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Solvability of the initial value problem

to the Isobe–Kakinuma model for water waves

Ryo Nemoto and Tatsuo Iguchi

Abstract

We consider the initial value problem to the Isobe–Kakinuma model for water waves and
the structure of the model. The Isobe–Kakinuma model is the Euler–Lagrange equations
for an approximate Lagrangian which is derived from Luke’s Lagrangian for water waves
by approximating the velocity potential in the Lagrangian. The Isobe–Kakinuma model
is a system of second order partial differential equations and is classified into a system of
nonlinear dispersive equations. Since the hypersurface t = 0 is characteristic for the Isobe–
Kakinuma model, the initial data have to be restricted in an infinite dimensional manifold
for the existence of the solution. Under this necessary condition and a sign condition, which
corresponds to a generalized Rayleigh–Taylor sign condition for water waves, on the initial
data, we show that the initial value problem is solvable locally in time in Sobolev spaces.
We also discuss the linear dispersion relation to the model.

1 Introduction

In this paper we are concerned with the solvability locally in time of the initial value problem
to the Isobe–Kakinuma model for water waves. The water wave problem is mathematically
formulated as a free boundary problem for an irrotational flow of an inviscid and incompressible
fluid under the gravitational field. We consider the water filled in (n+1)-dimensional Euclidean
space. Let t be the time, x = (x1, . . . , xn) the horizontal spatial coordinates, and z the vertical
spatial coordinate. We assume that the water surface and the bottom are represented as z =
η(x, t) and z = −h+ b(x), respectively, where η = η(x, t) is the surface elevation, h is the mean
depth, and b = b(x) represents the bottom topography. J. C. Luke [16] showed that the water
wave problem has a variational structure, that is, he gave a Lagrangian in terms of the velocity
potential Φ = Φ(x, z, t) and the surface elevation η in the form

(1.1) LLuke(Φ, η) =

∫ η(x,t)

−h+b(x)

(

∂tΦ(x, z, t) +
1

2
|∇XΦ(x, z, t)|2 + gz

)

dz

and the action function

J (Φ, η) =

∫ t1

t0

∫

Ω
LLuke(Φ, η)dxdt,

where ∇X = (∇, ∂z) = (∂x1
, . . . , ∂xn , ∂z), g is the gravitational constant, and Ω is an appropriate

region in Rn. He showed that the corresponding Euler–Lagrange equation is exactly the basic
equations for water waves. M. Isobe [8, 9] and T. Kakinuma [10, 11, 12] approximated the
velocity potential Φ in Luke’s Lagrangian by

Φapp(x, z, t) =

N
∑

i=0

Ψi(z; b)φi(x, t),

where {Ψi} is an appropriate function system in the vertical coordinate z and may depend on
the bottom topography b and (φ0, φ1, . . . , φN ) are unknown variables, and derived an approxi-
mate Lagrangian L app(φ0, φ1, . . . , φN , η) = LLuke(Φ

app, η). The Isobe–Kakinuma model is the
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corresponding Euler–Lagrange equation for the approximated Lagrangian. Different choices of
the function system {Ψi} give different Isobe–Kakinuma models. In this paper we adopt the
approximation

(1.2) Φapp(x, z, t) =
N
∑

i=0

(z + h− b(x))piφi(x, t),

where p0, p1, . . . , pN are nonnegative integers satisfying 0 = p0 < p1 < · · · < pN . As we will see
later, a natural choice of these exponents is given by pi = 2i in the case of the flat bottom, that
is the case b(x) ≡ 0, and pi = i in the case of variable bottom topographies. In order to treat
the both cases at the same time, we consider such a general case. Plugging this into Luke’s
Lagrangian (1.1) we obtain an approximate Lagrangian

L app(φ0, φ1, . . . , φN , η)

=

N
∑

i=0

1

pi + 1
Hpi+1∂tφi

+
1

2

N
∑

i,j=0

(

1

pi + pj + 1
Hpi+pj+1∇φi · ∇φj −

2pi
pi + pj

Hpi+pjφi∇b · ∇φj

+
pipj

pi + pj − 1
Hpi+pj−1(1 + |∇b|2)φiφj

)

+
1

2
g(η2 − (−h+ b)2),

where H = H(x, t) is the depth of the water and is given by H(x, t) = h + η(x, t) − b(x).
Here and in what follows we use the notational convention 0/0 = 0. Then, the corresponding
Euler–Lagrange equation has the form

(1.3)



































































Hpi∂tη +
N
∑

j=0

{

∇ ·
(

1

pi + pj + 1
Hpi+pj+1∇φj −

pj
pi + pj

Hpi+pjφj∇b
)

+
pi

pi + pj
Hpi+pj∇b · ∇φj −

pipj
pi + pj − 1

Hpi+pj−1(1 + |∇b|2)φj
}

= 0

for i = 0, 1, . . . , N,
N
∑

i=0

Hpi∂tφi + gη +
1

2

N
∑

i,j=0

(

Hpi+pj∇φi · ∇φj − 2piH
pi+pj−1φi∇b · ∇φj

+ pipjH
pi+pj−2(1 + |∇b|2)φiφj

)

= 0.

This is the Isobe–Kakinuma model that we are going to consider in this paper. We consider the
initial value problem to this Isobe–Kakinuma model (1.3) under the initial conditions

(1.4) (η, φ0, . . . , φN ) = (η(0), φ0(0), . . . , φN(0)) at t = 0.

Unique solvability locally in time of the initial value problem (1.3)–(1.4) in the case N = 1 and
p1 = 2 and fundamental properties of the model are presented in Y. Murakami and T. Iguchi
[17]. Therefore, this paper is a generalization of their results.

One of the interesting features of the model is its linear dispersion relation. In the following
section we will consider the linearized equations of the model around the rest state in the case
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of the flat bottom and calculate the linear dispersion relation together with the phase speed
cIK(ξ) of the plane wave solution related to the wave vector ξ ∈ Rn. See (2.4). It is well known
that the phase speed cWW (ξ) of the plane wave solution to the linearized equations for water
waves is given by

cWW (ξ) = ±
√

gh
tanh(h|ξ|)

h|ξ| .

If we choose pi = 2i, then we can show that

(1.5) (cIK(ξ))2 = [2N/2N ] Padé approximant of (cWW (ξ))2,

which will be given in Theorem 2.2. Concerning Padé approximants we refer to G. A. Baker and
P. Graves-Morris [2]. This relation (1.5) implies that the Isobe–Kakinuma model gives a good
approximation of the basic equations for water waves in the shallow water regime h|ξ| ≪ 1. In
fact, T. Iguchi [7] gave a mathematically rigorous justification of the Isobe–Kakinuma model
in the case of the flat bottom with the choice N = 1 and p1 = 2. He showed that the Isobe–
Kakinuma model gives a higher order shallow water approximation for water waves with an error
of order O(δ6), where δ is a small nondimensional parameter defined as the ratio of the mean
depth h to the typical wave length. We note that the Green–Naghdi equations are known as a
higher order shallow water approximation for water waves with an error of order δ4. Therefore,
the Isobe–Kakinuma model gives a better approximation than the Green–Naghdi equations
in the shallow water regime. Concerning the shallow water approximations and the rigorous
justifications of the Green–Naghdi equations we refer to T. Iguchi [5, 6], B. Alvarez-Samaniego
and D. Lannes [1], Y. A. Li [15], H. Fujiwara and T. Iguchi [4], and D. Lannes [14]. The relation
(1.5) anticipates that the Isobe–Kakinuma model (1.3) in the case of the flat bottom with the
choice pi = 2i would give an approximation with an error of order O(δ4N+2). We postpone this
subject in the future research. If we choose pi = i, we do not have such a beautiful relation as
(1.5) any more. However, this choice of pi would be important in the case of the variable bottom
topographies and we still have a good approximation, which will be stated in Theorem 2.3.

The Isobe–Kakinuma model (1.3) is written in the matrix form as










Hp0 0 · · · 0
...

...
...

HpN 0 · · · 0
0 Hp0 · · · HpN











∂t











η
φ0
...
φN











+ {spatial derivatives} = 0.

Since the coefficient matrix always has the zero eigenvalue, the hypersurface t = 0 in the space-
time Rn×R is characteristic for the Isobe–Kakinuma model (1.3), so that the initial value prob-
lem (1.3)–(1.4) is not solvable in general. In fact, if the problem has a solution (η, φ0, . . . , φN ),
then by eliminating the time derivative ∂tη from the equations we see that the solution has to
satisfy the relation

Hpi

N
∑

j=0

∇ ·
(

1

pj + 1
Hpj+1∇φj −

pj
pj
Hpjφj∇b

)

=

N
∑

j=0

{

∇ ·
(

1

pi + pj + 1
Hpi+pj+1∇φj −

pj
pi + pj

Hpi+pjφj∇b
)

(1.6)

+
pi

pi + pj
Hpi+pj∇b · ∇φj −

pipj
pi + pj − 1

Hpi+pj−1(1 + |∇b|2)φj
}
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for i = 1, . . . , N . Therefore, as a necessary condition the initial date (η(0), φ0(0), . . . , φN(0)) and
the bottom topography b have to satisfy the relation (1.6) for the existence of the solution. As
we will see in Proposition 1.3, such initial data are constructed from the three scalar functions
b, η(0), and φ(0), where φ(0) is the initial data for the trace of the velocity potential on the water
surface.

