫
XR

(x− ω)2 [Fτ (dx)](ω)
)

[Φ∗(1θi)](ω) dω

+
1

n

n∑
i=1

∫
ΩR

(∫
XR

2(x− ω)(ω − µ) [Fτ (dx)](ω)
)

[Φ∗(1θi)](ω) dω

=

∫
ΩR

· · ·
∫
ΩR

1

n

n∑
i=1

(ωi − µ)2
n

×
i=1

[Φ∗(1θi)](ωi) dωi +
1

n

n∑
i=1

∆2
i

= Var[M⊗OE ] + ∆2
g.

18.2 Correlation coefficient: How to calculate the relia-

bility coefficient

In the previous section, we define the reliability coefficient RC[M⊗Oτ ] :=
Var[M⊗

OE
]

Var[M⊗
Oτ

]
. However,

from the measured data (x1, x2, . . . , xn) (∈ Xn
R), we can not get the variance of mathematical

intelligences of n students Var[M⊗OE ] directly (though we can calculate the Var[M⊗Oτ ]). Thus, we

focus on the problem how to estimate the reliability coefficient. Here we consider one typical

method, say the split-half method.

Split-half method: This method is appropriate where the testing procedure may in some

fashion be divided into two halves and two scores obtained. These may be correlated.

With psychological tests a common procedure is to obtain scores on the odd and even

items.

Now we introduce the measurement theoretical characterizations of the split-half method.

Definition 18.9. [Group simultaneous test] Let Θ := {θ1, θ2, . . . , θn}, XR = ΩR = R and

Φ∗ : L1
+1(Θ, νc) → L1

+1(ΩR, dω) be as in Example 18.1. Let Oτ1 := (XR,FXR , Fτ1) and Oτ2 :=

(XR,FXR , Fτ2) be test observables in L∞(ΩR, dω). The measurement

⊗θi∈ΘML∞(ΩR,dω)(Oτ1 × Oτ2 , S[∗](Φ∗(1θi))),

is called a group simultaneous test of Oτ1 and Oτ2 and it is symbolized by M⊗Oτ1×Oτ2
for short.
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394 Chapter 18 The reliability in psychological test

Axiom(m) 1(§9.1) says that

(D) the probability that the score ((x11, x
2
1), (x

1
2.x

2
2), . . . , (x

1
n, x

2
n)) (∈ X2n

R ) obtained by the

group simultaneous test ⊗θi∈ΘML∞(ΩR,dω)(Oτ1 ×Oτ2 , S[∗](Φ∗(1θi))) (or in short, M⊗Oτ1×Oτ2
)

belongs to the set×n
i=1(Ξ

1
i × Ξ2

i ) (∈ FX2n
R

) is given by

×
θi∈Θ

L1(ΩR,dω)
〈Φ∗(1θi), (Fτ1 × Fτ2)(Ξ1

i × Ξ2
i )〉L∞(ΩR,dω)

(
=: P̂2(

n

×
i=1

(Ξ1
i × Ξ2

i ))
)
. (18.14)

Here note that (X2n
R ,FX2n

R
, P̂2) is a sample probability space.

Let W2 : X2n
R → R be a statistics (i.e., measurable function). Then, EM⊗

Oτ1×Oτ2

[W2], the

expectation of W2, is defined by

EM⊗
Oτ1×Oτ2

[W2] =

∫
Xn

R

W (x11, x
2
1, x

1
2, x

2
2, . . . , x

1
n, x

2
n) P̂2(dx

1
1 dx

2
1 dx

1
2 dx

2
2 · · · dx1n dx2n).

We use the following notations:

(i) Av(k)[M⊗Oτ1×Oτ2
] := EM⊗

Oτ1×Oτ2

[1

n

n∑
i=1

xki

]
(k = 1, 2),

(ii) Var(k)[M⊗Oτ1×Oτ2
] := EM⊗

Oτ1×Oτ2

[ 1

n

n∑
i=1

(xki − Av(k)[M⊗Oτ1×Oτ2
])2

]
(k = 1, 2),

(iii) Cov[M⊗
Oτ1×Oτ2

] := EM⊗
Oτ1×Oτ2

[ 1

n

n∑
i=1

(x1i − Av(1)[M⊗
Oτ1×Oτ2

])(x2i − Av(2)[M⊗
Oτ1×Oτ2

])
]
.

