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A Mathematical Justification of a Thin Film Approximation

for the Flow down an Inclined Plane

Hiroki Ueno and Tatsuo Iguchi

Abstract

We consider a two-dimensional motion of a thin film flowing down an inclined plane under
the influence of the gravity and the surface tension. In order to investigate the stability of
such flow, we often use a thin film approximation, which is an approximation obtained by
the perturbation expansion with respect to the aspect ratio of the film. The famous example
of the approximate equations are the Burgers equation, Kuramoto–Sivashinsky equation,
KdV–Burgers equation, KdV–Kuramoto–Sivashinsky equation, and so on. In this paper, we
give a mathematically rigorous justification of a thin film approximation by establishing an
error estimate between the solution of the Navier–Stokes equations and those of approximate
equations.

1 Introduction

In this paper, we consider a two-dimensional motion of liquid film of a viscous and incompressible
fluid flowing down an inclined plane under the influence of the gravity and the surface tension
on the interface. The motion can be mathematically formulated as a free boundary problem for
the incompressible Navier–Stokes equations. We assume that the domain Ω(t) occupied by the
liquid at time t ≥ 0, the liquid surface Γ(t), and the rigid plane Σ are of the forms







Ω(t) = {(x, y) ∈ R
2 | 0 < y < h0 + η(x, t)},

Γ(t) = {(x, y) ∈ R
2 | y = h0 + η(x, t)},

Σ = {(x, y) ∈ R
2| y = 0},

where h0 is the mean thickness of the liquid film and η(x, t) is the amplitude of the liquid surface.
Here we choose a coordinate system (x, y) so that x axis is pointed to the streamwise direction
and y axis is normal to the plane. We consider fluctuations of the Nusselt flat film solution,
which is the stationary laminar flow given by

(1.1) η1 = 0, u1 = (ρg sinα/2µ)(2h0y − y2), v1 = 0, p1 = p0 − ρg cosα(y − h0),

where ρ is a constant density of the liquid, g is the acceleration of the gravity, α is the angle of
inclination, µ is the shear viscosity coefficient, and p0 is an atmospheric pressure. Throughout
this paper, we assume that the flow is l0-periodic in the streamwise direction x. Rescaling the
independent and dependent variables by using h0, l0, the typical amplitude of the liquid surface
a0, U0 = ρgh20 sinα/2µ, and P0 = ρgh0 sinα, the equations are written in the non-dimensional
form

(1.2)

{

δut +
(

(ū+ εu) · ∇δ

)

u+ (u · ∇δ)ū+
2

R
∇δp−

1

R
∆δu = 0 in Ωε(t), t > 0,

∇δ · u = 0 in Ωε(t), t > 0,

(1.3)















(

Dδ(εu+ ū)− εpI
)

n

=

(

− 1

tanα
εη +

δ2W

sinα

εηxx

(1 + (εδηx)2)
3

2

)

n on Γε(t), t > 0,

ηt +
(

1− (εη)2 + εu
)

ηx − v = 0 on Γε(t), t > 0,
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(1.4) u = 0 on Σ, t > 0.

Here, δ, ε,R, and W are non-dimensional parameters defined by

δ =
h0
l0
, ε =

a0
h0
, R =

ρU0h0
µ

, W =
σ

ρgh20
,

where σ is the surface tension coefficient. Note that δ is the aspect ratio of the film, ε repre-
sents the magnitude of nonlinearity, R is the Reynolds number, and W is the Weber number.
Moreover, we used notations u = (u, δv)T, ū = (ū, 0)T, ū = 2y − y2,∇δ = (δ∂x, ∂y)

T,∆δ =

∇δ · ∇δ,Dδf = 1
2

{

∇δ(f
T) +

(

∇δ(f
T)

)T}
, and n = (−εδηx, 1)T. In this scaling, the liquid

domain Ωε(t) and the liquid surface Γε(t) are of the forms
{

Ωε(t) = {(x, y) ∈ R
2 | 0 < y < 1 + εη(x, t)},

Γε(t) = {(x, y) ∈ R
2 | y = 1 + εη(x, t)}.