The water wave problem has a conserved energy

EWW (t) =
ρ

2

∫

Rn

{∫ η(x,t)

−h+b(x)

∣

∣∇XΦ(x, z, t)
∣

∣

2
dz + g

(

η(x, t)
)2
}

dx,

where ρ is the constant density of the water. The first term in the right-hand side is the kinetic
energy and the second one is the potential energy due to the gravity. The Isobe–Kakinuma
model (1.3) has also a conserved energy

(1.7) E(t) =
ρ

2

∫

Rn

{
∫ η(x,t)

−h+b(x)

∣

∣∇XΦapp(x, z, t)
∣

∣

2
dz + g

(

η(x, t)
)2
}

dx,

where Φapp is given by (1.2). See (5.6) for more explicit expression of this energy function E(t).
Under a physically reasonable condition on the water surface η and the bottom topography b
we have an equivalence

E(t) ≃
∫

Rn

{

|∇φ0(x, t)|2 +
N
∑

i=1

(

|∇φi(x, t)|2 +
(

φi(x, t)
)2
)

+
(

η(x, t)
)2
}

dx.

Therefore, it is natural to work in the function space η,∇φ0 ∈ C([0, T ];Hm) and φ1, . . . , φN ∈
C([0, T ];Hm+1), where Hm =Wm,2(Rn) is the standard L2 Sobolev space of order m on Rn.

It is well known that the well-posedness of the initial value problem to the water wave
problem may be broken unless a generalized Rayleigh–Taylor sign condition − ∂P

∂N ≥ c0 > 0 on
the water surface is satisfied, where P is the pressure and N is the unit outward normal on the
water surface. For example, we refer to S. Wu [18, 19] and D. Lannes [13]. This sign condition
is equivalent to −∂zP ≥ c0 > 0 because the pressure P is equal to the constant atmospheric
pressure P0 on the water surface. By using Bernoulli’s law

∂tΦ+
1

2
|∇XΦ|2 + 1

ρ
(P − P0) + gz ≡ 0,

the sign condition can be written in term of our unknowns (η, φ0, . . . , φN ) and b as a(x, t) ≥
c0 > 0, where

a = g +
N
∑

i=0

piH
pi−1∂tφi(1.8)

+
1

2

N
∑

i,j=0

{

(pi + pj)H
pi+pj−1∇φi · ∇φj − 2pi(pi + pj − 1)Hpi+pj−2φi∇b · ∇φj

+ pipj(pi + pj − 2)Hpi+pj−3(1 + |∇b|2)φiφj
}

.

In fact, we have −1
ρ∂zP

app = g + ∂z∂tΦ
app + ∇X∂zΦ

app · ∇XΦapp = a on z = η(x, t). In this
paper, we assume that this sign condition is satisfied at the initial time t = 0.

Now, we are ready to give our main result in this paper.
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Theorem 1.1 Let g, h, c0,M0 be positive constants and m an integer such that m > n/2 + 1.
There exists a time T > 0 such that if the initial data (η(0), φ0(0), . . . , φN(0)) and b satisfy the

relation (1.6) and

(1.9)

{

‖η(0)‖m + ‖∇φ0(0)‖m + ‖(φ1(0), . . . , φN(0))‖m+1 + ‖b‖Wm+2,∞ ≤M0,

h+ η(0)(x)− b(x) ≥ c0, a(x, 0) ≥ c0 for x ∈ Rn,

then the initial value problem (1.3)–(1.4) has a unique solution (η, φ0, . . . , φN ) satisfying

η,∇φ0 ∈ C([0, T ];Hm), φ1, . . . , φN ∈ C([0, T ];Hm+1).

Moreover, the energy function E(t) defined by (1.7) is a conserved quantity.

Remark 1.2 (1) If we impose an additional condition φ(0) ∈ L2(Rn), then the solution satisfies
an additional integrability φ0 ∈ C([0, T ];Hm+1).

(2) In the sign condition a(x, 0) ≥ c0 > 0 we use the quantities ∂tφ1(x, 0), . . . , ∂tφN (x, 0)
which should be written in terms of the initial data. Although the hypersurface t = 0 is
characteristic for the Isobe–Kakinuma model (1.3), we can express ∂tφ1(x, 0), . . . , ∂tφN (x, 0) in
terms of the initial data and b. For details, we refer to Remark 4.1.

(3) Let φ be the trace of the velocity potential Φ on the water surface. In view of our
approximation (1.2), φ should be related to our variables approximately by the formula

(1.10) φ =

N
∑

i=0

Hpiφi.

Given the initial data η(0) and φ(0)(= φ|t=0) and the bottom topography b, the necessary con-
dition (1.6) and the relation (1.10) determine uniquely the initial data φ0(0), . . . , φN(0). In fact,
we have the following proposition.

Proposition 1.3 Let h, c0,M0 be positive constants and m an integer such that m > n/2 + 1.
There exists a positive C > 0 such that if the initial data (η(0), φ(0)) and b satisfy

{

‖η(0)‖m + ‖b‖Wm,∞ ≤M0, ‖∇φ(0)‖m−1 <∞,

h+ η(0)(x)− b(x) ≥ c0 for x ∈ Rn,

then the necessary condition (1.6) and the relation (1.10) determine uniquely the initial data

φ0(0), . . . , φN(0), which satisfy

‖∇φ0(0)‖m−1 + ‖(φ1(0), . . . , φN(0))‖m ≤ C‖∇φ(0)‖m−1.

The contents of this paper are as follows. In Section 2 we consider the linearized equations
of the Isobe–Kakinuma model around the rest state in the case of the flat bottom and analyze
the linear dispersion relation. Especially, we show the beautiful relation (1.5). In Section 3
we consider the linearized equations of the Isobe–Kakinuma model around an arbitrary flow,
reveal a hidden symmetric structure of the model, and give an idea to obtain an energy estimate
for the solution of the nonlinear equations. In Section 4 we transform the Isobe–Kakinuma
model to a system of equations for which the hypersurface t = 0 is noncharacteristic by using
the necessary condition (1.6) and construct the solution of the initial value problem to the
transformed system by using a standard parabolic regularization. In Section 5 we show that the
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solution constructed in Section 4 is the solution of the Isobe–Kakinuma model (1.3) if the initial
data satisfy the necessary condition (1.6).

Notation. We denote by Wm,p(Rn) the Lp Sobolev space of order m on Rn. The norms of the
Lebesgue space Lp(Rn) and the Sobolev space Hm =Wm,2(Rn) are denoted by | · |p and ‖ · ‖m,
respectively. The L2-norm and the L2-inner product are simply denoted by ‖ · ‖ and (·, ·)L2 ,
respectively. We put ∂t = ∂/∂t, ∂j = ∂/∂xj , and ∂z = ∂/∂z. For a multi-index α = (α1, . . . , αn)
we put ∂α = ∂α1

1 · · · ∂αn
n . [P,Q] = PQ−QP denotes the commutator. For a matrix A we denote

by AT the transpose of A. For a vector φ = (φ0, φ1, . . . , φN )T we denote the last N components
by φ′ = (φ1, . . . , φN )T. We use the notational convention 0/0 = 0.

2 Linear dispersion relation

In this section we consider the linearized equations of the Isobe–Kakinuma model (1.3) in the
case of the flat bottom. The linearized equations have the form

(2.1)



































∂tη +

N
∑

j=0

(

1

pi + pj + 1
hpj+1∆φj −

pipj
pi + pj − 1

hpj−1φj

)

= 0

for i = 0, 1, . . . , N,
N
∑

i=0

hpi∂tφi + gη = 0.

Putting ψ = (hp0φ0, . . . , h
pNφN )T we can rewrite the above equations as the following simple

matrix form
(

0 h1T

−h1 O

)

∂t

(

η
ψ

)

+

(

gh 0T

0 A(hD)

)(

η
ψ

)

= 0,

where 1 = (1, . . . , 1)T and A(hD) = −A0h
2∆+A1. The (N +1)× (N +1) matrices A0 and A1

are given by

A0 =

(

1

pi + pj + 1

)

0≤i,j≤N

, A1 =

(

pipj
pi + pj − 1

)

0≤i,j≤N

,

where we used a rather nonstandard notation for matrices. Since it might not cause any con-
fusion, we will continue to use this notation in the following. Therefore, the linear dispersion
relation is given by

det

(

gh
√
−1hω1T

−
√
−1hω1 A(hξ)

)

= 0,

where ξ ∈ Rn is the wave vector, ω ∈ C is the angular frequency, and A(hξ) = (h|ξ|)2A0 + A1.
We can rewrite the above dispersion relation as

(2.2) h2ω2 det Ã(hξ)− ghdetA(hξ) = 0.

