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Abstract

This is the lecture note for graduate studentst. This lecture has been continued, with
gradually improvement, for about 15 years in the faculty of science and technology of Keio
university. In this lecture, I explain “quantum language” (=“measurement theory”), which was
proposed by myself. Quantum language is a language that is inspired by the Copenhagen
interpretation of quantum mechanics, but it has a great power to describe classical systems as
well as quantum systems. In this lecture, I assert that quantum language, roughly speaking,
has the three aspects as follows.

S The three aspects of quantum language ——
@ the standard interpretation of quantum mechanics

(i.e., the true colors of the Copenhagen interpretation)
@): the final goal of the dualistic idealism (Descartes=Kant philosophy)
| ©®: theoretical statistics of the future

- /
And therefore, I assert that

The main assertion of this lecture

Quantum language is the most fundamental language in science.

The purpose of this lecture is to explain these assertions. Also, this lecture note may be regarded
as the revised edition of the following two:

e [28]: S. Ishikawa, [Mathematical Foundations of Measurement Theory, Keio University
Press Inc. 2006, (335 pages) .

e [37]: S. Ishikawa, Measurement Theory in the Philosophy of Science, larXiv:1209.3483
Iphysics.hist-ph]| 2012, (177 pages)

!This note is prepared for the lecture (every week from April to July in 2015) in master-course pro-
gram:” Advanced study of mathematics A” at Keio university. The publication (or the 2nd version) of this
preprint will be announced in Ishikawa’s home page:(http://www.math.keio.ac.jp/~ishikawa/indexe.html))


http://www.keio-up.co.jp/kup/mfomt/
http://www.keio-up.co.jp/kup/mfomt/
http://arxiv.org/abs/1209.3483
http://arxiv.org/abs/1209.3483
http://www.math.keio.ac.jp/~ishikawa/indexe.html
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Chapter 1

My answer to Feynman’s question

Dr. R. P. Feynman (one of the founders of quantum electrodynamics) said the following wise
words:(#1) and (f)T

(#1) There was a time when the newspapers said that only twelve men understood the theory
of relativity. I do not believe there ever was such a time. There might have been a time
when only one man did, because he was the only guy who caught on, before he wrote his
paper. But after people read the paper a lot of people understood the theory of relativity
in some way or other, certainly more than twelve. On the other hand, I think I can safely
say that nobody understands quantum mechanics.

(f2) We have always had a great deal of difficulty understanding the world view that quantum
mechanics represents. ------ I cannot define the real problem, therefore I suspect there’s
no real problem, but I'm not sure there’s no real problem.

In this lecture, I will answer Feynman’s question (#1) and (f2) as follows.

(b) T am sure there’s no real problem. Therefore, since there is no problem that should be
understood, it is a matter of course that nobody understands quantum mechanics.

This answer may not be uniquely determined, however, I am convinced that the above (b) is
one of the best answers to Feynman’s question (1) and (#2).

The purpose of this lecture is to explain the answer (b). That is, I show that

If we start from the answer (b),
we can double the scope of quantum mechanics.
And further, I assert that

Metaphysics (which might not be liked by Feynman )
is located in the center of science.

In this lecture, I will show the above.

IThe importance of the two (#;) and (#2) was emphasized in Mermin’s book [56]
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2 Chapter 1 My answer to Feynman’s question

1.1 Quantum language (= measurement theory)
1.1.1 Introduction

In this lecture, I will explain “quantum language (= measurement theory (=MT))”, which

is located as illustrated in the following figure:

Figure 1.1. [The location of quantum language in the history of world-description (cf. ref.[30]) ]

roTTTTTTTTTT the realistic view "~~~ T
! |
} relativity \ (unsolved) !
i (monism) — [theory | ——(@®) ® theory of i
Parmenides \ } @ 1 everythlng |
Socrates | (realism) quantum (quantum phys.) |
(0):Greek Schola L — |mechanics (1) g J
philosophy | ——@©) [ 1; ;q R,
Plato sticism (dualism) i guag @\ !
Aristotle o . (=MT) |
Descartes (linguistic view) | quantum .
Locke,... linguistic : S !
®) ; language —={language !

— | Kant philosophy ———
i ; ' (language) !
(idealism) | l
.. 1 |
statistics laneuage |
system theory :‘g‘g>@‘ :
t-- the linguistic view----

Figure 1.1: The history of the world-view

It should be noted that the above figure automatically gives answers to the following ques-

tions

(M: What should be the standard interpretation of quantum mechanics?
®: What did Descartes-Kant philosophy want to do?

®: How will theoretical statistics evolve?

Therefore,

Figure 1.1 is all in this lecture.
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1.1 Quantum language (= measurement theory) 3

ANote 1.1. If most physicists feel something like metaphysics in quantum mechanics, the reason
is due to |[Figure 1.1. That is, we consider that there are two “quantum mechanics”, that is,
“(realistic) quantum mechanics” in (§) and “(metaphysical) quantum mechanics” in @. Namely,

“(realistic) quantum mechanics” in ()
e quantum mechanics
“(metaphysical) quantum mechanics” in

The former is not completed yet. The latter is “the usual quantum mechanics” studied in
undergraduate course of university. In this lecture, we are not concerned with the former.

ANote 1.2. If readers are familiar with quantum mechanics, it may be recommended to read the
following short papers before reading this lecture text.

e Ref. [29]: S. Ishikawa, A New Interpretation of Quantum Mechanics: |[JQIS: Vol.1(2),
5p.35-42, 2011

e Ref. [30]:S. Ishikawa, Quantum Mechanics and the Philosophy of Language: Reconsidera-
tion of traditional philosophies, |JQIS, Vol. 2(1), pp.2-9, 2012

1.1.2 From Heisenberg’s uncertainty principle to the linguistic in-
terpretation

As explained in §4.3|

(A) In 1991(cf. ref. [21])4, T found the mathematical formulation of Heisenberg’s uncertainty
principle (i.e., A, - A, > h/2 in (4.36)), which clarified that

e under what kind of condition does Heisenberg’s uncertainty principle hold?

I thought that this result is interesting. However, from immediately after the discovery (A),
the interpretation of quantum mechanics began to worry me. There are many interpretations
of quantum mechanics, for example, “the Copenhagen interpretation”, “the many world inter-
pretation”, “the probabilistic interpretation”, etc. In the applied field of quantum mechanics,
we can expect that the same conclusion is derived from different interpretations. In this sense,
the problem of “the interpretation of quantum mechanics” is not serious.

However, concerning Heisenberg’s uncertainty principle, this problem is important. That is
because the meaning of “errors” in Heisenberg’s uncertainty principle depend on the interpre-

tation of quantum mechanics (for example, the meaning of “errors (A, and A,)” depends on

the acceptance of “the collapse of wave function” or not). Thus,

2Ref.[21]:S. Ishikawa, “Uncertainty relation in simultaneous measurements for arbitrary observables” [Rep.
Math. Phys. Vol.29(3), pp.257-273, 1991|


http://www.scirp.org/journal/PaperInformation.aspx?paperID=7610
http://www.scirp.org/journal/PaperInformation.aspx?paperID=7610
http://www.scirp.org/journal/PaperInformation.aspx?paperID=18194 
http://www.sciencedirect.com/science/article/pii/003448779190046P
http://www.sciencedirect.com/science/article/pii/003448779190046P
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4 Chapter 1 My answer to Feynman’s question
e [ want to establish the “standard” interpretation of quantum mechanics.

In what follows, let me mention my idea (i.e., the linguistic interpretation of quantum

mechanics):

Recalling that quantum mechanics was called “matrix mechanics” (when quantum mechan-

ics was proposed (i.e., 1920s), I consider that

(B;) from the mathematical point of view, quantum mechanics is the theory of

“square matrix”
On the other hand,

(B2) from the mathematical point of view, classical mechanics is the theory of

“diagonal matrix”
Thus, we have the following problem:

(C) What is the interpretation which is common to both quantum system (B;) and classical

system (By)?
And we conclude that
: : : : « 9
9
(D) the answer to the question (C) is uniquely determined as “quantum language

where quantum language can describe classical systems as well as quantum systems.
Since quantum language is not physics but language (= metaphysics), quantum language (=
the linguistic interpretation of quantum mechanics) is completely different from other quantum

interpretations. In this sense, we are convinced that

(E) quantum language (= the linguistic interpretation of quantum
mechanics ) is forever,

even if some propose the “final” interpretation of quantum mechanics in the realistic view

(i.c., ® in [Figure L.1])
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1.2 The outline of quantum language

1.2.1 The classification of quantum language (=measurement the-
ory)

Quantum language (= measurement theory ) is classified as follows.

( ‘ classical system : Fisher statistics
ure e
P ( A })fp quantum system : usual quantum mechanics
1
(A) measurement theory ¢
(=quantum language) cod t classical system : including Bayesian statistics, Kalman filter
mixe e
( A )yp quantum system : quantum decoherence
\ 2

Therefore, we have two kinds of quantum language, i.e., pure measurement theory and

mixed measurement theory. The former is formulated as follows.

pure)Axiom 1 |Axiom 2| [quantum Tinguistic interpretation)|
(Al) ’ pure measurement theory ‘ = ’ pure measurement ‘ =+ ’ Causality ‘—i— ’ Linguistic interpretation
(=quantum language) (of. 527) (cf. 910.3) (of. .0
a kind of spell(a priori judgment) the manual how to use spells

And the mixed measurement theory (or, statistical measurement theory) is formulated as fol-

lows.
[(mixed) Axiom (™) 1] [Axiom 2| [quantum linguistic interpretation)
(Ag) ’mixed measurement theory ‘ = ’ mixed measurement ‘ —1—’ Causality ‘—i— ’Linguistic interpretation
(=quantum language) (cf. [§9.1) (cf. §10.3) (cf. §3.1)
a kind of spell(a priori judgment) the manual how to use spells

1.2.2 Axiom 1 (measurement) and Axiom 2 (causality)

Since the pure measurement theory is the most fundamental, we mainly devote ourselves

to pure measurement theory. Although it is impossible to read Axiom 1 ( measurement: [52.7)

and |Axiom 2 (causality; §10.3)| at the present time, we present them as follows.
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- (B):Axiom 1 (measurement) pure type ~

(This will be able to be read in )

With any system S, a basic structure [A C AJ B(#) can be associated in which measurement

theory of that system can be formulated. In [A C A]p(g), consider a IV *-measurement
MZ(O:(X, F,F), S[p}) (or, C*-measurement My (O:(X, F,F), S[p]) ) That is, consider

e a IV*-measurement MZ(O,SM) ( or, C*-measurement MA(O:(X, F, F),S[p]) > of
an observable O=(X, ¥, F) for a state p(€ GF(A*) : state space)

Then, the probability that a measured value z (€ X) obtained by the W*-measurement
MZ(O, S[p]) ( or, C*-measurement My (O:(X, F,F), S[p]) ) belongs to = (€ F) is given by

p(F(E)(= a-(p, F(E))7) (1.1)
\(if F(Z) is essentially continuous at p, or see (2.50) in Remark 2.18 ).
/
And
s ‘(C): Axiom 2 (causality) ‘ ~

(This will be able to be read in §10.3)

Let T' be a tree (i.e., semi-ordered tree structure). For each t(€ T), a basic structure
[A; C A, B(H,) is associated. Then, the causal chain is represented by a 11"~ sequential

causal operator {®;, ,, : A, — ﬁtl}(tlh)eTg < or, C*- sequential causal operator

{ @t 1, Aty — ‘At1}(t1,t2)eT§ )
\_ J

Here, note that

(D) the above two axioms are kinds of spells (i.e., incantation, magic words, meta-

physical statements), and thus, it is impossible to verify them experimentally.

In this sense, the above two axioms correspond to “a priori synthetic judgment” in Kant’s

philosophy (cf. [49]). Therefore,

(E) what we should do is not to understand the two, but to learn the spells (i.e.,

Axioms 1 and 2) by rote.
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Of course, the “learning by rote” means that we have to understand the mathematical defini-

tions of followings:

(F) basic structure [A C A]pgr), state space GP(A*), observable O=(X, F, F), etc.

ANote 1.3. If metaphysics has history of failure, this is due to the serious trial to answer the
following problem

(#1) What is the meaning of the key-words (e.g., measurement, probability, causality, etc.)?

Although this (#) may be attractive, however, it is not productive. What is important is to
know how to use the key-words. Of course, quantum language says that

(#2) Describe every phenomenon modeled on Axioms 1 and 2 (by a hint of the
linguistic interpretation)!

This is all of quantum language. Thus, we are not concerned with the question (f;).

1.2.3 The linguistic interpretation

Axioms 1 and 2 are all of quantum language. Therefore,

(Gq) after learning Axioms 1 and 2 by rote, we have to improve how to use them through trial

and error.
Here, we should note the following wise sayings:
(Gy) experience is the best teacher, or custom makes all things
However,

(Gs) it is better to read the manual how to use Axioms 1 and 2, if we would like to make

progress quantum language early.
Thus, we consider that

(Ga)
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the linguistic interpretation of quantum mechanics

=the manual how to use Axioms 1 and 2

To put it strongly, we say the following opposite statements concerning the linguistic inter-

pretation:
(Hy) through trial and error, we can do well without the linguistic interpretation.
(Hg) all that are written in this note are a part of the linguistic interpretation.

which are the same assertions from the opposite standing points. In this sense, there is a reason
to consider that this lecture note is something like a cookbook.
Of course, these (i.e., (Hy) and (Hz)) are extreme representations. The simplest and best
representation may be as follows.
(I): The linguistic interpretation (This will be explained in §3.1] )

The most important statement in the linguistic interpretation is

Only one measurement is permitted

ANote 1.4. Kolmogorov’s probability theory (c¢f. [50] ) starts from the following spell:

(#) Let (X,J,P) be a probability space. Then, the probability that a event Z(€ F) happens
is given by P(Z)

And, through trial and error, Kolmogorov found his extension theorem, which says that
(#) Only one probability space is permitted.

This surely corresponds to the linguistic interpretation “Only one measurement is permitted.”
That is,

(the most fundamental theorem) (the linguistic interpretation)
— (correspondence)
Probability theory —

(Only one probability space is permitted) (Only one measurement is permitted)

’ Quantum language

In this sense, we want to assert that
(#) Kolmogorov is one of the main discoverers of the linguistic interpretation.

Therefore, we are optimistic to believe that the linguistic interpretation “Only one measurement
is permitted” can be, after trial and error, acquired if we start from Axioms 1 and 2. That is,
we consider, as mentioned in (Hj), that we can theoretically do well without the linguistic
interpretation.
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1.2.4 Summary

Summing up the above arguments, we see:

- (J): Summary ( All of quantum language )

Quantum language (= measurement theory ) is formulated as follows.

|Axiom 2| |quantum linguistic interpretation)|
’measurement theory‘ = ’Measurement ‘ + ’ Causality ‘ +’ Linguistic interpretation‘ (1.2)
(=quantum language) (cf. [§2.7) (¢f. §10.3) (cf. §30)
a kind of spell(a priori judgment) manual how to use spells

[Axioms]. Here

(J1) Axioms 1 and 2 are kinds of spells, (i.e., incantation, magic words, metaphysical
statements), and thus, it is impossible to verify them experimentally. Therefore,
what we should do is not “to understand” but “to use”. After learning Axioms 1 and
2 by rote, we have to improve how to use them through trial and error.

[The linguistic interpretation|. From the pure theoretical point of view, we do well
without the interpretation. However,

(J2) it is better to know the linguistic interpretation of quantum mechanics (= the manual
how to use Axioms 1 and 2), if we would like to make progress quantum language
early.

The most important statement in the linguistic interpretation |(§3.1)|is

Only one measurement is permitted

The above is all of quantum language.
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1.3 Example: “Cold” or “Hot”

Axioms 1 and 2 (mentioned in the previous section ) are too abstract. And thus, I am afraid
that the readers feel that it is too hard to use quantum language. Hence, let us add a simple
example in this section.

It is sufficient for the readers to consider that our purpose in the next chapters is

e to bury the gap between Axiom 1 and the following simple example (i.e., “Cold” or

L(Hotﬂ ) .

Example 1.2. [The measurement of “Cold or Hot" for the water in a cup]  Let testees drink
water with various temperature w °C (0 £ w < 100). And assume: you ask them “Cold or Hot
77 alternatively. Gather the data, ( for example, g.(w) persons say “Cold”, g,(w) persons say

“Hot”) and normalize them, that is, get the polygonal lines such that

. gC(“)
fc(w) ~ the numbers of testees
gn(w)
= 1.
fh(w) the numbers of testees ( 3)
And
1 (0 < w < 10)
flw)y=¢ B2 (W0Sw=70) ,  fulw)=1- f(w)
0 (70 § w S 100)

Jn

0 10 20 30 40 50 60 70 80 90 100

Figure 1.2: Cold or hot?
Therefore, for example,

(A1) You choose one person from the testees, and you ask him/her whether the water (with

[13 7

55 °C) is “cold” or “hot” ?. Then the probability that he/she says [ “Got”

fo(55) = 0.25
by {fh(55) :o.75}

} is given
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In what follows, let us describe the statement (A;) in terms of quantum language (i.e., Axiom
1).
Define the state space 2 such that © = interval [0, 100](C R(= the set of all real numbers))

and measured value space X = {c,h} ( where “¢” and “h” respectively means “cold” and

“hot”). Here, consider the “[C-H]-thermometer” such that

(Ay) for water with w °C, [C-H]-thermometer presents

[C-H]-thermometer is denoted by O = (f., fr)

E } with probability [ ;Z((C:}) } This

Note that this [C-H]-thermometer can be easily realized by “random number generator”.

Here, we have the following identification:
(As) (A1) <= (A2)

Therefore, the statement (A;) in ordinary language can be represented in terms of measurement

theory as follows.

(A4) When an observer takes a measurement by [[C-H]-instrument)] for
measuring instrumentO=(fc, f},)

[water] with ~ [55°C] | the probability that measured value [ ; }

(System (measuring object)) (state(=w € Q) )

f.(55) = 0.25 1

is obtained is given by [ £u(55) = 0.75
h =0.

This example will be again discussed in the following chapter(Example [2.29).
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Chapter 2

Axiom 1 — measurement

Quantum language (= measurement theory ) is formulated as follows.

[Axiom 1] [Axiom 2] [quantum linguistic interpretation|
. ’measurement theory‘ := | Measurement +’Causality ‘+ ’Linguistic interpretation
(=quantum language) (cf. [§2.7) (¢f. §10.3) (cf. §31)
a kind of spell(a priori judgment) manual how to use spells

Measurement theory asserts that

e Describe every phenomenon modeled on Axioms 1 and 2 (by a hint of the linguistic inter-
pretation)!

In this chapter, we introduce [Axiom 1/ (measurement). [Axiom 2| concerning causality will be
explained in Chapter [L0.

2.1 The basic structure[A C A C B(H)|; General theory

The Hilbert space formulation of quantum mechanics is due to von Neumann. I cannot
emphasize too much the importance of his work (cf. [65]).

2.1.1 Hilbert space and operator algebra

Let H be a complex Hilbert space with a inner product (-,-), where it is assumed that
(u, av) = au,v) (Yu,v € H,a € C(= the set of all complex numbers)). And define the norm
[ull = |{u, u)|"/?. Define B(H) by

B(H)={T:H — H | T is a continuous linear operator} (2.1)
B(H) is regarded as the Banach space with the operator norm || - || gz, where
TN By = Sup 1Tzl (VT € B(H)) (2.2)
z||g=1

13



KSTS/RR-15/001
January 22, 2015

14 Chapter 2 Axiom 1 — measurement

Let T'€ B(H). The dual operator T* € B(H) of T is defined by
(T"u,v) = (u, Tv) (Vu,v € H)
The followings are clear.
(T7) =T, (L) =117
Further, the following equality (called the “C*-condition”) holds:
1T T\ = |TT*|| = |T|* = |T*|* (YT € B(H)) (2.3)

When 7" = T* holds, T is called a self-adjoint operator (or, Hermitian operator). Let T, (n €
N ={1,2,---}),T € B(H). The sequence {T,}>°, is said to converge weakly to T' (that is,
w —lim, oo T, =T), if

lim (u, (7, — T)u) =0 (Vu e H) (2.4)

n—oo
Thus, we have two convergences (i.e., norm convergence and weakly convergence) in B(H)¥.

Definition 2.1. [C*-algebra and W*-algebra] A(C B(H)) is called a C*-algebra, if it satisfies
that

(A1) A(C B(H)) is the closed linear space in the sense of the operator norm || - || g(a).
(Ag) A is #-algebra, that is, A(C B(H)) satisfies that

L Fhe A= F - F, e A, FeA=F'cA
Also, a C*-algebraA(C B(H)) is called a W*-algebra, if it is weak closed in B(H).

2.1.2 Basic structure[A C A C B(H)]; general theory

Definition 2.2. Consider the basic structure [A C A C B(H)] ( or, denoted by [A C Alpgm
). That is,

e A(C B(H)) is a C*-algebra, and A(C B(H)) is the weak closure of A.

Note that 1¥*-algebra A has the pre-dual Banach space A, ( that is, (A,)* = A ) uniquely.
Therefore, the basic structure[A C A C B(H)] is represented as follows.

s (B): General basic structure:[A C A C B(H)] ~

‘A*

Tdual

S— —— [B(#H) (25)
subalgebra-weak-closure subalgebra
pre-dual
A.
NG J

L Although there are many convergences in B(H), in this paper we devote ourselves to the two.
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2.1.3 Basic structure[A C A C B(H)| and state space; General the-
ory
The concept of “state space” is fundamental in quantum language. This is formulated in

the dual space A* of C*-algebra A ( or, in the pre-dual space A, of W*-algebra A).
Let us explain it as follows.

Definition 2.3. [State space, mixed state space] Consider the basic structure:
A CACB(H)

Let A* be the dual space of the C*-algebraA. The mixed state space & (A*) and the pure
state space GP(A") is respectively defined by

(a) &™(A") ={p e A" [l

w=1,p>0 (ic., p(T*T) > 0(VT € A))}

(b) &P(A*) = {p € & (A*) | pis a pure state}. Here, p(€ &™(A*)) is a pure state if and
only if

p=api+(l—a)ps, p1,p2 € &"(A"),0<a<l= p=pi=p,

The mixed state space 6™ (A*) and the pure state space GP(A*) are locally compact spaces
(cf. ref.[69]).

Assume that A, is the pre-dual space of A. Then, another mixed state space & (A,) is
defined by

(c) 6"(A) ={pe A |l

2. =L p>0(ie., p(I*T) > 0(VT € AN

That is, we have two “mixed state spaces”, that is, C*-mixed state space &™(A*) and W*-
N - m
mixed state space G (A.).

The above arguments are summarized in the following figure:

s (C): General basic structure and State spaces ~

SP(AY) C GM(AY) C A

C*-pure state C*-mixed state
Tdual

< \ — < . [B(H)

subalgebra-weak-closure subalgebra

l pre-dual

&"(A,) CA,

W*-mixed state
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Remark 2.4. In order to avoid the confusions, three “state spaces” should be explained in
what follows.