Concerning a mathematical analysis of the problem in the case of δ = ε = 1, Teramoto [14]
showed that the initial value problem to the Navier–Stokes equations (1.2)–(1.4) has a unique
solution globally in time under the assumptions that the Reynolds number and the initial data
are sufficiently small. Nishida, Teramoto, and Win [10] showed the exponential stability of
the Nusselt flat film solution under the assumptions that the angle of inclination is sufficiently
small and x ∈ T in addition to the assumptions in [14]. Furthermore, Uecker [15] studied the
asymptotic behavior for t → ∞ of the solution in the case of x ∈ R and showed that the
perturbations of the Nusselt flat film solution decay like the self-similar solution of the Burgers
equation under the assumptions that the initial data are sufficiently small and R < Rc. Here,
Rc =

4
5

1
tanα is the critical Reynolds number given by Benjamin [2]. On the other hand, Ueno,

Shiraishi, and Iguchi [16] derived a uniform estimate for the solution of (1.2)–(1.4) with respect
to δ when the Reynolds number, the angle of inclination, and the initial data are sufficiently
small.

Benney [3] derived the following single nonlinear evolution equation

ηt + 2(1 + εη)2ηx −
8

15
(Rc − R)δηxx +C1δ

2ηxxx(1.5)

+ C2εδ(ηηxx + η2x) +
2

3

W

sinα
δ3ηxxxx = O(δ3 + ε2δ + εδ2)

by using the method of perturbation expansion of the solution (u, v, p) with respect to δ under
the thin film regime δ ≪ 1. Here, C1 = C1(R, α) and C2 = C2(R, α) are constants independent
of δ, ε, and W. Explicit forms of C1 and C2 will be given in Section 3. Many approximate
equations are obtained from (1.5) by assuming that parameters ε,W, and R have appropriate
orders in δ. In the following, we assume ε = δ and R < Rc and set

(1.6) η(x, t) = ζ(x− 2t, εt).

I. Burgers equation

Assuming W1 ≤ W ≤ δ−1W2 in (1.5), we have

ηt + 2ηx + 4εηηx − 8

15
(Rc − R)δηxx = O(δ2).

Plugging (1.6) in the above equation and passing to the limit ε = δ → 0, we obtain

(1.7) ζτ + 4ζζx −
8

15
(Rc − R)ζxx = 0.
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II. Burgers equation with a fourth order dissipation term

Assuming W = δ−2W2 in (1.5), we have

ηt + 2ηx + 4εηηx − 8

15
(Rc − R)δηxx +

2

3

W2

sinα
δηxxxx = O(δ2).

Plugging (1.6) in the above equation and passing to the limit ε = δ → 0, we obtain

(1.8) ζτ + 4ζζx −
8

15
(Rc − R)ζxx +

2

3

W2

sinα
ζxxxx = 0.

III. Burgers equation with dispersion and nonlinear terms

Assuming W1 ≤ W ≤ W2 in (1.5), we have

ηt + 2ηx + 4εηηx − 8

15
(Rc −R)δηxx + C1δ

2ηxxx + C2εδ(ηηxx + η2x) + 2ε2η2ηx = O(δ3).

Plugging (1.6) in the above equation and neglecting the terms of O(δ3), we obtain

(1.9) ζτ + 4ζζx −
8

15
(Rc − R)ζxx + δ

{

C1ζxxx + C2

(

ζζxx + ζ2x
)

+ 2ζ2ζx
}

= 0.

IV. Burgers equation with fourth order dissipation, dispersion, and nonlinear terms

Assuming W = δ−1W2 in (1.5), we have

ηt + 2ηx + 4εηηx −
8

15
(Rc − R)δηxx

+C1δ
2ηxxx + C2εδ(ηηxx + η2x) + 2ε2η2ηx +

2

3

W2

sinα
δ2ηxxxx = O(δ3).

Plugging (1.6) in the above equation and neglecting the terms of O(δ3), we obtain

ζτ + 4ζζx −
8

15
(Rc − R)ζxx(1.10)

+ δ

{

C1ζxxx +C2

(

ζζxx + ζ2x
)

+ 2ζ2ζx +
2

3

W2

sinα
ζxxxx

}

= 0.

We remark that (1.9) and (1.10) are higher order approximate equations to Burgers equation
(1.7). In this paper, we assume R ≪ Rc in order to use a uniform estimate in δ for the solution
of the Navier–Stokes equations, which is a severe restriction. Uniform estimates in δ for the
solution play a most important role in the justification for these approximation. Here if we
could assume R > Rc, then (1.8) would be the Kuramoto–Sivashinsky equation (see [9], [12],
and [13]). If we could assume Rc − R = δR̃ > 0, then we would obtain the δ-independent
KdV–Burgers equation

(1.11) ζτ + 4ζζx −
8R̃

15
ζxx +C1ζxxx = 0

by plugging (1.6) in (1.5) and passing to the limit ε = δ2 → 0 under the assumption W1 ≤
W ≤ W2. Moreover if we could assume Rc −R = −δR̃ < 0, we would obtain the δ-independent
KdV–Kuramoto–Sivashinsky equation

(1.12) ζτ + 4ζζx +
8R̃

15
ζxx + C1ζxxx +

2

3

W2

sinα
ζxxxx = 0
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by plugging (1.6) in (1.5) and passing to the limit ε = δ2 → 0 under the assumption W = δ−1W2.
More details or a list of useful references about the thin film approximation can be found in
[6, 7, 8, 11, 16].