Throughout this section we use the notation

Ã =

(

0 1T

−1 A

)

for a matrix A. Concerning the determinants in the dispersion relation (2.2) we have the
following proposition.
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Proposition 2.1 1. For any ξ ∈ Rn \ {0}, the symmetric matrix A(hξ) is positive.

2. There exists c0 > 0 such that for any ξ ∈ Rn we have det Ã(hξ) ≥ c0.

3. (h|ξ|)−2 detA(hξ) is a polynomial in (h|ξ|)2 of degree N and the coefficient of (h|ξ|)2N is

detA0.

4. det Ã(hξ) is a polynomial in (h|ξ|)2 of degree N and the coefficient of (h|ξ|)2N is det Ã0.

Proof. For any ψ = (ψ0, . . . , ψN )T ∈ RN+1 we see that

(A(hξ)ψ) · ψ =

∫ 1

0

{

(h|ξ|)2
( N
∑

i=0

ψiz
pi

)2

+

( N
∑

i=1

piψiz
pi−1

)2}

dz(2.3)

≃ (h|ξ|)2|ψ|2 + |ψ′|2,

where ψ′ = (ψ1, . . . , ψN )T. This shows a positivity of A(hξ) for ξ 6= 0.
Let ξ 6= 0 and C(hξ) = (Cij(hξ))0≤i,j≤N be the cofactor matrix of A(hξ). Since A(hξ) is

symmetric, C(hξ) is also symmetric and we have C(hξ) = (detA(hξ))A(hξ)−1. Then, expanding
the first row of the matrix Ã(hξ) we see that

det Ã(hξ) =
N
∑

i,j=0

Cij(hξ) = (C(hξ)1) · 1 = (detA(hξ))(A(hξ)−11) · 1,

which implies the positivity of det Ã(hξ) due to the positivity of A(hξ). We proceed to consider
the case ξ = 0. It holds that Ã(0) = Ã1 and

A1 =

(

0 0T

0 A′
1

)

, A′
1 =

(

pipj
pi + pj − 1

)

1≤i,j≤N

.

By the similar calculation as (2.3) we see the positivity of the symmetric matrix A′
1. Moreover,

we have det Ã(0) = detA′
1 > 0. Therefore, we obtain the strict positivity of det Ã(hξ).

It is easy to see that detA(hξ) is a polynomial in (h|ξ|)2 of degree less than or equal to N+1
and that the coefficient of (h|ξ|)2(N+1) is detA0. By the similar calculation as (2.3) we see the
positivity of the symmetric matrix A0 so that the degree is in fact N + 1. Moreover, A(0) has
the zero eigenvalue with an eigenvector (1, 0, . . . , 0)T, so that detA(0) = 0. Therefore, the term
of degree 0 in detA(hξ) vanishes so that (h|ξ|)−2 detA(hξ) is a polynomial in (h|ξ|)2 of degree
N . Similarly we see that det Ã(hξ) is a polynomial in (h|ξ|)2 of degree less than or equal to N
and that the coefficient of (h|ξ|)2N is det Ã0, which is also positive, so that the degree is in fact
N . ✷

Thanks of this proposition and the dispersion relation (2.2), the linearized system (2.1) is
classified into the dispersive system, so that the Isobe–Kakinuma model is a nonlinear dispersive
system of equations. Therefore, we can define the phase speed cIK(ξ) of the plane wave solution
to (2.1) related to the wave vector ξ ∈ Rn by

(2.4) cIK(ξ) = ±
√

gh
(h|ξ|)−2 detA(hξ)

det Ã(hξ)
.

It follows from Proposition 2.1 that

lim
|ξ|→+∞

cIK(ξ) = ±
√

gh
detA0

det Ã0

,

7



which is not zero. It is not consistent with the linear water waves: lim|ξ|→+∞ cWW (ξ) = 0. This
implies that the Isobe–Kakinuma model (1.3) cannot give a good approximation to the water
waves in deep water. However, as is shown by the following theorems the Isobe–Kakinuma model
gives a very precise approximation in the shallow water regime h|ξ| ≪ 1.

Theorem 2.2 If we choose pi = 2i (i = 0, 1, . . . , N), then (cIK(ξ))2 becomes the [2N/2N ] Padé
approximant of (cWW (ξ))2. More precisely, there exists a positive constant C depending only on

N such that for any ξ ∈ Rn and any h, g > 0 we have

∣

∣

∣

∣

(

cWW (ξ)√
gh

)2

−
(

cIK(ξ)√
gh

)2∣
∣

∣

∣

≤ C(h|ξ|)4N+2.

Proof. Without loss of generality it is sufficient to consider the case h = 1 and to show that

(2.5) |ξ| tanh |ξ| = detA(ξ)

det Ã(ξ)
+O(|ξ|4N+4) as |ξ| → 0.

Let Φ̂(z) = 1
cosh |ξ| cosh(|ξ|z). In view of Φ̂′′(z) = |ξ|2Φ̂(z), Φ̂(1) = 1, Φ̂′(1) = |ξ| tanh |ξ|, and

Φ̂′(0) = 0, we have

(2.6) |ξ| tanh |ξ| =
∫ 1

0

{

|ξ|2(Φ̂(z))2 + (Φ̂′(z))2
}

dz.

By the Taylor series expansion of cosh(|ξ|z) we have

Φ̂(z) =

2N
∑

i=0

ψ̂iz
2i +O(|ξ|4N+2), Φ̂′(z) =

2N
∑

i=0

2iψ̂iz
2i−1 +O(|ξ|4N+2)

uniformly with respect to z ∈ [0, 1], where

(2.7) ψ̂i =
|ξ|2i

(2i)! cosh |ξ| , i = 0, 1, . . . .

Plugging these expansions into (2.6) we see that

|ξ| tanh |ξ| =
N
∑

i,j=0

(

1

2(i+ j) + 1
|ξ|2 + 4ij

2(i+ j)− 1

)

ψ̂iψ̂j + 2R+O(|ξ|4N+4),

where

R =

N−1
∑

i=0

2N
∑

j=N+1

|ξ|2
2(i+ j) + 1

ψ̂iψ̂j +

N
∑

i=0

2N
∑

j=N+1

4ij

2(i+ j)− 1
ψ̂iψ̂j

=

N−1
∑

i=0

2N
∑

j=N+1

( |ξ|2
2(i+ j) + 1

ψ̂iψ̂j +
4(i+ 1)j

2(i + j) + 1
ψ̂i+1ψ̂j

)

=
|ξ|

cosh2 |ξ|

N−1
∑

i=0

2N
∑

j=N+1

|ξ|2i+1

(2i+ 1)!

|ξ|2j
(2j)!

=
|ξ| tanh |ξ|
cosh |ξ|

∞
∑

j=N+1

|ξ|2j
(2j)!

+O(|ξ|4N+4).
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Here we used the explicit form (2.7) of ψ̂i. Therefore, we obtain

(|ξ| tanh |ξ|)
(

1− 2

cosh |ξ|

∞
∑

j=N+1

|ξ|2j
(2j)!

)

(2.8)

=

N
∑

i,j=0

(

1

2(i+ j) + 1
|ξ|2 + 4ij

2(i + j)− 1

)

ψ̂iψ̂j +O(|ξ|4N+4).

Up to now we did not use the specific choice of pi. From now on, we use the advantage of
the choice pi = 2i. Then, we can rewrite the above identity (2.8) as

(2.9) (|ξ| tanh |ξ|)
(

1− 2

cosh |ξ|

∞
∑

j=N+1

|ξ|2j
(2j)!

)

= (A(ξ)ψ̂) · ψ̂ +O(|ξ|4N+4),

where ψ̂ = (ψ̂0, . . . , ψ̂N )T. On the other hand, we consider the following equations for η̂ and
φ̂ = (φ̂0, . . . , φ̂N )T.

(2.10)

(

0 1T

−1 A(ξ)

)(

η̂

φ̂

)

=

(

1
0

)

.

Since the coefficient matrix Ã(ξ) is nonsingular, we have a unique solution (η̂, φ̂) of these equa-
tions. Moreover, we see that

(2.11) (A(ξ)φ̂) · φ̂ = η̂ =
detA(ξ)

det Ã(ξ)
.