Fisher statistics - - - pure state space:&P(A*): most fundamental
(D) “state spaces” C*-mixed state space:&™(A*) : easy

Bayes statistics
W*-mixed state space:gm(fl*): natural, useful

In this note, we mainly devote ourselves to the W *-mixed state@m(ﬁ*) rather than the C*-
mixed state&™(A*), though the two play the similar roles in quantum language.
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2.2 Quantum basic structure(C(H) C B(H) C B(H)| and
State space

If a conclusion is said previously, we say the following classification of (i.e., quantum state
space and classical state space):

(A)

General basic structure[A C A] B(H)

pure state space GP(A*)
C*-mixed state space &™(A*

)
W*-mixed state space & (Ax)

( (A1):Quantum basic structure[C(H) C B(H)|pm)
pure state space SP(Tr(H)(~H))
C*-mixed state space &™(Tr(H))(=Tr41(H))
W*-mixed state space &™(Tr(H))(=Tr41(H))

(Ay):Classical basic structure[Cy(2) € L=(Q, V)| p(r2(0.0)

pure state space €2
C*-mixed state space M1 ()

L W*-mixed state space L1+1(Q,u)

In what follows, we shall explain the above classification (A):

) € B(H) € B(H)];

2.2.1 Quantum basic structure|[C(H
In quantum system, the basic structure[A C A C B(H)] is characterized as

[C(H) C B(H) C B(H)) 2.7)
That is, we see:
e (B): Quantum basic structure:[C(H) C B(H) C B(H)] ——————~
Tr(H)
Tdual
S R c
G(H> subalgebra-weak-closure B ( H) subalgebra B (H) (2 . 8)
pre-dual
Tr(H)
N 4

Before we explain “compact operators class C(H)” and “trace class F(H)”, we have to
prepare “Dirac notation” and “CONS” as follows.
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Definition 2.5. [(i):Dirac notation] Let H be a Hilbert space. For any u,v € H, define |u)(v| €
B(H) such that

(lu){(v))w = (v,w)u  (Yw € H) (2.9)

Here, (v| [ resp. |u) | is called the “Bra-vector” | resp. “Ket-vector”].

[(i1):ONS(orthonormal system), CONS(complete orthonormal system)] The sequence {e;}32; in a
Hilbert space H is called an orthonormal system (i.e., ONS), if it satisfies

1 (k=1j)
() <€I~c7€j> :{ 0 (k?#i)

In addition, an ONS {e;}7° ; is called a complete orthonormal system (i.e., CONS), if it satisfies
(f2) (z,ex) =0 (Vk =1,2,...) implies that = 0.

Theorem 2.6. [The properties of compact operators class C(H)] Let C(H)(C B(H)) be the
compact operators class. Then, we see the following (C;)-(Cy) ( particularly, “(C;)«> (Cg)”

may be regarded as the definition of the compact operators class C(H)(C B(H)) )
(Cy) T € C(H). That is,

e for any bounded sequence {u, }°°; in Hilbert space H, {Tu, }°°; has the subsequence

which converges in the sense of the norm topology.

(Cy) There exist two ONSs {ex}72, and {f}72, in the Hilbert space H and a positive real

sequence {A;}72, (where, limy o Ay = 0 ) such that

T = Z Axlex) (frl (in the sense of weak topology) (2.10)
k=1
(C3) C(H)(C B(H)) is a C*-algebra. When T'(€ C(H)) is represented as in (Cs), the following
equality holds

Il B = max A (2.11)

(C4) The weak closure of C(H) is equal to B(H). That is,

C(H) = B(H) (2.12)
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Theorem 2.7. [The properties of trace class Tr(H)| Let Tr(H)(C B(H)) be the trace class.
Then, we see the following (3D;)-(Dy)( particularly, “(D;)«> (D3)” may be regarded as the
definition of the trace class Tr(H)(C B(H)) ).

(Dy) T € Tr(H)(C C(H) C B(H)).

(Dg) There exist two ONSs {ex}72, and {fy}72, in the Hilbert space H and a positive real
sequence {A;}p2, (where, > 77, Ay < 0o ) such that

T= Z Aklew) (fxl (in the sense of weak topology)
k=1

(D3) It holds that

C(H)*=Tr(H) (2.13)
Here, the dual norm || - |le(m)+ is characterized as the trace norm || - ||, such as
1Tl =D M (2.14)
k=1

when T'(€ Tr(H)) is represented as in (Dy),

(Dy4) Also, it holds that

Tr(H)* = B(H) in the same sense, Tr(H) = B(H). (2.15)

Remark 2.8. Assume that a Hilbert space H is finite dimensional, i.e., H = C", i.e., C" =
21

2
{z = ,2 | 2z € C,k=1,2,...,n}. Put

Tn

M(C,n) = The set of all (n x n)-complex matrices
and thus,
A=A=B(C") =C(H)=Tr(H) = M(C,n) (2.16)

However, it should be noted that the norms are different as mentioned in (C3) and (Dj).
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2.2.2 Quantum basic structure[C(H) C B(H) C B(H)| and State space;

Consider the quantum basic structure:

[C(H) € B(H) € B(H)]

and see the following diagram:

s (E): Quantum basic structure and State space ~

SP(Tr(H)) c 6™(Tr(H)) C Tr(H)

C*-pure state C*-mixed state
Tdual

C(H) = B(H)| —=—|B(H)
subalgebra-weak-closure subalgebra

pre-dual

&"(Tr(H)) Cc Tr(H)
W*-mixed state

. /

In what follows, we shall explain the above diagram.

Firstly, we note that
C(H)" =Tr(H), Tr(H)" = B(H) (2.18)

and

- m

& (Tr(H)) = &"(Tr(H))
={p= i)\nlenﬂenl o {en}n2, is ONS | i)\n =1\, >0}
::‘J'rﬂ(?;)l - (2.19)
Also, concerning the pure state space, we see:
&"(Tr(H))
={p=le)lel : lella =1} = Tri,(H) (2.20)
Therefore, under the following identification:

SP(Tr(H)) 3 |u){u] <+— weH (|lull = 1) (2.21)

identification

SP(Tr(H)) ={uec H : |ju| =1} (2.22)

where we assume the equivalence: u ~ ¢“u (0 € R).
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Definition 2.9. Define the trace Tr : Tr(H) — C such that

T(T) = i(en, Te,) (VI e Tr(H)) (2.23)

n=1
where {e,}22, is a CONS in H. It is well known that the Tr(7") does not depend on the choice
of CONS {e,}22,. Thus, clearly we see that

o (1)), F) ) = Tr(Ju)(ul - F) = (wFu)  (V[ully =1, F € B(H))  (2:24)
Remark 2.10. Assume that a Hilbert space H is finite dimensional, i.e., H = C". Then,

M(C,n) = The set of all (n x n)-complex matrices

That is,
Juu fiz o fia
po |l T2 p e M(C,n) (2.25)
fnl fn2 e fnn
As mentioned before, we see
A=A=B(C")=C(H)=Tr(H)= M(C,n) (2.26)
and further, under the following notations:
fu 0 0
. . . 0 foo -+ 0 n
Tri,(C") = {dlagonal matrixF = | . . . ‘ Jrr =0, kak = 1}
: : .o —
0 0 - fun
fir 0 -+ 0
0
TrPP(C") = {F = ffz e TrP (Cm) ‘ Fur = 1 (for some k = §),= 0 (k # j)}
0 0 - fun

We see,

mixed state space: Tr1(C") = {UFU* . F e Tr?(C"), U is a unitary matrix} (2.27)

pure state space: Trt,(C") = {UFU* . FeTr?l(C"), U is a unitary matrix} (2.28)
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2.3 Classical basic structure[Cy(2) € L>(Q,v) C B(L*(Q,v))]

2.3.1 Classical basic structure[Cy(Q2) C L>(Q,v) C B(L*(Q,v))]

In classical systems, the basic structure[A C A C B(H)] is restricted to the classical basic

structure:
[Co(?) € L(Q,v) € B(L*(Q,v))]

And we get the following diagram:
— (A): Classical basic structure: [Co(Q) C L>(Q,v) C B(L*(Q,v))] ———~

M(Q2)
Tdual
< R o c 5
CO(Q) subalgebra-weak-closure L (97 V) subalgebra B(L <Q’ V)) <229>
lpre—dual
LY(Q,v)
~ J

In what follows, we shall explain this diagram.

2.3.1.1 Commutative C*-algebra Cy(f2) and Commutative W*-algebra L>({,v)
Let €2 a locally compact space, for example, it suffices to image €2 as follows.

R(= the real line), R?*(= plane), R"(= n-dimensional Euclidean space),

[a, b](= interval), finite setQ(= {w1,...,w,})

(with discrete metric dp)
where the discrete metric dp is defined by dp(w,w’) =1 (w # '), =0 (w =w').

Define the continuous functions space Cy(£2) such that

Co(2) ={f:Q— C| f is complex-valued continuous on 2, lim f(w) =0} (2.30)

w—0o0

where “lim,, . f(w) = 0” means

(B) for any positive real € > 0, there exists a compact set K (C 2) such that

{wlweQ\ K |f(w)]>e}t =0
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Therefore, if 2 is compact, the, the condition “lim, . f(w) = 07 is not needed, and thus,
Cy(9) is usually denoted by C'(€2). In this note, even if €2 is compact, we often denote C'(2) by
Co(Q).

Defining the norm || - |[¢y () in a complex vector space Cy(€2) such that
I fllcoey = ma | £ () (231)
we get the Banach space (C’O(Q), Il - ||CO(Q)>.
Let © be a locally compact space, and consider the o-finite measure space (€2, Bg, v/), where,

Bq, is the Borel field, i.e., the smallest o-field that contains all open sets. Further, assume that

(C) for any open set U C €2, it holds that 0 < v(U) < oo

ANote 2.1. Without loss of generality, we can assume that € is compact by the Stone-Cech
compactification. Also, we can assume that v(Q2) = 1.

Define the Banach space L" (€, v) (where, r = 1,2, 00) by the all complex-valued measurable
functions f : 2 — C such that

[HIACIRNES

The norm || f|1r,) is defined by

[ alr@P vide)] " (when r = 1,2)

1fllzr@w) = (2.32)

ess.sup| f(w)] (when r = o0)
we)

where

ess.sup,eqlf(w)] =sup{fa e R | v({w e Q : |f(w)] = a}) > 0}

L™(Q,v) is often denoted by L"(£2) or L"(2, Bg,v).

Remark 2.11. [Cy(Q)) € L>=(Q2,v) C B(L*(£2,v))] Consider a Hilbert space H such that
H=L*Q,v)
For each f € L>(Q), define Ty € B(L*(Q,v)) such that

LX(Qv)3 ¢ —Ts(¢) = f-¢ e L*Qv)
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Then, under the identification:

L>*(Q) > f <«— T;€ B(L*(Qv)) (2.33)

identification

we see that
f e L®) C B(L*(Qv))
and further, we have the classical basic structure:
[Co(€2) € L>(Q) € B(L*(Q,v))] (2.34)

This will be shown in what follows.

Riese theorem (cf. [69]) says that
Co(2)" = M(2)(= the set of all complex-valued measures on §2 ) (2.35)

Therefore, for any F' € Cy(Q2), p € Co(2)* = M(Q2), we have the bi-linear form which is written

by the several ways such as

E) = o (0 F ) ey = ey (0 F) oy = [ FlDpla) (2.30)

Also, the dual norm is calculated as follows.

lpllco = sup{lp(F) | [[Fllco@) = 1} = sup I/QF(w)p(dw)\

1F|log =1

= sup (1Re(p()) — Re(p(=)) + [Im(p(T)) ~ Im(p()P) "

=,FeBg

=llpllae) (2.37)

=c

where, Z¢ is the complement of =, and Re(z)=“the real part of the complex number z”,
Im(z)="“the imaginary part of the complex number z”.

Further, we see that
LYQ,v)* = L=(Q,v) in the same sense, LYQ,v) = L®(Q,v),
Also, it is clear that
Co() € L=(,v)

For any f € L*>°(Q,v), there exist f,, € Co(2),n = 1,2,.. such that
V({0 € Q| limy oo fulw) # F()} = 0

|fn(w)| S ||f||L°°(QvV) (vw S Q,VTL - ]-7 2737 )
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Therefore, we see

T 1(6.(F = £)8) 0 VS B [ 1a(0) = @) 6)Pr(de) =0 (99 € 12(9,9))

| <
2(Q,v) T n—oo
Hence,

the weak closure of Cy(f2) is equal to L>(,v)

Then, we have the classical basic structure:

[Co(2) € L=(Q) € B(L*(,v))] (2.38)

Theorem 2.12. [Gelfand theorem (cf. [62]) ] Consider a general basic structure:
A CACB(H)

where it is assumed that A is commutative. Then, there exists a measure space (€2, B, V)
(where Q is a locally compact space) such that

A=Cy(Q), A=L>1Q,v), B(H)= B(L*(Q,v))

where € is called a spectrum.

2.3.2 Classical basic structure[Cy(Q2) C L>(Q,v) C B(L*(Q,v))] and
State space

Consider the classical basic structure [Co(Q2) C L>®(Q2,v) C B(L?*(2,v))]. Then, we see the

following diagram:

- (D): Classical basic structure and State space ~

ML) © Ma@ MO

(=) (probability measure)
T dual
- -

Co(Q)| ———— |L=(QY) ———— | B(L*(Q))

subalgebra subalgebra

weak-closure
l pre-dual

1 1
Lo ,(Q,v) C L (Qv)
(probability density function)
W*-mixed state

C*-pure state C*-mixed state

(2.39)
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In the above, the mixed state space &™(Cy(£2)*) is characterized as

&™(Co)") ={p € M(Q) = p= 0, [Ipllaey = 1}
={p € M(QQ) : pis a probability measure on €2 }
=M1() (2.40)

Also, the pure state space GP(Cy(2)*) is

SP(Co(2)7)
={p =0, € GP(Co(2)") : dy, is the point measure at wy(€ Q),wy € O}
=MZ,(9) (241)

Here, the point measure d,, € M(S?) is defined by
[ 7)) = sle) (4 € Col@)
Therefore,
MEL(Q) = &P(Co(2)7) 2 b e WwE Q (2.42)
Under this identification, we consider that
SP(Co()) = Q2
Also, it is well known that
LY(Q,v)* = L™(Q,v)

Therefore, the W*-mixed state space is characterized by

L4 (Qv) = {f € LQ) : [0, / F(w)(dw) = 1}
= the set of all probability density functions on €2 (2.43)

Remark 2.13. [The case that O is finite: Co(Q) = L>=(Q,v), M(Q2) = L'(Q2,v) ] Let Q be a
finite set {w,ws, ...,w,} with the discrete metric dp and the counting measure v. Here, the

counting measure v is defined by

v(D) = #[D](= “the number of the elements of D”)
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Then, we see that

Co(2) ={F :Q — C| Fis a complex valued function on Q} = L*(Q, v)

And thus, we see that

pEMu(R) = p= Zpk5wk (Zpk =1lpr 20
k=1

k=1

and

FeLL(Qv) <= > flw) =1 flw)>0

k=1

In this sense, we have the following identifications:
M (Q) = L, (Qv)  (or, M(Q) = LY(Q,v))

After all, we have the following identification:

where the norm || - ||y in the former is defined by
?1
V) "
lellcne = max |a  ve=| 7| ec
Tn
and the norm || - [|a(o) in the latter is defined by
21
n 2 .
Izl =D ol Vz=| | €C
k=1 :

Tn

27

(2.44)

(2.45)

(2.46)
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2.4 State and Observable—the primary quality and the
secondary quality—

2.4.1 In the beginning

Our present purpose is to learn the following spell (= Axiom 1) by rote.

r (A): Axiom 1(pure measurement)(cf. This will be able to be read in [§2.7) | ~

With any system S, a basic structure [A C AJ B(H) can be associated in which measurement

theory of that system can be formulated. In [A C A]pm), consider a IV *-measurement
MX(O:(X, FF), S[p}) (or, C*-measurement M, (O:(X, F,F), S[p]) > That is, consider

e a IW*-measurement MZ(O,SM) ( or, C*-measurement MA(O:(X, F, F),S[p]) > of
an observable O=(X, ¥, F) for a state p(e &”(A*) : state space)
Then, the probability that a measured value z (€ X) obtained by the W*-measurement
MZ(O, S[p]) ( or, C*-measurement My (O:(X, F,F), S[p]) ) belongs to = (€ F) is given by
p(FEN(= a-(p, F(E))7)

k(if F(Z) is essentially continuous at p, or see (2.56) in Remark 2.18)).
/

The “learning by rote” urges us to understand the mathematical definitions of

(#1) Basic structure[A C A]pm), state space &F(A*)
(f2) observable O=(X, &, F'), etc.

In the previous section, we studied the above (#;), that is, we discussed the following clas-

sification:

(B) General basic structure[A C A|p )
state space [GP(A*),&6™ (A*),E" (A.)]

( Quantum basic structure[C(H) C B(H)]pm)
state space [6P(Tr(H)),6™ (Tr(H))=6"" (Tr(H))]

Classical basic structure[Co(Q2) € L*®(, V)] sr2,0))
. state space [Q,M4+1(02),L>°(Q,v)]

In this section, we shall study the above (£2), i.e.,

“Observable”
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Recall the famous words: “the primary quality” and “the secondary quality” due
to John Locke, an English philosopher and physician regarded as one of the most influential
of Enlightenment thinkers and known as the “Father of Classical Liberalism”. We think the
following correspondence:

{ [state] +—> [the primary quality]

[observable] «— [the secondary quality] (2.47)

And thus, we think
e These (i.e., “state” and “observable”) are the concepts which form the basis of dualism.

Also, the following table promotes the better understanding of quantum language as well as

the other world-views( i.e., the conventional philosophies).

Table 2.1:  Observable - State - System in world-views (cf. Table 3.1))

World description\ Quantum language H observable ‘ state ‘ system ‘
Plato idea / /
Aristotle / eidos hyle
Locke secondary quality primary quality /
Newton / state point mass
statistics / parameter population
quantum mechanics observable state(~ wave function) particle

#Note 2.2. It may be understandable to consider
“observable” =‘“the partition of word”=*“the secondary quality” (2.48)

For example, Chapter 1 (Figure 1.2)) says that ( fes fh) is the partition between “cold” and
“hot??'

fc fh

0 10 20 30 40 50 60 70 80 90 100
Chapter 1 (Figure 1.2): Cold or hot?

Also, “measuring instrument” is the instrument that choose a word among words. In this sense,
we consider that “observable” = “measurement instrument”. Also, The reason that John Locke’s
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sayings “primary quality (e.g., length, weight, etc.)” and “secondary quality (e.g., sweet, dark,
cold, etc.)” is that these words form the basis of dualism.

2.4.2 Dualism (in philosophy) and duality (in mathematics)

The following question may be significant:
(C1) Why did philosophers continue persisting in dualism?
As the typical answer, we may consider that

(Cq) “I” is the special existence, and thus, we would like to draw a line between “I” and

“matter”.

But, we think that this is only quibbling. We want to connect the question (C;) with the

following mathematical question:
(C3) Why do mathematicians investigate “dual space”?

Of course, the question “why?” is non-sense in mathematics. If we have to answer this, we have

no answer except the following (D):
(D) If we consider the dual space A*, calculation progresses deeply.

Thus, we want to consider the relation between the dualism and the dual space such as

[the primary quality]  «— the state in the dual space A* (2.49)
[the secondary quality] «— the observable in C* algebra A (or, W*-algebra A) '
Thus, we consider that the answer to the (Cy) is also “calculation progresses deeply”.
2.4.3 Essentially continuous
In §2.1.2 we introduced the following diagram:
- (E):General basic structure and state space ~
SP(A*) C G&mA*) C A*
C*—purestate C*-mixed state
Tdual
- = c
subalgebra-weak-closure subalgebra B(H>
l pre-dual
(2.50)
G"(A,) CA,
W*-mixed state
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In the above diagram, we introduce the following definition.

Definition 2.14. [Essentially continuous (cf. ref. [29] ) ] An element F(€ A) is said to be
essentially continuous at po(€ &™(A*)), if there uniquely exists a complex number « such
that

(F1) if p, (€ " (A.)) weakly converges to po(€ &™(A*)) (That is, lim, <pn, G)A =
A (po, G)A (VG € A(C A) ), then lim,,_,. i (pn, F)Z =«

Then, the value po(F) (= 4 (po, F)ﬁ) is defined by the «

Of course, for any po(€ &™(A*)), F(€ A) is essentially continuous at py.
This “essentially continuous” is chiefly used in th case that py(€ GP(A*)).

Remark 2.15. [Essentially continuous in quantum system and classical system]

I]: Consider the quantum basic structure [C(H) € B(H)]pm). Then, we see

Thus, we have p € &P(C(H)*) C Tr(H), I € C(H) = B(H), which implies that

p(G) = ey~ (P, F))B(H) = Ir(H) <p, F))B(H) (2.51)

Thus, we see that “essentially continuous” < “continuous” in quantum case.
T1]: Next, consider the classical basic structure [Co(Q2) C L>=(R2,v) C B(L*(2,v))]. A function
F (€ L>*(Q,v)) is essentially continuous at wy (€ 2 = &P(Cy(2)*)), if and only if it holds that

(Fs) if p,(€ L1 (Q,v) satisfies that

lim | G(w)p,(w)v(dw) = G(wp) (VG € Cph(Q2))

n—o0 0

then there uniquely exists a complex number « such that

lim | F(w)p,(w)v(dw) = « (2.52)

n—oo Q

Then, the value of F(w) is defined by «, that is, F'(wg) = a.
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./—\‘./

Wi 5

(€2, v)
Figure 2.1: not essentially continuous at wy,  essentially continuous at ws

2.4.4 The definition of “observable (=measuring instrument)”

Definition 2.16. [Set ring, set field, o-field] Let X be a set ( or locally compact space). The
3"( C2¥ =P(X)={A| A C X}, the power set of X) (or, the pair (X,F)) is called a ring (
of sets), if it satisfies that

(a) : O(=“empty set”) € T,
b):ZeF (i=12.)=|])=eF [(|=e7F
i=1 i=1
(C) : El,EQ S 35:>El\52 cF (Where, 51\52 = {I | x € El,l’ ¢ EQ})

Also, if X € F holds, the ring F(or, the pair (X,F)) is called a field (of sets).
And further,

(d) if the formula (b) holds in the case that n = oo, a field F is said to be o-field. And the
pair (X, ¥) is called a measurable space.

The following definition is most important. In this note, we mainly devote ourselves to the
W*-observable.

Definition 2.17. [Observable,measured value space]  Consider the basic structure

[ACAC B(H)]

(G1):C*- observable
A triplet O=(X, R, F) is called a C*-observable (or, C*-measuring instrument ) in A,
if it satisfies as follows.

(i) (X,R) is a ring of sets.

(i) amap F': R — A satisfies that
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() 0SFE) <1 (Y= eR), F(h) =0,
(b) for any p(€ &P(A*)), there exists a probability space (X, R, P,) such that
(where, R is the smallest o-field such that R C R) such that

w(PF@) = FE)  (EeR) (2.53)

Also, X [resp. (X,JF,P,)] is called a measured value space [resp. sample probability
space |.
(G2):W*- observable

A triplet O=(X, 7, F) is called a 1V *-observable (or, IV*-measuring instrument ) in A,
if it satisfies as follows.

(i) (X,F) is a o-field.
(i) amap F:JF — A satisfies that
() 0SF(2) (VE€9),F0)=0,F(X)=1
(b) for any 5(€ &' (A,)), there exists a probability space (X, 7, P;) such that
. (p, F(E))ﬁ = PE) (V=€) (2.54)
The observable O=(X, J, F') is called a projective observable, if it holds that

FEEZ=FE) (V=e9)

Remark 2.18. We want that the following (c) holds:

(c) for any p(€ &™(A*)), there exists a probability space (X,J, P,) such that P, is the

natural extension of ,, (p, F(") =

Note that the (c) is equivalent to the following “(d)+(e)”

(d) for any p(€ 8™ (A")), put F, = {E € F| F(E) is essentially continuous at p }, then the
smallest o-field that contains JF, is equal to JF.