In this paper, we will give a mathematically rigorous justification of these thin film approx-
imations by establishing an error estimate between the solution of the Navier–Stokes equations
(1.2)–(1.4) and those of the approximate equations (1.7)–(1.10). We note that we cannot just yet
justify the Kuramoto–Sivashinsky equation, the δ-independent KdV–Burgers equation (1.11),
and the KdV–Kuramoto–Sivashinsky equation (1.12) because without the assumption R ≪ Rc

we have not yet obtain a uniform estimate in δ for the solution. We also remark that Bresch
and Noble [5] justified the shallow water model by proving that remainder terms converges to 0
as δ → 0 (see also [4]).

The plan of this paper is as follows. In Section 2, we give our main theorem after we
transform the problem in a time dependent domain to a problem in a time independent domain.
In Section 3, we derive approximate solutions by using Benney’s method. In Section 4, we recall
the energy estimate for the solution of the Navier–Stokes equations obtained in [16]. Finally, we
give an error estimates in Section 5.

Notation. We put Ω = T× (0, 1) and Γ = T×{y = 1}, where T is the flat torus T = R/Z. For
a Banach space X, we denote by ‖·‖X the norm in X. For 1 ≤ p ≤ ∞, we put ‖u‖Lp = ‖u‖Lp(Ω),
‖u‖ = ‖u‖L2 , |u|Lp = ‖u(·, 1)‖Lp(T), and |u|0 = |u|L2 . We denote by (·, ·)Ω and (·, ·)Γ the inner
products of L2(Ω) and L2(Γ), respectively. For s ≥ 0, we denote by Hs(Ω) and Hs(Γ) the L2

Sobolev spaces of order s on Ω and Γ, respectively. The norms of these spaces are denoted by
‖ · ‖s and | · |s. For a function u = u(x, y) on Ω, a Fourier multiplier P (Dx) (Dx = −i∂x) is
defined by (P (Dx)u)(x, y) =

∑

n∈Z P (n)ûn(y)e
2πinx, where ûn(y) =

∫ 1
0 u(x, y)e

−2πinx dx is the

Fourier coefficient in x. We put ∂−1
y f(x, y) = −

∫ 1
y f(x, z)dz and Dk

δ f = {(δ∂x)i∂jyf | i+ j = k}.
f . g means that there exists a non-essential positive constant C such that f ≤ Cg holds.

2 Main results

We rewrite the system (1.2)–(1.4) according to [1, 16]. Transforming the problem in the moving
domain Ω(t) to a problem in the fixed domain Ω by using an appropriate diffeomorphism, and
introducing new unknown function (u′, v′, p′) to keep the solenoidal condition, we obtain

(2.1)























δ(ut + ūux + ūyv) +
2

R
δpx −

1

R
(δ2uxx + uyy) = δ2f1 in Ω, t > 0,

δ2(vt + ūvx) +
2

R
py −

1

R
δ(δ2vxx + vyy) = δ2f2 in Ω, t > 0,

ux + vy = 0 in Ω, t > 0,

(2.2)















δ2vx + uy − 2(1 + εη)2η = δ3h1 on Γ, t > 0,

p− δvy −
1

tanα
η +

δ2W

sinα
ηxx = δ2h2 on Γ, t > 0,

ηt + ηx − v = δ2η2ηx =: δ2h3 on Γ, t > 0,

(2.3) u = v = 0 on Σ, t > 0,
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where we dropped the prime sign in the notation and f1, f2, h1, and h2 are collections of nonlinear
terms. See [16] for more details on the explicit form of these nonlinear terms. In the following,
we will consider the initial value problem to (2.1)–(2.3) under the initial conditions

(2.4) η|t=0 = η0 on Γ, (u, v)T|t=0 = (u0, v0)
T in Ω.

Here, we assume
∫ 1
0 η0(x)dx = 0 and denote h1 determined from initial data by h

(0)
1 .