In view of this and (2.9), it is sufficient to compare ψ̂ with φ̂. Let A(ξ) = (a0, . . . ,aN ). Then,
by using the explicit form (2.7) of ψ̂i we see that

ai · ψ̂ =
1

cosh |ξ|

(N−1
∑

j=0

|ξ|2j+2

(2j + 1)!
+

1

2(i+N) + 1

|ξ|2N+2

(2N)!

)

for i = 0, 1, . . . , N , and that

1 · ψ̂ =
1

cosh |ξ|

N
∑

i=0

|ξ|2i
(2i)!

= 1 +O(|ξ|2N+2).

Therefore, if we put ζ̂ = 1
cosh |ξ|

∑N−1
j=0

|ξ|2j+2

(2j+1)! , then we have

(2.12)

(

0 1T

−1 A(ξ)

)(

ζ̂

ψ̂

)

=

(

1
0

)

+O(|ξ|2N+2).

By Proposition 2.1 the determinant of the coefficient matrix is strictly positive, so that this
together with (2.10) implies ψ̂ = φ̂+O(|ξ|2N+2). Moreover, it holds that

(A(ξ)φ̂) · ψ̂ =
detA(ξ)

det Ã(ξ)

1

cosh |ξ|

N
∑

i=0

|ξ|2i
(2i)!

,

9



which together with (2.11) implies

(A(ξ)φ̂) · (φ̂− ψ̂) = detA(ξ)

det Ã(ξ)

1

cosh |ξ|

∞
∑

i=N+1

|ξ|2i
(2i)!

,

so that

(A(ξ)ψ̂) · ψ̂ = (A(ξ)φ̂) · φ̂− 2(A(ξ)φ̂) · (φ̂− ψ̂) + (A(ξ)(φ̂ − ψ̂)) · (φ̂− ψ̂)(2.13)

=
detA(ξ)

det Ã(ξ)

(

1− 2

cosh |ξ|

∞
∑

i=N+1

|ξ|2i
(2i)!

)

+O(|ξ|4N+4).

Plugging this into (2.9) we obtain the desired relation (2.5). ✷

As was shown by J. Boussinesq [3], in the case of the flat bottom the velocity potential Φ for
the water wave problem can be expanded in a Taylor series with respect to the vertical spatial
variable z around the bottom z = −h as

Φ(x, z, t) =

∞
∑

i=0

(z + h)2i

(2i)!
(−∆)iφ0(x, t),

where φ0 is the trace of the velocity potential Φ on the bottom. Therefore, it is natural to choose
pi = 2i in such a case. However, in the case of variable bottom topographies the Taylor series
with respect to z around the bottom z = −h + b(x) contains terms of odd degree too, so that
the choice pi = i would be important to such cases. If we choose pi = i, we do not have such a
beautiful result as Theorem 2.2 but we still have the following theorem, which asserts that the
terms of odd degree in the approximation of the velocity potential Φ do not affect the precision
of the linear dispersion relation in the shallow water regime h|ξ| ≪ 1.

Theorem 2.3 If we choose pi = i (i = 0, 1, . . . , N), then for any ξ ∈ Rn and any h, g > 0 we

have
∣

∣

∣

∣

(

cWW (ξ)√
gh

)2

−
(

cIK(ξ)√
gh

)2∣
∣

∣

∣

≤ C(h|ξ|)4[N/2]+2,

where C is a positive constant depending only on N and [N/2] is the integer part of N/2.

Proof. We will give the proof in the case of even integer N . As in the proof of the previous
theorem, it is sufficient to show that

(2.14) |ξ| tanh |ξ| = detA(ξ)

det Ã(ξ)
+O(|ξ|4[N/2]+4) as |ξ| → 0.

In place of (2.7), we define ψ̂i by

ψ̂i =







|ξ|i
i! cosh |ξ| if i is even,

0 if i is odd

and put ψ̂ = (ψ̂0, . . . , ψ̂N )T. Then, we have

(A(ξ)ψ̂) · ψ̂ =

[N/2]
∑

i,j=0

(

1

2(i+ j) + 1
|ξ|2 + 4ij

2(i+ j)− 1

)

ψ̂2iψ̂2j ,

10



so that we can rewrite the identity (2.8) as

(2.15) (|ξ| tanh |ξ|)
(

1− 2

cosh |ξ|

∞
∑

j=[N/2]+1

|ξ|2j
(2j)!

)

= (A(ξ)ψ̂) · ψ̂ +O(|ξ|4[N/2]+4).

Let (η̂, φ̂) be the solution of (2.10) as before. Then, we have the identity (2.11). If we put

ζ̂ = 1
cosh |ξ|

∑[N/2]−1
j=0

|ξ|2j+2

(2j+1)! , then in place of (2.12) we have

(

0 1T

−1 A(ξ)

)(

ζ̂

ψ̂

)

=

(

1
0

)

+O(|ξ|2[N/2]+2).

This together with (2.10) implies ψ̂ = φ̂+O(|ξ|2[N/2]+2). Therefore, in place of (2.13) we have

(A(ξ)ψ̂) · ψ̂ =
detA(ξ)

det Ã(ξ)

(

1− 2

cosh |ξ|

∞
∑

i=[N/2]+1

|ξ|2i
(2i)!

)

+O(|ξ|4[N/2]+4).

Plugging this into (2.15) we obtain the desired relation (2.14). The case of odd integer N can
be proved in the same way, so we omit it. ✷

3 Analysis of a linearized system

In this section we consider the linearized equations of the Isobe–Kakinuma model (1.3) around
an arbitrary flow (η, φ0, . . . , φN ), which is assumed to be sufficiently smooth. The hypersurface
t = 0 is still characteristic for the linearized equations. We will transform the equations to a
symmetric positive system of partial differential equations for which the hypersurface t = 0 is
noncharacteristic and give an idea to derive a priori estimates for the solution to the nonlinear
equations.

We introduce second order differential operators Lij = Lij(H, b) (i, j = 0, 1, . . . , N) depend-
ing on the water depth H and the bottom topography b by

Lijψj = −∇ ·
(

1

pi + pj + 1
Hpi+pj+1∇ψj −

pj
pi + pj

Hpi+pjψj∇b
)

(3.1)

− pi
pi + pj

Hpi+pj∇b · ∇ψj +
pipj

pi + pj − 1
Hpi+pj−1(1 + |∇b|2)ψj .

Then, we have L∗
ij = Lji, where L

∗
ij is the adjoint operator of Lij in L2(Rn). In addition to the

function a defined by (1.8) we introduce the functions u and w by

(3.2) u =

N
∑

i=0

(Hpi∇φi − piH
pi−1φi∇b), w =

N
∑

i=0

piH
pi−1φi.

Since u = ∇Φapp|z=η and w = ∂zΦ
app|z=η, where Φapp is the approximate velocity potential

defined by (1.2), u and w represent approximately the horizontal and the vertical components
of the velocity field on the water surface, respectively. Then, the Isobe–Kakinuma model (1.3)
can be written simply as



























Hpi∂tη −
N
∑

j=0

Lijφj = 0 for i = 0, 1, . . . , N,

N
∑

j=0

Hpj∂tφj + gη +
1

2
(|u|2 + w2) = 0.

11



Now, let us linearize the above equations around (η, φ0, . . . , φN ). We denote by (ζ, ψ0, . . . , ψN )
the variation from (η, φ0, . . . , φN ). After a tedious but straightforward calculation we obtain the
linearized equations

(3.3)



































Hpi(∂tζ +∇ · (uζ)) + piH
pi−1(∂tη + u · ∇η − w)ζ −

N
∑

j=0

Lijψj = fi

for i = 0, 1, . . . , N,
N
∑

j=0

{

Hpj (∂tψj + u · ∇ψj)− pjH
pj−1(u · ∇b− w)ψj

}

+ aζ = fN+1,

where f0, . . . , fN+1 are given functions.
The hypersurface t = 0 is still characteristic for these linearized equations. In fact, by

eliminating the time derivative ∂tζ from these equations we have

N
∑

j=0

(Lij −HpiL0j)ψj = piH
pi−1(∂tη + u · ∇η − w)ζ +Hpif0 − fi

for i = 1, . . . , N . Now, we differentiate this with respect to the time t and use the first equation
in (3.3) to eliminate the time derivative ∂tζ. Then, we obtain

N
∑

j=0

(Lij −HpiL0j)∂tψj = piH
pi−1(∂tη + u · ∇η − w)

( N
∑

j=0

L0jψj −∇ · (uζ)
)

(3.4)

−
N
∑

j=0

[∂t, Lij −HpiL0j ]ψj + [∂t, piH
pi−1(∂tη + u · ∇η − w)]ζ

+ ∂t(H
pif0 − fi) + piH

pi−1(∂tη + u · ∇η − w)f0.