(e) for any p(e &™(A*)), there exists a probability space (X, , P,) such that
w(PFE),=F(E)  (EeT,) (2.55)

Concerning the C*-observable, the (c) clearly holds. On the other hand, concerning the W*-
observable, we have to say something as follows. As mentioned in Remark 2.15 in quantum
cases ( thus, A* = Tr(H) = A, ), it clearly holds that “(a)+(b)” implies (c). However, in the
classical cases, we do not know whether the (c) follows from the definition of the W*-observable.

Although we do not have the proof, we think that, in important cases, the W*-observable
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satisfies the condition the (c¢). Thus, in this book, we do not add the condition (c) in the
definition of the W*-observable.

In the above situation, for any p(€ &?(A*)) and any Z € J, the ,. <p, FG))X is extended and
defined by

(P FE); = (@)
In this sense,
. (p, F(E))ﬁ is always defined for any p(€ GP(A*)) and any = € F. (2.56)

Also, X [resp. (X,J,P,)] is called a measured value space [resp. sample probability

space |.
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2.5 Examples of observables

We shall mention several examples of observables. The observables introduced in Example
2. 19 Example 2.22] are characterized as a C*- observable as well as a W*- observable.

In what follows (except Example 2.19), consider the classical basic structure:

[Co(Q) € L=(Q,v) € B(L*(Q,v))]

Example 2.19. [Existence observable | Consider the basic structure:
[ACACB(H)
Define the observable OV = (X, {(}, X}, F(V) in W *-algebra A such that:
Fe) @)y =0, FEI(X)=T (2.57)

which is called the ezistence observable (or, null observable).

Consider any observable O = (X, J, F) in A. Note that {}), X} C F. And we see that

Thus, we see that (X, {0, X}, F©) = (X, {0, X}, F), and therefore, we say that any observable
O = (X, T, F) includes the existence observable O

This may be associated with Berkeley’s saying:

(1) To be is to be perceived (by George Berkeley(1685-1753))

Example 2.20. [The resolution of the identity /; The word’s partition] Let [C(£2) C L*(Q2,v) C
B(L*(Q,v))] be the classical basic structure. We find the similarity between an observable O
and the resolution of the identity I in what follows. Consider an observable O = (X, J, F) in
L*>(Q) such that X is a countable set (i.e., X = {x1,29,...}) and F = P(X) = {= | E C X},
i.e., the power set of X. Then, it is clear that

(i) F({zx}) > 0forall k =1,2,..

(i) 2 [Fzhlw) =1 (Vw e ),
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which imply that the [F({zx}) @ k= 1,2,...] can be regarded as the resolution of the identity

element I. Thus we say that

e An observable O ( = (X,7,F) ) in L>(Q) can be regarded as

“ the resolution of the identity [

(P D)) F (e () [F({z3}]()

100
Figure 2.2: O = ({21, 22, 23}, ofw1wz,wa} F)

In Figure 2.2, assume that Q = [0,100] is the axis of temperatures ( °C), and put X =
{C(=“cold”), L (=“lukewarm” = “not hot enough”), H(=*“hot”) }. And further, put f,, = fc,
frs = fu, fus = fu. Then, the resolution {f.,, fi,, fzs} can be regarded as the word’s partition
C(=“cold”), L(="“lukewarm”=‘“not hot enough”), H(=*“hot”) .

Also, putting

35(: 2X) = {(Z)v {xl}ﬂ {x2}7 {x3}7 {1’1, 1’2}, {'TZJ x3}7 {xh .733}, X}

and

F@)(w) =0, [FX)](w) = fo, (@) + fa (W) + fas(w) =1

for(w), [F{z2})](w) = far (W), [F{zs})](w) = fra(w)
for (@) + far (@), [F({2, 23})](w) = for (W) + Sy (@)

for (W) + fay (W)

) )
—~ o~~~
= S
& 8 &
[ — [
S S
S8 =
—— —— E
SN— N—

—~

g &
S~— N—

|

then, we have the observable (X, F(= 2%), F') in L*([0, 100]).
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Example 2.21. [Triangle observable | Let [Co(Q) C L=(Q,v) C B(L*(2,v))] be the classical
basic structure. For example, define the state space © by the closed interval [0,100] (C R).
For each n € NiJ° = {0, 10,20, ...,100}, define the (triangle) continuous function g, : & — R

by
(0 (0<w<n—10)
i —10
YT m—10<w<n)
gn(w) = w lOn + 10
|0 (n+10 < w < 100)
1 go gio g20 g30 g40 g50 ge60 gro gs0 490 gio00
0 10 20 30 40 50 60 70 80 90 100

Figure 2.3: Triangle observable

Putting Y = N1J° and define the triangle observable O = (Y, 2Y, F'2) such that

[FAO)w) =0,  [FA(Y)](w) =1
[FAM)w) =Y galw) (VT €2'18")

nel’

Then, we have the triangle observable 02 = (Y (= N%), 2¥, F2) in L*°([0, 100]).

Example 2.22. [Normal observable]

1 5
et e 2
Y= Varo?® 2
=20 —0 >z

Figure 2.4: Error function

Consider a classical basic structure [Co(2) C L>®(Q,v) C B(L*(Q,v))]. Here, Q = R(

the real line) or, Q = interval [a,b] (C R), which is assumed to have Lebesgue measure v/(dw)(

(2.58)
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dw). Let o > 0, which is call a standard deviation. The normal observable Og, =(R, Bg, G,)
in L>(Q,v) is defined by

Go(D)](w) = —— / 5 dr (V2 € By (Borel field), Yo € (= R or [a, 8]))
o =

V2

This is the most fundamental observable in statistics.

The following examples introduced in Example [2.23] and Example [2.24] are not C*- observ-
ables but W*- observables. This implies that the WW*-algebraic approach is more powerful than
the C*-algebraic approach. Although the C*-observable is easy, it is more narrow than the W *-

observable. Thus, throughout this note, we mainly devote ourselves to W *-algebraic approach.

Example 2.23. [Exact observable| Consider the classical basic structure: [Cy(2) C L>*(Q2,v) C
B(L*(Q,v))]. Let Bg be the Borel field in €, i.e., the smallest o-field that contains all open
sets. For each = € Bg, define the definition function x_ : {2 — R such that

1 (weZz)
Xz(W) = ~ (2.59)

Put [F)(2)](w) = x=(w) (E € Bg,w € Q). The triplet O = (Q, Bg, F) is called
the ezact observable in L>(€Q,v). This is the W*-observable and not C*-observable, since
[F(2)(Z)](w) is not always continuous. For the argument about the sample probability space

(cf. Remark 2.18] ), see Example 2.33.

Example 2.24. [Rounding observable]  Define the state space 2 by 2 = [0,100]. For each
n € N19°={0,10, 20, ...,100}, define the discontinuous function g, : 2 — [0, 1] such that
0 (0Z2wsn-5)

golw)=<¢ 1 (n=5b<w<n+5)
0 (n+5<w<100)

190 g10 920 950 gso 990 9100

0 10 20 30 40 50 60 70 8 90 100

Figure 2.5: Round observable
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Define the observable Opxp = (Y (=Ni), 2Y, Grup) in L(€, v) such that

[Grno(D)](w) =0, [Grap(Y)](w) =1
G (D)) (@) =Y " gnlw) (VI € 2" = 2Mid")

nel’

Recall that g, is not continuous. Thus, this is not C*-observable but W*-observable.
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2.6 System quantity — The origin of observable

In classical mechanics, the term “observable” usually means the continuous real valued
function on a state space (that is, physical quantity). An observable in measurement theory
(= quantum language ) is characterized as the natural generalization of the physical quantity.

This will be explained in the following examples.

Example 2.25. [System quantity] Let [Co(Q) C L=(Q,v) C B(L*(Q,v))] be the classical
basic structure. A continuous real valued function f: 2 — R ( or generally, a measurable
R"-valued function ]? : 2 — R" ) is called a system quantity (or in short, quantity) on 2.
Define the projective observable O = (R, Bg, F') in L*(f2,v) such that

1 whenw e f71(2)

FE)w) = ) (V= € By)
0 whenw ¢ f71(Z)

Here, note that

Flo) = Jim Y- & 7 (1) @ = [AFee) (2.60)

Thus, we have the following identification:

f — 0 = (R, Bg, F) (2.61)

(system quantity on Q) (projective observable in L™ (Q,v))

This O is called the observable representation of a system quantity f Therefore, we say that

(a) An observable in measurement theory is characterized as the natural generalization of the

physical quantity.

Example 2.26. [Position observable , momentum observable , energy observable ]  Consider
Newtonian mechanics in the classical basic algebra [Cy(2) C L>*(Q,v) C B(L>*(Q2,v))]. For

simplicity, consider the two dimensional space
Q =R, x R,={(¢g,p) = (position, momentum) | ¢,p € R}
The following quantities are fundamental:

(11) :¢: Q= R, q(¢,p) =q¢ (¥(¢,p) € Q)
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(#2) p: Q= R, plg,p) =p (V(g,p) € Q)
(#3) € : Q@ = R, €(q, p) =[potential energy | + [kinetic energy |

2

=U(q) + 2p_m (V(g,p) € Q)

(Hamiltonian)

where, m is the mass of a particle. Under the identification (2.61)), the above (#1), (f2) and (#3)

is respectively called a position observable, a momentum observable and an energy observable.
Example 2.27. [Hermitian matrix is projective observable | Consider the quantum basic struc-
ture in the case that H = C", that is,

[B(C") € B(C") € B(C")]

Now, we shall show that an Hermitian matrix A(€ B(C")) can be regarded as a projective

observable. For simplicity, this is shown in the case that n = 3. We see (for simplicity, assume
that x; # x,(if j # k) )

T 0 0
A=U*|0 2, 0|U (2.62)
0 0 XT3

where U (€ B(C?)) is the unitary matrix and z) € R. Put

Fa({a}) =U" U, Fa({we}) =U"

o O O
S = O

O OO O o

FA({:L'3}) =U* U FA(R\ {331,1‘2,333}) =

O OO O oo
_ o o O OO

O OO O oo

o O O
o O O

Thus, we get the projective observable O4 = (R, Bg, F4) in B(C?). Hence, we have the
following identification®:

A — OA = (R, BRaFA> (263)

(Hermitian matrix) (projective observable )

2 For example, in the case that x; = x9, it suffices to define

Fa({e}) =U" U, Fa({zs}) =U"

OO

0
1
0

o O O
o O O

o O O

0
0
1

o O O
o O O

U FaR\A{z1,23}) = [

—_ O O
= =

And, we have the projection observable O4 = (R, Bg, Fa).
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Let A(e B(C"™)) be an Hermitian matrix. Under this identification, we have the quantum

measurement Mp(cn)(O4, Sjy), where

09)) n
p=lw)wl, w=|.]€C|w|=1

Wn

Born’s quantum measurement theory (or, Axiom 1 (§2.7)) ) says that

(#) The probability that a measured value z(€ R) is obtained by the quantum measurement
Mp(cn)(Oa, Sp) is given by Tr(p - Fa({x})) ( = (w, Fa({z})w) ).

(for the trace: “Tr”, recall Definition [2.9)).

Therefore, the expectation of a measured value is given by
/x(w,FA(dx)w> = (w, Aw) (2.64)
R
Also, its variance (§4)? is given by

(64)* = /R(a: —{w, Aw))w, Fa(dz)w) = (Aw, Aw) — [{w, Aw)|?
= ||(A = (w, Aw))w]|? (2.65)

Example 2.28. [Spectrum decomposition] Let H be a Hilbert space. Consider the quantum

basic structure

[C(H) € B(H) € B(H)].
The spectral theorem (cf. [69]) asserts the following equivalence: ((a)< (b)), that is,
(a) T is a self-adjoint operator on Hilbert space H
(b) There exists a projective observable O = (R, Bg, F') in B(H) such that

- / TP (2.66)

—00

Since the definition of “unbounded self-adjoint operator” is not easy, in this note we regard the

(b) as the definition. In the sense of the (b), we consider the identification:

self-adjoint operator T +—  spectrum decomposition O = (R, Bg, F') (2.67)

identification
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This quantum identification should be compared to the classical identification (2.61)).

The above argument can be extended as follows. That is, we have the following equivalence:
((c)=(d)), that is,

(c) Ty, Ty are commutative self-adjoint operators on Hilbert space H

~

(b) There exists a projective observable O = (R? Bg:, G) in B(H) such that

T, = / MG(dNd)y), Ty = / AoG(dAydNs) (2.68)
R2 R2
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2.7 Axiom 1 — There is no science without measure-
ment

Measurement theory (= quantum language ) is formulated as follows.

[Axiom 1] [Axiom 2] |[quantum linguistic interpretation]
® | measurement theory‘ := | Measurement | + ’ Causality‘—k ’Linguistic interpretation
(=quantum language) (cf [§2.7) (cf. §10.3) (¢f. §37)
a kind of spell(a priori judgment) manual how to use spells

Now we can explain Axiom 1 (measurement).

2.7.1 Axioml(measurement)

With any system S, a basic structure [A C A C B(H)] can be associated in which measure-
ment theory of that system can be formulated. In a basic structure [A C A C B(H)], consider
a W*-measurement MZ(O:(X, F, F),S[p}) ( or, C*-measurement My (O:(X, F,F), S[p])

).

That is, consider

e a IW*-measurement MI(O,SM) < or, C*-measurement MA(O:(X, F, F),S[p}) ) of an
observable O=(X, ¥, F) for a state p(€ GP(A*) : state space)

Note that

(A) W*-measurement Mz(0,S),;) --- O is W*- observable , p € GP(A)
C*-measurement My (O, S) -+ Ois C*- observable , p € GP(A*)

In this lecture, we mainly devote ourselves to W *-measurements.

The following axiom is a kind of generalization (or, a linguistic turn) of Born’s probabilistic

interpretation of quantum mechanics®

That is,

(the law proposed in [6]) (a kind of spell)

——— | measurement theory(Axiom 1) ‘
linguistic turn
(physics) (metaphysics, language)

(2.69)

quantum mechanics (Born’s quantum measurement )

3 Ref. [6]: Born, M. “Zur Quantenmechanik der StoBprozesse (Vorliufige Mitteilung)”, Z. Phys. (37)
pp-863-867 (1926)
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- (B): Axiom 1(measurement) pure type ~

(This can be read under the preparation to this section )

With any system S, a basic structure [A C AJ B(#) can be associated in which measurement
theory of that system can be formulated. In [A C Al B(H), consider a I/ *-measurement

MZ(O:(X, F,F), S[p}) (or, C*-measurement My (O:(X, F,F), S[p]) ) That is, consider
e a IV*-measurement MZ(O,SM) ( or, C*-measurement MA(O:(X, F, F),S[p]) > of
an observable O=(X, ¥, F) for a state p(€ GF(A*) : state space)
Then, the probability that a measured value z (€ X) obtained by the W*-measurement
MZ(O, S[p]) ( or, C*-measurement My (O:(X, F,F), S[p]) ) belongs to = (€ F) is given by
p(F(E)(= a(p, F(2))z)

k(if F(Z) is essentially continuous at p, or see (2.56) in Remark 2.18)).
/

2.7.2 A simplest example

Now we shall describe Exampldl.2] ( Cold or hot?) in terms of quantum language (i.e.,
Axiom 11 ).

Example 2.29. [(continued from Exampldl.2) The measurement of “cold or hot" for water in a
cup | Consider the classical basic structure:

[Co(2) € L=(Q,v) € B(L(Q,v))]

Here, Q@ = the closed interval [0,100](C R) with Lebesgue measure v. The state space
SP(Cy(£2)*) is characterized as

SP(Co(Q)*) = {6, € M(Q) | w € Q} ~ Q = [0, 100]
fc fh

———

0C 10°C 20C 30°C 40°C 50°C 60°C 70°C 80°C 90°C 100°C

Figure 2.6: Cold? Hot?

In Example [[2) we consider this [C-H]-thermometer O = (f., f,), where the state space ) =
[0,100], the measured value space X = {¢, h}. That is,



KSTS/RR-15/001
January 22, 2015

46 Chapter 2 Axiom 1 — measurement
1 (0 =w = 10)
fc(w) = 7%_6“) (10 g w g 70) 5 fh(w) =1- fc(w)
0 (70 = w £ 100)

Then, we have the (cold-hot) observable O, = (X,2%, F,;) in L>(£2) such that

[Fen(0)](w) =0, [Fon (X)) (w) = 1
[Fch({c})Kw) = fc(w)v [Fch({h}>](w) = fh(w)
Thus, we get a measurement Mpeo()(Ocn, Sis,)) ( or in short, Mze(q)(Och, Sy). Therefore,

for example, putting w = 55 °C, we can, by Axiom 1 (§2.7)), represent the statement (A;) in
Example [1.2] as follows.

(a) the probability that a measured valuex(€ X={c, h}) obtained by measurement

0
{c}

[
Moo (@) (Och, Spu(=s55)]) belongs to set (n) is given by %
{c, h} [

Fen(0))(55) =
Fen({c})](5 ) =0.25
Fen({h})](55) = 0.75
Fen({e, h})](55) =1

Or more precisely,
(b) When an observer takes a measurement by [[C-H]-instrument]
measuring instrumentO.,=(X,2X F_.;)

for [water in cup] with ~ [55 °C] | the probability that measured value
(system(measuring object)) (state(=w € Q) )

[ N } is obtained is given by { fn(55) = 0.75 ]
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2.8 Classical simple examples (urn problem, etc.)

2.8.1 linguistic world-view — Wonder of man’s linguistic compe-
tence

The applied scope of physics physics (realistic world-description method) is rather clear.
But the applied scope of measurement theory is ambiguous.

What we can do in measurement theory (= quantum language) is

(a1): Use the language defined by Axiom 1 ( [§2.7)
(a)

(az): Trust in man’s linguistic competence

Thus, some readers may doubt that
(b) Is it science?
However, it should be noted that the spirit of measurement theory is different from that of

physics.

2.8.2 Elementary examples—urn problem, etc.

Since measurement theory is a language, we can not master it without exercise. Thus, we

present simple examples in what follows.

Example 2.30. [Urn problem] There are two urns U; and Us. The urn U; [resp. Us] contains
8 white and 2 black balls [resp. 4 white and 6 black balls] (¢f. Table 2.2, Figure 2.7).

Table 2.2: urn problem

Urn\_w-b|  white ball black ball
Urn Uy 8 2
Urn Us 4 6

Here, consider the following statement (a):
(a) When one ball is picked up from the urn Us, the probability that the ball is white is 0.4.

In measurement theory, the statement (a) is formulated as follows: Assuming

Uy --- “the urn with the state wy”



KSTS/RR-15/001
January 22, 2015

48 Chapter 2 Axiom 1 — measurement

Figure 2.7: Urn problem

Us --- “the urn with the state wy”

define the state space Q by Q = {w;,ws} with the discrete metric and the counting measure v

(i.e,, v({w1}) = v({we}) = 1). That is, we assume the identification;
U~ w, U;=uws,
Thus, consider the classical basic structure:
[Co(Q2) C L>(Q,v) C B(L*(Q,v))]

Put “w” = “white”] “b” = “black”, and put X = {w,b}. And define the observable O( = (X =
{’U), b}7 2{w,b}7 F)) n LOO(Q) by

[F({w}))(wr) = 0.8, [F({b})](w1) = 0.2,
[F({w})](wz) = 0.4, [F'({6})](w2) = 0.6.

Thus, we get the measurement My (o) (0, Ss,,)). Here, Axiom 1 ([§2.7)) says that

(b) the probability that a measured value w is obtained by Mye=)(0O, Sjs,,)) is given by
F({b})(wq) = 0.4

Therefore, we see:

statement (a)| ——— |statement (b) (2.70)

translation
(ordinary language) (quantum language)

Remark 2.31. [L>®(Q,v), or in short, L>(€2)] In the above example, the counting measure v
(i.e., v({w1}) = v({w2}) = 1) is not absolutely indispensable. For example, even if we assume

that v({w1}) = 2 and v({ws}) = 1/3, we can assert the same conclusion. Thus, in this note,

L>(Q,v) is often abbreviated to L>((2).
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ANote 2.3. The statement (a) in Example [2.30] is not necessarily guaranteed, that is,
When one ball is picked up from the urn Us, the probability that the ball is white is 0.4.
is not guaranteed. What we say is that

the statement (a) in ordinary language should be written by the measurement theoretical
statement (b)

It is a matter of course that “probability” can not be derived from mathematics itself. For
example, the following (#1) and (f2) are not guaranteed.

(#1) From the set {1,2,3,4,5}, choose one number. Then, the probability that the number is
even is given by 2/5

(#2) From the closed interval [0, 1], choose one number z. Then, the probability that € [a,b] C
[0,1] is given by |b — a|

The common sense — “probability” can not be derived from mathematics itself — is well known
as Bertrand’s paradox (cf. §9.11). Thus, it is usual to add the term “at random” to the above
(#1) and (f2). In this note, this term “at random” is usually omitted.

Example 2.32. [ The measurement of the approximate temperature of water in a cup (continued

from Exampld2.21] [triangle observable |)]  Consider the classical basic structure:
Col) € I2(2,v) € B(IX(,v)

where Q0 = “the closed interval [0,100]” with the Lebesgue measure v.

Let testees drink water with various temperature w °C (0 = w < 100). And you ask them
“How many degrees( °C) is roughly this water?” Gather the data, ( for example, h,(w) persons
say n °C (n = 0,10,20,...,90,100). and normalize them, that is, get the polygonal lines.
For example, define the state space 2 by the closed interval [0,100] (C R) with the Lebesgue
measure. For each n € NJJ° = {0,10,20,...,100}, define the (triangle) continuous function
gn : 2 — [0,1] by

/

0 (0= w<=n-10)
—n—10
YT m—10Sw<n)
gm@) =9 w21 110
0 (n+10 < w < 100)

\

(a) You choose one person from the testees, and you ask him/her “How many degrees( °C) is
“about 40 °C”
: o - o
roughly this water?”. Then the probability that he/she says { “about 50 °C” 1 is given
Lo [ (a7 = 0.25
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1 gso 990 G100

0 10 20 30 40 50 60 70 8 90 100
Figure 2.8: Triangle observable

This is described in terms of Axiom 1 ([§2.7)) in what follows.

Putting Y = N1 define the triangle observable 0% = (Y, 2¥,G*) in L>(Q) such that

[GEO)(w) =0,  [G2(V))(w) =1
[GA(ID)](w) =Y gnl(w) (VT € 2Y18° Vw € Q = [0, 100])

nel’

Then, we have the triangle observable 02 = (Y (= NiJ%),2Y G?) in L>([0,100]). And we get
a measurement Mz« )(0%, Sjs,]). For example, putting w=47 °C, we see, by Axiom 1 ([§2.7),
that

(b) the probability that a measured value obtained by the measurement M (o) (0?, Sj,(=a7))
« [ aboutd0°C 1. [G2({40})](47) = 0.3
about 50 °C | BV PY 1@ ((501)](47) = 0.7

Therefore, we see:

statement (a) | ———— |statement (b) (2.71)

translation
(ordinary language) (quantum language)

/1]

Example 2.33. [Exact measurement] Consider the classical basic structure:
[Co(€) € L=(Q,v) € B(L*(Q,v))]
Let Bq be the Borel field. Then, define the exact observable 0 = (X (= Q), F(= Bg), F(&)

in L>(,v) such that

[FE(@)(w) = x=(w) = (Y2 EBy)

Let 6., ~ wy(€ Q). Consider the exact measurement M e (q (O, Sis,,]). Here, Axiom 1 (
62.7) says:
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(a) Let D(C Q) be arbitrary open set such that wy € D. Then, the probability that a
measured value obtained by the exact measurement My« (q,,) (0, Sis.,)) belongs to D

is given by
Co(Q)* <5w0, XD>L°°(Q,V) =1

From the arbitrariness of D, we conclude that

(b) a measured value wy is, with the probability 1, obtained by the exact measurement

MLOO(Q,V) (O(exa)j S[&uo})'
Further, put
Fuo ={E€F : wy ¢ “the closure of ="\ “the interior of ="}

Then, when = € JF,,, F(Z) is continuous at wy. And, F is the smallest o-field that contains
Fuo-  Therefore, we have the probability space (X, JF, Ps, ) such that

P, (Z) = [F(E)](wo) (V= € Fuy)
that is,

(c) the exact measurement Mo (g, (O, Sis,,,]) has the sample space (X, 5, Py, ) (= (2,
Ba, Fs.,))
Example 2.34. [Blood type system] The ABO blood group system is the most important
blood type system (or blood group system) in human blood transfusion. Let U; be the whole
Japanese’s set and let Uy be the whole Indian’s set. Also, assume that the distribution of the
ABO blood group system [O:A:B:AB| concerning Japanese and Indians is determined in (Table
2.3)).