It is clear that Av(k)[M⊗Oτ1×Oτ2
] = Av[M⊗Oτk

] = Av[M⊗OE ] (k = 1, 2).

Definition 18.10. [Equivalency of test observables] We call that test observables Oτ1 :=

(XR,FXR , Fτ1) and Oτ2 := (XR,FXR , Fτ2) in L∞(ΩR, dω) are equivalent if it holds

∆(1)
ω = ∆(2)

ω (∀ω ∈ ΩR), (18.15)

where ∆
(k)
ω := (

∫
XR

(x− ω)2 [Fτk(dx)](ω))1/2 (see (18.9)).

In case that test observables Oτ1 := (XR,FXR , Fτ1) and Oτ2 := (XR,FXR , Fτ2) in L∞(ΩR, dω)

are equivalent and Oτ1 × Oτ2 is a product test observable in L∞(ΩR, dω), it holds that

Var[M⊗Oτ1
] = Var(1)[M⊗Oτ1×Oτ2

] = Var(2)[M⊗Oτ1×Oτ2
] = Var[M⊗Oτ2

]. (18.16)
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18.2 Correlation coefficient: How to calculate the reliability coefficient 395

In consequence of these properties, we introduce the correlation coefficient of the measured

values (x11, x
1
2, . . . , x

1
n) (∈ Xn

R) and (x21, x
2
2, . . . , x

2
n) (∈ Xn

R) which are obtained by the group

simultaneous test M⊗Oτ1×Oτ2
.

Theorem 18.11. [The reliability coefficient and the correlation coefficient in group simultaneous

tests] Let Oτ1 and Oτ2 be equivalent test observables in L∞(ΩR, dω). And let Oτ1 × Oτ2

be a product test observable in L∞(ΩR, dω). Let M⊗Oτk
:= ⊗θi∈ΘML∞(ΩR,dω)(Oτk , S[∗](Φ∗(1θi)))

(k = 1, 2) and M⊗Oτ1×Oτ2
:= ⊗θi∈ΘM(Oτ1 ×Oτ2 , S[∗](Φ∗(1θi))) be group tests as above notations.

Then we see that

RC[M⊗
Oτ1

] = RC[M⊗
Oτ2

] =
Cov[M⊗

Oτ1×Oτ2
]√

Var[M⊗
Oτ1

] ·
√

Var[M⊗
Oτ2

]
. (18.17)

Proof. From the (18.3), we get the following:

Cov[M⊗
Oτ1×Oτ2

] := EM⊗
Oτ1×Oτ2

[ 1

n

n∑
i=1

(x1i − Av(1)[M⊗Oτ1×Oτ2
])(x2i − Av(2)[M⊗Oτ1×Oτ2

])
]

=

∫
ΩR

· · ·
∫
ΩR

(∫
XR

· · ·
∫
XR

1

n

n∑
i=1

(x1i − Av(1)[M⊗Oτ1×Oτ2
])(x2i − Av(2)[M⊗Oτ1×Oτ2

])

×
n

×
i=1

[Fτ1(dx
1
i )Fτ2(dx

2
i )](ωi)

) n

×
i=1

[Φ∗(1θi)](ωi) dωi

=
1

n

n∑
i=1

(∫
ΩR

(∫
XR

∫
XR

(x1i − Av[M⊗OE ])(x2i − Av[M⊗OE ]) [Fτ1(dx
1
i )](ω) [Fτ2(dx

2
i )](ω)

)
× [Φ∗(1θi)](ω) dω

)
=

1

n

n∑
i=1

(∫
ΩR

(∫
XR

(x1i − Av[M⊗OE ]) [Fτ1(dx
1
i )](ω) ·

∫
XR

(x2i − Av[M⊗OE ]) [Fτ2(dx
2
i )](ω)