On the other hand, it follows from the second equation in (3.3) that

(3.5)

N
∑

j=0

Hpj∂tψj = −
N
∑

j=0

{

Hpju · ∇ψj − pjH
pj−1(u · ∇b− w)ψj

}

− aζ + fN+1.

Here we note that the right hand sides of (3.4) and (3.5) do not include any time derivatives
of (ζ, ψ0, . . . , ψN ). In view of these equations we introduce linear operators Li = Li(H, b)
(i = 0, 1, . . . , N) depending on the water depth H and the bottom topography b and acting on
ϕ = (ϕ0, . . . , ϕN )T by

(3.6) L0ϕ =

N
∑

j=0

Hpjϕj , Liϕ =

N
∑

j=0

(Lij −HpiL0j)ϕj for i = 1, . . . , N,

and put Lϕ = (L0ϕ, . . . ,LNϕ)
T. For a given F = (F0, . . . , FN )T we consider the equation

(3.7) Lϕ = F .

Once we show the solvability of ϕ of this equation, we could express the time derivatives ∂tψi

(i = 0, 1, . . . , N) in terms of the spatial derivatives so that we could avoid the difficulty arising
from the fact that the hypersurface t = 0 is characteristic for the linearized equations (3.3).
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Let ϕ be a solution of (3.7). It follows from the first component of (3.7) that

(3.8) ϕ0 = F0 −
N
∑

j=1

Hpjϕj .

Plugging this into the other components of (3.7) we obtain

(3.9) Piϕ
′ = Fi − (Li0 −HpiL00)F0 for i = 1, . . . , N,

where ϕ′ = (ϕ1, . . . , ϕN )T and Pj = Pj(H, b) (j = 1, . . . , N) are second order differential
operators defined by

(3.10) Piϕ
′ =

N
∑

j=1

{

(Lij −HpiL0j)ϕj − (Li0 −HpiL00)(H
pjϕj)

}

.

We further introduce the operator Pϕ′ = (P1ϕ
′, . . . , PNϕ

′)T. Since L∗
ij = Lji, we see easily that

P is symmetric in L2(Rn). Moreover, P is positive in L2(Rn) as shown in the following lemma.

Lemma 3.1 Let c0, c1 be positive constants. There exists a positive constant C = C(c0, c1) > 0
depending only on c0 and c1 such that if H,∇b ∈ L∞(Rn) satisfy H(x) ≥ c0 and |∇b(x)| ≤ c1,
then we have

(Pϕ′,ϕ′)L2 ≥ C−1‖ϕ′‖21.

Proof. Introducing ϕ0 = −∑N
j=1H

pjϕj , we have

(3.11) (Pϕ′,ϕ′)L2 =

N
∑

i,j=0

(Lijϕj , ϕi)L2 .

Although this equality can be derived by direct calculation, it is also derived by the following
argument which help us to understand the structure of the equations. Put Pϕ′ = (G1, . . . , GN )T.
Then, we have

N
∑

j=0

Hpjϕj = 0,

N
∑

j=0

(Lij −HpiL0j)ϕj = Gi for i = 1, . . . , N.

If we further introduce ζ =
∑N

j=0 L0jϕj , then the above equations can be written as

(

0 lT

−l L

)(

ζ
ϕ

)

=

(

0
G

)

,

where ϕ = (ϕ0, . . . , ϕN )T, G = (0, G1, . . . , GN )T, L = (Lij)0≤i,j≤N , and

(3.12) l = l(H) = (Hp0 , . . . ,HpN )T.

By taking the L2-inner product of the above equation with (ζ,ϕT)T, we obtain (Lϕ,ϕ)L2 =
(G,ϕ)L2 = (Pϕ′,ϕ′)L2 , which implies (3.11).
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By direct calculation we have

I :=

∫

Rn

dx

∫ H

0

{∣

∣

∣

∣

N
∑

i=0

(zpi∇ϕi − piz
pi−1ϕi∇b)

∣

∣

∣

∣

2

+

( N
∑

i=0

piz
pi−1ϕi

)2}

dz(3.13)

=

N
∑

i,j=0

(Lijϕi, ϕj)L2 .

In the case pi = 2i (i = 0, 1, . . . , N), {zpi , zpi−1}0≤i≤N are linearly independent so that

I ≃
∫

Rn

dx

∫ H

0

N
∑

i=0

{

(

z2pi |∇ϕi|2 + p2i z
2pi−2|∇b|2ϕ2

i

)

+ p2i z
2pi−2ϕ2

i

}

dz

≃
∫

Rn

N
∑

i=0

{

H2pi+1|∇ϕi|2 + p2iH
2pi−1(1 + |∇b|2)ϕ2

i

}

dx,

which together with (3.11) and (3.13) implies the desired estimate in that case. We remark that
the constant C can be taken independent of c1. In the case pi = i (i = 0, 1, . . . , N), we see that

I =

∫

Rn

dx

∫ H

0

{∣

∣

∣

∣

N−1
∑

i=0

zi
(

∇ϕi − (i+ 1)ϕi+1∇b
)

+ zN∇ϕN

∣

∣

∣

∣

2

+

( N
∑

i=1

izi−1ϕi

)2}

dz

≃
∫

Rn

{N−1
∑

i=0

H2i+1|∇ϕi − (i+ 1)ϕi+1∇b|2 +HN+1|∇ϕN |2 +
N
∑

i=1

H2i−1ϕ2
i

}

dz

&

N−1
∑

i=0

‖∇ϕi − (i+ 1)ϕi+1∇b‖2 + ‖∇ϕN‖2 +
N
∑

i=1

‖ϕi‖2

which together with (3.11) and (3.13) implies the desired estimate in that case. The other cases
can be treated in the same way, so we omit it. ✷

By this lemma, the explicit expression (3.10) of the operator P (see also (3.1)), and the
standard theory of elliptic partial differential equations, we can obtain the following lemma.

Lemma 3.2 Let h, c0,M be positive constants and m an integer such that m > n/2+ 1. There

exists a positive constant C = C(h, c0,M) such that if η and b satisfy
{

‖η‖m + ‖b‖Wm,∞ ≤M,

c0 ≤ H(x) = h+ η(x)− b(x) for x ∈ Rn,

then for 1 ≤ k ≤ m we have

‖P−1G′‖k ≤ C‖G′‖k−2.

We proceed to consider equation (3.7). Thanks of this lemma, we see that for a given F
there exists a unique solution ϕ′ = (ϕ1, . . . , ϕN )T of (3.9). If we define ϕ0 by (3.8), then
ϕ = (ϕ0, . . . , ϕN )T is a solution of (3.7). More precisely, we have the following lemma.

Lemma 3.3 Under the hypothesis of Lemma 3.2, for any F = (F0, . . . , FN )T satisfying ∇F0 ∈
Hk−1 and (F1, . . . , FN ) ∈ Hk−2 with 1 ≤ k ≤ m there exists a unique solution ϕ = (ϕ0, . . . , ϕN )T

of (3.7) satisfying

‖∇ϕ0‖k−1 + ‖(ϕ1, . . . , ϕN )‖k ≤ C(‖∇F0‖k−1 + ‖(F1, . . . , FN )‖k−2),
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where C = C(h, c0,M) > 0. If, in addition, F0 ∈ L2(Rn), then we have

‖ϕ‖k ≤ C(‖F0‖k + ‖(F1, . . . , FN )‖k−2).

Now, we have established the solvability of ϕ to equation (3.7). We go back to consider
the linearized equations in (3.3). In the following of this section we denote lower order terms
and terms related with the given functions f0, . . . , fN+1 by the same symbol LOT , which may
change from line to line. We introduce a symmetric matrix A(H) depending on the water depth
H by

(3.14) A(H) = (aij(H))0≤i,j≤N , aij(H) =
1

pi + pj + 1
Hpi+pj+1.

We also use a matrix Ã(H) defined by

(3.15) Ã(H) =

(

0 l(H)T

−l(H) A(H)

)

,

where l(H) is defined by (3.12). Since Lij(H, b) = −aij(H)∆ + LOT , it follows from (3.4) and
(3.5) that



























N
∑

j=0

(aij(H)−Hpia0j(H))∆∂tψj = ∇ · (LOT ) + LOT for i = 1, . . . , N,

N
∑

j=0

Hpj∆∂tψj +

N
∑

j=0

Hpj(u · ∇)∆ψj +∆(aζ) = ∇ · (LOT ) + LOT.

We can rewrite these equations in a matrix form as

Ã(H)

(
∑N

j=0 a0j(H)∆∂tψj

∆∂tψ

)

+

(
∑N

j=0H
pj(u · ∇)∆ψj +∆(aζ)

0

)

(3.16)

= ∇ · (LOT ) + LOT,

where ψ = (ψ0, . . . , ψN )T. Since det Ã(H) = H2
∑N

i=0 pi+N det Ã0, where Ã0 is the matrix defined
in Section 2, the matrix Ã(H) is nonsingular and its inverse matrix can be written as

(3.17) Ã(H)−1 =

(

q(H) q(H)T

−q(H) Q(H)

)

with a symmetric matrix Q(H). If it causes no confusion, we omit the dependence of H in the
notation. Then, it holds that

(3.18) l · q = −1, Aq = −ql, q =
detA

det Ã
= H

detA0

det Ã0

.