Table 2.3: The ratio of the ABO blood group system

J or INABO blood group 0O A B AB
Japanese U 30% | 40% | 20% 10%
Indian U, 30% | 20% | 40% 10%

Consider the following phenomenon:

(a) Choose one person from the the whole Indian’s set U, at random. Then the probability

O 0.3
, . A L 0.2
that the person’s blood type is B is given by 0.4

AB 0.1
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In what follows, we shall translate the statement (a) described in ordinary language to
quantum language. Put Q = {w;,ws} and consider the discrete metric (€2, dp). We get consider

the classical basic structure:
[Co(2) € L=(Q,v) € B(L*(Q,v))]
Therefore, the pure state space is defined by
S”(Co()") = {dun, b }
Here, consider
0w, -+ “the state of the whole Japanese’s set U, (i.e., population)”™
dwy -+ “the state of the whole India’s set U (i.e., population)”,

That is, we consider the following identification: (Therefore, image Figure [2.9):

Ul ~ 6w17 U2 ~ 5&)2

Ui~d,, U=y,

Japanese
[3:4:2:1]

Figure 2.9: Population(=system)~urn

Define the blood type observable Ogr = ({O, A, B, AB}, 210ABAB}  [p1) in L®(Q, v) such
that

[Fer({O})](w1) = 0.3, [Fer({A})](wi) = 0.4

[Fer({B})](w1) = 0.2, [Fer({AB})](w1) = 0.1 (2.72)
and,

[Fer({O})](w2) = 0.3, [Fer({A})](wz) = 0.2

[Fer({B})](w2) = 0.4, [Fer({AB})](w2) = 0.1 (2.73)

Thus we get the measurement Mye(q,)(Opr, Sjs,,]). Hence, the above (a) is translated to the

following statement (in terms of quantum language):

4 Note that “population” = “system” (cf. Table 2.1 ).
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O
(b) The probability that a measured value g is obtained by the measurement
AB
ML°°(Q,V)<OBT7 S[éwz}) is given by

@) ( Oz, FBT({O}) ) 1o(000) = [FT({O})](w2) = 0.3

Co(@)* (Ows FBT({A}) ) oo (020) = [FBr({A})](w2) = 0.2

e 6WQ,FBT<{B}>)LOO o) = [For({BY)](w2) = 0.4

v (Ours For({ABY) ) 1) = [For({AB}))(w2) = 0.1

ANote 2.4. Readers may feel that Example 2.30-Example 2.34] are too easy. However, as men-
tioned in (a) of Sec. 2.8.1] what we can do is

to be faithful to Axioms

to trust in Man’s linguistic competence

If some find the other language that is more powerful than quantum language, it will be praised

as the greatest discovery in the history of science. That is because this discovery is regarded as
beyond the discovery of quantum mechanics.
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2.9 Simple quantum examples (Stern=Gerlach experi-
ment )

2.9.1 Stern=Gerlach experiment

Example 2.35. [Quantum measurement( Schtern—Gerlach experiment (1922))]
Assume that we examine the beam (of silver particles(or simply, electrons) after passing
through the magnetic field. Then, as seen in the following figure, we see that all particles are

deflected either equally upwards or equally downwards in a 50:50 ratio. See Figure 2.10.

\S/ o

electron e

state w = {alJ

/ N \ ol ®

Screen

Figure 2.10: Stern—Gerlach experiment (1922)

Consider the two dimensional Hilbert space H = C? And therefore, we get the non-
commutative basic algebra B(H), that is, the algebra composed of all 2 x 2 matrices. Thus,

we have the quantum basic structure:
[€(H) € B(H) € B(H)] = [B(C?) € B(C*) € B(CY)]
since the dimension of H is finite.
The spin state of an electron P is represented by p(= |w){w]|), where w € C? such that
lwl]| =1. Put w = [Zl] ( where, [|w|]* = |a1]* + |aa]? =1).
2

Define O, = (Z,2%, F,), the spin observable concerning the z-axis, such that, Z = {1, ]}

and

ram =y o] -l Y. (2.74)
00 1 0]
ro - o =g 3]
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Here, Born’s quantum measurement theory (the probabilistic interpretation of quantum

mechanics) says that

(#) When a quantum measurementMp(c2)(0O, Si,) is taken, the probability that
(w, P*({tHw) = o ?
(w, F*({{}w) = |az/?

a measured value [ I } is obtained is given by

That is, putting w (= { Zl] , we says that
2

When the electron with a spin state state p progresses in a magnetic field,

the probability that the Geiger counter [ % } sounds
[ 0] [a]
@ @] (g ol | ay] =l
is give by ] S
110 0] [a]
@ @] g || ap] = o2l

Also, we can define O% = (X, 2%, %), the spin observable concerning the r-axis, such that,

X = {Txa\lfx} and

P = |y vl =20 T 2.75)

And furthermore, we can define OV = (Y, 2", F¥), the spin observable concerning the y-axis,

such that, Y = {1,,,} and

FU({t}) = {_1@//22 ;ﬁ} » FU{)) = E//s _12/22} : (2.76)

where 1 = /—1.

Here, putting

S, = F({1h) = B({1)), S, =F({1tH - F{I}). S5 =F({1) - E{})

we have the following commutation relation:
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2.10 de Broglie paradox in B(C?)

Axiom 1(measurement) includes the paradox ( that is, so called de Broglie paradox “there
is something faster than light”). In what follows, we shall explain de Broglie paradox in B(C?),
though the original idea is mentioned in B(L?(R)) (cf. §11.2, and refs.[12, [63]). Also, it should

be noted that the argument below is essentially the same as the Stern=Gerlach experiment.

Example 2.36. [de Broglie paradox in B(C?)] Let H be a two dimensional Hilbert space,

i.e., H = C2. Consider the quantum basic structure:

[B(C?) € B(C?) € B(C?)]

Now consider the situation in the following Figure 2.11.

half mirror 1

I, coursel 5 -3 D= UAAD)
photon P| "= photon detector)

course? Y= f,

\‘J Dy(= (|f2){f2]))

(photon detector)
Figure 2.11:  [Dy + D] = observable O

Let us explain this figure in what follows. Let fi, fo € H such that
_ |1 2 _ 10 2

Put

fi+ fo
V2

Thus, we have the state p = |u)(u| (€ &(B(C?))).
Let U(€ B(C?)) be an unitary operator such that

1 0
U= |:0 61'71'/2:|

u =
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and let ® : B(C?) — B(C?) be the homomorphism such that
®(F)=U'FU  (VF € B(C?)
Consider the observable O = ({1,2}, 2% F) in B(C?) such that

F{1}) = /oAl F(2}) = [f2){/2|
and thus, define the observable ®0; = ({1,2},2{12} ®F) by

OF(E)=UFEWU (V= C{1,2})

Let us explain Figure 2.11. The photon P with the state u = \/Li(fl + f2) ( precisely, |u)(u| )

rushed into the half-mirror 1

(A1) the fi; part in u passes through the half-mirror 1, and goes along the course 1 to the
photon detector D;.

(Ag) the fy part in w rebounds on the half-mirror 1 (and strictly saying, the f, changes to
v —1f5, we are not concerned with it ), and goes along the course 2 to the photon detector
Ds.

Thus, we have the measurement:
Mpc2)(®Oy, Si) (2.78)

And thus, we see:

measured value 1

measured value 2_ is obtained by the measurement M B(C?) (0 I S[p])

(B) The probability that a {
is given by

s -wrtiah) = [ artiap] = [ o) = o] =1

This is easy, but it is deep in the following sense.

(C) Assume that
Detector D; and Detector D, are very far.

And assume that the photon P is discovered at the detector D;. Then, we are troubled if
the photon P is also discovered at the detector D,. Thus, in order to avoid this difficulty,
the photon P (discovered at the detector D;) has to eliminate the wave function % fo

in an instant. In this sense, the (B) implies that

there may be something faster than light



KSTS/RR-15/001
January 22, 2015

58 Chapter 2 Axiom 1 — measurement

This is the de Broglie paradox (cf. [12] [63]). From the view point of quantum language, we

give up to solve the paradox, that is, we declare that

Stop to be bothered!

(Also, see [50]).

#Note 2.5. The de Broglie paradox (i.e., there may be something faster than light ) always
appears in quantum mechanics. For example, the readers should confirm that it appears in
Example 2.35] (Schtern-Gerlach experiment). I think that

e the de Broglie paradox is the only paradox in quantum mechanics
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The linguistic interpretation

Measurement theory (= quantum language ) is formulated as follows.

[Axiom 1] [Axiom 2| [quantum Tinguistic interpretation]|
e |measurement theory‘ := | Measurement |+ ’ Causality ‘+ ’Linguistic interpretation
(=quantum language) (cf. [82.7) (¢f. §10.3) (cf. §31)
a kind of spell(a priori judgment) manual how to use spells

Measurement theory says that

e Describe every phenomenon modeled on Axioms 1 and 2 (by a hint of the linguistic inter-
pretation)!

Since we dealt with simple examples in the previous chapter, we did not need the linguistic
interpretation. In this chapter, we study several a little difficult problems under the linguistic
interpretation.

3.1 The linguistic interpretation

3.1.1 The review of Axiom 1 ( measurement: §2.7)

In the previous chapter, we introduced Axiom 1 (measurement ) as follows.

29
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- ‘(A): Axiom 1(measurement) pure type ~

(cf. It was able to read under the preparation to [§2.7)) )

With any system S, a basic structure [A C AJ B(#) can be associated in which measurement
theory of that system can be formulated. In [A C Al B(H), consider a I/ *-measurement

MZ(O:(X, F,F), S[p}) (or, C*-measurement My (O:(X, F,F), S[p]) ) That is, consider
e a IV*-measurement MZ(O,SM) ( or, C*-measurement MA(O:(X, F, F),S[p]) > of
an observable O=(X, ¥, F) for a state p(€ GF(A*) : state space)

Then, the probability that a measured value z (€ X) obtained by the W*-measurement
MZ(O, S[p]) ( or, C*-measurement My (O:(X, F,F), S[p]) ) belongs to = (€ F) is given by
p(F(E)(= a(p, F(E))7)

(if F(Z) is essentially continuous at p, or see (2.56]) in Remark 2.18]).

- /
Here, note that

(B1) the above axiom is a kind of spell (i.e., incantation, magic words, metaphysical
statement), and thus, it is impossible to verify them experimentally.

In this sense, the above axiom corresponds to “a priori synthetic judgment” in Kant’s philosophy
(cf. [49]). And thus, we say:

(By) After we learn the spell (= Axiom 1) by rote, we have to exercise and lesson the spell (=
Axiom 1). Since quantum language is a language, it may be unable to use well at first.

It will make progress gradually, while applying a trial-and-error method.

However,

(Cy) if we would like to make speed of acquisition of a quantum language as quick as possible,
we may want the good manual how to use the axioms.

Here, we think that

(Cy)  the linguistic interpretation
= the manual how to use the spells (Axiom 1 and 2)

3.1.2 Descartes figure (in the linguistic interpretation)

In what follows, let us explain the linguistic interpretation.
The concept of “measurement” can be, for the first time, understood in dualism. Let us
explain it. The image of “measurement” is as shown in Figure 3.1.
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observer system
(I(=mind)) (matter)
[measured Value][observable] [state]
(@interfere ‘l

<
<

®perceive a reactio

- — — -

| |
| i
| |
| |
| |
I I

Figure 3.1{Descartes Figure]:The image of “measurement(=@+®))” in dualism

In the above,

(Dy) (@: it suffices to understand that “interfere” is, for example, “apply light”.
(®): perceive the reaction.

That is, “measurement” is characterized as the interaction between “observer” and “measuring
object”. However,

(D2) In measurement theory, “interaction” must not be emphasized.

Therefore, in order to avoid confusion, it might better to omit the interaction “(z) and ()"
in Figure 3.1.
After all, we think that:

(D3) It is clear that there is no measured value without observer (i.e., brain). Thus, we consider
that measurement theory is composed of three key-words:

| measured value| | observable (= measuring instrument ) . |[state],
(observer,brain, mind) (thermometer, eye, ear, body, polar star (cf. Note 3.1l later)) (matter)
(3.1)

and thus, it might be called “trialism” (and not “dualism”). But, according to the custom,
it is called “dualism” in this note.

3.1.3 The linguistic interpretation [(E;)-(E7)]

The linguistic interpretation is “the manual how to sue Axiom 1 and 2”. Thus, there are
various explanations for the linguistic interpretations. However, it is usual to consider that the
linguistic interpretation is characterized as the following (E). And the most important is

Only one measurement is permitted
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(E):The linguistic interpretation (=quantum language interpretation)
With Descartes figure [3.1] (and (E;)-(E7)) in mind,
describe every phenomenon in terms of Axioms 1 and 2

(E1) Consider the dualism composed of “observer” and “system( =measuring object)”. And
therefore, “observer” and “system” must be absolutely separated. If it says for a
metaphor, we say “Audience should not be up to the stage”.

(Eg) Of course, “matter(=measuring object)” has the space-time. On the other hand, the
observer does not have the space-time. Thus, the question: “When and where is a
measured value obtained?” is out of measurement theory, Thus, there is no tense in
measurement theory. This implies that there is no tense in science.

(E3) In measurement theory, “interaction” must not be emphasized.

(E4) Only one measurement is permitted. Thus, the state after measurement
(or, the influence of measurement) is meaningless.

(E5) There is no probability without measurement.

(Eg) State never moves,

and so on.

Also, since our assertion is
quantum language is the final goal of dualistic idealism (=“Descartes=Kant
philosophy”)

(cf. in Figure [I.1)), we have to assert that

(E7) Many of maxims of the philosophers (particularly, the dualistic idealism )
can be regarded as a part of the linguistic interpretation.

Some may think that the (E7) is unbelievable. However,

(F)

Since the purpose of philosophies and that of quantum language are the same, that is,
the non-realistic world view, it is natural to consider that

maxims of philosophers ~ the linguistic interpretation
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Recall the following figure:

Figure 3.1. [=Figure [[.1: The location of quantum language in the history of world-description]

the realistic view-——""""""""""""-"-- :
|
relativity \ (unsolved) |
theory | ——@® ® theory of }
Parmenides —teverything i
Socrates quantum (quantum phys.) |
. N |
G [T TS U mechanics|———@®* |
iloso N € N syl
P Py sticism language K
P.lato (dualism) — @ B .
Aristotle o | (=MT) |
Descartes (linguistic view) | quantunl .
Locke,... linguistic ' ‘ o !
© ¢ language —| language
— | Kant philosophy ——— .
i i ! (language) !
(idealism) | l
statistics laneuase :
system theory —%@ !
! I
t-- the linguistic view- - -

Figure 1.1: The history of the world-view

In the above, we regard

©@— 00— —0— W (32)

as a genealogy of the dualistic idealism. Talking cynically, we say that

e Philosophers continued investigating “linguistic interpretation” (=“how to use Axioms 1
and 2”) without Axioms 1 and 2.

For example, “Only one measurement is permitted” and “State never moves” may be related
to Parmenides’ words;

There are no “plurality”, but only “one”.
(3.3)
And therefore, there is no movement.

Thus, we want to assert that Parmenides (born around BC. 515) is the oldest discoverer of the
linguistic interpretation. Also, we propose the following table:
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Table 3.1: Trialism (i.e., dualism ) in world-views (cf. Table 2.1))
state
Quantum language measured value observable (s;s(‘ze;n)
Plato / idea (cf. Note B.1)) /
edios
Aristotle / / (hyle)

Thomas Aquinas

universale post rem

universale ante rem

/

(universale in re)

/

Descartes I, mind, brain body (cf. Note 3.1) (matter)
] primary quality
Locke / secondary quality (/)
state
Newton / / (point mass)
parameter
statistics sample space / (population)
. state
quantum mechanics measured value observable (particle)

#Note 3.1. In the above table, Newtonian mechanics may be the most understandable. We regard

“Plato idea” as “absolute standard”. And, we want to understand that Newton is similar to
Aristotle, since their assertions belong to the realistic world view(c¢f. Figure[l.1). Also, recall the
formula (3.1)), that is, “observable”=“measuring instrument”=“body”. Thus, as the examples
of “observable”, we think:

eyes, ears, glasses, telescope, compass, etc.

If “compass” is accepted, “the polar star” should be also accepted as the example of the ob-
servable. In the same sense, “the jet stream to an airplane” is a kind of observable (c¢f. Section
8.1 (pp.129-135) in [37] ). Also, if it is certain that Descartes is the first discoverer of “I”, I
have to retract our understanding of Scholasticism in Table 3.1l Although I have no confidence
about Scholasticism, the discover of three words (“post rem”, “ante rem”, “in re”) should be
remarkable.
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3.2 Tensor operator algebra
3.2.1 Tensor Hilbert space

The linguistic interpretation |(§3.1) says

“Only one measurement is permitted”

which implies “only one measuring object” or “only one state”. Thus, if there are several states,
these should be regarded as “only one state”. In order to do it, we have to prepare “tensor

operator algebra”. That is,

combine several into one

(A) “several states” > “one state”

by tensor operator algebra

In what follows, we shall introduce the tensor operator algebra.

Let H, K be Hilbert spaces. We shall define the tensor Hilbert space H ® K as follows.
Let {e,, | m € N={1,2,...}} be the CONS (i.e, complete orthonormal system ) in H. And,
let {f, | n€N={1,2,...}} be the CONS in K. For each (m,n) € N2 consider the symbol
“em ® f,.”. Here, consider the following “space”:

HoK = {9 = D matn®fu | llollmex =1 D lamml]V? < OO} (3:4)

(m,n)€eN2 (m,n)eN2

Also, the inner product (-,-)gex is represented by

(€my @ frys €my @ frn) Hor = (€mys €my) i+ (frrs fna) K

1 (ma,n1) = (ma,ng)
— { 0 (my,ny) # (mag,noy) (3.5)

Thus, summing up, we say

(B) the tensor Hilbert space H ® K is defined by the Hilbert space with the CONS {e,, ®
fn ] (m,n) € N?}.

For example, for any e = > °_ ape, € H and any f = >" B, fn € H, the tensor e ® f is
defined by

6®f: Z O‘mﬂn(em@fn)

(m,n)€EN?
Also, the tensor norm ||u||ggr (v € H ® K) is defined by

[l rex = (T, @) rox]
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Example 3.2. [Simple example:tensor Hilbert space C2® C3] Consider the 2-dimensional Hilbert
space H = C? and the 3-dimensional Hilbert space K = C?. Now we shall define the tensor
Hilbert space H ® K = C? ® C? as follows.

Consider the CONS {ey,e2} in H such as

) -

And, consider the CONS {fi.fs, f3} in K such as

fi= , =1, fa=

o O =
O = O
_ o O

Therefore, the tensor Hilbert space H ® K = C? ® C3 has the CONS such as

€1®f1:[0]® 0, 6’1®f2=[0}® 1 ,61®f3:[0]® of,
0] 0] 1]

0 1 0 0 0 0

2@ fi=|]|®|0], eef=|/|®|l],eefs=||®|0
0 0 1

Thus, we see that
HeK=C®C*=C°

That is because the CONS {e; ® f; | i = 1,2,3, j = 1,2} in H ® K can be regarded as
{9x |k =1,2,...,6} such that

1 0 0
0 1 0
0 0 1
g=e®fi= ol g2e=e1® fo= 0 g3 =e1® fz3 = NE
0 0 0
10] 10] 10]
[0] 07 [07
0 0 0
0 0 0
ga=ex® f1 = 1 , g5 =€2® fa = 0 106 =€2® f3= 0
0 1 0
0 0 1

This Example [3.2] can be easily generalized as follows.

Theorem 3.3. [Finite tensor Hilbert space |

C"C™QE- - @QC™ = CXi1m (3.6)



KSTS/RR-15/001
January 22, 2015

3.2 Tensor operator algebra 67
Theorem 3.4. [Concrete tensor Hilbert space |

L*(Qy, 1) @ L*(Qy, v5) = L*() X Qo, 1 @ 1) (3.7)
where, 11 ® 15 is the product measure.

Definition 3.5. [Infinite tensor Hilbert space | Let Hy, Ho, ..., Hy, ... be Hilbert spaces. Then,
the infinite tensor Hilbert space Q). , Hy can be defined as follows. For each k(€ N), consider

the CONS {ei}j’il in a Hilbert space Hy. For any map b : N — N, define the symbol Q- , ez(k)
such that

(Rt = ) @ ) g 9 5 .
k=1
Then, we have:
{®e§’f’“> ) b:N - Nis amap} (3.8)

k=1

Hence we can define the infinite Hilbert space @), Hy such that it has the CONS (3.8).

3.2.2 Tensor basic structure

For each continuous linear operators F' € B(H),G € B(K), the tensor operator F' @ G
€ B(H ® K) is defined by

(FeG)(ex f)=Fe®Gf (NeecH,feK)

Definition 3.6. [Tensor C*-algebra and Tensor W *-algebra | Consider basic structures

[A; C A, C B(H))| and [Ay C Ay C B(H,)]

[1]: The tensor C*-algebra A; ® A is defined by the smallest C*-algebra A such that
{F® G (€ B(H® Hy)) | F € A, G € Ay} C A C B(Hy, ® Hs)

[11]: The tensor W*-algebra A; ® A, is defined by the smallest W *-algebra A such that
{F®G (e B(Hi® Hy)) | F € A, G€ A} CAC B(H, ® Hy)

Here, note that A; @ Ay = A; @ As.
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Theorem 3.7. [Tensor basic structure | [I]: Consider basic structures
[A1 C A, € B(Hy)] and [Ay C Ay C B(H,)]
Then, we have the tensor basic structure:
A @Ay C A @Ay C B(Hy ® Hy))

[I1]: Consider quantum basic structures [C(H;) € B(Hy,) C B(H;)] and [C(Hs) C B(Hs) C
B(H;)]. Then, we have tensor quantum basic structure:

[C(H,) € B(H,) C B(Hy)|® [C(H,) C B(H,) C B(H,)]
=[C(H, ® Hy) C B(H, ® Hy) C B(H, ® Hs)]

[T11]: Consider classical basic structures [Co(Q1) € L°(y, 1) C B(L?(Q4,11))] and [Cy(2,) C
L>(Qy,v5) € B(L*(Q215))]. Then, we have tensor classical basic structure:

[Co(Q) C L=( C 1) € B(L*(,11))] @ [Co(Q2) © L2(Q2 € 1) © B(L*(Q,15))]

:[Co(Ql X Qg) Q LOO<Ql X QQ,Vl X 1/2) Q B<L2<Ql X QQ,Vl X 1/2))]

Theorem 3.8. The ®,~, B(Hy) (C B(Q),—, Hi)) is defined by the smallest C*-algebra that
contains

ReRe oFRolols - cB(QH)
k=1
(VE, € B(Hy), k=1,2,...n,n=1,2,...)