)
× [Φ∗(1θi)](ω) dω

)
=

1

n

n∑
i=1

∫
ΩR

(ω − Av[M⊗OE ])2 [Φ∗(1θi)](ω) dω = Var[M⊗OE ]. (18.18)

Then, we see that

Cov[M⊗
Oτ1×Oτ2

]√
Var[M⊗

Oτ1
] ·
√

Var[M⊗
Oτ2

]
=

Var[M⊗OE ]

Var(1)[M⊗
Oτ1×Oτ2

]
=

Var[M⊗OE ]

Var(2)[M⊗
Oτ1×Oτ2

]
. (18.19)
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396 Chapter 18 The reliability in psychological test

18.3 Conclusions

In this chapter, we introduce the measurement theoretical understanding of psychological test

and the split-half method which estimate reliability. Measurement theoretical approach show

the following correspondences:

split-half method ←→ group simultaneous test.
M⊗Oτ1×Oτ2

:= ⊗θi∈ΘML∞(ΩR,dω)(Oτ1 × Oτ2 , S[∗](Φ∗(1θi)))

And further, we show the well-known theorem:

“reliability coefficient” = “correlation coefficient”

in Theorem 18.11.
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Chapter 19

How to describe “belief”

Recall the spirit of quantum language i.e., the spirit of the quantum mechanical world view),

that is,

(]) every phenomenon should be described by quantum language ( knowing it is unreasonable

)!

Thus, we consider that even the “belief” should be described in terms of quantum language.

For this, it suffices to consider the identification:

“belief” = “odds by bookmaker”

This approach has a great merit such that the principle of equal weight holds. This chapter is
extracted from Chapter 8 in Ref. [28]: S. Ishikawa, “Mathematical Foundations of Measurement
Theory,” Keio University Press Inc. 2006.

19.1 Belief, probability and odds

In Chapter 9, we studied the mixed measurement: that is,

mixed measurement theory
(=quantum language)

:=

[(mixed)Axiom(m) 1]

mixed measurement
(cf. §9.1 )

+

[Axiom 2]

Causality
(cf. §10.3)︸ ︷︷ ︸

a kind of spell(a priori judgment)

+

[quantum linguistic interpretation]

Linguistic interpretation
(cf. §3.1)︸ ︷︷ ︸

the manual how to use spells

(19.1)

The purpose of this chapter is to describe “belief” by the mixed measurement theory.

19.1.1 A simple example; how to describe “belief” in quantum lan-
guage

We begin with a simplest example (cf. Problem 9.2 ) as follows.

397
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398 Chapter 19 How to describe “belief”

Problem 19.1. [= Problem 9.2) Bayes’ method] Putting Ω = {ω1, ω2} with the counting
measure ν, prepare a pure measurement ML∞(Ω,ν)(O=({W,B}, 2{W,B}, F ), S[∗]), where O =
({W,B}, 2{W,B}, F ) is defined by

F ({W})(ω1) = 0.8, F ({B})(ω1) = 0.2

F ({W})(ω2) = 0.4, F ({B})(ω2) = 0.6

Here, consider the following problem:

p
-

1-p
�[∗]

You do not know which the urn behind the curtain is, U1 or U2, but the “probability”: p and 1− p.

Assume that you pick up a ball from the urn behind the curtain.

How is the probability such that the picked ball is a white ball?

U1 U2

Figure 19.1: ( Mixed measurement)

If the picked ball is white, how is the probability that the urn behind the curtain is U1?

Answer 19.2. (=Answer 9.10)
Under the identification: U1 ≈ ω1 and U2 ≈ ω2, the above situation is represented by the mixed

w0 ∈ L1
+1(Ω, ν) (with the counting measure ν)

(
or, ρ0 ∈M(Ω)

)
, that is,

w0(ω) =

{
p ( if ω = ω1 )
1− p ( if ω = ω2 )

or ρ0 = pδω1 + (1− p)δω2

Thus, we have the mixed measurement:

ML∞(Ω,ν)(O, S[∗](w)) or ML∞(Ω,ν)(O, S[∗](ρ0)) (19.2)

