KSTS/RR-85/006 2 May 1985

K-theory for the C^* -algebras of discrete Heisenberg groups

by

Kazunori Kodaka

Kazunori Kodaka

Department of Mathematics Faculty of Science and Technology Keio University

Hiyoshi 3-14-1, Kohoku-ku Yokohama, 223 Japan

K-theory for the C'-algebras of discrete Heisenberg

groups

Kazumori KODAKA

Keio University

ABSTRACT

In the present paper we show that $K_j(C^{\bullet}(G))\cong \mathbb{Z}^3$ j=0,1 and that $\tau_{\bullet}(K_0(C^{\bullet}(G)))=\mathbb{Z}$, where $C^{\bullet}(G)$ is the C^{\bullet} -algebra of the discrete Heisenberg group G and τ is the canonical trace on $C^{\bullet}(G)$.

§1. Preliminaries.

By the discrete Heisenberg group we mean the group G defined as that of the following matrices;

$$G = \left\{ \begin{bmatrix} 1 & m & l \\ 0 & 1 & k \\ 0 & 0 & 1 \end{bmatrix}; k, l, m \in \mathbb{Z} \right\}.$$

We take two closed subgroups M and N of G as follows;

$$\mathcal{U} = \begin{bmatrix} 1 & m & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}; m \in \mathbf{Z}$$

and

$$N = \left\{ \begin{bmatrix} 1 & 0 & l \\ 0 & 1 & k \\ 0 & 0 & 1 \end{bmatrix} ; k, l \in \mathbf{Z} \right\}.$$

It is clear that $M \cong \mathbb{Z}$, $N \cong \mathbb{Z}^2$, so that we may identify M with \mathbb{Z} and N with \mathbb{Z}^2 . An action of M on N is defined by

$$m.z = mzm^{-1} = \{k, l + mk\}$$

for $m \in M$ and $z = (k, l) \in N$. Then G is isomorphic to the semidirect product $N \times_s M$ of N by M with the multiplication

$$(z,m)(z',m')=(z+m.z',m+m')$$

for (z,m) and $(z',m') \in \mathbb{N} \times_s M$. Therefore we identify G with $\mathbb{Z}^p \times_s \mathbb{Z}$ and write the element of G as (k,l,m) where $(k,l) \in \mathbb{Z}^p = \mathbb{N}$ and $m \in \mathbb{Z} = M$. Further by definition of crossed products and the Fourier transformation we see that $C^*(G)$ is isomorphic to the crossed product $C(T^p) \times_{\alpha} \mathbb{Z}$ where α is the automorphism on $C(T^p)$ defined by

$$\alpha(f)(s,t) = f(s+t,t)$$
$$f \in C(T^2), (s,t) \in T^2$$

and T^2 is the two dimensional torus.

Let τ be the finite faithful trace on $C^{\bullet}(G)$ defined by $\tau(x)=x(e)$ where $x\in l^1(G)$ and e is the unit element of G, and let σ be the trace on $C(T^2)\times_{\alpha}\mathbf{Z}$ by $\sigma(y)=\int_{T^2}y(0,s,t)dsdt$ where $y\in l^1(\mathbf{Z},C(T^2))$. Then we see easily that $\tau=\sigma$ on $l^1(G)$. In what follows, we compute

$$K_i(C(T^2)\times_{\alpha} \mathbb{Z})$$
 $(j=0,1)$ and $\sigma \cdot (K_0(C(T^2)\times_{\alpha} \mathbb{Z}))$.