Then, it holds that

@ B(H) = B(QX) Hx) (3.9)

k=1

Theorem 3.9. The followings hold:
0): pr A = o € (R A"
k=1 k=1

(i) : pr € ™A = Q€ (R AN))

k=1 k=1
(i) : px € & (A;) = Q) o € &"(((X) Ar)")
k=1 k=1

ANote 3.2. The theory of operator algebra is a deep mathematical theory. However, in this note,
we do not use more than the above preparation.
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3.3 The linguistic interpretation — Only one measure-
ment is permitted

In this section, we examine the linguistic interpretation |(§3.1)} i.e., “Only one measurement
is permitted”. “Only one measurement” implies that “only one observable” and “only one
state”. That is, we see:

only one observable (=measuring instrument)
[only one measurement] —> (3.10)
only one state

ANote 3.3. Although there may be several opinions, I believe that the standard Copenhagen
interpretation also says “only one measurement is permitted”. Thus, some think that this spirit
is inherited to quantum language. However, our assertion is reverse, namely, the Copenhagen
interpretation is due to the linguistics interpretation. That is, we assert that

not [ "

Copenhagen interpretation ‘ = ’Linguistic interpretation

P

but “

Linguistic interpretation ‘ — ’ Copenhagen interpretation

3.3.1 “Observable is only one” and simultaneous measurement

Recall the measurement Example 2.29 (Cold or hot?) and Example 2.32] (Approximate
temperature), and consider the following situation:

(a) There is a cup in which water is filled. Assume that the temperature isw °C (0 < w = 100).
Consider two questions:

“Is this water cold or hot?”

“How many degrees( °C) is roughly the water?”
This implies that we take two measurements such that

(£1): Mooy (Oan=({c, h}, 21" F;), Sp) in ExampldZ.29

(f2) : Mps(q) (02 =(N1J°, 2N%8O,GA), Sp) in Exampld2.32

Mz () (Ocn, Siw)) o/ Mre(o) (0%, Si)
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However, as mentioned in the linguistic interpretation,

“only one measurement” —-*“only one observable”

Thus, we have the following problem.

Problem 3.10.  Represent two measurements My (o) (Om=({c, h}, 21" F,;), Sy) and
Moo () (02 =(N1, 2Mi8” G2), Si,;) by only one measurement.

This will be answered in what follows.

Definition 3.11. [Product measurable space] For each k =1,2,...,n, consider a measurable
(Xg, F%). The product space X ,_; Xj of Xj (k=1,2,...,n) is defined by

n

X Xy ={(z1,22,...,2,) |2, € X3, (F=1,2,...,n)}
k=1

Similarly, define the product X ,_, Z of Zx(€ F) (k= 1,2,...,n) by

n

k>_<15k:{(x1,x2,...,xn)]xk €ezp (k=1,2,....,n)}

Further, the o-field X }_,F} on the product space X,_, X} is defined by
(1) X p_ Ty is the smallest field including {X,_,Zx |Ex € Fr (k=1,2,...,n)}

( Xy Xi, K7 F%) is called the product measurable space. Also, in the case that (X,JF) =
(Xi, F) (k= 1,2,...,n), the product space X _, X} is denoted by X", and the product
measurable space ( X ,_, X;, X |_,F;) is denoted by (X", F").

Definition 3.12. [Simultaneous observable , simultaneous measurement] ~ Consider the basic
structure [A C A C B(H)|. Let p € &(A*). For each k = 1,2,...,n, consider a measurement
Mz (Ox = (Xi, T, Fi.), ) in A. Let (( X,_; Xi, XI;_Fi) be the product measurable space.

~

An observable O = ( Xjex Xi, X_ Fy, F) in A is called the simultaneous observable of
{Or : k=1,2,...,n}, if it satisfies the following condition:

~

F(El X EQ X+ X En) = Fl(El) . FQ(EQ) .. Fn(En) (311)
( VZ, € Fp (k:1,2,,n))

O is also denoted by X' Oy, F = X}, F. Also, the measurement M (X _; O, Spy) is
called the simultaneous measurement. Here, it should be noted that

. . n .
e the existence of the simultaneous observable X, _, Oy is not always guaranteed.

though it always exists in the case that A is commutative (this is, A = L>(1)).
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In what follows, we shall explain the meaning of “simultaneous observable”.

Let us explain the simultaneous measurement. We want to take two measurements M4(Oy,
Siy) and measurement M7 (O, Sj,)). That is, it suffices to image the following:

(b)  [state]

p(EGP(A*))

observable —_— ’measured value ‘
—(X1,01,F1)  Ma(01.5) z1(€X1)
R

observable —_— ’ measured value ‘
XQ ?2 FQ MZ(OQ’S[P]) xQ(GXQ)

However according to the linguistic interpretation |(§3.1), two measurements Mz(Oy, Si,) and
M7(O2, S},) can not be taken. That is,

The (b) is impossible

Therefore, combining two observables O; and O,, we construct the simultaneous observable
O; x Oy, and take the simultaneous measurement Mz(O; x Oy, Si,) in what follows.

(c) — | simultanecous observable ‘—> | measured value |
p(€6P(A%)) 01 x03 M7(01x02,51,)) (4] 22)(€X1 x X2)

The (c) is possible if O; x O, exists

Answer 3.13. [The answer to Problem3.10]  Consider the state space @ such that Q =
[0,100], the closed interval. And consider two observables, that is, [C-H]-observable O, =
(X={c, h},2%, F.;,) (in Exampld2.29) and triangle observable 0% = (Y (=N1J%),2Y G*) (in Ex-
ampld2.32)). Thus7 we get the simultaneous observable O, x 02 = ({c, h}meO e xny , Fpx
G*), and we can take the simultaneous measurement M (o)(Oc, x 02, S|,). For example,

putting w = 55, we see

(d) when the simultaneous measurement My (q)(Ocn, X O, Sis5)) is taken, the probability

(¢, about 50 °C) 0.125
(c,about 60 °C) | . S 0.125

that the measured value (h, about 50 °C) is obtained is given by 0.375 (3.12)
(h, about 60 °C) 0.375

That is because

[(For x G®)({(c, about 50 °C)})](55)
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—[Fn({c})](55) - [G2 ({about 50 °C})](55) = 0.25 - 0.5 = 0.125

and similarly,

[(Fu x G®)({(c, about 60 °C)})](55) = 0.25 - 0.5 = 0.125
[(F.p x G2)({(h,about 50 °C)})](55) = 0.75 - 0.5 = 0.375
[(Fu, x G*)({(h, about 60 °C)})](55) = 0.75 - 0.5 = 0.375

#Note 3.4. The above argument is not always possible. In quantum mechanics, a simultaneous
observable O; x Oz does not always exist (See the following Example [3.14] and Heisenberg’s
uncertainty principle in Sec/4.5)).

Example 3.14. [The non-existence of the simultaneous spin observables] — Assume that the
electron P has the (spin) state p = |u)(u| € &P(B(C?)), where

(0%
u= 2] Cuhere, ful = (auf? + g2 = 1)

Let O, = (X(= {1,1}),2%, F*) be the spin observable concerning the z-axis such that

Fam =y o Fwh=l Y

Thus, we have the measurement Mp(c2)(0, = (X, 2X ), Sil)-

Let O, = (X, 2%, F*) be the spin observable concerning the r-axis such that

. 1/2 1/2 . 12 —1/2
F({T}):[l/Q 1/2}’ F({¢}>:[—1/2 1/21

Thus, we have the measurement Mp(c2)(0, = (X, 2%, F*), S))
Then we have the following problem:

(a) Two measurements Mpc2)(0, = (X, 2%, F?), S|,)) and Mpc2)(0, = (X, 2%, F7), S,) are
taken simultaneously?

This is impossible. That is because the two observable O, and O, do not commute. For
example, we see
. . C[1oo] [1/2 1/2] (172 1/2
PN =y o |1 el =0

PO = Vs 1) o o = [ o]
And thus,

FE{tHE ({1 # F{tHF ({1
/1]
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The following theorem is clear. For completeness, we add the proof to it.

Theorem 3.15. [Exact measurement and system quantity] Consider the classical basic struc-
ture:

[Co(Q2) C L>(Q,v) C B(L*(Q,v))]

Let O™ = (X, ¥, F) (e, (X,F, Fe)) = (Q,Bq,x) ) be the exact observable in
L>(Q,v). Let O; = (R, Bg, G) be the observable that is induced by a quantity g : 2 — R as in
Example 2.25](system quantity). Consider the simultaneous observable Oéexa) X 01. Let (z,y)
(€ XxR) be a measured value obtained by the simultaneous measurement My (q ) (Ogexa) X 04,
Sis.))- Then, we can surely believe that x = w, and y = g(w).

Proof. Let Dy(€ Bg) be arbitrary open set such that w(€ Dy C Q=X). Also, let D;(€ Bg)
be arbitrary open set such that g(w) € D;. The probability that a measured value (z,y)

(exa)

obtained by the measurement Mr(q,,)(Og "~ X O1, S[5,)) belongs to Dyx D; is given by x,, (w)-
Xa—lual)(w) = 1. Since Dy and D; are arbitrary, we can surely believe that x = w and y =
9(w). a
3.3.2 “State does not move” and quasi-product observable

We consider that

“only one measurement” — “state does not move”
That is because

(a) In order to see the state movement, we have to take measurement at least more than
twice. However, the “plural measurement” is prohibited. Thus, we conclude “state does
not move”

Review 3.16. [= Example2.30turn problem] There are two urns Uy and Us. The urn U; [resp.
Us] contains 8 white and 2 black balls [resp. 4 white and 6 black balls] (¢f. Figure 3.2).

Table 3.2: urn problem

Urn\_ w-b, white ball black ball
Urn Uy 8 2
Urn U2 4 6

Here, consider the following statement (a):

(a) When one ball is picked up from the urn Us, the probability that the ball is white is 0.4.
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wy (= Uy) wa(~ Us)

Figure 3.2: Urn problem

In measurement theory, the statement (a) is formulated as follows: Assuming

U, --- “the urn with the state w,”
U, --- “the urn with the state wy”

define the state space Q by = {w;,ws} with discrete metric and counting measure v. That
is, we assume the identification;

Uiy = wy, U= ws,
Thus, consider the classical basic structure:

[Co(Q) C L=(Q,v) € B(L*(Q,v))]

Put “w” = “white’, “b” = “black”, and put X = {w,b}. And define the observable Owb( =
(X = {w,b},Q{“’v”},wa)) in L=(Q) by

[Fus({w})](wr) = 0.8, [Fus({6})](w1) = 0.2,

[Fus({w}))(w2) = 0.4, [Fus({b})](2) = 0.6. (3.13)

Thus, we get the measurement Mye(q)(Ous, Ss,,,))- Here, Axiom 1 ([§2.7) says that

(b) the probability that a measured value w is obtained by Mpec(q)(Ouws, S[%}) is given by
Fup({b})(w2) = 0.4
Thus, the above statement (b) can be rewritten in the terms of quantum language as follows.

(c) the probability that a measured value { w } is obtained by the measurement My (q)(Ouws,

b
Ss) is given by

JolFun({w})](w)du, (dw) = [Fup({w})](w2) = 0.4
wb({ })](W)5w2(dw = [Fup({0})](w2) = 0.6

S

Jol

Problem 3.17. (a) [Sampling with replacement]: Pick out one ball from the urn Us, and
recognize the color (“white” or “black”) of the ball. And the ball is returned to the
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urn. And again, Pick out one ball from the urn Us,, and recognize the color of the ball.
Therefore, we have four possibilities such that.

(w,w) (w,b) (b,w) (b,d)

It is a common sense that

(w, w) 0.16

- (w, ) o 0.24

the probability that (b, w) is given by 0.24
(b,b) 0.36

Now, we have the following problem:

(a) How do we describe the above fact in term of quantum language?

Answer Is suffices to consider the simultaneous measurement Mpe(q)(0%;, Sps,,)) (=
My (@) (Oub X Oup, Si,,,1) ), where O, = ({w,b} x {w, b}, 200PPAws R, (= Fup x Fup)).

The, we calculate as follows.

Fop({(w,w)})(w1) = 0.64, Fiy({(w,0)})(w1) = 0.16
Fiy({(b,w)})(wr) = 0.16, Fopp({(b;0)})(wr) = 04

and

F2,({(w,w)})(wn) = 0.16, F2,({(w,)}) (w2) = 0.24
F2,({(b,w)})(ws2) = 0.24, F2,({(b,b)})(wy) = 0.36

Thus, we conclude that

; is obtained by Mz (q) (Owp X Oup, 5[6@])

Problem 3.18. (a) [Sampling without replacement|: Pick out one ball from the urn Us,, and
recognize the color (“white” or “black”) of the ball. And the ball is not returned to
the urn. And again, Pick out one ball from the urn Us, and recognize the color of the
ball. Therefore, we have four possibilities such that.

(w,w) (w,b) (b,w) (b,d)
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It is a common sense that

(w, w) 12/90
. (w, b) L 24/90

the probability that (b, w) is given by 24/90
(b,b) 30/90

Now, we have the following problem:

(a) How do we describe the above fact in term of quantum language?

Now, recall the simultaneous observable (Definition3.12)) as follows. Let Oy = (X, Fi, Fi)
(k=1,2,...,n ) be observables in A. The simultaneous observable O = (X _, X}, X} _ Ty,
F) is defined by

F(21 X Sy X -+ X Zp) = F1(E1)Fa(Zs) - - Fo(E,)
(V2 € F, Vb =1,2,...,n)

The following definition (“quasi-product observable”) is a kind of simultaneous observable:

Definition 3.19. [quasi-product observable |  Let Oy = (X, J}, Fy) (k = 1,2,...,n ) be
observables in a W*-algebra A. Assume that an observable Oy , = (><Z:1 X5, &2:197167
Fis. ) satisfies

Flo. n(X1 X oo X X1 X E X Xpyq X - x X)) = Fi(Zg) (3.14)
(VEk € F,Vk = 1,27...,71)

The observable Oy ,, = (><Z:1 X, X Zzlffk, Fis..) is called a quasi-product observable
of {Ox | k=1,2,...,n}, and denoted by

ap n n ap
X O, = (>< Xk, Xlk:lffk’ X Fk)
k=1,2,....,n k=1 k=1,2,...,n

Of course, a simultaneous observable is a kind of quasi-product observable. Therefore, quasi-
product observable is not uniquely determined. Also, in quantum systems, the existence of the
quasi-product observable is not always guaranteed.

Answer 3.20. [The answer to Problem [3.17] Define the quasi-product observable O,y C)f Ouwpr =
({w, b} x {w, b}, 2twbbd{wd} [, (= wa(;wab)) of Oy = ({w, b}, 2{w% F) in L>®(Q) such that

Fio({(w,0)})(w) = 8;)7, Fro({(w, b)})(w1) = 8922
Fio({(b,0)})(w1) = 2;08, Fro({(b,b)})(w1) = 2501
4% 3 4x6

Fra({(w, w)})(w2) = =55~ Fia({(w, b)}){w2) = —55
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6 x4 6 x5
Fia{(b,w)})(wn) = 2o, Fial{(b:6))(wz) = 5

Thus, we have the (quasi-product) measurement Mo )(O12, S)
Therefore, in terms of quantum language, we describe as follows.

W)
b

,w

,b)

SRS

~— —

is obtained dy Mz (q) (Owp (;é) Ouwp, 5[5w2])

S o

(
(b) the probability that a measured value E
(!

[ [Fo{(w, w)})](wn) = 43

[Fia({(w, b)})] (wz) = &

[Fia({(b, w)D](w) = %2
| [Fa({(b,5)})](ws) = %2

is given by

3.3.3 Only one state and parallel measurement

For example, consider the following situation:

(a) There are two cups A; and A, in which water is filled. Assume that the temperature of
the water in the cup Ay (k = 1,2) is wy °C (0 £ wy = 100). Consider two questions “Is
the water in the cup A; cold or hot?” and “How many degrees( °C) is roughly the water

in the cup A5?”. This implies that we take two measurements such that

(#1): Mooy (Oa=({c, h},2{¢" Fp), Spy) in ExampldZ.29

(f2) : Mps=(q) (02 =(N1J°, QN%go,GA), Slwe]) in Exampld2.32

Al AQ
-\ VRN

Moo (@) (Ochs Spn]) \wl C 2 Q/ Mre(a) (02, Siy))

However, as mentioned in the above,

“only one state” must be demanded.

Thus, we have the following problem.
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Problem 3.21.  Represent two measurements Mz« q)(Os=({c, h}, 2{¢" F,), Sy,)) and
Mo (o) (02 =(Nip°, oNis” G2, Siw,]) by only one measurement.

This will be answered in what follows.

Definition 3.22. [Parallel observable] For each k = 1,2,...,n, consider a basic structure
[Ar € Ap C B(H)], and an observable Oy = (X}, F%, Fi,) in A. Define the observable
6 = (XZ:1 Xk, &Zzlffrk, ﬁ) in ®Z:1 .Zk such that

F(El X EQ X X En) = FI(EI) X FQ(EQ) X Fn(En> (315)
V=R € Fg (/{3 = 1,2,...,n)
Then, the observable O = (X }_, X, M 7_ 5, F) is called the parallel observable in Qr_, A,

and denoted by F = iy F, 0= &i_; Ok. the measurement of the parallel observable 0=

&i_; Oy, that is, the measurement M®Z:1ﬁk (6, Si®r_, p) 18 called a parallel measurement,
and denoted by M®gzlﬁk (®%=1 Ox, Si@r_, i) o @y M7, (O, Sppy)-

The meaning of the parallel measurement is as follows.

Our present purpose is
e to take both measurements Mz (O1, Si,,1) and Mz, (02, Sjp,))

Then. image the following:

_ W—)> ’measured Value‘

p1(€GP(AT)) 0, 7, (01,50 21(€X1)

—_ —— | measured value|

p2(€67(A3)) 0, Mz, (02,5(55)) z2(€X2)

(b)

However, according to the linguistic interpretation|(53.1), two measurements can not be taken.
Hence,

The (b) is impossible

Thus, two states p; and p; are regarded as one state p; ® po, and further, combining two
observables O; and O,, we construct the parallel observable O; ® Os, and take the parallel
measurement Mz o= (01 ® Oy, Sjp,@p,)) in what follows.

(c) — ‘parallel observable | measured value |
p1®pa(EGP(AT)DEP (A3)) 0,80, M, 075 (01802501001 (1,22) (€X1 x X2)
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The (c) is always possible

Example 3.23. [The answer to Problem B.21]]  Put ©Q; = Qy = [0,100], and define the

state space 3 x 5. And consider two observables, that is, the [C-H]-observable O., =

(X={c,h}, 2%, F.,) in C(Qy) (in Exampld2.29) and triangle-observable 02 = (Y (=N1iJ),2Y G#)

in L>(y) (in Exampld2.32). Thus, we get the parallel observable Oy, ® 0% = ({c,h} x
100

Nig0, 2{ehbMie™ By @ G2) in L(Qy x ), take the parallel measurement My (o, x0,)(Ocn ®
O%, S[(wws))- Here, note that

50.)1 &® 5w2 - 5(0.)1,0.)2) ~ (W17w2)'
For example, putting (wy,ws) = (25, 55), we see the following.

(d) When the parallel measurement Mz (q, x0,)(Oc, ® 0%, Si(25,55)]) is taken, the probability

(¢, about 50 °C) 0.375
that the measured value Ei’ aal;(;ii 65% OC>> is obtained is given by 8?;?
(h, about 60 °C) 0.125

That is because

[(Fo, @ G2)({(c, about 50 °C)})](25, 55)
=[F({cH](25) - [G*({about 50 °C})](55) = 0.75 - 0.5 = 0.375

Thus, similarly,

[(F @ G®)({(c,about 60 °C)})](25,55) = 0.75- 0.5 = 0.375
[(F., © G2)({(h, about 50 °C)})](25,55) = 0.25 - 0.5 = 0.125
[(F., ® G®)({(h,about 60 °C)})](25,55) = 0.25 - 0.5 = 0.125

Remark 3.24. Also, for example, putting (w;,ws) = (55, 55), we see:

¢, about 50 °C)
¢, about 60 °C)
h, about 50 °C)
h, about 60 °C)
0.125
0.125
0.375
0.375

(
(e) the probability that a measured value E is obtained by parallel mea-
(

surement Moo, x0,)(Ocn ® 0%, Si(55,55)]) is given by
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That is because, we similarly, see

[Fo({ch)](55) - [G2({about 50 °C})](55) = 0.25 - 0.5 = 0.125
[Fon({cH)](55) - [G*({about 60 °C})](55) = 0.25 - 0.5 = 0.125 (3.16)
[Fn({h})](55) - [G*({about 50 °C})](55) = 0.75 - 0.5 = 0.375 '
[Fo,({h})](55) - [G* ({about 60 °C})](55) = 0.75 - 0.5 = 0.375
Note that this is the same as Answer 3.13] (cf. Note [3.5 later).
The following theorem is clear. But, the assertion is significant.
Theorem 3.25. [Ergodic property] For each k = 1,2,---,n, consider a measurement

Moo () (Or(:= (Xk, Tk, Fr)), Ss.)) with the sample probability space (X, T, P’). Then, the
sample probability spaces of the simultaneous measurement Mo oy(X}_; O, Sis,)) and the
parallel measurement Mo (qn) (®k 1 Ok, S[®n M) are the same, that is, these are the same

as the product probability space

k=1
Proof. It is clear, and thus we omit the proof. ( Also, see Note [3.5 later.) ]

Example 3.26. [The parallel measurement is always meaningful in both classical and quantum

systems | The electron P has the (spin) state p; = |u1){u;| € &P(B(C?)) such that

w= 5] ohere, fall = Gl + 1512 = 1)

Let O, = (X(= {1,1}),2%, F?) be the spin observable concerning the z-axis such that

Fam =y o Fwb=l Y

Thus, we have the measurement Mp(c2)(0. = (X, 2X ), Sipi)

1

).
The electron P has the (spin) state ps = |us)(us| € &P(B(C?)) such that
u= %] vt Juall = sk + |32 =1
Let O, = (X, 2%, F*) be the spin observable concerning the x-axis such that
e /2 1)2 e [1/2 —1/2
Fan = el Fam =40
Thus, we have the measurement Mpc2)(0, = (X, 2%, F*), S},,))

Then we have the following problem:
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(a) Two measurements Mpc2) (0. = (X,2%,F?),S),,)) and Mpc2)(0, = (X, 2%, F7),5),,))

are taken simultaneously?

This is possible. It can be realized by the parallel measurement

Mpc2yonc2) (0. ® 0, = (X x X, 2% F*® F*), Spep)

That is,
(T, 1)
(b) The probability that a measured value EI’ *; is obtained by the parallel measurement
(4 4)
Mpc2)zB(c2)(0: ® O, Sipe,) is given by

(u, F*({1})u)(u, F*({1})u) = p1p2

(u, F*({1})u)(u, F*({1})u) = p1(1 = p2)

(u, F*({$ ) (u, F*({1})u) = (1 — p1)ps

(u, F*({I ) {u, F*({I})u) = (1 = p1)(1 = p2)

where p; = |a1|?, po = %(|a1|2 + Q1 + a1y + |asl?)

ANote 3.5. Theorem [3.25] is rather deep in the following sense. For example, “To toss a coin
10 times” is a simultaneous measurement. On the other hand, “To toss 10 coins once” is
characterized as a parallel measurement. The two have the same sample space. That is,

“spatial average” = “time average”

which is called the ergodic property. This means that the two are not distinguished by
the sample space and not the measurements (i.e., a simultaneous measurement and a parallel
measurement). However, this is peculiar to classical pure measurements. It does not hold in
classical mixed measurements and quantum measurement.
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Linguistic interpretation (chiefly,
quantum system)

Measurement theory (= quantum language ) is formulated as follows.