We impose the following assumption on the non-dimensional parameters and initial data.

Assumption 2.1. Let R0,R1, α0,W1, c0, and M be positive constants and m ≥ 2 be an integer.

(1) Conditions for parameters

Parameters R, α,W, δ, and ε satisfy

R1 ≤ R ≤ R0, 0 < α ≤ α0, W1 ≤ W, 0 < ε = δ ≤ 1.

(2) Smallness of initial data

Initial data (η0, u0, v0) and parameters W and δ satisfy

|(1 + δ|Dx|)2η0|2 + ‖(1 + |Dx|)2(u0, δv0)T‖+ ‖(1 + |Dx|)2Dδ(u0, δv0)
T‖

+ ‖(1 + |Dx|)2D2
δ (u0, δv0)

T‖+ δ2W|(1 + δ|Dx|)η0x|3 +
√
δ2W‖(1 + |Dx|)2δv0xy‖ ≤ c0.

(3) Regularity of initial data

Initial data (η0, u0, v0) satisfies

‖(1 + |Dx|)m+1(u0, v0)
T‖H2(Ω) + |η0|m+4 ≤M.

(4) Compatibility conditions

Initial data (η0, u0, v0) and parameters δ and ε satisfy







u0x + v0y = 0 in Ω,

u0y + δ2v0x − 2(1 + εη0)
2η0 = δ3h

(0)
1 on Γ,

u0 = v0 = 0 on Σ.

Remark 2.1. Under the assumption that there exist small positive constants R0, α0, and c0
such that Assumption 2.1 is fulfilled, Ueno, Shiraishi, and Iguchi [16] proved the global in time
uniform estimate with respect to δ for the solution of the Navier–Stokes equations (2.1)–(2.4).
See also Proposition 4.2 in this paper.

For later use, we define the norm of a difference between the solution (ηδ , uδ, vδ , pδ) of the
Navier–Stokes equations (2.1)–(2.4) and the solution ζ of the approximate equations as

D(t; ζ, u, v, p) :=|ηδ(t)− ζ(· − 2t, εt)|20 + ‖(1 + |Dx|)m(uδ − u)(t)‖2(2.5)

+ ‖(1 + |Dx|)m−1(vδ − v)(t)‖2 + ‖(1 + |Dx|)m−1(pδ − p)(t)‖2,

where (u, v, p) is an approximate solution constructed from ζ. Let ζI , ζII , ζIII , and ζIV be the
solution of (1.7)–(1.10) under the initial condition ζ|τ=0 = η0, respectively.

Now we are ready to state our main results in this paper. Note that the definitions of
uI , vI , pI , uII , . . . appeared in the following statement will be given in Section 5.
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Theorem 2.2. There exist small positive constants R0 and α0 such that the following statement
holds: Let m be an integer satisfying m ≥ 2, 0 < R1 ≤ R0, 0 < W1 ≤ W2, and 0 < α ≤ α0.
There exists small positive constant c0 such that if the initial data (η0, u0, v0) and the parameters
δ, ε, R, and W satisfy Assumption 2.1, then we have the following estimates.

I. Burgers equation
If the parameters δ and W and the initial data η0 and u0 satisfy

(2.6) W1 ≤ W ≤ δ−1W2, |η0|m+7 + δ−1‖(1 + |D|x)m+1u0yy‖ ≤M <∞,

then the following error estimate holds.

(2.7) D(t; ζI , uI , vI , pI) ≤ Cδ2e−cεt.

II. Burgers equation with a fourth order dissipation term
If the parameters δ and W and the initial data η0 and u0 satisfy

(2.8) W = δ−2W2, |η0|m+12 + δ−1‖(1 + |D|x)m+1u0yy‖ ≤M <∞,

then the following error estimate holds.

(2.9) D(t; ζII , uII , vII , pII) ≤ Cδ2e−cεt.

III. Burgers equation with dispersion and nonlinear terms
If the parameters δ and W and the initial data η0 and u0 satisfy

(2.10) W1 ≤ W ≤ W2, |η0|m+13 + δ−2‖(1 + |D|x)m+1(u0yy − uIIIyy |t=0)‖ ≤M <∞,

then the following error estimate holds.

(2.11) D(t; ζIII , uIII , vIII , pIII) ≤ Cδ4e−cεt.

IV. Burgers equation with a fourth order dissipation, dispersion, and nonlinear terms
If the parameters δ and W and the initial data η0 and u0 satisfy

(2.12) W = δ−1W2, |η0|m+17 + δ−2‖(1 + |D|x)m+1(u0yy − uIVyy |t=0)‖ ≤M <∞,

then the following error estimate holds.