[ W ∗-algebraic answer to Problem 9.2(c2) in Sec. 9.1.2]
Since “white ball” is obtained by a mixed measurement ML∞(Ω)(O, S[∗](w0)), a new mixed
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19.1 Belief, probability and odds 399

state wnew(∈ L1
+1(Ω)) is given by

wnew(ω) =
[F ({W})](ω)w0(ω)∫

Ω
[F ({W})](ω)w0(ω)ν(dω)

=


0.8p

0.8p+ 0.2(1− p) (when ω = ω1)

0.2(1− p)
0.8p+ 0.2(1− p) (when ω = ω2)

[ C∗-algebraic answer to Problem 9.2(c2) in Sec. 9.1.2]
Since “white ball” is obtained by a mixed measurement ML∞(Ω)(O, S[∗](ρ0)), a new mixed state
ρnew(∈M+1(Ω)) is given by

ρnew =
F ({W})ρ0∫

Ω
[F ({W})](ω)ρ0(dω)

=
0.8p

0.8p+ 0.2(1− p)
δω1 +

0.2(1− p)
0.8p+ 0.2(1− p)

δω2

By an analogy of the above Problem 19.1 ( for simplicity, we put: p = 1/4, 1− p = 3/4 ),
we consider as follows.

Assume that there are 100 people. And moreover assume that{
25 people (in 100 people) believe that [∗] = U1

75 people (in 100 people) believe that [∗] = U2

That is, we have the following picture (instead of Figure 19.1), where,

Figure 19.2: 25 people believe that [∗] = U1, 75 people believe that [∗] = U2.

- �[∗]

Pick up a ball from the urn behind the curtain

U1(≈ ω1) U2(≈ ω2)

Here, according to the spirit of the quantum mechanical world view,

(A) knowing it is unreasonable, we regard Figure 19.2 as Figure 19.1, that is,
we consider the identification:

Figure 19.1 = Figure 19.2 (19.3)
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400 Chapter 19 How to describe “belief”

i.e., in both case, it suffices to consider the mixed measurement (19.2):

ML∞(Ω,ν)(O, S[∗](w0)) or ML∞(Ω,ν)(O, S[∗](ρ0)) (19.4)

where the mixed state ( w0 or ρ0 ) is called an odds state

This identification (A) is quite powerful. For example,

(B) Recall “parimutuel betting ( or, odds in bookmaker )”, which is very applicable. For
instance, we can formulate:

(]) the “probability”that England will win the victory in the next FIFA World Cup

(]) the “probability”that the Riemann hypothesis will be solved within 10 years.

Theorem 19.3. [ Bayes’ theorem for odds states] Consider the classical mixed measurement

ML∞(Ω,ν)(O, S[∗](w0)) or ML∞(Ω,ν)(O, S[∗](ρ0)) (19.5)

where the mixed state ( w0 or ρ0 ) is assuned to be an odds state. Then, Bayes’ theorem (=
Theorem 9.8 ) holds.

The outline of the proof. It suffices to prove a simple case since the proof of the general
case is similar. For example, consider the following figure, which is the same as Figure 19.1.

25 % people believe that [∗] = U1.
20 % people guess that a white ball will be picked.

5 % people guess that a black ball will be picked.

75 % people believe that [∗] = U2.
30 % people guess that a white ball will be picked.

45 % people guess that a black ball will be picked.

- �[∗]

Figure 19.3: The odds in bookmaker

U1(≈ ω1) U2(≈ ω2)

Assume that a “white ball ”is picked in the above picture. Then, we see:
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19.1 Belief, probability and odds 401

25 % people believe that [∗] = U1.
20 % people guess that a white ball will be picked.

5 % people guess that a black ball will be picked.

75 % people believe that [∗] = U2.
30 % people guess that a white ball will be picked.

45 % people guess that a black ball will be picked.

- �[∗]

Figure 19.4: The white ball is picked

U1(≈ ω1) U2(≈ ω2)

which is equivalent to the following figure:

40 % people believe that [∗] = U1, 60 % people believe that [∗] = U2.