§2. Computation of $K_j(C(T^2)\times_{\alpha} \mathbf{Z})$ j=0,1

We use the following Pimsner-Voiculescu exact sequence;

$$K^{0}(T^{2}) \xrightarrow{id-\alpha_{*}^{-1}} K^{0}(T^{2}) \longrightarrow K_{0}(C(T^{2}) \times_{\alpha} \mathbf{Z})$$

$$\uparrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$K_{1}(C(T^{2}) \times_{\alpha} \mathbf{Z}) \longleftarrow K^{1}(T^{2}) \xrightarrow{id-\alpha_{*}^{-1}} K^{1}(T^{2}).$$

 $K_j(C(T^2)\times_a \mathbb{Z})\cong K^j(T^2)/\operatorname{Im}(id-\alpha_r^{-1})\oplus \operatorname{Ker}(id-\alpha_r^{-1})$ (j=0,1). We then compute $\operatorname{Im}(id-\alpha_r^{-1})$ and $\operatorname{Ker}(id-\alpha_r^{-1})$. Let $M_n(C(T^2))$ be the algebra of $n\times n$ matrices with entries in $C(T^2)$ and let $\operatorname{Proj} M_n(C(T^2))$ be the set of projections of

 $M_n(C(T^2))$ and let $U_n(C(T^2))$ be the unitary group of $M_n(C(T^2))$. We define p_j and q_j in $\bigcup_{n=1}^{\infty} Proj M_n(C(T^2))$ j=1,2 as follows;

$$p_1(s,t)=1$$
$$q_1(s,t)=0$$

and

$$\begin{split} p_{2}(s,t) = & R(t) \begin{bmatrix} e^{-2\pi i s} & 0 \\ 0 & 1 \end{bmatrix} R(t)^{*} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} R(t) \begin{bmatrix} e^{2\pi i s} & 0 \\ 0 & 1 \end{bmatrix} R(t)^{*} \\ R(t) = & \begin{bmatrix} \cos \frac{\pi}{2} t & -\sin \frac{\pi}{2} t \\ \sin \frac{\pi}{2} t & \cos \frac{\pi}{2} t \end{bmatrix} \\ 0 \le s, t \le 1 \\ q_{2}(s,t) = & \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}. \end{split}$$

And we define u_j in $\bigcup_{n=1}^{\infty} U_n(C(T^2))$ j=1,2 as follows;

$$u_1(s,t) = e^{2\pi i t}$$
$$u_2(s,t) = e^{2\pi i s}$$

Lemma 1. 1) Tow generators of $K^0(T^2)$ are $[p_1]-[q_1]$ and $[p_2]-[q_2]$

2) Two generators of $K^1(T^2)$ are $[u_1]$ and $[u_2]$.

Remark. We identify $C(T^2)$ with all complex valed continuous functions on [0,1] $\times [0,1]$ such that f(0,t)=f(1,t) and f(s,0)=f(s,1) for $s,t\in [0,1]$.

Proof of lemma 1. 1) $K^0(T^2)$ is isomorphic to $K^0(T^1) \oplus K^1(T^1)$. The isomorphism is the direct sum of i, and Φ where i, is the homomorphism of $K^0(T^1)$ into $K^0(T^2)$ induced by the inclusion map $i:C(T^1) \to C(T^2)$ and Φ is the composed map of the suspension map of $K^1(T^1)$ into $K^0(T^1 \times (0,1))$ and the homomorphism of $K_0(T^1 \times (0,1))$ into $K^0(T^2)$ induced by the inclusion map of $C_0(T^1 \times (0,1))$ into $C(T^2)$. And let $[1_{T^1}]$ be a generator of $K^0(T^1)$ where 1_{T^1} is the identity of $C(T^1)$ and let [v] be a generator of $K^1(T^1)$ where v is defined by $v(s) = e^{2\pi i s}$. Then $i_*([1_{T^1}])$ and $\Phi([v])$ is the generators of $K^0(T^2)$. Therefore we obtain 1).

2) We can prove 2) in the same manner as 1).

Q.E.D.