(2.13) D(t; ζIV , uIV , vIV , pIV ) ≤ Cδ4e−cεt.

Here, positive constants C and c depend on R1,W1,W2, α, and M but are independent of δ, ε,
R, and W.

Remark 2.2. The assumptions for u0yy in (2.6) and (2.8) represent the restriction on the initial
profile of the velocity. Moreover, the assumptions for u0yy in (2.10) and (2.12) mean that the
initial profile of the velocity have to be equal to that of the approximate solution up to O(δ2).

Remark 2.3. We see formally that the order of error terms in (1.7) is of O(δ), which implies
that the error estimates (2.7) and (2.9) are natural. In a similar way, we see that the error
estimates (2.11) and (2.13) are natural.

Remark 2.4. By introducing the slow time scale τ = εt, the norm decays exponentially and
uniformly in τ .
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3 Approximate solutions

In this section, following Benney’s perturbation method [3] we will give approximate equations by
constructing approximate solutions. Hereafter, we assume ε = δ. By straightforward calculation,
we can rewrite (2.1)–(2.3) as follows.

(3.1)






















δ(ut + ūux + ūyv) +
2

R
δpx −

1

R
(δ2uxx + uyy) = −δ 2

R
ηuyy + δ2f

(2)
1 + δ3f

(3)
1 in Ω, t > 0,

δ2(vt + ūvx) +
2

R
py −

1

R
δ(δ2vxx + vyy) = δ

2

R
ηpy + δ2f

(2)
2 + δ3f

(3)
2 in Ω, t > 0,

ux + vy = 0 in Ω, t > 0,

(3.2)







δ2vx + uy − 2(1 + δη)2η = δ3h1 on Γ, t > 0,

p− δvy −
1

tanα
η +

δ2W

sinα
ηxx = δ2h

(2)
2 + δ3h

(3)
2 on Γ, t > 0,

(3.3) u = v = 0 on Σ, t > 0,

(3.4) ηt + ηx − v = δ2h3 on Γ, t > 0,

where

(3.5)







































f
(2)
1 =

1

R

(

3η2uyy − 2ηpx + 2yηxpy
)

+ ηtu+ yηtuy

+ y2ηxu+ 2y(y − 1)ηux − y2(y − 2)ηxuy − uux − vuy + 2(2y − 1)ηv,

f
(2)
2 =

1

R

(

− 2η2py + 2ηxuy + 2ηuxy
)

,

h
(2)
2 = 2ηηx + ηxu+ ηux.

We proceed to derive the approximate equations following Benney [3]. Let η = η(x, t) be
a given function. For any δ ∈ (0, 1], let (u, v, p) be the solution of (3.1)–(3.3) and we expand
(u, v, p) as

(3.6)











u = u0 + δu1 + δ2u2 + · · · ,
v = v0 + δv1 + δ2v2 + · · · ,
p = p0 + δp1 + δ2p0 + · · ·

and substitute these into (3.1)–(3.3), we obtain a sequence of perturbation equations for each
order of δ. Here, u0 and v0 are different from initial data defined in (2.4) and hereafter we use
this notation whenever it does not lead to confusion. By assuming W = O(1), the O(1), O(δ),
and O(δ2) problems are as follows.

(3.7)















u0yy = 0, p0y = 0, u0x + v0y = 0 in Ω,

u0y = 2η, p0 =
1

tanα
η on Γ,

u0 = v0 = 0 on Σ,
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(3.8)























u1yy = R(u0t + (2y − y2)u0x + 2(1− y)v0) + 2p0x + 2ηu0yy in Ω,

2p1y = v0yy + 2ηp0y, u1x + v1y = 0 in Ω,

u1y = 4η2, p1 = −u0x on Γ,

u1 = v1 = 0 on Σ,

(3.9)


























u2yy = R(u1t + (2y − y2)u1x + 2(1 − y)v1) + 2p1x + 2ηu1yy − u0xx − Rf
(2)
1 (η, u0, v0, p0) in Ω,

2p2y = v1yy + 2ηp1y − R
(

v0t + (2y − y2)v0x
)

+Rf
(2)
2 (η, u0, v0, p0), u2x + v2y = 0 in Ω,

u2y = −v0x + 2η3, p2 = −u1x + h
(2)
2 (η, u0)−

W

sinα
ηxx on Γ,

u2 = v2 = 0 on Σ.