- �[∗]

Figure 19.5: After all, we get the new odds state:

U1(≈ ω1) U2(≈ ω2)

Thus we can prove Bayes theorem 19.3 as follows.

Figure 19.3
1
4
δω1+

3
4
δω2

−−−−−−−−−−−−−−→
(the white ball is picked)

Figure 19.4 −−−−−−−−−→
(new odds state)

Figure 19.5
2
5
δω1+

3
5
δω2

For completeness, we can calculate, by Bayes theorem (= Theorem 9.8), as follows. That
is, the answer is the same as Answer 19.2 ( when p = 1/4):
Since “white ball” is obtained by a mixed measurement ML∞(Ω)(O, S[∗](w0)), a new mixed (
odds ) state wnew(∈ L1

+1(Ω)) is given by

wnew(ω) =
[F ({W})](ω)w0(ω)∫

Ω
[F ({W})](ω)w0(ω)ν(dω)

=


8
10
× 1

4
8
10
× 1

4
+ 4

10
× 3

4

= 40
100

(if ω = ω1)

4
10
× 3

4
8
10
× 1

4
+ 4

10
× 3

4

= 60
100

(if ω = ω2)

which is the same as Figure 19.5.
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402 Chapter 19 How to describe “belief”

19.2 The principle of equal odds weight

Concerning “odds state”, we have the following proclaim, which should be compared with
Theorem 9.15.

Proclaim 19.4. [≈ Theorem 9.15; The principle of equal odds weight] Consider a
finite state space Ω, that is, Ω = {ω1, ω2, . . . , ωn}. Let O = (X,F, F ) be an observable in
L∞(Ω, ν), where ν is the counting measure. Consider a measurement ML∞(Ω)(O, S[∗]). If the
observer has no information for the state [∗], there is a reason to that this measurement is

identified with the mixed measurement ML∞(Ω)(O, S[∗](we))
(

or, ML∞(Ω)(O, S[∗](νe))
)

, where

we(ωk) = 1/n (∀k = 1, 2, ..., n) or νe =
1

n

n∑
k=1

δωk (19.6)

which is interpretated as the odds state .

Explanation. The difference between Theorem 9.15 and Proclaim 19.4 should be remarked.

Theorem 9.15 was already explained. The equal weight we

(
or, ρe

)
in Proclaim 19.4 is regarded

as “odds”. Since people have no information for the state [∗], it is natural that people consider
the equal odds (19.5).

♠Note 19.1. We believe that

(]) nobody denies Proclaim 19.4.

Thus, this proclaim 19.4 is one of the greatest fruits of measurement theory. Note that mea-
surement theory has two “principle of equal weight”, that is, Theorem 9.15 and Proclaim 19.4.

In order to promote the readers’ understanding of the difference between Theorem 9.15 and
Proclaim 19.4, we show the following example, which should be compared with Problem 5.14
and Problem 9.14

Problem 19.5. [Monty Hall problem (=Problem 5.14 ;The principle of equal
weight) ]

You are on a game show and you are given the choice of three doors. Behind one door is
a car, and behind the other two are goats. You choose, say, door 1, and the host, who knows
where the car is, opens another door, behind which is a goat. For example, the host says that

([) the door 3 has a goat.

And further, he now gives you the choice of sticking with door 1 or switching to door 2?
What should you do?
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19.2 The principle of equal odds weight 403

? ? ?

door door door
No. 1 No. 2 No. 3

Figure 19.6: Monty Hall problem

Proof. It should be noted that the above is completely the same as Problem 5.14. However,
the proof is different. That is, it suffices to use Proclaim 19.4 and Bayes theorem (B2). That
is, the proof is similar to Problem 9.13 .
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Chapter 20

Postscript

20.1 Two kinds of (realistic and linguistic) world-views

In this lecture note, we assert the following figure:

Figure 20.1. [=Figure 1.1: The location of quantum language in the history of world-description
(cf. ref.[30]) ]

Parmenides
Socrates

0©:Greek
philosophy

Plato
Aristotle

Schola-−−−−→
sticism

1©

−−→
(monism)

Newton
(realism)

2©
→

relativity
theory −−−−−−→ 3©

→
quantum
mechanics −−−−−−→ 4©

−→

(dualism)

Descartes
Locke,...
Kant
(idealism)

6©−→

(linguistic view)

linguistic
philosophy

language−−−−−→ 8©

language−−−−−−→ 7©


5©−→

(unsolved)

theory of
everything

(quantum phys.)