Lemma 2.

$$K_j(C(T^2)\times_{\alpha}\mathbf{Z})\cong \mathbf{Z}^3 \quad j=0,1$$

Proof. We use the Pimsner-Voiculescu exact sequence. Clearly $\alpha^{-1}([p_1])=[p_1]$ $\alpha^{-1}([q_1])=[q_1]$, $\alpha^{-1}([q_2])=[q_2]$.

$$\alpha^{-1}(p_2)(s,t) = R(t) \begin{bmatrix} e^{-2\pi i(s-t)} & 0 \\ 0 & 1 \end{bmatrix} R(t) \cdot \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} R(t) \begin{bmatrix} e^{2\pi i(s-t)} & 0 \\ 0 & 1 \end{bmatrix} R(t)^{\bullet}.$$

Let

$$V(s,t)=R(t)\begin{vmatrix} e^{2\pi it} & 0 \\ 0 & 1 \end{vmatrix} R(t)^*.$$

Then $V \in U_2(C(T^2))$ and $\alpha^{-1}(p_2)(s,t) = V(s,t)p_2(s,t)V(s,t)^*$

Thus $\alpha_*^{-1}([p_2])=[p_2]$. Therefore the homomorphism $id-\alpha_*^{-1}$ of $K^0(T^2)$ into $K^0(T^2)$ is a 0-map.

$$\alpha^{-1}(u_1)(s,t) = e^{2\pi i t} = u_1(s,t)$$

$$\alpha^{-1}(u_2)(s,t) = e^{2\pi i (s-t)} = e^{2\pi i s} e^{2\pi i t}$$

$$= u_2(s,t)u_1'(s,t)$$

Hence $\alpha^{-1}([u_1])=[u_1]$, $\alpha^{-1}([u_2])=-[u_1]+[u_2]$. Therefore the homomorphism $id-\alpha^{-1}$ of $K^1(T^2)$ into $K^1(T^2)$ is given by the matrix

$$\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

It follows by the Pimsner-Voiculescu exact sequence that $K_j(C(T^2)\times_{\alpha}\mathbf{Z})=\mathbf{Z}^3$

$$(j=0,1)$$
 Q.E.D

Corollary 1.

$$K_j(C'(G))\cong \mathbb{Z}^3$$
 $j=0,1$

§3. Computation of $\sigma_{\bullet}(K_0(C(T^2)\times_{\alpha}\mathbf{Z}))$

Let $[e_j]$ - $[f_j]$ j=1,2,3 be three generators of $K_0(C(T^2)\times_{\alpha}\mathbf{Z})$. The homomorphism i_{\bullet} of $K^0(T^2)$ into $K_0(C(T^2)\times_{\alpha}\mathbf{Z})$ is injective since

$$id-\alpha^{-1};K^0(T^2)\to K^0(T^2)$$

is a D-map. Hence two generators are given as follows;

$$e_{1}(m,s,t) = \begin{bmatrix} 1 & \text{if } m = 0 \\ 0 & \text{if } m \neq 0 \end{bmatrix}$$

$$f_{1}(m,s,t) = 0$$

$$f_{2}(m,s,t) = \begin{cases} R(t) \begin{bmatrix} e^{-2\pi i s} & 0 \\ 0 & 1 \end{bmatrix} R(t) \cdot \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} R(t) \begin{bmatrix} e^{2\pi i s} & 0 \\ 0 & 1 \end{bmatrix} R(t) \cdot \text{if } m = 0$$

$$f_{2}(m,s,t) = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \text{ if } m = 0$$

$$f_{2}(m,s,t) = \begin{bmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \text{ if } m \neq 0$$

The generator $[e_3]$ - $[f_3]$ is the element of $K_0(C(T^2)\times_{\alpha} \mathbb{Z})$ satisfying that

$$d_0([e_3]-[f_3])=[u_1]$$

where d_0 is the connecting map of $K_0(C(T^2)\times_{\alpha} \mathbb{Z})$ into $K^1(T^2)$.

Let g be the function on T^2 defined by $g(s,t)=\cos\frac{\pi}{2}t$ and let h be the function on T^2 defined by $h(s,t)=\sin\frac{\pi}{2}t$. We regard $C(T^2)$ as a C^* -subalgebra of $C(T^2)\times_a \mathbb{Z}$. Then let