Solving the above boundary value problem for the ordinary differential equations, we have

(3.10)















u0 = 2yη,

v0 = −y2ηx,
p0 =

1

tanα
η,

(3.11)











u1 =
(

1
3y

3 − y
)

Rηt +
{

(y2 − 2y) 1
tanα +

(

1
6y

4 − 2
3y

)

R
}

ηx + 4yη2,

v1 =
(

− 1
12y

4 + 1
2y

2
)

Rηxt +
{(

− 1
3y

3 + y2
)

1
tanα +

(

− 1
30y

5 + 1
3y

2
)

R
}

ηxx − 4y2ηηx,

p1 = −(1 + y)ηx,

(3.12)






































































































u2 =
(

1
60y

5 − 1
6y

3 + 5
12y

)

R2ηtt

+
{ (

1
12y

4 − 1
3y

3 + 2
3y

)

R
tanα +

(

− 1
252y

7 + 1
45y

6 − 1
12y

4 − 1
9y

3 + 101
180y

)

R2
}

ηxt

+
{ (

−2
3y

3 − y2 + 5y
)

+
(

− 1
90y

6 + 1
15y

5 − 1
6y

4 + 2
5y

)

R
tanα

+
(

− 1
560y

8 + 2
315y

7 − 1
18y

4 + 121
630y

)

R2
}

ηxx

+2yη3 +R(43y
3 − 4y)ηηt + {R(y4 − 4y) + (3y2 − 6y) 1

tan α}ηηx,
v2 =

(

− 1
360y

6 + 1
24y

4 − 5
24y

2
)

R2ηxtt

+
{(

− 1
60y

5 + 1
12y

4 − 1
3y

2
)

R
tanα +

(

1
2016y

8 − 1
315y

7 + 1
60y

5 + 1
36y

4 − 101
360y

2
)

R2
}

ηxxt

+
{ (

1
6y

4 + 1
3y

3 − 5
2y

2
)

+
(

1
630y

7 − 1
90y

6 + 1
30y

5 − 1
5y

2
)

R
tanα

+
(

1
5040y

9 − 1
1260y

8 + 1
90y

5 − 121
1260y

2
)

R2
}

ηxxx

−3y2η2ηx +R
(

− 1
3y

4 + 2y2
)

(ηxηt + ηηtx) +
{

R
(

− 1
5y

5 + 2y2
)

+ (−y3 + 3y2) 1
tanα

}

(η2x + ηηxx),

p2 =
(

1
2y +

1
6

)

Rηxt +
{

− W
sinα +

(

−1
2y

2 + y + 1
2

)

1
tanα +

(

− 1
10y

5 + 1
6y

4 + 1
3y +

1
10

)

R
}

ηxx

+
{

R(4y − 4)− 5y + 3
}

ηηx.

Using the above expressions, we put

(3.13)











uIII0 (y; η) := u0, vIII0 (y; η) := v0, pIII0 (y; η) := p0,

uIII1 (y; η) := u1, vIII1 (y; η) := v1, pIII1 (y; η) := p1,

uIII2 (y; η) := u2, vIII2 (y; η) := v2, pIII2 (y; η) := p2.

In view of the perturbation expansion (3.6) substituting v = vIII0 + δvIII1 + δ2vIII2 into (3.4), we
obtain the approximate equation

ηt + 2ηx + 4εηηx − 8

15
(Rc −R)δηxx + C1δ

2ηxxx + C2εδ(ηηxx + η2x) + 2ε2η2ηx = O(δ3),
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where C1 = 2 + 32
63R

2 − 40
63

R
tanα and C2 =

16
5 R− 2

tanα .
Thus far we have assumed W = O(1). Taking into account that W is contained only in the

second equation in (3.2) and modifying O(δ) problem under the assumption W ≤ O(δ−1), we
see that (uI0, v

I
0 , p

I
0) and (uI1, v

I
1 , p

I
1), which are defined by

(3.14)

{

uI0(y; η) := u0, vI0(y; η) := v0, pI0(y; η) := p0,

uI1(y; η) := u1, vI1(y; η) := v1, pI1(y; η) := p1 − δW
sinαηxx,

are the solutions of the problems. Putting v = vI0 + δvI1 and substituting this into (3.4), we
obtain the approximate equation

ηt + 2ηx + 4εηηx − 8

15
(Rc − R)δηxx = O(δ2).