[Axiom 1] [Axiom 2| [quantum linguistic interpretation|
e |measurement theory‘ := | Measurement |+ ’ Causality ‘—i— ’Linguistic interpretation
(=quantum language) (cf. [§2.7) (¢f. §10.3) (cf. §3.1)
a kind of spell(a priori judgment) manual how to use spells

Measurement theory says that

e Describe every phenomenon modeled on Axioms 1 and 2 (by a hint of the linguistic inter-
pretation)!

In this chapter, we devote ourselves to the linguistic interpretation |(§3.1) for general (or, quan-
tum) systems.

4.1 Parmenides and Kolmogorov

4.1.1 Kolmogorov’s extension theorem and the linguistic interpre-
tation

Kolmogorov’s probability theory (cf. [50] ) starts from the following spell:

(f) Let (X,J, P) be a probability space. Then, the probability that a event = (€ F) happens
is given by P(Z)

And, through trial and error, Kolmogorov found his extension theorem, which says that
(f) “Only one probability space is permitted”
which surely corresponds to

83
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1) “Only one measurement is permitted” in the linguistic interpre-
Yy P g P

tation

Therefore, we want to say that

(#) Parmenides (born around BC. 515) and Kolmogorov (1903-1987) said about the same
thing

(cf. Parmenides’ words (3.3))).

4.2 Kolmogorov’s extension theorem in quantum lan-
guage

Let A be a set (called an index set). For each X\ € A, consider a set X,. For any subsets

A CAy(C /A\), TA, A, 1S the natural map such that:

TALA, - X
AEA2 AEA

Especially, put my = 7, ;. Consider the basic structure

[ACACB(H)

For each \ € JA\, consider an observable (X, J), F)) in A. Note that the quasi-product ob-
servable O = (X, X5, X, 3T, Fy) of { (X0, %, F)) | X € A} is characterized as the

observable such that:
Fi(mpy(B0) = FA(Ey)  (VEx € F), VA€ ), (4.2)

though the existence and the uniqueness of a quasi-product observable are not guaranteed in
general. The following theorem says something about the existence and uniqueness of the
quasi-product observable.

Let A be a set. For each \ € K, consider a set X. For any subset Ay C Ay( C /~\), define

the natural map ma, o, @ Xaea, Xa — Xxea, Xo by

X X, 3 (33)\))\6/\2 — (xA)AGAl e X X, (43)
AEA2 AEA

The following theorem guarantees the existence and uniqueness of the observable. It should
be noted that this is due to the the linguistic interpretation|(§3.1), i.e., “only one measurement

is permitted”.
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Theorem 4.1. [ Kolmogorov extension theorem in measurement theory ( cf. [26L 28] ) ] Consider

the basic structure
A CAC B(H)

For each A € K, consider a Borel measurable space (X, ), where X is a separable complete
metric space. Define the set Po(A) such as Po(A) = {A C A | A is finite }. Assume that the
family of the observables { Opr=( Xoea X, XoeaTa, Fa) | A fPo(/A\) } in A satisfies the
following “consistency condition”:

~

e for any Ay, Ay € Po(A) such that A; C As,

FA2 (WXS,AQ (E’Al)) = FA1 (E’Al) <VEA1 S )\5\ ‘rf)\) (44>
1

Then, there uniquely exists the observable 67\ = (>< red X Xea s ﬁK) in A such that:

Fi(myY(Z0)) = Fa(Ea) (VEa € X Ty, VA€ Po(RA)).

Proof. For the proof, see refs. |20, 2§].

Corollary 4.2. [Infinite simultaneous observable | Consider the basic structure
ACACB(H)

Let A be a set. For each A € /N\, assume that X, is a separable complete metric space, &) is
its Borel field. For each )\ € K, consider an observable O, = (X, %), F)) in A such that it

satisfies the commutativity condition, that is,
Fkl (Ek‘1>Fk2 (EkQ) = Fk2 (Ek2)Fk‘1 (Ek1> (VEkl S ‘rfklv VEIQ S ‘rfkw ky 7é k2) (45>

Then, a simultaneous observable 0= ( X ez X, X reiTn F=X e Fa) uniquely exists. That
is, for any finite set Ag(C A), it holds that

F((X Zx( X X)))= X FB(E) (Y2 €T,V A

Proof. The proof is a direct consequence of Theorem 4.1. Thus, it is omitted. O
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4.3 The law of large numbers in quantum language

4.3.1 The sample space of infinite parallel measurement ;- ; M4;(0 =
(X, T, F),5))

Counsider the basic structure

[ACACB(H)
(that is, [€(H) € B(H) € B(H)], or [Co(2) € L™(2,) € BLIAQ,v)))

and measurement Mz(O = (X, J, F), S};)), which has the sample probability space (X, T, P,)
Note that the existence of the infinite parallel observable O (= R, 0) = (XN, X727,
F(=®, F)) in an infinite tensor W*-algebra :° , A is assured by Kolmogorov’s extension
theorem (Corollaryl1.2).
For completeness, let us calculate the sample probability space of the parallel measurement

M®Zo:12(6, Si®:, p) in both cases (i.e., quantum case and classical case):

[1]: quantum system: The quantum infinite tensor basic structure is defined by
[C(@2 H) € B2 H) € B(&3L,H))]
Therefore, infinite tensor state space is characterized by
SP(Tr(252, H)) € 8™(Tr(@ H)) =6 (Tr(®, H)) (4.6)
Since Definition 2.17 says that F = F, (Vp € &P(Tr(H))), the sample probability space (X,

X2, F, Pgee,,) of the infinite parallel measurement Mg g (®72,0 = (XN, X2, F,
®k = 17F), Sigx , ;) is characterized by

Pgie o1 x B x - x Zy x (X X)) = X (. F(E)) (4.7)

k=n+1 k=1
(VEreF =9, (k=12...,n),n=123")

which is equal to the infinite product probability measure @ _, P,

[I1]: classical system: Without loss of generality, we assume that the state space (2 is compact,
and v(€2) =1 (¢f. Note 2.1)). Then, the classical infinite tensor basic structure is defined by

[Co(x321Q) € L¥(x32,Q, ®2,v) © B(L* (2,9, @32,1v))] (4.8)

Therefore, the infinite tensor state space is characterized by

S (Co(x2a ") (~ 5‘21 ) (4.9)

Put p = §,. the sample probability space (X", D2, F, Pge= ,) of the infinite parallel
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measurement Mz (x oge 1) (@72,0 = (XN, X i1 F, ®k = 1°F), S ;) is characterized
by

P, p(E1 X Zax - x Zy x ( X X)) = X [F(E)](w) (4.10)
k=n+1 k=1
(V2 €eF=3,,(k=1,2,...,n),n=1,2,3--+)

which is equal to the infinite product probability measure @y _, P,.
[I11]: Conclusion: Therefore, we can conclude

(#) in both cases, the sample probability space (X", X, F, Pgx ,) is defined
by the infinite product probability space (X", X ° F, &, P,)

Summing up, we have the following theorem ( the law of large numbers ).

Theorem 4.3. [The law of large numbers ] Consider the measurement Mz(0 = (X, F, F), S[,)
with the sample probability space (X, F, P,). Then, by Kolmogorov’s extension theorem (Corol-

laryl4.2)), we have the infinite parallel measurement:
Mgz (@20 = (X7, K2, T @32, F), Sigie, o)

The sample probability space (XN, X >, F, Pgg . p) is characterized by the infinite probability
space (XN, X7 F &=, P,). Further, we see

(A) for any f € L'(X, P,), put

D; = {(:cl,xQ,...) e XV | lim L) FS @) b F o) E(f)} (4.11)

n—o00 n

( where, E(f)= [y f(x)P,(dz))

Then, it holds that

Peye, n(Dy) =1 (4.12)
That is, we see, almost surely,
[ F(@)By(dz) | = [lim,, o, L @)t ) (4.13)
(population mean) (sample mean)

Remark 4.4. [Frequency probability ] In the above, consider the case that

) (=
) (B€T)

[1] [1]

fo =@ ={, ©F
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Then, put
k ez 1<k<
D, = {(:El,xg,...) e XV| lim AEITES IS kS N} P,,(E)} (4.14)
= n—00 n

(where, #[A] is the number of the elements of the set A)
Then, it holds that
Pgz p(Dx) =1 (4.15)
Therefore, the law of large numbers (Theorem [4.3) says that

(1) the probability in Axiom 1 ([§2.7]) can be regarded as “frequency
probability”

4.3.2 Mean, variance, unbiased variance

Consider the measurement Mz (O = (R, Bg, F'), S,)). Let (R, Bg, P,) be its sample proba-
bility space. That is, consider the case that a measured value space X = R.
Here, define:

population mean(up) : E[Mz(0 = (R, BgF), S,))] = /Ra:Pp(da:)(: ) (4.16)
population variance((c§)?) : V[Mz(0O = (R, BrF), S},))] = /R(:v — u)?P,(dz)  (4.17)

Assume that a measured value (z1, g, x3, ..., ,,) (€ R™) is obtained by the parallel measure-
ment ®;_;Mz(0, Sy,)). Put
_On Z 9 L, (X)

N Fron T+ T T,
sample mean(z,,) : E[®;_,Mz(0, 5,))] = — (=n)

e ’

sample variance(s;) : V[®}_;Mz(0, S|,))] =

~ [ =l

sample distribution(v,) : v,

(21— )2+ (w2 — 0> + - + (22 — 0)°

(21 =) + (w2 — > + - + (22 — 70)?
n—1

unbiased variance(u?) : U[®}_;Mz(0, S|,))] =

n

- [t

n—1

Under the above preparation, we have:
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Theorem 4.5. [Population mean, population variance, sample mean, sample variance] Assume
that a measured value (z1, 72,23, --)(€ RY) is obtained by the infinite parallel measurement
Qre; Mz(O = (R, Bg, F), Si,). Then, the law of large numbers (Theoremi.3)) says that

Ty +To+ -+ Ty

(4.16) = population mean(ug) = n11_1>1010 . =: 71 = sample mean
_ P2 _ ,P\2 L. Y
(4.17) = population variance(og) = lim (21 = )" + (w2 = pio)" + - + (& = Ho)
n—00 n
_ )2 Ly PN —11)?
= lim (21 =)+ (@2 = )"+ + (20 = ) =: sample variance
n—00 n

Example 4.6. [Spectrum decomposition] Consider the quantum basic structure
[C(H) € B(H) € B(H)]

Let A be a self-adjoint operator on H, which has the spectrum decomposition (i.e., projective
observable) O4 = (R, Bg, F4) such that

A / AFA(dN)
R
That is, under the identification:

self-adjoint operator: A <—  spectrum decomposition:04 = (R, Bg, F4)

identification

the self-adjoint operator A is regarded as the projective observable O4 = (R, Bg, Fly). Fix the
state p, = |u)(u| € &P(Tr(H)). Consider the measurement Mgz (04, Sfjuy(uy). Then, we see

population mean (g, ) : EMpr)(Oa, Sjjuyu))] = /RMU, Fy(d\)u) = (u, Au) (4.18)

population Variance((agfq)Q) . VIMpy (Oa, Sjuywy)] = /R()\ — (u, Au))? (u, Fy(d\)u)
= (A = (u, Auw))u]/* (4.19)

Now we can introduce Robertson’s uncertainty principle as follows.

Theorem 4.7. [Robertson’s uncertainty principle (parallel measurement) (cf. [60]) | Consider
the quantum basic structure [C(H) C B(H) C B(H)]. Let A; and Ay be unbounded self-
adjoint operators on a Hilbert space H, which respectively has the spectrum decomposition:

O4, = (R, B, Fa,) to Ou = (R, By, Fa,)

Thus, we have two measurements Mp()(O4,, Sjp.]) and Mp()(04,, Sjp.]), Where p, = |u)(ul
€ GP(C(H)*). To take two measurements means to take the parallel measurement:




KSTS/RR-15/001
January 22, 2015

90 Chapter 4 Linguistic interpretation (chiefly, quantum system)

Mp(cny(0a,, Sip.)) @ Mpcny(0a,, Sjp,1), namely,
MB(H)®B(H)(OA1 ®@ O4,, S[pu@wu])

Then, the following inequality (i.e., Robertson’s uncertainty principle ) holds that

[(u, (A1 Ay = ApAv)u)| (Y]u)(ul = pu, ullm =1)

N | —

Pu | +Pu >

Pu Pu :
where o/)* and o are shown in (4.19), namely,

{ oty = [{Avu, Avu) — | (u, A )" = [| (A = (u, Avu))u
oft, = [{Azu, Ayu) — |(u, Agu) )" = [| (A2 = (u, Agu))u

Therefore, putting [A;, As] = A1 As — Ay Ay, we rewrite Robertson’s uncertainty principle as
follows:

[Avul]l - [Azul] = [|(Ar = (u, Avwp)ul| - [[(A2 = (u, Agu))ul] = [(u, [Ar; AsJu)] /2 (4.20)

For example, when A;(= Q) [resp. As(= P) | is the position observable [resp. momentum
observable | (i.e., QP — PQ) = hy/—1), it holds that

1
oy 0 2571

Proof. Robertson’s uncertainty principle (4.20)) is essentially the same as Schwarz inequality,
that is,

[(u, [Ar, AsJu)| = [(u, (A1 A — Az Ay)u)]

:‘<u <(A1 — (uy Avu))(As — (u, Agu)) — (As — (u, Asu)) (A1 — (u, A1u>)>u>‘
<2[[(A1 — (u, Ayw))ul| - [[(A2 — (u, Asu))ul|
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4.4 Heisenberg’s uncertainty principle

4.4.1 Why is Heisenberg’s uncertainty principle famous?

Heisenberg’s uncertainty principle is as follows.

Proposition 4.8. [Heisenberg's uncertainty principle (¢f. [18]:1927) ]

(i) The position x of a particle P can be measured exactly. Also similarly, the momentum
p of a particle P can be measured exactly. However, the position z and momentum p of
a particle P can not be measured simultaneously and exactly, namely, the both errors
A, and A, can not be equal to 0. That is, the position  and momentum p of a particle
P can be measured simultaneously and approximately,

(ii) And, A, and A, satisfy Heisenberg’s uncertainty principle as follows.

A, - A, = h(= Plank constant/27=1.5547 x 107**.Js). (4.21)

This was discovered by Heisenberg’s thought experiment due to y-ray microscope. It is
(A) one of the most famous statements in the 20-th century.

But, we think that it is doubtful in the following sense.

ANote 4.1. I think that Heisenberg’s uncertainty principle(Proposition 4.8) is meaningless. That
is because, for example,

(#) The approximate measurement and “error” in Proposition 4.8 are not defined.

This will be improved in Theorem [4.12] in the framework of quantum mechanics. That is,
Heisenberg’s thought experiment is an excellent idea before the discovery of quantum mechanics.
Some may ask that

If it be so, why is Heisenberg’s uncertainty principle (Proposition 4.8) famous?
I think that

Heisenberg’s uncertainty principle (Proposition 4.8) was used as the slogan for adver-
tisement of quantum mechanics in order to emphasize the difference between classical
mechanics and quantum mechanics.

And, this slogan was completely successful. This kind of slogan is not rare in the history of
science. For example, recall “cogito proposition (due to Descartes)”, that is,

I think, therefore I am.

which is also meaningless (cf. §8.3). However, it is certain that the cogito proposition built the
foundation of modern science.
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ANote 4.2. Heisenberg’s uncertainty principle(Proposition 4.8) may include contradiction (cf.
ref. [21]), if we think as follows

(#) it is “natural” to consider that
Ap=lz—1z], Ap=Ip—pl,
where

Position: [ : exact measured value (=true value), T : measured value]
Momentum: [p : exact measured value (=true value), p : measured value]

However, this is in contradiction with Heisenberg’s uncertainty principle (4.21). That is because
(4.21)) says that the exact measured value (z,p) can not be measured.

4.4.2 The mathematical formulation of Heisenberg’s uncertainty prin-
ciple

In this section, we shall propose the mathematical formulation of Heisenberg’s uncertainty
principle 4.8

Consider the quantum basic structure:

[C(H) € B(H) € B(H)]

Let A; (i = 1,2) be arbitrary self-adjoint operator on H. For example, it may satisfy that

[Al, AQ](lZ A1A2 — AgAl) = h\/ —17

Let O4, = (R, B, Fa,) be the spectral representation of A;, i.e., A; = [p AFy4,(d)), which is
regarded as the projective observable in B(H). Let py = |u)(u| be a state, where u € H and

|lu|| = 1. Thus, we have two measurements:
by (I8
(B1) Mp(un)(Oa, :=(R, B, Fi,), Sip,)) TS (u, Ay
expectation
by (£18)
(BQ) MB(H)(OA2 ::(R? B? FAz)a S[pu}) . . <u7 A2u>
expectation

(Vpu = [u)(u € G°(C(H)"))

However, since it is not always assumed that A;A; — A A; = 0, we can not expect the existence

of the simultaneous observable O 4, x O,4,, namely,
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e in general, two observables O4, and O,4, can not be simultaneously measured

That is,

(Bs) the measurement Mp()(0a, x O4,, Sj,,]) is impossible, Thus, we have the question:

Then, what should be done?

In what follows, we shall answer this.
Let K be another Hilbert space, and let s be in K such that ||s|| = 1. Thus, we also

have two observables O 4, :=(R, B, Fa, ® I) and O 4,07 :=(R, B, Fiy, ® I) in the tensor algebra
B(H ® K).
Put

the tensor state p,s = |u ® s)(u ® s

And we have the following two measurements:

by (4.18
(C1) Mp(irsr)(Oayar. S, ) "B (ww s, (A @ D(u® ) = (u, Au)
expectation
by @I8)
(C2) MpreK) (001, Sp..) — (u®s, (A2 @ 1)(u® s)) = (u, Ayu)
expectation

It is a matter of course that

and
(C3) MpmeK)(Oa,er X Oayer, Sjp,.)) s impossible.

Thus, overcoming this difficulty, we prepare the following idea:

Let /Alz (1 = 1,2) be arbitrary self-adjoint operator on the tensor Hilbert space H @ K,
where it is assumed that

~ ~

(A}, As)(:= A1Ay — AyA) =0 (ie., the commutativity) (4.22)

Let O3 = (R, B, F3 ) be the spectral representation of Ei, ie.d;, = Je AF'; (d)), which is
regarded as the projective observable in B(H ® K). Thus, we have two measurements as
follows:
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b ~
(D1) MB(H@K)<O,31’ S[ﬁus}) ﬂ (u®s, Ai(u®s))

expectation

by (4.18)
(D2) MBrex)(03,, Si..)) —

expectation

<U ® s, 121\2(“ ® 8)>
Note, by the commutative condition (4.22)), that the two can be measured by the simultaneous
measurement Mprei)(07, X O3 ,5(,.), where O3 x Oz = (R* B* F; x Fy ).

Again note that any relation between A; ® I and A, is not assumed. However,

e we want to regard this simultaneous measurement as the substitute of the above two
(Cy) and (Csy). That is, we want to regard

(Dy) and (Dy) as the substitute of (C;) and (Cs)

For this, we have to prepare Hypothesis 4.9 below.

Putting
we define the A%_S and Zﬁﬁts such that
A = Ni(u @ s)]| = [[(A; - i@ (u e s)| (4.24)
_u®5 AN A~
Ag, =I(Ni = (u®@ s, Ni(u © 5)))(u @ 5|
—(Ai—Ae D) —(ues (4 - Ao D(ues)(ues)|
where the following inequality:
AR > A% (4.25)
Is common sense.
By the commutative condition (4.22)), (4.23)) implies that
[Ny, No] + [Ny, Ay @ I) + [A1 @ I, No] = —[A1 @ I, Ay @ 1] (4.26)

Here, we should note that the first term (or, precisely, |(u ® s, [the first term](u ® s))| ) of
(4.26)) can be, by the Robertson uncertainty relation (c¢f. Theorenld.7), estimated as follows:

IR AR > [ s, [Ny, Nal(u® )| (4.27)
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4.4.2.1 Average value coincidence conditions; approximately simultaneous mea-
surement

However, it should be noted that
In the above, any relation between A; ® I and @; is not assumed.

Thus, we think that the following hypothesis is natural.

Hypothesis 4.9. [Average value coincidence conditions |.  We assume that

(u® s, Nj(u®s)) =0 (Vu e Hyi=1,2) (4.28)
or equivalently,
(W@ s, A(u®s)) = (u, Au)  (Yue H,i=1,2) (4.29)

That is,

the average measured value of Mpex) (03, Sp..))
=(u®s,A(u®s))
=(u, A;u)
=the average measured value of Mp(5)(O4,, Sjp.))
(Vu € H,||ul|lg =1,i =1,2)

Hence, we have the following definition.

Definition 4.10. [Approximately simultaneous measurement] Let A; and A; be (unbounded)

self-adjoint operators on a Hilbert space H. The quartet (K, s, A\l, 121\2) is called an approxi-
mately simultaneous observable of A; and As, if it satisfied that

(E1) K isaHilbert space. s € K, ||s||x = 1, A; and A, are commutative self-adjoint operators
on a tensor Hilbert space H ® K that satisfy the average value coincidence condition
(4.28), that is,

~

(u®s, Ai(u® s)) = (u, Aju) (Vu € Hyi=1,2) (4.30)

Also, the measurement Mp(pgx)(O i, X0z, Si5..)) is called the approximately simultaneous
measurement of Mgy (O4,, Spp.)) and Mp()(Oa,, Sip.))-
Thus, under the average coincidence condition, we regard

(Dq) and (Dy) as the substitute of (C;) and (Cs)
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And

(By) A% (= ||(A; — A1 @ I)(u®s)||) and AP (= ||(Ay — Ay @ I)(u®5s)|) are called errors of
N1 N2
the approximate simultaneous measurement measurement Mp(mg i) (O i X 0] Ay Sipus])

Lemma 4.11. Let A; and A be (unbounded) self-adjoint operators on a Hilbert space H.
And let (K, s, Ay, Ag) be an approximately simultaneous observable of A; and Aj. Then, it
holds that

AR = AR (4.31)
(w® s, [N, A @ (u®s) =0  (Vue H) (4.32)
(W@ s, [A @ NJ(u®@s)) =0 (Vue H) (4.33)

The proof is easy, thus, we omit it.

Under the above preparations, we can easily get “Heisenberg’s uncertainty principle” as

follows.

AR AP (= N AR) > |(u, [Ay, AsJu)| (Yu € H such that [|u[| = 1) (4.34)

N | —

Summing up, we have the following theorem:

Theorem 4.12. [The mathematical formulation of Heisenberg's uncertainty principle]
Let A; and Ay be (unbounded) self-adjoint operators on a Hilbert space H. Then. we have

the followings:

(i) There exists an approximately simultaneous observable(K, s, 121\1, 121\2) of A1 and A,, that
is, s € K, |Is|lx = 1, A, and A, are commutative self-adjoint operators on a tensor
Hilbert space H® K that satisfy the average value coincidence condition (4.28)). There-
fore, the approximately simultaneous measurement Mpmgx)(Oz, X Oz, S5,,) exists.

(ii) And further, we have the following inequality (i.e., Heisenberg’s uncertainty principle).