$$e_{3} = \begin{bmatrix} \delta_{-1} & 0 \\ 0 & \delta_{-1} \end{bmatrix} \begin{bmatrix} g^{2}h^{2} & -g^{3}h \\ gh^{3} & -g^{2}h^{2} \end{bmatrix} + \begin{bmatrix} g^{4}+h^{4} & g^{3}h - gh^{3} \\ g^{3}h - gh^{3} & 2g^{2}h^{2} \end{bmatrix} + \begin{bmatrix} g^{2}h^{2} & gh^{3} \\ -g^{3}h & -g^{2}h^{2} \end{bmatrix} \begin{bmatrix} \delta_{1} & 0 \\ 0 & \delta_{1} \end{bmatrix}$$

and

$$\delta_{1}(m) = \begin{cases} 1_{7^{2}} & \text{if } m = 1\\ 0 & \text{if } m \neq 1 \end{cases}$$
$$\delta_{-1}(m) = \delta_{1}^{*}(m) = \begin{cases} 1_{7^{2}} & \text{if } m = -1\\ 0 & \text{if } m \neq -1 \end{cases}$$

We see that e_3 is a Rieffel projection in $M_2(C(T^2)\times_{\alpha} \mathbb{Z})$ by computation.

Remark. Let A be a unital C'-algebra and (A, \mathbf{Z}, β) a C'-dynamical system. A projection in $A \times_{\beta} \mathbf{Z}$ satisfying the following condition is called a *Rieffel projection*;

1)
$$p = u^*x_1^* + x_0 + x_1u \quad x_0, x_1 \in A$$

2) u is a unitary element in A satisfying that $Adu = \beta$.

Lemma 3. With the above notation let ε be the left support projection of x_1 in the enveloping von Neumann algebra of A. Then the unitary $exp(2\pi ix_0\varepsilon)$ is in A and

$$d_0([p])=[exp(2\pi ix_0\varepsilon)]$$

where d_0 is the connecting map of $K_0(A \times_{\beta} \mathbb{Z})$ into $K_1(A)$.

Proof. See Pimsner-Voiculescu [4]. Q.E.D.

Lemma 4. $[e_3]$ - $[f_3]$ is a generator of $K_0(C(T^2)\times_{\alpha} \mathbb{Z})$ where

$$f_{3}(m,s,t) = \begin{cases} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} & \text{if } m = 0 \\ \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} & \text{if } m \neq 0 \end{cases}$$

Proof. It is clear that $d_0([f_3])=0$. So we show that $d_0([e_3])=[u_1]$. Let

$$x_{0} = \begin{bmatrix} g^{4} + h^{4} & g^{3}h - gh^{3} \\ g^{3}h - gh^{3} & 2g^{2}h^{2} \end{bmatrix}$$
$$x_{1} = \begin{bmatrix} g^{2}h^{2} & gh^{3} \\ -g^{3}h & -g^{2}h^{2} \end{bmatrix}.$$

Let ε be the left support projection of x_1 in the enveloping von Neumann algebra of $C(T^2)$. Since $\varepsilon = [x_1] = [x_1x_1^*] = s - lim_{n \to \infty} (\frac{1}{n} + x_1x_1^*)^{-1}x_1x_1^*$, where $[x_1]$ and $[x_1x_1^*]$ are the range projections of x_1 and $x_1x_1^*$ respectively, by the trivial calculation we see that

$$\varepsilon(s,t) = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} & \text{if } t = 0 \\ h^{2}(s,t) & -g(s,t)h(s,t) \\ -g(s,t)h(s,t) & g^{2}(s,t) \end{bmatrix} \text{ if } 0 < t \le 1$$

Hence we obtain that

$$exp(2\pi i x_0 \varepsilon) = exp(2\pi i h^2 \begin{bmatrix} h^2 & -gh \\ -gh & g^2 \end{bmatrix}).$$

Let

$$F(c,s,t) = exp\left(2\pi i h^2(s,t)\right) \begin{bmatrix} h^2(s,ct) & -g(s,ct)h(s,ct) \\ -g(s,ct)h(s,ct) & g^2(s,ct) \end{bmatrix}.$$

Then

$$F = (c, s, 0) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$F \{c, s, 1\} = exp(2\pi i \begin{vmatrix} h^2(s, c) & -g(s, c)h(s, c) \\ -g(s, c)h(s, c) & g^2(s, c) \end{vmatrix})$$