Similarly, modifying O(1) and O(δ) problems under the assumption W = O(δ−2) and putting

(3.15)

{

uII0 := u0, vII0 := v0, pII0 := p0 − δ2W
sinαηxx,

uII1 := u1 − δ2W
sinα(y

2 − 2y)ηxxx, vII1 := v1 +
δ2W
sinα

(

1
3y

3 − y2
)

ηxxxx, pII1 := p1,

we obtain the approximate equation

ηt + 2ηx + 4εηηx − 8

15
(Rc − R)δηxx +

2

3

W2

sinα
δηxxxx = O(δ2).

Moreover, putting
(3.16)










uIV0 := u0, vIV0 := v0, pIV0 := p0,

uIV1 := u1, vIV1 := v1, pIV1 := p1 − δW
sinαηxx,

uIV2 := u2 − δW
sinα(y

2 − 2y)ηxxx, vIV2 := v2 +
δW
sinα

(

1
3y

3 − y2
)

ηxxxx, pIV2 := p2 +
W

sinαηxx

and v = vIV0 +δvIV1 +δ2vIV2 and substituting this into (3.4), we obtain the approximate equation

ηt + 2ηx + 4εηηx −
8

15
(Rc − R)δηxx

+ C1δ
2ηxxx + C2εδ(ηηxx + η2x) + 2ε2η2ηx +

2

3

W2

sinα
δ2ηxxxx = O(δ3)

under the assumption W = O(δ−1).

4 Energy estimate

In this section, we will derive energy estimates. Let η = η(x, t) be a fixed function and (u, v, p) =
(u(y; η), v(y; η), p(y; η)) be an approximate solution constructed from η satisfying ux+vy = 0 and
u|y=0 = v|y=0 = 0, which will be defined in the next section. Using the approximate solution,
we define ψ1, ψ2, φ1, φ2, φ3 by the following equality.

(4.1)































































ψ1(y; η) :=
1

δ3

{

δ(ut + ūux + ūyv) +
2

R
δpx −

1

R
(δ2uxx + uyy)− δf

(1)
1 (η, u, v, p)

}

,

ψ2(y; η) :=
1

δ3

{

δ2(vt + ūvx) +
2

R
py −

1

R
δ(δ2vxx + vyy)− δf

(1)
2 (η, u, p)

}

,

φ1(η) :=
1

δ3
{

δ2vx + uy − 2(1 + δη)2η
}

|y=1,

φ2(η) :=
1

δ3

{

p− δvy −
1

tanα
η +

δ2W

sinα
ηxx − δ2h

(2)
2 (η, u)

}
∣

∣

∣

∣

y=1

,

φ3(η) :=
1

δ3
{ηt + ηx − v − δ2h3(η)}|y=1,
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where

(4.2) f
(1)
1 = − 2

R
ηuyy + δf

(2)
1 , f

(1)
2 =

2

R
ηpy + δf

(2)
2 .

Then the approximate solution satisfies the following equations.
(4.3)






















δ(ut + ūux + ūyv) +
2

R
δpx −

1

R
(δ2uxx + uyy) = δf

(1)
1 (η, u, v, p) + δ3ψ1(y; η) in Ω, t > 0,

δ2(vt + ūvx) +
2

R
py −

1

R
δ(δ2vxx + vyy) = δf

(1)
2 (η, u, p) + δ3ψ2(y; η) in Ω, t > 0,

ux + vy = 0 in Ω, t > 0,

(4.4)















δ2vx + uy − 2(1 + δη)2η = δ3φ1(η) on Γ, t > 0,

p− δvy −
1

tanα
η +

δ2W

sinα
ηxx = δ2h

(2)
2 (η, u) + δ3φ2(η) on Γ, t > 0,

ηt + ηx − v = δ2h3(η) + δ3φ3(η) on Γ, t > 0,

(4.5) u = v = 0 on Σ, t > 0.

Note that in the next section, we will give explicit forms of ψ1, ψ2, φ1, φ2, and φ3. Let
(ηδ , uδ, vδ , pδ) be the solution of (3.1)–(3.3) and we set

H := ηδ − η, U := uδ − u, V := vδ − v, P := pδ − p.