AP . A= BRSO RR) = ||(Ay - Ay @ Du@ s)]| - [(Ay = A @ I)(u s )|

Ny No Ny N»
1
> §\<u, [A1, As]u)| (Vu € H such that |[u]| =1) (4.35)

(iii) In addition, if A; Ay — Ay Ay = hy/—1, we see that

ﬁus ﬁus _
Aﬁl 'ANQ > h/2 (Vu € H such that ||u|| = 1) (4.36)
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Proof. For the proof of (i) and (ii), see
e Ref. [21]: S. Ishikawa, Rep. Math. Phys. Vol.29(3), 1991, pp.257-273,

As shown in the above (4.34), the proof (ii) is easy (cf. [28,[57]), but the proof (i) is not easy
(¢f. [T, 28)).

4.4.3 Without the average value coincidence condition

Now we have the complete form of Heisenberg’s uncertainty relation as Theorem [4.12] To be
compared with Theorem 4.12, we should note that the conventional Heisenberg’s uncertainty
relation (= Proposition [.8)) is ambiguous. Wrong conclusions are sometimes derived from
the ambiguous statement (= Proposition [4.8). For example, in some books of physics, it is
concluded that EPR-experiment (Einstein, Podolosky and Rosen [13], or, see the following

section) conflicts with Heisenberg’s uncertainty relation. That is,

[I ] Heisenberg’s uncertainty relation says that the position and the momentum of a particle

can not be measured simultaneously and exactly.
On the other hand,

[IT ] EPR-experiment says that the position and the momentum of a certain “particle” can

be measured simultaneously and exactly ( Also, see Note [4.4] )

Thus someone may conclude that the above [I] and [II] includes a paradox, and therefore,
EPR-experiment is in contradiction with Heisenberg’s uncertainty relation. Of course, this is
a misunderstanding. This “paradox”was solved in [21] 28]. Now we shall explain the solution
of the paradox.

[Concerning the above [I]] Put H = L*(R,). Consider two-particles system in H @ H =
L2(R?q1,q2))' In the EPR problem, we, for example, consider the state u, ( € H ® H =

LA(R?, 1) (or precisely, |u6)(u6|> such that:

1
2meo

ue(qu, go) = e (@20~ gH(@+e—b) | id(a.e) (4.37)

where € is assumed to be a sufficiently small positive number and ¢(qi,¢2) is a real-valued

function. Let A;: L2 (R? ) — L*(R? _)and Ay: L*(R? ) — L*(R? ) be (unbounded)

(q1,92) (q1,42) (g1,42) (q1,92)
self-adjoint operators such that

ho

A = Ay = ——.
1 =41, 2 i@ql

(4.38)


http://www.sciencedirect.com/science/article/pii/003448779190046P
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Then, Theorem [4.12 says that there exists an approximately simultaneous observable( K s, fAll, /Alg)

of A; and A,. And thus, the following Heisenberg’s uncertainty relation (= Theorem [4.12) holds,
1A 1ue — Ayue|| - | Azue — Ague|| > /2 (4.39)

[Concerning the above [II|]] However, it should be noted that, in the above situation we
assume that the state u, is known before the measurement. In such a case, we may take another

measurement as follows: Put K =C, s =1. Thus, ( HRIH) K=H®H, u®s=u®1 =

u. Define the self-adjoint operators A; : LA(R?, ) — LA(RE, ,,) and A, LX(RY, ) —
L*(R?, ,,)) such that
~ ho
A =b-— Ay = A 4.40
1 42, 2= A2 = (9ql ( )

Note that these operators commute. Therefore,
(f) we can take an exact simultaneous measurement of A, and A, (for the state u.).

And moreover, we can easily calculate as follows:

[ A ue — Ajuel|

// (b= q2) — q)/ 57 (@—0—a)*= 5 (a+a2-b)% | Lid(q1.02) ?
R2 27‘(’60‘
/ 2 1/2
b _ _ e 80 (a1—g2—a)*— 5 (q1+q2—b)? i|
/ /R? 42) = @) 27rea

=2, (4.41)

1/2
dQId(D}

dg1dgs

and
| Ay, — Asue| = 0. (4.42)
Thus we see
| Ay, — Ayuel| - || Asue — Asug|| = 0. (4.43)

However it should be again noted that, the measurement (#) is made from the knowledge of
the state wu,.

[[I] and [II] are consistent | The above conclusion (4.43) does not contradict Heisenberg’s
uncertainty relation (4.39), since the measurement (f) is not an approximate simultaneous mea-
surement of A; and Asy. In other words, the (K, s, El, A\2> is not an approximately simultaneous

observable of A; and A,. Therefore, we can conclude that
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(F) Heisenberg’s uncertainty principle is violated without the average value coincidence con-

dition

(c¢f. Remark 3 in ref.[21], or p.316 in [2§]).

ANote 4.3. Some may consider that the formulas (4.41) and (4.42]) imply that the statement [II]
is true. However, it is not true. This is answered in Remark [8.14.

Also, we add the following remark.

Remark 4.13. Calculating the second term (precisely , (u® s, “the second term” (u®s))) and
the third term (precisely , (u ® s,“the third term” (u ® s))) in (4.26]), we get, by Robertson’s
uncertainty principle (4.20)),

IR o(Agiu) > [(u® 5, [N1, Ay @ [)(u® 5))| (4.44)
2AT - o(Au) > [(u® s, [Ag], No](u® s))] (4.45)

(Vu € H such that |Ju|| =1)
and, from (4.26), (4.27), (4.44),(4.45), we can get the following inequality
A%’;ls . A%‘; + A%‘; ~o(Apu) + A%‘: ~o(Ag;u)
ZZ%ZS ~Z%,u; + Z%‘; co(Ap;u) + Z%": co(Ag;u)
1
2§|<u, [A1, As]u)|  (Vu € H such that ||Ju]| = 1) (4.46)

Since we do not assume the average value coincidence condition, it is a matter of course that
this (4.46]) is more rough than Heisenberg’s uncertainty principle (4.35)

The inequality (4.40)) is often called Ozawa’s inequality, if a certain interpretation is adopted
such as A%: and A%: respectively means “disturbance” and “uncertainty”. However, the
linguistic interpretation |(§3.1) says “only one measurement is permitted ” and thus, the term
“disturbance” can not be used in quantum language. That is because we can not see the

influence of measurement=.

'For the further argument, see Ref. [38]: S. Ishikawa; Heisenberg uncertainty principle and quantum Zeno
effects in the linguistic interpretation of quantum mechanics  ( JarXiv:1308.5469 [quant-ph] 2014 )


http://arxiv.org/abs/1308.5469
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4.5 EPR-paradox (1935) and faster-than-light

4.5.1 EPR-paradox

Next, let us explain EPR-paradox (Einstein—Poolside-Rosen: [13] 63]). Consider Two elec-
trons P, and P, and their spins. The tensor Hilbert space H = C? ® C? is defined in what

-l e

(i.e., the complete orthonormal system {e;, es} in the C?),

follows. That is,

C2®C2:{ Z Ozijei@ej\ozije(c,i,j:lj}

i,5=1,2

Put u= > aye;®@ejandv= > fie; ®e;. And the inner product (u,v), ., is defined
ig=12 ig=12
by

<U’7 U>(C2®C2 = Z al’.? ’ /617.]

i,5=1,2

Therefore, we have the tensor Hilbert space H = C? ® C? with the complete orthonormal
system {e; ® e1,e1 ® €9, 5 ® 1,69 @ €3}

For each F' € B(C?) and G € B(C?), define the F @ G € B(C* ® C?) (i.e., linear operator
FoG:C*®C?*— C?®C?) such that

(FRG)(u®v)=Fu® Gu

Let us define the entangled state p = |s)(s| of two particles P, and P, such that

1
s=—=(e1®e;—e3®e)

V2

Here, we see that (s, s) = %(61®62—62®61,el®62—62®61) = %(14—1) =1,

C2@C2 c2@C2

and thus, p is a state. Also, assume that

two particles P, and P, are far.

Let O = (X,2%, F?) in B(C?) (where X = {1,]} ) be the spin observable concerning the

z-axis such that

Fam =y o Fwh=lo Y
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The parallel observable O @ O = (X2, 2% x 2% F* ® F?) in B(C? ® C?) is defined by

(70 PN = PO e ) = [y o] @) )
(70 () = Fb e ) =) Y o) )
(70 ) = P = [y o o) Y]
(F e P){LO) = P e = [0 O [0 0

Thus, we get the measurement Mp(c2gc2)(0®0, Si,)) The, Born’s quantum measurement theory

says that

When the parallel measurementmeasurement Mg c2gc2) (0 ® O, Spy) is taken,

(T, 1)
the probability that the measured value E*: B is obtained

4 4)
(s, (F* @ F*)({(1,1)})$) o = O

o given by | 5O P DD s = 05

T s F @ PO D)) e = 05
(s, (F* @ F*)({(1, 1) })$) o =0

That is because, F'*({1})e1 = e1, F*({{})ea = €2, F*({1})ea = F*({}})e1 = 0 For example,

(s, (F7 @ FI){(1, D $) g0

Z%«@l Qe —e@e), (F*({1H @ F ({IH(e1®ex —ea @ er)) o
_1 B 1
—§<(€1 ®ey—ey®er), 61 ® €2>C2®C2 =5

Here, it should be noted that we can assume that the 1 and the o (in (21, 22) € { (12, 1.),
(12,42), (42, 12), (42, 42)}) are respectively obtained in Tokyo and in New York (or, in the earth

and in the polar star).

(probability 1) (probability 1)
(b) (c)
T s \ T
o o or o o
Tokyo New York Tokyo New York

This fact is, figuratively speaking, explained as follows:
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e Immediately after the particle in Tokyo is measured and the measured value 1, [resp. |.]
is observed, the particle in Tokyo informs the particle in New York “Your measured value

has to be |, [resp. 1.}”

Therefore, the above fact implies that quantum mechanics says that there is something faster

than light. This is essentially the same as the de Broglie paradoz (cf. [63]). That is,

e if we admit quantum mechanics, we must also admit the fact that there is

something faster than light (i.e., so called “non-locality”).

ANote 4.4. EPR-paradox is closely related to the fact that quantum syllogism does not hold in
general. This will be discussed in Chapter 8. The Bohr-Einstein debates were a series of public
disputes about quantum mechanics between Albert Einstein and Niels Bohr. Although there
may be several opinions, I regard this debates as

[Binstein| — «— [Bohr]

(realistic view) Vs (linguistic view)

For the further argument, see Section [10.7| (Leibniz-Clarke debates).
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4.6 Bell’s inequality(1966)
4.6.1 Bell’s inequality is violated in classical and quantum systems

Firstly, let us mention Bell’s inequality in mathematics®.

Theorem 4.14. [Bell's inequality] Let (Y, G, 1) be a probability space. Consider measurable
functions fi : Y — {—1,1}, (k = 1,2,3,4), and define the correlations: Ci3 = [, fi(y) -

fs()uldy), Cra = [y i) fay)u(dy), Cos = [y fo(y) - fs(y)u(dy), Coa = [ fo(y) - fa(y)u(dy)
Then, we have Bell’s inequality such that

|C13 — Cha| + [Coz + Coy| £ 2 (4.47)
Proof. It is easy as follows.
|C13 — Cha| + |Cas + Coy]
< /Y i) - 1fs(y) — fa(y)uldy) + /Y fo(y) - 1 f5(y) + fa(y)|n(dy) = 2

]

Although I do not necessarily know about Bell’s inequality (cf. Ref. [4] ) well, in this section
I describe some things about the relation between quantum mechanics and Bell’s inequality.
Here, let us prepare three steps (I~III) as follows.

[Step I] + Consider the basic structure:
(A CACBH)

Define the measured value space X2 = {—1,1}? such that X? = {-1,1}* = {(1,1),(1,-1),

(—1,1), (—1,-1)}.
Consider two complex numbers a = a3 + asy/—1 and b = §; + f/—1 such that |a| =

V]2 + |as2 =1 and |b] = /|B1|2 + |B2]2 = 1. Define the probability space (X2, P(X?), vap)

such that

var({(1, 1)}) = vas({(=1, =1)}) = (1 — aa 1 — cz/3) /4
var({(1, =1)}) = var({(=1,1)}) = (1 + cr y + z/3) /4. (4.48)

2This section is extracted from the following paper:

Ref. [29]: S. Ishikawa, “A New Interpretation of Quantum Mechanics,” Journal of Quantum Information
Science, Vol. 1 No. 2, 2011, pp. 35-42. |doi: 10.4236/jqis.2011.12005


http://www.scirp.org/journal/PaperInformation.aspx?paperID=7610
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The correlation function P(a,b) is calculated as

P(a,b) = Z 21 - Tovap({(21,22)}) = —1 1 — o3y (4.49)

(z1,22)EX XX

Our present problem is as follows.

(D):Problem
Find the measurement Mz (Ogp := (X2, P(X?), Fyp), S},)) that satisfies

var(2) = po(Fu(Z)) (V2 € P(X7))

This will be answered in the following step [II].
[Step: II] Consider the problem in the two cases. That is,

(i):quantum case: [A = B(C? @ C?)]
(ii):classical case: [A = Co(Q2 x Q)]

(i): quantum case [A = B(C?) ® B(C?) = B(C*® C?) |

Put
ol ol e

For each ¢ € {a,b}, define the observable O, = (X, P(X),G.) in B(C?) such that

B
—c 1|
Consider the two particles quantum system in B(C? @ C?).
Consider two states p;, = [t5) (5] and po = [¥o) (o] ( € &P(B(C* @ C?)*)). Here, put
Yy = (61 ® ey —ey®e1)/v2and 1y = e; @ ey.
Consider the unitary operator U (€ B(C? ® C?) such that Uty = 1.
Consider an observable O, = (X2, P(X?), Fy, := U*(G, ® Gy)U) in B(C?* ® C?), and get

the measurement Mpc2gc2)(Oab, Sipg))-

1 ¢

Gy =3, §|. ettm-

N —

This clearly satisfies (D). That is because we see that, for each (z1,z,) € X2,

po(Fan({(w1,22)})) = (Yo, Fap({ (1, 22)})tb0)
=(1s, (Ga({71}) ® Gp({72}))1s) = vapr({ (71, 72) }).

(ii): classical case: [A = Cy(Q2) ® Cp(2) = Cp(2 x Q)]
Put wy(= (wh,wy)) € Q x Q, and py = 0y, (€ SP(Co(2 x 2)) ).
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Define the observable O, := (X%, P(X?), F,3) in L®(Q x Q) such that

[Fap({(21, 22)})](wo) = van({ (21, 72) })

Therefore, we get the measurement My« qxq)(Oab; Sjs,,]); Which clearly satisfies (D).
[Step III] For each k = 1,2, consider two complex numbers a*(= of + a%/—1) and
V(= B + B5/—1) such that |a*| = |b¥| = 1.

Consider the tensor parallel measurement ®; ;=12 Ma(Ouip = (X2, P(X?), Fhii), Sjpy]) in
the tensor W*-algebra ®, ._, ,A. Assume the measured value z(€ X®). That is,

v=((21,73)), (21, 237), (21, 23)), (27", 257))

e X X?

ij=1,2
Here, we see, by (4.49), that, for any i,j = 1, 2,
P )= Y bl po(Funs({(a7,2¥)})
(mij,xéj)GXXX
= —aif] — b/

Putting

al = v—1, b1:—1+ _1,a2:1, b2:—1— -1
V2 V2

Y

we get the following equality:
|P(a,b") = P(a', )| + |P(a®,b") + P(a®b%)] = 2V2 (4.50)

Thus, in both cases ( i.e., quantum case [A = B(C?® C?)] and classical case [A = Cy(Q x Q)]),
the formula (4.50) holds. This fact is often said that

Bell’s inequality is violated

though we do not know the reason to compare the equality (4.50) and Bell’s inequality.

Remark 4.15. [Shut up and calculate]. The above argument may suggest that there is some-

thing faster than light. However, when faster-than-light appears, our standing point is
Stop being bothered

This is not only our opinion but also most physicists’. In fact, in Mermin’s book [56], he said
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(a) “Most physicists, I think it is fair to say, are not bothered.”

(b) If T were forced to sum up in one sentence what the Copenhagen interpretation says to

me, it would be “Shut up and calculate”

If it is so, we want to assert that the linguistic interpretation |(§3.1)|is the true colors of “the

Copenhagen interpretation”
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Fisher statistics (I)

Measurement theory (= quantum language ) is formulated as follows.

[Axiom 1] [Axiom 2| [quantum Tinguistic interpretation|
e |measurement theory‘ := | Measurement |+ ’ Causality ‘+ ’Linguistic interpretation
(=quantum language) (cf. [82.7) (¢f. §10.3) (cf. §31)
a kind of spell(a priori judgment) manual how to use spells

Measurement theory says that

e Describe every phenomenon modeled on Axioms 1 and 2 (by a hint of the linguistic inter-
pretation)!

In this chapter, we study Fisher statistics in terms of Axiom 1 ( measurement: [§2.7). We shall
emphasize

the reverse relation between measurement and inference

(such as “the two sides of a coin”).

The readers can read this chapter without the knowledge of statistics.

5.1 Statistics is, after all, urn problems

5.1.1 Population(=system)<>state

Example 5.1. The density functions of the whole Japanese male’s height and the whole Amer-
ican male’s height is respectively defined by f; and f4. That is,

/ h fo(2)d A Japanese male’s population whose height is from a(cm) to 5(cm)
x)dr =
o / A Japanese male’s overall population

107
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A An American male’s population whose height is from a(cm) to f(cm)
fA(l‘)dl‘ = : ’ :
o An American male’s overall population

Let the density functions f; and f4 be regarded as the probability density functions f; and fa

such as
the set of all Japanese males
(A) From { the set of all American males

ability that his height is from «(cm) to (cm) is given by

(B[, B))(ws) = 7 fil(a)da ]
Fn((ov, B))(wa) = [ fa(z)dz

Now, let us represent the statements (A;) and (As) in terms of quantum language: Define
the state space Q by Q = {wy,wa} with the discrete metric dp and the counting measure v
such that

} , choose a person (at random). Then, the prob-

v({ws}) =1, v({wa}) =1
<It does not matter, even if v({w;}) = a, v({wa}) =0 (a,b > O)) Thus, we have the
classical basic structure:
Classical basic structure[Cy(Q) C L>(Q,v) C B(L*(Q,v))]
The pure state space is defined by
&7 (Co()") = {0u;, 0un} = {ws,wa} =
Here, we consider that
0w, -+ “the state of the set U; of all Japanese males”,

J

wa “the state of the set U, of all American males”,

and thus, we have the following identification (that is, Figure [5.1)):

Ulzéw, UQ%(SWA

The observable Oy, = (R, B, F},) in L>*(Q,v) is already defined by (A). Thus, we have the
measurement Mo )(Op, Sj5,)) (w € Q@ = {wy,wa}). The statement(A) is represented in terms
of quantum language by

Mz (@) (On, Siw,)

(B) The probability that a measured value obtained by the measurement
M (@) (On, Sia)

belongs to an interval [, ) is given by

Co(Q)" 5WJ7 Fh([a7ﬁ>))L°°(an) - [Fh([avﬂ))](wJ)
o (Qns Ful[a 8)) ) 1 = [Fi (o )] (wa)

Therefore, we get:

statement (A) | ———— |statement (B)

translation
(ordinary language) (quantum language)
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U1%5wj

All American males

All Japanese males

in this urn U

in this urn U,

Figure 5.1: Population~urn(<>state)

5.1.2 Normal observable and student ¢-distribution

Counsider the classical basic structure:
(Co(9) € L=(Q,) € BLA(Q,v))]

where 2 = R (=the real line) with the Lebesgue measure v. Let o > 0 be a standard deviation,
which is assumed to be fixed. Define the measured value space X by R (i.e., X =R ). Define
the normal observable O, = (X(=R), B, G,) in L>(£2, v) such that

6 @) = o x|~ grslo—w|as (5.1)

2mo

(V= € By(= Bg), Vw € Q(=R))

where By is the Borel field. For example,

1
V2mo?

1 1.960

V2ro? J_1.960

1
vV 2mo?

g 22 20 2
/ e 202dr = 0.683..., / e 2%2dxr = 0.954...,
- —20

952
e 2:2dx=0.95

Y

Figure 5.2: Error function

Next, consider the parallel observable @;_, O¢, = (R", Bgn, @ _, Go) in L®(Q", v¥") and
restrict it on

K={(ww,...,w) € Q" |weQ}C Q")
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This is essentially the same as the simultaneous observable O" = (R™, Bgn, X ,_; G,) in L>®(Q).
That is,

(X Go)(E1 % Za x -+ x Z]() = X [Go(E0)])
B k>n<1 217r0 /Ek o [ N T;@k - W)z] ok o2

(VEg € By (= Bg), Vw € Q(=R))

Then, for each (x1, 29, ,2,) € X"(=R"), define

_ _.1'1+.Z’2+"'+£Un

n

n
(21 —Tp)2 + (22 —Tn)2 + - + (2, — Tp)?
n—1

U? =

and define the map v : R® — R such that

Ty — W

¢(x1,$27-~7$n): U /\/ﬁ

Then, we have the observable Ope = (X (= R), By, T)7) in L>*(R) such that

Ty — W
Un/ V1

The observable Oge = (X(=R), By, T7) in L*(R) is called the student ¢ observable .
Here, putting

77 (2)](w) = [Gg<{($1,x2, ) ER™ | e E})} (W) (VEe9) (5.3)

2
fo(x) = {T(n/2) (1+ ° )/2 (I' is Gamma function) (5.4)
(= Dal((n—1)j2)  n-1
we see that
TGN = [ £ (Ees) (55)
which is independent of w and o. Also note that
2
lim f7(z) = lim Ln/2) (1+ ° )/2
n—o0 n—oo \/(n— Dal'((n—1)/2) n—1
1 22
_ e 5

thus, if n > 30, it can be regarded as the normal distribution N(0,1)( that is, mean 0, the
standard deviation 1).
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5.2 The reverse relation between Fisher ( =inference)
and Born ( =measurement)

In this section, we consider the reverse relation between Fisher ( =inference) and Born (
=measurement)

5.2.1 Inference problem ( Statistical inference )

Before we mention Fisher’s maximum likelihood method, we exercise the following problem:

Problem 5.2. [Urn problem( =Examplé2.30), A simplest example of Fisher's maximum
likelihood method|

There are two urns U; and Us. The urn U; [resp. Us| contains 8 white and 2 black balls
[resp. 4 white and 6 black balls].

Ul(% wl)

loJeoJeolo) )
(oJeJele) )

Figure 5.3: Pure measurement (Fisher’s maximum likelihood method)
Here consider the following procedures (i) and (ii).

(i) One of the two (i.e., U; or Us) is chosen and is settled behind a curtain. Note, for
completeness, that you do not know whether it is U; or Us.

(ii) Pick up a ball out of the unknown urn behind the curtain. And you find that the ball
is white.

Here, we have the following problem:

(iii) Infer the urn behind the curtain, U; or Uy?

The answer is €asy, that is, the urn behind the curtain is U;. That is because
the urn U; has more white balls than U,. The above problem is too easy, but it includes the
essence of Fisher maximum likelihood method.

5.2.2 Fisher’s maximum likelihood method in measurement theory

We begin with the following notation:
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Notation 5.3. [M7(O, Sp)]: Consider the measurement My (O=(X,J, F), S|,)) formulated
in the basic structure [A C A C B(H)]. Here, note that

(A1) In most cases that the measurement My (O=(X,J, F), S,)) is taken, it is usual to think
that the state p (€ G”(A*)) is unknown.

That is because

(A2) the measurement M, (O, S,)) may be taken in order to know the state p.

Therefore, when we want to stress that

we do not know the state p
The measurement Mz (O=(X,JF, F'), S|,)) is often denoted by
(A3) Mﬁ (OI(X, \rf, F), S[*]

Further, consider the subset K(C &P(A*)). When we know that the state p belongs to K, My
(0O=(X,T,F), S) is denoted by M4(O, Sy (K))). Therefore, it suffices to consider that

Mz(0, 51y) = Mz(0, 5(6"(A")))

Using this notation Mz(O, Sj,j), we characterize our problem (i.e., inference) as follows.