Therefore, it follows from (3.16) that

(3.19) −A∆∂tψ = ql
{

lT(u · ∇)∆ψ +∆(aζ)
}

+∇ · (LOT ) + LOT.

On the other hand, it follows from the first equation in (3.3) that

l(∂tζ + u · ∇ζ) +A∆ψ = LOT.
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Taking the Euclidean inner product of this equation with −aq and using the relations in (3.18)
we obtain

a(∂tζ + u · ∇ζ) + a∆(qlTψ) = LOT.

We can write this equation and (3.19) in a matrix form as

(

a 0T

0 −A∆

)

∂t

(

ζ
ψ

)

+

(

au · ∇ a∆(qlT · )
−ql∆(a · ) −qllT(u · ∇)∆

)(

ζ
ψ

)

(3.20)

=

(

LOT
∇ · (LOT ) + LOT

)

.

Here the operator in the second term in the left-hand side is skew-symmetric in L2(Rn) modulo
lower order terms. Since the matrix A = A(H) can be written as

A(H) = Hdiag(Hp0 , . . . ,HpN )A0diag(H
p0 , . . . ,HpN )

and we have shown the positivity of the matrix A0 in Proposition 2.1, A(H) is strictly positive
under the strict positivity of the water depth H. Therefore, under the sign condition a > 0
(3.20) forms a symmetric positive system, so that the corresponding energy function is defined
by

E(ζ,ψ) = (aζ, ζ)L2 +

n
∑

k=1

(A∂kψ, ∂kψ)L2 + ‖ψ′‖2.

In the following sections we use this symmetric structure of the Isobe–Kakinuma model to
construct the solution and derive an energy estimate.

4 Construction of the solution to a reduced system

In this section we transform the Isobe–Kakinuma model (1.3) into a system of equations for
which the hypersurface t = 0 is noncharacteristic by using the necessary condition (1.6) for
the existence of the solution and construct the solution of the initial value problem to the
transformed system by using a standard parabolic regularization.

By using the notation introduced in the previous section, the Isobe–Kakinuma model (1.3)
can be written simply as

(4.1)



























Hpi∂tη −
N
∑

j=0

Lijφj = 0 for i = 0, 1, . . . , N,

N
∑

j=0

Hpj∂tφj = F0,

where

(4.2) F0 = −gη − 1

2
(|u|2 + w2).

The necessary condition (1.6) can also be written simply as

N
∑

j=0

(Lij −HpiL0j)φj = 0 for i = 1, . . . , N.
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We first derive an evolution equation for φ = (φ0, . . . , φN )T. Since the left-hand side of the
above equation does not contain the term ∇H, differentiating this with respect to the time t we
obtain

N
∑

j=0

(Lij −HpiL0j)∂tφj = fi∂tη for i = 1, . . . , N,

where

fi = − ∂

∂H

N
∑

j=0

(Lij −HpiL0j)φj(4.3)

= piH
pi−1

{

∇b · u− w −
N
∑

j=0

(

1

pj + 1
Hpj+1∆φj −

pj
pj
Hpj∇ · (φj∇b)

)}

for i = 1, . . . , N . We use the first equation in (4.1) with i = 0 to remove the time derivative ∂tη
from the above equation and obtain

(4.4)
N
∑

j=0

(Lij −HpiL0j)∂tφj = Fi for i = 1, . . . , N,

where

(4.5) Fi = fi

N
∑

j=0

L0jφj for i = 1, . . . , N.

By using the operator L introduced by (3.6), the second equation in (4.1) and (4.4) constitute
the equation

L ∂tφ = F ,

where F = (F0, . . . , FN )T. This is the evolution equation for φ. We proceed to derive an
appropriate evolution equation for η. Let q = (q0, . . . , qN )T = (q0(H), . . . , qN (H))T be the
rational functions of H defined by (3.17). In view of the first relation in (3.18) and the arguments
in the previous section, we multiply the first equation in (4.1) by qi and adding the resulting
equations over i = 0, 1, . . . , N to obtain

∂tη = FN+1,

where

(4.6) FN+1 = −
N
∑

i,j=0

qiLijφj.

To summarize we have reduced the Isobe–Kakinuma model (4.1) to

(4.7)

{

L ∂tφ = F ,
∂tη = FN+1.

We note that F and FN+1 do not contain any time derivatives and that L is invertible thanks
to Lemma 3.3. Therefore, the hypersurface t = 0 is not characteristic any more for the above
reduced equations. In the rest of this section we consider the initial value problem to (4.7) under
the initial conditions

(4.8) (η, φ0, . . . , φN ) = (η(0), φ0(0), . . . , φN(0)) at t = 0.
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Remark 4.1 As mentioned in Remark 1.2 (2), we have to express ∂tφ1(x, 0), . . . , ∂tφN (x, 0) in
terms of the initial data and b. Such an expression is given by ∂tφ(·, 0) = L −1F |t=0.

We will construct the solution to the initial value problem for the reduced system (4.7)–(4.8)
by a standard parabolic regularization of the equations, that is,

(4.9)

{

L (∂tφ− ε∆φ) = F ,
∂tη − ε∆η = FN+1,

where ε > 0 is a small regularized parameter. By the definitions (4.2), (4.5), and (4.6) of
F = (F0, . . . , FN )T and FN+1 (see also (4.3), (3.1), and (3.2)) we see that

(4.10)

{

F0 = F0(η,H,φ
′,∇φ,∇b),

Fi = Fi(H,∇H,φ′,∇φ,∆φ,∇b,∆b) for i = 1, . . . , N + 1,

where φ′ = (φ1, . . . , φN )T. Therefore, thanks to Lemma 3.3, L −1F behaves as if it is a function
of (η,H,φ′,∇φ,∇b), so that we can show the following lemma.

Lemma 4.2 Let g, h, c0,M0 be positive constants and m an integer such that m > n/2 + 1.
Suppose that the initial data (η(0), φ0(0), . . . , φN(0)) and b satisfy the conditions in (1.9), then for

any ε > 0 there exists a maximal existence time Tε > 0 such that the initial value problem (4.9)
and (4.8) has a unique solution (ηε,φε) satisfying

ηε,∇φε0 ∈ C([0, Tε);H
m), φε1, . . . , φ

ε
N ∈ C([0, Tε);H

m+1).

We proceed to derive uniform estimates of the solution (ηε,φε) with respect to the regularized
parameter ε ∈ (0, 1] for a time interval [0, T ] independent of ε. To this end, we make use of a
good symmetric structure of the Isobe–Kakinuma model discussed in the previous section. In
order to simplify the notation we write (η,φ) in place of (ηε,φε) in the following. Concerning
the generalized Rayleigh–Taylor sign condition, a regularized version of the function a defined
by (1.8) is given by

aε = g +
N
∑

i=0

piH
pi−1(∂tφi − ε∆φi)(4.11)

+
1

2

N
∑

i,j=0

{

(pi + pj)H
pi+pj−1∇φi · ∇φj − 2pi(pi + pj − 1)Hpi+pj−2φi∇b · ∇φj

+ pipj(pi + pj − 2)Hpi+pj−3(1 + |∇b|2)φiφj
}

.

Here, we have ∂tφ − ε∆φ = L −1F so that aε(x, 0) = a(x, 0). See also Remark 4.1. Therefore,
by the sign condition in (1.9) we have

(4.12) aε(x, 0) ≥ c0 for x ∈ Rn.

We will derive a regularized version of the symmetric positive system (3.20) for (η,φ). First,
we derive an evolution equation for φ. The first equation in (4.9) is written as

(4.13)

{

l · (∂tφ− ε∆φ) = F0,

Li(∂tφ− ε∆φ) = Fi for i = 1, . . . , N,
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where l = l(H) = (Hp0 , . . . ,HpN )T. Here we remark that Fi (i = 1, . . . , N) is a correction of
lower order terms and its explicit form has no importance whereas F0 contains principal terms
and we have to treat it carefully. In other words, the second equation in (4.13) is quasilinear
whereas the first one is fully nonlinear. Applying ∆ to the first equation in (4.13) we have

l(H) ·∆(∂tφ− ε∆φ) + (l(1)(H) · (∂tφ− ε∆φ))∆H −∆F0

= −([∆, l(H)]− l(1)(H)(∆H)) · L −1F ,

where l(1)(H) = (0, p1H
p1−1, . . . , pNH

pN−1)T is the derivative of l(H) with respect to H. Here
we see that

−∆F0 = g∆η + u ·∆u+ w∆w +
1

2

{

(∆(u · u)− 2u ·∆u) + (∆(w2)− 2w∆w)
}

,

where

∆u =

N
∑

i=0

{

Hpi∇∆φi + pi(H
pi−1∇φi − (pi − 1)Hpi−2φi∇b)(∆η)

+
(

[∆,Hpi ]− piH
pi−1(∆H)− piH

pi−1(∆b)
)

∇φi − piH
pi−1∆(φi∇b)

− pi
(

[∆,Hpi−1]− (pi − 1)Hpi−2(∆H)− (pi − 1)Hpi−2(∆b)
)

(φi∇b)
}

,

∆w =

N
∑

i=0

{

pi(pi − 1)Hpi−2φi∆η + piH
pi−1∆φi

+ pi
(

[∆,Hpi−1]− (pi − 1)Hpi−2(∆H)− (pi − 1)Hpi−2(∆b)
)

φi
}

.