10©−→

(=MT)

quantum
language
(language)

Figure 20.1: The history of the world-view

statistics
system theory

language−−−−−→ 9©

the linguistic view

the realistic view

Most physicists feel that

(A1) quantum mechanics has both realistic aspect and metaphysical aspect.

And they want to unify the two aspects. However, quantum language asserts that

(A2) Two aspects are separated, and they develop in the respectively different directions 5©
and 10© in Figure 20.1.
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406 Chapter 20 Postscript

20.2 The summary of quantum language

20.2.1 The big-picture view of quantum language

The big-picture view of quantum language

Measurement theory (= quantum language ) is classified as follows.

(B) measurement theory
(=quantum language)



pure type
(B1)

{
classical system : Fisher statistics
quantum system : usual quantum mechanics

mixed type
(B2)

{
classical system : including Bayesian statistics, Kalman filter

quantum system : quantum decoherence

And the structure is as follows.

(C)



(C1): pure measurement theory
(=quantum language)

:=
[(pure)Axiom 1]

pure measurement
(cf. §2.7)

+

[Axiom 2]

Causality
(cf. §10.3)︸ ︷︷ ︸

a kind of spell(a priori judgment)

+

[quantum linguistic interpretation]

Linguistic interpretation
(cf. §3.1)︸ ︷︷ ︸

the manual how to use spells

(C2): mixed measurement theory
(=quantum language)

:=

[(mixed)Axiom(m) 1]

mixed measurement
(cf. §9.1)

+

[Axiom 2]

Causality
(cf. §10.3)︸ ︷︷ ︸

a kind of spell(a priori judgment)

+

[quantum linguistic interpretation]

Linguistic interpretation
(cf. §3.1)︸ ︷︷ ︸

the manual how to use spells

In the above,

(D1) Axioms 1 and 2 (i.e., kinds of spells) are essential

On the other hand, the linguistic interpretation (i.e., the manual how to use Axioms 1 and 2)

may not be indispensable. However,

(D2) if we would like to make speed of acquisition of a quantum language as quick as possible,

we may want the good manual how to use the axioms.

In this sense, this note is a manual book (=cookbook). Although all written in this note can

be regarded as a part of the linguistic interpretation, the most important statement is

Only one measurement is permitted
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20.3 Quantum language is located at the center of science 407

Also, since we assert that quantum language is the final goal of dualistic idealism (=

Descartes=Kant philosophy) in Figure20.1, we think that

(E) Many philosophers’ maxims and thoughts constitute a part of the linguistic interpreta-

tion

20.2.2 The characteristic of quantum language

Also, we see:

The characteristic of quantum language

(F1) Non-reality (metaphysics ): Quantum language is metaphysics (= language), which

asserts the linguistic world-view.

(F2) The collapse of wave function does not occur: According to the linguistic inter-

pretation (i.e., only one measurement is permitted), we can not get information after

the measurement. That is, the collapse of wave function can not be found,

(F3) Non-deterministic: Since we usually consider non-deterministic processes in classical

system, it is natural to assume non-deterministic processes (i.e., quantum decoherence)

in quantum language.

(F4) Dualism: The two concepts: “measurement” and “dualism” are non-separable. Thus,

quantum language say that

(]) describe any monistic phenomenon by the dualistic language!

(F5) Non-locality, faster-than-light: Quantum language accepts “non-locality”. This is

the only one paradox in quantum language.

20.3 Quantum language is located at the center of sci-

ence

Dr. Hawking said in his best seller book [17]:

(G) Philosophers reduced the scope of their inquiries so much that Wittgenstein the most fa-

mous philosopher this century, said “The sole remaining task for philosophy is the analysis

of language.” What a comedown from the great tradition of philosophy from Aristotle to
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Kant!