$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \sum_{n=1}^{\infty} \frac{(2\pi i)^n}{n!} \begin{bmatrix} h^2(s, c) & -g(s, c)h(s, c) \\ -g(s, c)h(s, c) & g^2(s, c) \end{bmatrix}^n$$

$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \sum_{n=1}^{\infty} \frac{(2\pi i)^n}{n!} \begin{bmatrix} h^2(s, c) & -g(s, c)h(s, c) \\ -g(s, c)h(s, c) & g^2(s, t) \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + (e^{2\pi i} - 1) \begin{bmatrix} h^2(s, c) & -g(s, c)h(s, c) \\ -g(s, c)h(s, c) & g^2(s, c) \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
since
$$\begin{bmatrix} h^2(s, c) & -g(s, c)h(s, c) \\ -g(s, c)h(s, c) & g^2(s, c) \end{bmatrix}$$
 is a projection.

Therefore F is a continuous function of the interval [0,1] into $U_2(C(T^2))$. Hence

$$d_0([e_3]) = [F(1)] = [F(0)] = [e^{2\pi i \hbar^2}] = [u_1]$$

by lemma3. Thus we obtain lemma4.

Q.E.D.

Theorem 1.

$$\sigma_{\bullet}(K_0(C(T^2)\times_{\alpha}\mathbf{Z}))=\mathbf{Z}$$

where σ_{\bullet} is the homomorphism of $K_0(C(T^2)\times_{\alpha}\mathbf{Z})$ into \mathbf{R} induced by the trace σ defined in §1.

Proof.

$$\sigma_{\bullet}([e_1]) = 1$$

$$\sigma_{\bullet}([f_1]) = 0$$

$$\sigma_{\bullet}([e_2]) = \int_0^1 \int_0^1 Tr(e_2(0, s, t)) ds dt = 1$$

$$\sigma_{\bullet}([f_2]) = 1$$

$$\sigma \cdot ([e_3]) = \int_0^1 \int_0^1 Tr(e_3(0,s,t)) ds dt$$

$$= \int_0^1 \int_0^1 (g^4(s,t) + h^4(s,t) + 2g^2(s,t)h^2(s,t)) ds dt = 1$$

$$\sigma \cdot ([f_3]) = 1$$

where Tr is the canonical trace on the matrix algebra $M_2(\mathbb{C})$. Since σ_{\bullet} is the homomorphism, we obtain that

$$\sigma_{\bullet}(K_0(C(T^2)\times_{\alpha}\mathbf{Z}))=\mathbf{Z}.$$
 Q.E.D.

Corollary 2.

$$\tau_{\bullet}(K_{0}(C^{\bullet}(G))) = \mathbf{Z}$$

where τ_{\bullet} is the homomorphism of $K_0(C^{\bullet}(G))$ into **R** induced by the trace defined in §1.

Remark. The above collorary shows that $\mathcal{C}'(G)$ has no nontrivial projection although it is not simple.

Acknowlegment. I wish to thank Prof. S. Koizumi and Prof. O. Takenouchi for various advices and constant encouragement. I am also grateful to Prof. H. Takai for very useful discussions.

References

- [1] A.Connes,An analogue of Thom isomorphism for crossed products of a C^* -algebra by an action of R,Advances in Math.39 (1981),31-55.
- [2] S.Kawakami, Representations of the discrete Heisenberg group, Math. Japonica 27 (1982) 551-564.
- [3] G.K.Pedersen, C^{\bullet} -algebra and their automorphism groups, Academic Press, London, New York, San Francisco, 1979.
- [4] M.Pimsner and D.Voiculescu, Exact sequences for K-groups and Ext-groups of certain cross product C^{\bullet} -algebras, J.Operator Theory 4 (1980),93-118.
- [5] M.A.Rieffel, C^* -algebra associated with irrational rotations, Pacific J. Math. 93 (1981), 415-429.

[6] J.L.Taylor,Banach algebras and topology, in "Algebras in Analysis", edited by J.H. Williamson, Academic Press (1975).