Therefore, we obtain

(4.14) l(H) ·∆(∂tφ− ε∆φ) + l(H) · (u · ∇)∆φ+ aε∆η = G00,

where

G00 = −([∆, l(H)] − l(1)(H)(∆H)) · L −1F + (l(1)(H) · (L −1F ))∆b(4.15)

− 1

2

{

(∆(u · u)− 2u ·∆u) + (∆(w2)− 2w∆w)
}

− u ·
N
∑

i=0

{(

[∆,Hpi ]− piH
pi−1(∆H)− piH

pi−1(∆b)
)

∇φi − piH
pi−1∆(φi∇b)

− pi
(

[∆,Hpi−1]− (pi − 1)Hpi−2(∆H)− (pi − 1)Hpi−2(∆b)
)

(φi∇b)
}

− w

N
∑

i=0

{

piH
pi−1∆φi

+ pi
(

[∆,Hpi−1]− (pi − 1)Hpi−2(∆H)− (pi − 1)Hpi−2(∆b)
)

φi
}

.

In view of (3.6) and (3.1) we divide the operator Li into its principal part and the remainder
part L low

i as

Liψ = (−ai(H) +Hpia0(H)) ·∆ψ + L low
i ψ for i = 1, . . . , N,
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where A(H) = (a0(H), . . . ,aN (H)) is the matrix defined by (3.14) and

L low
i ψ =

N
∑

j=0

(

− pipj
pj(pi + pj)

Hpi+pj∇ · (ψj∇b)−
pi

pi + pj
Hpi+pj∇b · ∇ψj(4.16)

+
pipj

pi + pj − 1
Hpi+pj−1(1 + |∇b|2)ψj

)

.

Therefore, we obtain

(4.17) (ai(H)−Hpia0(H)) ·∆(∂tφ− ε∆φ) = G0i for i = 1, . . . , N,

where

G0i = −Fi + L low
i L −1F .(4.18)

We can rewrite (4.14) and (4.17) in a matrix form as

Ã(H)

(

a0 ·∆(∂tφ− ε∆φ)
∆(∂tφ− ε∆φ)

)

+

(

l(H)T(u · ∇)∆φ+ aε∆η
0

)

=

(

G00

G0

)

,

where Ã(H) is the matrix in (3.15) and G0 = (0, G01, . . . , G0N )T. Therefore, using the notation
in (3.17) and the relations in (3.18) we have

A(H)∆(∂tφ− ε∆φ) + q(H)l(H){l(H)T(u · ∇)∆φ+ aε∆η} = G,

where

(4.19) G = q(H)l(H)G00 +A(H)Q(H)G0.

This is the desired equation for φ.
Secondly, we derive an evolution equation for η. In view of (3.1) we divide the operator Lij

into its principal part and the remainder part Llow
ij as

Lijφj = −aij(H)∆φj −Hpi(Hpj∇φj − pjH
pj−1φj∇b) · ∇η + Llow

ij φj ,

where

Llow
ij φj = Hpi(Hpj∇φj − pjH

pj−1φj∇b) · ∇b+
pj

pi + pj
Hpi+pj∇ · (φj∇b)(4.20)

− pi
pi + pj

Hpi+pj∇b · ∇φj +
pipj

pi + pj − 1
Hpi+pj−1(1 + |∇b|2)φj .

Thanks to the relations in (3.18), the second equation in (4.9) can be written as

∂tη − ε∆η + u · ∇η + q(H)l(H)T∆φ = G0,

where

(4.21) G0 = −
N
∑

i,j=0

qi(H)Llow
ij φj .

This is the desired equation for η.
To summarize, we have derived the equations

(4.22)

{

∂tη − ε∆η + u · ∇η + q(H)l(H)T∆φ = G0,

A(H)∆(∂tφ− ε∆φ) + q(H)l(H){l(H)T(u · ∇)∆φ+ aε∆η} = G.

Using this we can derive uniform estimate of the solution (ηε,φε) of the initial value problem
to the regularized equation (4.9).
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Lemma 4.3 Under the hypothesis of Lemma 4.2, there exist a time T > 0 and a constant

C > 0 independent of ε such that the solution (ηε,φε) obtained in Lemma 4.2 satisfies the

uniform estimate

sup
0≤t≤T

(

‖ηε(t)‖2m + ‖∇φε0(t)‖2m + ‖(φε1(t), . . . , φεN (t))‖2m+1

)

(4.23)

+ ε

∫ T

0

(

‖ηε(t)‖2m+1 + ‖∇φε0(t)‖2m+1 + ‖(φε1(t), . . . , φεN (t))‖2m+2

)

dt ≤ C

for 0 < ε ≤ 1.

Proof. Once again we simply write (η,φ) in place of (ηε,φε). Let α = (α1, . . . , αn) be a
multi-index satisfying 1 ≤ |α| ≤ m. Without loss of generality, we can assume that α1 ≥ 1.
Applying the differential operator aε∂α to the first equation in (4.22) we have

(4.24) aε∂t∂
αη − ε∇ · (aε∇∂αη) + aεu · ∇∂αη +

n
∑

k=1

∂k(a
εqlT∂k∂

αφ) = F0,α,

where

(4.25) F0,α = aε(∂αG0 − [∂α,u] · ∇η − [∂α, qlT]∆φ)− ε∇aε · ∇∂αη +
n
∑

k=1

(∂k(a
εqlT))∂k∂

αφ.

Here and in what follows, for simplicity, we omit the dependence of H in the notation. Applying
the differential operator ∂α to the second equation in (4.22) we have

−
n
∑

k=1

∂k(A∂k∂t∂
αφ) + ε∆(A∆∂αφ)−

n
∑

k=1

∂k
{

qllT(u · ∇)∂k∂
αφ+ aεql∂k∂

αη
}

(4.26)

=

n
∑

k=1

∂kF k,α,

where

F k,α = −δ1k∂α
′

{

G+

n
∑

l=1

(

(∂lA)∂lL
−1F + [∂l, qll

T(u · ∇)]∂lφ+ (∂l(a
εql))∂lη

)

}

(4.27)

+ ε(∂kA)∆∂
αφ+ [∂α, A]∂kL

−1F + [∂α, qllT(u · ∇)]∂kφ+ [∂α, aεql]∂kη.

Here, α′ = (α1 − 1, α2, . . . , αn) and δ1k is the Kronecker delta. (4.24) and (4.26) can be written
in the matrix form as

(

aε 0T

0 −∑n
k=1 ∂k(A∂k · )

)

∂t

(

∂αη
∂αφ

)

+ ε

(

−∇ · (aε∇ · ) 0T

0 ∆(A∆ · )

)(

∂αη
∂αφ

)

(4.28)

+

(

aεu · ∇ ∑n
k=1 ∂k(a

εqlT∂k · )
−
∑n

k=1 ∂k(a
εql∂k · ) −

∑n
k=1 ∂k(qll

T(u · ∇)∂k · )

)(

∂αη
∂αφ

)

=

(

F0,α
∑n

k=1 ∂kF k,α

)

,

which forms a symmetric positive system.
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In view of (4.28) we define an energy function Em(t) and a dissipation function Dm(t) by

Em(t) =
∑

|α|≤m

{

(aε∂αη(t), ∂αη(t))L2 +

n
∑

k=1

(A∂k∂
αφ(t), ∂k∂

αφ(t))L2

}

+ ‖φ′(t)‖2,

Dm(t) =
∑

|α|≤m

{

(aε∇∂αη(t),∇∂αη(t))L2 + (A∆∂αφ(t),∆∂αφ(t))L2

}

,

which will be equivalent to

Em(t) = ‖η(t)‖2m + ‖∇φ0(t)‖2m + ‖φ′(t)‖2m+1, Dm(t) = ‖∇η(t)‖2m + ‖∆φ(t)‖2m,

respectively, where φ′ = (φ1, . . . , φN )T. In view of (1.9), (4.10), (4.11), (4.12), and Lemma 3.3,
we see that there exists a constant C0 = C0(g, h, c0,M0) > 0 such that

c0 ≤ H(x, 0) ≤ C0, c0 ≤ aε(x, 0) ≤ C0 for x ∈ Rn.