I think that this is not only his opinion but also most scientists’ opinion. And moreover,

I mostly agree with him. However, I believe that it is worth reconsidering the series in the

linguistic world view ( 1©– 6©– 8©–10© in Figure 20.1).

It is a matter of course that quantum language is different from pure mathematics. Hence,

in spite of Lord Kelvin’s saying: Mathematics is the only good metaphysics , I assert that

(H1) quantum language is located at the center of science

That is, I believe, from the pure theoretical point of view, that quantum language will replace

statistics.

Since quantum language is not physics but language (= metaphysics), quantum language

(= the linguistic interpretation of quantum mechanics) is completely different from other in-

terpretations. In this sense, I am convinced that

(H2) quantum language is forever,

even if someone discovers the “final” interpretation of quantum mechanics in the realistic view

(i.e., 5© in Figure 20.1 ).

I hope that my proposal will be examined from various view-points.

Shiro ISHIKAWA

December in 2014
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σ-finite, 23

simultaneous measurement, 71

simultaneous observable , 70

spectrum, 25, 270

spectrum decomposition, 42

spin observable, 54

split-half method, 393

St. Petersburg two envelope problem, 214

state equation, 250, 260, 329, 350

state space(mixed state space, pure state space),
66, 67

statistical hypothesis testing
deference of population means, 159
population mean, 144
student t-distribution, 163
population variance, 152

staying time space, 380
Stern=Gerlach experiment, 54
student t-distribution , 110, 163, 167
syllogism, 200
syllogism does not hold in quantum system, 203
system(=measuring object), 44
system quantity, 40

tensor basic structure, 68
test, 390
test observable, 389
Thomas Aquinas (1225-1274), 61
time-lag process, 261
trace, 19, 21, 42
tree (tree-like semi-ordered set), 257
tree (infinite tree-like semi-ordered set), 338
trialism, 61
triangle observable, 37
two envelope problem, 130, 214, 220

Unsolved problem
What is causality?, 249
What is space-time?, 269
Monty Hall problem, equal weight, 226, 402
Zeno’s paradox, 347

urn problem, 47, 108, 111, 115, 117, 123

von Neumann(1903-1957), 13

weak convergence, 14
Wheeler’s Delayed choice experiment, 292
Wilson cloud chamber, 318
Wittgenstein(1889-1951), 195
W ∗-algebra, 14

Zeno(BC490-BC430), 347
Zeno’s paradox, 347

Notation
BalldΩ(ω; η) :Ball, 145
BallCdΩ(ω; η) :complement of Ball, 145
B(H): bounded operators space, 13
χΞ :definition function, 50
C(= the set of all complex numbers), 13
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C(H): compact operators class, 18
Ξc: complement of Ξ, 24
Cn : n-dimensional complex space, 19
C0(Ω): continuous functions space, 23
δω: point measure at ω, 26
ess.sup : essential sup, 23
Φ1,2: causal operator , 252
Φ∗1,2:dual causal operator , 253
(Φ1,2)∗:pre-dual causal operator , 253
~: Plank constant, 91
Lr(Ω, ν): r-th integrable functions space, 23
MA

(
O, S[ρ]

)
:pure measurement, 45

MA

(
O, S[∗](w)

)
:mixed measurement, 208

M(Ω): the space of measures, 24
MA

(
O, S[∗]

)
:inference, 112

N(= the set of all natural numbers), 14⊗n
k=1Ok: parallel observable , 78

� n
k=1Fk:product σ-field, 70

2X(= P(X)):power set of X, 32
P0(X):power finite set of X, 85
Rn(= n-dimensional Euclidean space), 22
R(= the set of all real numbers), 11
Sp(A∗): pure state space, 15
Sm(A∗): C∗-mixed state space, 15
S
m
(A∗): W

∗-mixed state space, 15
Tr(H): trace class, 19
Tr: trace, 20
Trp+1(H): quantum pure state space, 20
(T, 5 ), (T (t0), 5 ):tree, 338
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