Problem 5.4. [Inference problem]

(a) Assume that a measured value obtained by Mz(O=(X,J, F'), Si,j(K))) belongs to Z(e
F). Then, infer the unknown state [] (€ )

or,

(b) Assume that a measured value (z,y) obtained by Mz(O=(X x Y,F X G, H), Sj,4(K)))
belongs to = x Y (2 € &F). Then, infer the probability that y € I.

Before we answer the problem, we emphasize the reverse relation between “inference” and
“measurement”.
The measurement is “the view from the front”, that is,

(By) (observable[0], statew(€ Q)]) —— s measured value[z(€ X))
Moo (0)(0,S[])

On the other hand, the inference is “the view from the back”, that is,

(B2) (observable[O], measured value[z € Z(€ F)]) % state [w(€ Q)]
1o0(2)(0,5p

In this sense, we say that
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the inference problem is the reverse problem of measurement

Therefore, it suffices to image Fig. 5.4.

(measurement)

A\

(measuring object) }

’unknown State‘ —_— _— ’measured value ‘
: (measuring instrument) probabilistic (output)

(observer)

inference ‘

Figure 5.4: The image of inference

In order to answer the above problem [5.4 we shall describe Fisher maximum likelihood

method in terms of measurement theory.

Theorem 5.5. [(Answer to Problem [5.4(b)): Fisher's maximum likelihood method(the general

case)] Consider the basic structure
[ACACBH)

Assume that a measured value(z, y) obtained by a measurement M7(O=(XxY,F X G, H), S;,;(K)))
belongs to = x Y (= € F). Then, there is reason to infer that the probability P(I') that y € I’

is equal to
po(H(E xT))
P() = (VI' € 9)
po(H ( )
where, pg € K is determined by.
po(H(Z % Y)) = max p(H(E xY)) (5.6)

Proof. Assume that p1,ps € K and py(H(E X Y)) < po(H(E x Y)). By Axiom 1 (

measurement: [§2.7))

(i) the probability that a measured value(x,y) obtained by a measurement M4(O, S|,,;) be-
longs to = x Y is equal to p1(H(Z x Y))

(ii) the probability that a measured value(x,y) obtained by a measurement Mz(O, S,,;) be-
longs to Z x Y is equal to po( H(Z X Y))
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Since we assume that p1(H(Z x Y)) < p2(H(Z x Y)), we can conclude that “(i) is more rare
than (ii)”. Thus, there is a reason to infer that [*] = wy. Therefore, the pg in (5.6)) is reasonable.
Since the probability that a measured value(z,y) obtained by Mz(0O, Si,,)) belongs to Z x I is
given by po(H(ZE x I')), we complete the proof of Theorem 5.5l O

Theorem 5.6. [(Answer to[5.4(a)): Fisher's maximum likelihood method in classical case |
(i): Consider a measurement Mpeq)(O =(X,J, F), Sy (K))). Assume that we know that a
measured value obtained by a measurement Moo () (O, Si(K))) belongs to = (€ F). Then,
there is a reason to infer that the unknown state state [x] is wy (€ ) such that

[F(E))(wo) = max[F(Z)](w)

weN

FE)(w)

o
Figure 5.5: Fisher maximum likelihood method

(ii): Assume that a measured value zy (€ X) is obtained by a measurement Mpeq)(O
=(X,T,F), S(K))). Define the likelihood function f(z,w) by

. . [F(E)](w)

r,w) = inf lim — 5.7
f(z,w) w €K [Eax,[F(E)}(wl)yéO,E—){a:} [F(Z)](w) (5:7)

Then, there is a reason to infer that [¥] = wy(€ K) such that f(z,wo) = 1.

Proof. Consider Theorem 5.5/ in the case that
A C A C B(H)] = [Co(©) € L™(9) C B(LA(Q)
Thus, in the measurement Mz o) (O=(X x Y,F X G, H), Si,(K))), consider the case that

Fixed O1=(X,J, F), any 0,=(Y,9,G),
0201 XOQZ (X XY,?IXS,FXG), p0:5w0

Then, we see

P() = ¢ - ~ [C)w) (T €9) 6.9
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And, from the arbitrariness of O,, there is a reason to infer that

N w)

[*] - 6(4}0 (ideutiﬁcation
[

#Note 5.1. The linguistic interpretation says that the state after measurement is non-sense. In
this sense, the readers may consider that

(#1) Theorem [5.6]is also non-sense

However, we say that
(#2) in the sense of (5.8)), Theorem [5.6] should be accepted.

or
(#3) as far as classical system, it suffices to believe in Theorem [5.6

Answer 5.7. [The answer to Problem [5.2] by Fisher's maximum likelihood method)]
You do not know which the urn behind the curtain is, U; or Us.

Assume that you pick up a white ball from the urn.
The urn is Uy or Uy? Which do you think?

U ~
1~Wh 7
] —=
J 3
/’ T “\
—F—] ——
£ = A
0000e@ — = ==
{ J
0000e S 7
‘\\ Ill
— —

Figure 5.6: Pure measurement (Fisher’s maximum likelihood method)

Answer: Consider the measurement Mo () (0= ({w, b}, 21w¥ F) S.,)), where the ob-

servable O, = ({w, b}, 2" F,,) in L>°(Q) is defined by
[Fup({6})](w1) = 0.2
0 (5.9)

[Fup({w})](wr) = 0.8,
[Fup({w})](w2) = 0.4, [Fup({0})](w2) =

Here, we see:
max{[Fup({w})](wr), [Fup({w})](w2)}
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=max{0.8,0.4} = 0.8 = F,,({w})](w1)
Then, Fisher’s maximum likelihood method (Theorem [5.6]) says that
(] = w

Therefore, there is a reason to infer that the urn behind the curtain is U. O

ANote 5.2. As seen in [Figure 5.4], inference (Fisher maximum likelihood method) is the reverse
of measurement (i.e., Axiom 1 due to Born). Here note that

(a) Born’s discovery “the probabilistic interpretation of quantum mechanics” in [6] (1926)

(b) Fisher’s great book “Statistical Methods for Research Workers” (1925)

Thus, it is surprising that Fisher and Born investigated the same thing in the different fields in
the same age.
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5.3 Examples of Fisher’s maximum likelihood method

All examples mentioned in this section are easy for the readers who studied the elementary
of statistics. However, it should be noted that these are consequence of Axiom 1 ( measurement:

§2.7).

Example 5.8. [Urn problem] FEach urn Uy, Us, Us contains many white balls and black ball

such as:
Table 5.1: urn problem
w-b\_ Urnl Urn U, Urn Us Urn Us
white ball 80% 40% 10%
black ball 20% 60% 90%
Here,

(i) one of three urns is chosen, but you do not know it. Pick up one ball from the unknown
urn. And you find that its ball is white. Then, how do you infer the unknown urn, i.e.,

Ul, UQ or Ug?
Further,

(ii) And further, you pick up another ball from the unknown urn (in (i)). And you find that
its ball is black. That is, after all, you have one white ball and one black ball. Then, how

do you infer the unknown urn, i.e., Uy, Us or Us?

In what follows, we shall answer the above problems (i) and (ii) in terms of measurement
theory.

Consider the classical basic structure:
[Co(Q2) € L=(Q,v) € B(L*(Q,v))]
Put
0w, (R wj) < [the state such that urn Uj is chosen] (j =1,2,3)

Thus, we have the state space Q ( ={w;,wq, w3} ) with the counting measure v. Further, define

the observable O = ({w, b}, 2"} F) in C(Q) such that

F({w))(w) = 08, F({w})(ws) = 0.4, F({w})(ws) = 0.1
F({b})(w)) = 0.2, F({b})(ws) = 0.6, F({b})(ws) = 0.9
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(A

Answer to (i): Consider the measurement Moo (q)(O, S}), by which a measured value “w

is obtained. Therefore, we see
[F{w})](w1) =0.8 = rggg[F({w})](w) = max{0.8, 0.4, 0.1}
Hence, by Fisher’s maximum likelihood method (Theorem5.6) we see that
(] = wr

Thus, we can infer that the unknown urn is Uj.
Answer to (ii): Next, consider the simultaneous measurement My (q)( Xizl 0 = (X?

2X* F= X;_, F), Sy), by which a measured value (w,b) is obtained. Here, we see
[F({(w,h)P](w) = [FHwh](w) - [F{H] ()
thus,
[F({(w,D)P](wr) = 0.16, [F({(w,0)})](wz) = 0.24, [F({(w,b)})](ws) = 0.09
Hence, by Fisher’s maximum likelihood method (Theoreni5.6), we see that
[¥] = w

Thus, we can infer that the unknown urn is Us. O

Example 5.9. [Normal observable(i): 2 =R]| As mentioned before, we again discuss the

normal observable in what follows. Consider the classical basic structure:
[Co(Q) C L>(Q,v) C B(L*(Q,v))] (where, Q2 =R)

Fix ¢ > 0, and consider the normal observable Og, = (R, Bg,G,) in L*(R) (where Q = R)
such that

Go(EN0) = o= [ expl 5o = Pl

(VE e Bg, VueQ=R)

Thus, the simultaneous observable X;_, O, (in short, 0%.) = (R Bgs, G
defined by

3) in L®(R) is

g
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G (~1 X By X Z3)] (1) = [Go(E1)](1) - [Go(Z2)] (1) - [Go(Z3)) (1)
(= )+ (g — )’ + (25— )
el | |

X dl’ldxgdl'g

(VE, € Br,k=1,2,3, VueQ=R)

Thus, we get the measurement My ) (0%, Sp)

Now we consider the following problem:

(a) Assume that a measured value (2, 29, ) (€ R?) is obtained by the measurement Moo (g)(OF,_,

Sp1)- Then, infer the unknown state [*](€ R).

Answer(a) Put

1 1

— =1,2
N’ 2 N] (Z ) 73)

Assume that N is sufficiently large. Fisher’s maximum likelihood method (Theoreml5.6)) says

that the unknown state[ x | = g is found in what follows.
[G5(E1 x E2 x E3)](10) = Iileag[Gi(El x Hp X Z3)(p)

Since N is sufficiently large, we see

1 0 _ )2 0 _ )2 0, )2
exp| — (21 — po)” + (25 ;”0) + (23 — po) ]
(v2mo)3 20
1 0 _ )2 0 2 0_ 2
e [ gl G
ner L(y/27mo)3 202
That is,
(21 = p0)” + (&5 = po)? + (a5 — pro)” = min { (@) — p)?” + (a5 — p)” + (2§ — o)”}

Therefore, solving %{- -+ } =0, we conclude that

x(l)—l—mg—i—xg
fo=—"""3

[Normal observable(ii)] Next consider the classical basic structure:
[Co(Q) € L>(Q,v) C B(L*(Q,v))] (where, Q =R xRy)

and consider the case:
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e we know that the length of the pencil p is satisfied that 10cm g L cm <30.

And we assume that

(#) the length of the pencil p and the roughness o of the ruler are unknown.

That is, assume that the state space Q = [10,30] x Ry (={p € R | 10 < 4 £30} x {0 €

R | o> 0})
Define the observable O = (R, Bg, G) in L*([10,30] x R, ) such that

[GE) (1, 0) = [Go(E)(1) (VE € By, V(p,0) € 2=][10,30] x Ry)
Therefore, the simultaneous observable O* = (R?, Bg,, G*) in C([10,30] x R, ) is defined by

[G°(E1 X By X B3)](1,0) = [G(E1)] (1, 0) - [G(Za)](1, 0) - [G(E3)] (s, 0)
:ﬁ /E1><Ez><53 p| = e (%2;2’@ + 4% = 4] |dxdrodrs
(V2 € Ba bk =1,2,3, Y(u,0) € Q= [10,30] x R,)

Thus, we get the simultaneous measurement My (10,30 xr +)(O3, Sp). Here, we have the follow-

ing problem:

(b) When a measured value (z{, 29, 23) ( € R?) is obtained by the measurement My (10 30]xr )
(03, Spy), infer the unknown state [*|(= (uo,00) € [10,30] x R4), i.e., the length g of

the pencil and the roughness oy of the ruler.

Answer (b) By the same way of (a), Fisher’s maximum likelihood method (Theoreml5.6)

says that the unknownstate [ % | = (1, 0¢) such that
1 (28 — o)® + (2 — po)* + (a5 — p10)?
———— exp| - > )
(V2mop)? 204
1 0_ )2 0 _ )2 0_ )2
— max { exp[ . (wl M) + (IL’2 :U“) + ($3 ,LL) ]} (51())
(0)€[1030] xRy L (1/270)3 202
Thus, solving %{~~-}: , {3 =0 we see
10 (when (29 + 23 +29)/3 < 10)
po =1 (@¥+29+2%)/3  (when 10 < (29 + 29+ 29)/3 £ 30) (5.11)

(when 30 < (29 4 25 +29)/3)

30
o0 = (@) — 72 + (a8 — )2 + (o5 — 0)2}/3
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where

fi = () + a5+ a3)/3

O
Example 5.10. [Fisher's maximum likelihood method for the simultaneous normal measurement].
Consider the simultaneous normal observable OF = (R", Bg,G") in L>®(R x Ry) (such as

defined in formula (5.2])). This is essentially the same as the simultaneous observable 0" =

(R", Brn, X_; Gy) in L®(R x R,). That is,

(X Go)(Er x =y x o X Ep)](w) = k;l[Ga(Ek)](w)

1 1 9
e — ——(xp, — dz
k=1 /210 /Ek Xp{ 202( * M)] *

(V= € By (= Bg), YVw = (,0) € (=R x R}))

3
I X'=

Assume that a measured value = (x1, 2, ..., x,)(€ R") is obtained by the measurement
Moo mxr,)(O" = (R", BR, G7),S). The likelihood function L,(u,o)(= L(x, (11, 0)) is equal to
1 >t (Th — p)?
L,(j,0) = ———— exp| — &=k=1

or, in the sense of (5.7),

1

_ 22:1(17@ —N)2 ]

exp| ;
. (V2mo)n 20
Lac(ﬂ’» 0) — I oxc [ _ Zgzl(xk_ﬁ(z))z] (5.12)
(Vara(@)r P %)
(Vx:(xl,xg,...,xn)eR”7 Vw:(ﬂ,U)GQ:RXR+)
Therefore, we get the following likelihood equation:
OL,(u, OL,(u,
Oalp0) _ o OLaliio) _ g (5.13)
o 0o

which is easily solved. That is, Fisher’s maximum likelihood method (Theorem5.0)) says that

the unknown state [*] = (u,0) (€ R x R} ) is inferred as follows.

_ T+ 29+ ...+ 2Ty
p=q(zr) = : (5.14)

#(z) = \/ ZZl(ﬂfkn— Al(@))” (5.15)

g
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5.4 Moment method: useful but artificial

Let us explain the moment method (cf. [28]), which as well as Fisher’s maximum likelihood
method are frequently used.

Consider the measurement My (O =(X,3,F), S[p]) , and its parallel measurement ®;_, M4 (O
= (X,9,F), S) (=Maa(Qj_, 0:= (X", T, Q,_, F), S[®Z:1P])' Assume that the measured
value (z1, za, ..., z,)(€ X™) is obtained by the parallel measurement. Assume that n is suffi-
ciently large. By the law of large numbers (Theorem 4.3)), we can assure that

Ozy + Oz + - + 0g,
- jz_ - )

Ma(X) 2 v, (= = p(F()) € M (X) (5.16)
Thus,
(A) in order to infer the unknown state p(€ GP(A*)), it suffices to solve the equation (5.10)

For example, we have several methods to solve the equation (5.16) as follows.

(B1) Solve the following equation:
[ () = p(E(Dlaexy = mind[[vn(-) = p1(F () llwex) [ o1(€ S7(AY))} (5.17)

(By) For some fi, fo, -+, frn € C(X) (= the set of all continuous functions on X), it suffices
to find p(€ &P(A*)) such that A(p) = min,, cera~)) A(p1), where

=S| [ semtae) - [ niontrie)

:Zn:‘fk(171)+fk($2) e+ fr(wn) / Fule dg)))

n

(Bs) In the cases of the classical measurement My« (O = (X, 5, F), S|,)) (putting p = &),

it suffices to solve

0=

’fk v1) + filw ) -+ i) /fk )’ (5.18)

k 1

or, it suffices to solve

() +Hf @)+t fi(wn) — [y [O[F(dE)](w) =

n

fa(z1)+fa(xa)+-+fa(zn) fX f2 df)]( )

n
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(By4) Particularly, in the case that X = {&1,&, -+, &y} is finite, define fi, fo, -+, frn € C(X)
by

fi(§) = X{ak}(f) - { (1) Eg ; ?lz;

and, it suffices to find the p(= J,) such that

i ‘X{sk}(xl) + Xy (@2) -+ Xy (2n)

’ - [ X (Ot ae)
:;(“{mm = tndl (e =0

k=1

The above methods are all the moment method. Note that

(Cy) It is desirable that n is sufficiently large, but the moment method may be valid even when
n=1.

(Cy) The choice of f is artificial ( on the other hand, Fisher’ maximum likelihood method is
natural).

Problem 5.11. [=Problemb5.2t Urn problem: by the moment method]
You do not know which the urn behind the curtain is, U; or Us.
Assume that you pick up a white ball from the urn.

The urn is Uy or Uy? Which do you think?

Figure 5.7: Inference(by moment method)

Answer: Consider the measurement My (o) (0= ({w, b}, 21w F) S.,). Here, recall that
the observable O, = ({w, b}, 2{"? F,;) in L>®(Q) is defined by

[Fup({w})](wr) = 0.8, [Fup({0})](w1) = 0.2
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[Fus({w})](w2) = 0.4, [Fus({b})](w2) = 0.6

[}

Since a measured value “w” is obtained, the approximate sample space ({w,b},2{"t} 1) is

obtained as

n({wh) =1, n({o}) =0
[when the unknown state [] is wy]

(G.17) = |1 — 0.8] + |0 — 0.2]
[when the unknown state [] is wo]

(B.I7) = 1 — 0.4 + 0 — 0.6

Thus, by the moment method, we can infer that [*] = wy, that is, the urn behind the curtain
is Ul.

[IT] The above may be too easy. Thus, we add the following problem.

Problem 5.12. [Sampling with replacement|: As mentioned in the above, assume that “white
ball” is picked. and the ball is returned to the urn. And further, we pick “black ball”, and it
is returned to the urn. Repeat this, after all, assume that we get

“w” , ((b?? , C(b?? , “w” , C(b” , “w” , “b” ,
Then, we have the following problem:

(a) Which the urn behind the curtain is Uy or Uy?

Answer: Consider the simultaneous measurement M oo () (X f_ 0= ({w, b}, Q{W’b}7, xI_F),

Sp1). And assume that the measured value is (w, b, b,w, b, w,b). Then,

[when [+] is wi]

(5.17) = |3/7 — 0.8 + |4/7 — 0.2| = 52/70
[when [+] is ws]

(5.17) = |3/7 — 0.4 + |4/7 — 0.6| = 10/70

Thus, by the moment method, we can infer that [*] = ws, that is, the urn behind the curtain
is U2.

]
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Example 5.13. [The most important example of moment method]  Putting 2 = R x R,

={w = (p,0) | p € R,0 > 0} with Lebesgue measure v, Consider the classical basic structure
[Co(©) S L(Q,v) € B(L*(,v))]
Assume that the observable Og = (X (= R), Bg, G) in L>®(Q, v) satisfies that

/ £G(d)) (1, 0) = 1, / (€ — WG (dO)) (. 0) = 0
(Vw = (1, 0) € Q=R x R,))

Here, assume that a measured value (xq, 3, 23)(€ R?) is obtained by the simultaneous mea-

surement X 2:1 M) (Og, S ). That is, we have the 3-sample distribution v3 such that

Oy, + 0z, + 0.
— 32 2 e M(R)

Put f1(€) =&, fo(€) = €2. Then, by the moment method (5.18)), we see:

0=3| [ ¢utas) - [ o)
:Z et ol ol [ esieagno)

T1+ Ty 1)% + (29)% + (23)?
:’ 1 2 3—,““")( 1)+ (22)° + (23) — (0 + 1)
3 3
Thus, we get:
- T —+ i) -+ Tn
3
o2 — (1) + (335)2 +(23)° 2
(ffl _ x1+a:32+mn)2 + (172 _ x1+132+:rn )2 + (553 _ :E1+x32+xn)2

3

which is the same as the (5.11) concerning the normal measurement.

#Note 5.3. Consider the measurement Mo () (0O=(X, 2% F), Siy)), where X = {x1, 29, ..., 70}
is finite. Then, we see that

“Fisher’s maximum likelihood method” =“moment method”

[Answer| Assume that a measured valuez,, (€ X) is obtained by the measurement M4 (0O=(X, 2%,
F), Sp)

[Fisher’s maximum likelihood method]:
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(a) Find wg(€ Q) such that
[F({zm})](wo) = max(F({zm})](w)

[Moment method]:

(b) Since we get the approximate sample probability space (X,2%X,6, ), we see

0 = [F{z D) + - +10 = [F{zmaD)]W)] + 1 = [F({zn})](W)]
+10 = [F{zma DI@)] + - + 10 = [F({za})](w)]
=[F{zD)]w) + -+ [F{zm-1Dl(w) + [F({zm})] (W)
+ [F{zma (W) + -+ [F{zn})](w)
=1 =2[F({zn})](w)

Thus, it suffice to find wy(€ 2) such that
1= 20F (@] (w0) = min(L = 2P ({z,})](w))

Thus, Fisher’s maximum likelihood method and the moment method are the same in this case.
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5.5 Monty Hall problem—High school student puzzle—

Monty Hall problem is as follows™.

Problem 5.14. [Monty Hall problem ]

You are on a game show and you are given the choice of three doors. Behind one door is
a car, and behind the other two are goats. You choose, say, door 1, and the host, who knows
where the car is, opens another door, behind which is a goat. For example, the host says that

(b) the door 3 has a goat.

And further, he now gives you the choice of sticking with door 1 or switching to door 27
What should you do?

|

é § |

door door door J |
No. 1 No. 2 No. 3 |

Figure 5.8: Monty Hall problem

Answer: Put ) = {w,ws, w3} with the discrete topology dp and the counting measure v.

Thus consider the classical basic structure:
Col€) € L=(0, ) € B(LA(, )]
Assume that each state d,,, (€ GP(C(€2)*)) means
Ow,, < the state that the car is behind the door m (m =1,2,3)

Define the observable O; = ({1,2,3},2{423} [)) in L>(Q) such that

[F({1)](wr) = 0.0, [F({2})](w) =05, [F({3})](w1) = 0.5,
[F1({1}))(w2) = 0.0, [F({2})](w2) = 0.0,  [F({3})](w2) = 1.0,

IThis section is extracted from the followings:

(a) Ref. [28]: [S. Tshikawa, “Mathematical Foundations of Measurement Theory,” Keio University Press Inc.
2006.

(b) Ref. [B2]: S. Ishikawa, “Monty Hall Problem and the Principle of Equal Probability in Measurement
Theory,” |[Applied Mathematics, Vol. 3 No. 7, 2012, pp. 788-794. doi: 10.4236/am.2012.37117.



http://www.keio-up.co.jp/kup/mfomt/
http://www.keio-up.co.jp/kup/mfomt/
http://www.scirp.org/journal/PaperInformation.aspx?paperID=19884 
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[Fi({1D)](ws) = 0.0, [FA({2D)](ws) = 1.0,  [F({3})](ws) = 0.0, (5.19)

where it is also possible to assume that F;({2})