Now, we assume that

(4.29) Em(t) + ε

∫ t

0
Em+1(τ)dτ ≤M1,

c0
2

≤ H(x, t) ≤ 2C0,
c0
2

≤ aε(x, t) ≤ 2C0

for 0 ≤ t ≤ T and x ∈ Rn, where the constant M1 and the time T will be determined later. In
the following we simply write the constants depending only on (g, h, c0, C0,M0) by C1 and the
constants depending also on M1 by C2, which may change from line to line. Then, it holds that

C−1
1 Em(t) ≤ Em(t) ≤ C1Em(t), C−1

1 Dm(t) ≤ Dm(t) ≤ C1Dm(t)

for 0 ≤ t ≤ T . We are going to evaluate the evolution of the energy function Em(t). To this end,
we make use of the symmetric form (4.28) for the case 1 ≤ |α| ≤ m and of (4.9) directly for the
case |α| = 0. Then, by integration by parts we see that

d

dt
Em(t) + 2ε(Dm(t) + ‖∇φ′(t)‖2)(4.30)

=
∑

|α|≤m

{

((∂ta
ε)∂αη, ∂αη)L2 +

n
∑

k=1

((∂tA)∂k∂
αφ, ∂k∂

αφ)L2

}

+
∑

1≤|α|≤m

{

((∇ · (aεu))∂αη, ∂αη)L2 +

n
∑

k=1

(

( n
∑

l=1

∂l(ulqll
T)

)

∂k∂
αφ, ∂k∂

αφ)L2

+ 2(F0,α, ∂
αη)L2 − 2

n
∑

k=1

(F k,α, ∂k∂
αφ)L2

}

+ 2(aεFN+1, η)L2 + 2
n
∑

k=1

(∂kL
−1F , A∂kφ)L2 + 2((L −1F )′,φ′)L2

− 2ε(∇η, η∇aε)L2 − 2ε
n
∑

k=1

(∆φ, (∂kA)∂kφ)L2 ,

where (L −1F )′ is the last N components of L −1F . Here, we see easily that ‖(u, w)‖m ≤ C2,
‖L −1F ‖m ≤ C2, and ‖∇aε‖m−1 ≤ C2. It follows from (4.25) and (4.27) (see also (4.15), (4.16),
and (4.18)–(4.21)) that ‖F0,α‖ ≤ C2(1+ε‖∇η‖m) and ‖F k,α‖ ≤ C2(1+ε‖∆φ‖m) for k = 1, . . . , n.
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We need to evaluate ∂ta
ε. Note that we can write formally as [∂t,L ] = (∂tη)(

∂
∂H L ) because

the coefficients of the differential operator L do not depend on ∇H but on H. By the relation

∂t(∂tφ− ε∆φ) = −L −1[∂t,L ]L −1F + L −1∂tF

and Lemma 3.3 we see that

‖∂t(∂tφ− ε∆φ)‖m−1 ≤ C1

(

‖[∂t,L0]L
−1F ‖m−1 +

N
∑

i=1

‖[∂t,Li]L
−1F ‖m−3

+ ‖∂tF0‖m−1 + ‖(∂tF1, . . . , ∂tFN )‖m−3

)

≤ C1(‖∂tφ‖m + ‖∂tη‖m−1).

Therefore, we have ‖∂taε‖m−1 ≤ C2(‖∂tφ‖m + ‖∂tη‖m−1). In view of ‖∂tφ − ε∆φ‖m ≤ C2 and
‖∂tη−ε∆η‖m−1 ≤ C2, we also have ‖∂tφ‖m ≤ C2(1+ε‖∆φ‖m) and ‖∂tη‖m−1 ≤ C2(1+ε‖∇η‖m).
Thus, by (4.30) we have d

dtEm(t) + 2εDm(t) ≤ C2(1+ ε(‖∆φ‖m + ε‖∇η‖m)), which implies that

Em(t) + 2ε
∫ t
0 Dm(τ)dτ ≤ C1 + C2(t+

√
t). To summarize, we have obtained the estimate







Em(t) + ε

∫ t

0
Em+1(τ)dτ ≤ C1 + C2(t+

√
t),

|H(x, t) −H(x, 0)| + |aε(x, t)− aε(x, 0)| ≤ C2(t+
√
t) for x ∈ Rn.

Now, we define the constant M1 by M1 = 2C1, and then the time T sufficiently small so that
C2(T +

√
T ) ≪ 1. Then, we see that (4.29) holds. The proof is complete. ✷

Once we obtain this kind of uniform estimate (4.23), we can pass to the limit ε→ +0 in the
regularized problem (4.9) and (4.8) and obtain the following lemma.

Lemma 4.4 Under the hypothesis of Theorem 1.1, there exists a time T > 0 such that the

initial value problem (4.7)–(4.8) has a unique solution (η,φ) satisfying

η,∇φ0 ∈ C([0, T ];Hm), φ1, . . . , φN ∈ C([0, T ];Hm+1).

5 Proof of the main theorem

We will show that the solution to the transformed problem (4.7)–(4.8) is the solution of the Isobe–
Kakinuma model (1.3)–(1.4) if the initial data (η(0), φ0(0), . . . , φN(0)) and the bottom topography
b satisfy the necessary condition (1.6). Let (η,φ) be the solution of (4.7)–(4.8) obtained in
Lemma 4.4. Then, we have L0∂tφ = F0, which is exactly the second equation in (4.1). Therefore,
it is sufficient to show that the first equation in (4.1) holds for i = 0, 1, . . . , N . To this end,
putting

(5.1) Ri = Hpi∂tη −
N
∑

j=0

Lijφj for i = 0, 1, . . . , N,

we are going to show Ri(x, t) ≡ 0 for i = 0, 1, . . . , N . We also introduce auxiliary functions

(5.2) R̃i = Liφ for i = 1, . . . , N.
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Then, we see that the necessary condition (1.6) is equivalent to R̃i = 0 for i = 1, . . . , N . We
have also the relations

(5.3) R̃i = HpiR0 −Ri for i = 1, . . . , N.

Differentiate (5.2) with respect to the time t and using (5.1) with i = 0 to eliminate the time
derivative ∂tη and the equations Li∂tφ = Fi, we obtain

(5.4) ∂tR̃i = −fiR0 for i = 1, . . . , N,

where fi is the function defined by (4.3). Let q = q(H) = (q0(H), . . . , qN (H)) be rational
functions of H defined by (3.17). Multiplying (5.1) by qi, adding the resulting equations over
i = 0, 1, . . . , N , and using the relation (3.18) we obtain

N
∑

i=0

qiRi = −∂tη −
N
∑

i,j=0

qiLijφj = 0,

where we used the second equation in (4.7). This together with (5.3) implies

(5.5) R0 = −
N
∑

j=1

qjR̃j.

Here, we used the relation l · q = −1 once again. Plugging this into (5.4) we obtain a system of
linear homogeneous ordinary differential equations for (R̃1, . . . , R̃N ):

∂tR̃i = fi

N
∑

j=1

qjR̃j for i = 1, . . . , N.

The necessary condition (1.6) for the initial data (η(0), φ0(0), . . . , φN(0)) and the bottom topog-

raphy b is equivalent to R̃i(x, 0) ≡ 0 for i = 1, . . . , N , so that the uniqueness of the solution
to the initial value problem implies R̃i = 0 for i = 1, . . . , N . Then, by (5.5) and (5.3) we see
in turn that R0 = 0 and Ri = 0 for i = 1, . . . , N . Therefore, we have shown that (η,φ) is the
solution to the Isobe–Kakinuma model (1.3)–(1.4).

It remains to show that the energy function E(t) defined by (1.7) is conserved in time. The
energy function can be written explicitly as

E(t) =
ρ

2

∫

Rn

{ N
∑

i,j=0

(

1

pi + pj + 1
Hpi+pj+1∇φi · ∇φj −

2pi
pi + pj

Hpi+pjφi∇b · ∇φj(5.6)

+
pipj

pi + pj − 1
Hpi+pj−1(1 + |∇b|2)φiφj

)

+ gη2
}

dx.

Therefore, by the direct calculation we see that

d

dt
E(t) = ρ

{ N
∑

i,j=0

(Lijφj , ∂tφi)L2 + (gη +
1

2
(|u|2 + w2), ∂tη)L2

}

= ρ

{ N
∑

i=0

(Hpi∂tη, ∂tφi)L2 − (F0, ∂tη)L2

}

= 0.

The proof of Theorem 1.1 is complete.
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