Taking the difference between (3.1)–(3.4) and (4.3)–(4.5), we have

(4.6)











































δ(Ut + ūUx + ūyV ) +
2

R
δPx −

1

R
(δ2Uxx + Uyy)

= F1 + δ3f
(3)
1 (ηδ , uδ, vδ , pδ)− δ3ψ1(y; η) in Ω, t > 0,

δ2(Vt + ūVx) +
2

R
Py −

1

R
δ(δ2Vxx + Vyy)

= F2 + δ3f
(3)
2 (ηδ , uδ, vδ , pδ)− δ3ψ2(y; η) in Ω, t > 0,

Ux + Vy = 0 in Ω, t > 0,

(4.7)















δ2Vx + Uy −
(

2 + b(ηδ, η)
)

H = δ3h1(η
δ , uδ, vδ)− δ3φ1(η) on Γ, t > 0,

P − δVy −
1

tanα
H +

δ2W

sinα
Hxx = G2 + δ3h

(3)
2 (ηδ, uδ , vδ)− δ3φ2(η) on Γ, t > 0,

Ht +Hx − V = G3 − δ3φ3(η) on Γ, t > 0,

(4.8) U = V = 0 on Σ, t > 0,

where

(4.9)











F1 = δ
(

f
(1)
1 (ηδ , uδ, vδ , pδ)− f

(1)
1 (η, u, v, p)

)

, F2 = δ
(

f
(1)
2 (ηδ, uδ , pδ)− f

(1)
2 (η, u, p)

)

,

b = 2δ
(

δ(ηδ)2 + (2 + δη)ηδ + δη2 + 2η
)

,

G2 = δ2
(

h
(2)
2 (ηδ , uδ, vδ)− h

(2)
2 (η, u, v)

)

, G3 = δ2
(

h3(η
δ)− h3(η)

)

.
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For convenience, we set

U := (U, δV )T, F := (F1, F2)
T, f := (f

(3)
1 , f

(3)
2 )T, ψ := (ψ1, ψ2)

T.

We proceed to derive an energy estimate to (4.6)–(4.8) following [16]. In view of the energies
obtained in [16] (see (3.6)–(3.8) and (3.24) in [16]), we put

E0(H,U) := δ2‖V ‖2 + 2

R

(

1

tanα
|H|20 +

δ2W

sinα
|Hx|20

)

+ β1

{

δ2‖Ux‖2 +
2

R

(

1

tanα
δ2|Hx|20 +

δ2W

sinα
δ2|Hxx|20

)}

+ β2

{

δ4‖Uxx‖2 +
2

R

(

1

tanα
δ4|Hxx|20 +

δ2W

sinα
δ4|Hxxx|20

)}

+ β3

{

δ2‖Ut‖2 +
2

R

(

1

tanα
δ2|Ht|20 +

δ2W

sinα
δ2|Htx|20

)}

,

F0(H,U , P ) := δ‖Ux‖2 + δ‖∂−1
y Px‖2 + δ|Hx|20 + δ3W|Hxx|20 + δ5W2|Hxxx|20

+ δ‖∇δUx‖2 + δ3‖∇δUxx‖2 + δ‖∇δUt‖2.
Here, β1, β2, and β3 are appropriate positive constants (see (3.28) in [16]). Integrating by parts
and using the third equation in (4.7) and Poincaré’s inequality, we see that for any ǫ > 0 there
exists a positive constant Cǫ such that

δ3|({F + δ3f − δ3ψ}xx,Uxx)Ω| ≤ ǫδ5‖Uxxx‖2 + Cǫδ(‖Fx‖2 + δ6‖fx‖2 + δ6‖ψx‖2),
|(H, (bH)x)Γ| ≤ ǫδ|Hx|20 + Cǫδ

−1|(bH)x|20,
δ2W|(Hxx, (bH)x)Γ| ≤ ǫδ3W|Hxx|20 + CǫδW|(bH)x|20,
δ2W|(Hxx, G3 − δ3φ3)Γ| ≤ ǫδ3W|Hxx|20 + CǫδW(|G3|20 + δ6|φ3|20),
δ6W|(Hxxxx, δ

3φ3xx)Γ| ≤ ǫδ5W2|Hxxx|20 + Cǫδ
13|φ3xxx|20,

δ4W|(Hxxt, G3t − δ3φ3t)Γ| ≤ ǫ(δ5W2|Hxxx|20 + δ5‖Uxxx‖20)
+Cǫ(1 +W2)δ3(|G3t|20 + δ6|φ3t|20) + δ5(|G3xx|20 + δ6|φ3xx|20).

Here, we used the inequality |V (·, 1)|0 = |V (·, 1) − V (·, 0)|0 ≤ ‖Vy‖ = ‖Ux‖ thanks to the third
equation in (4.6) and the second equation in (4.8). In the following, we use frequently this type
of inequality without any comment. Taking into account the above inequality and (3.27) in [16],
we need to estimate the following quantities.

N
1
0 (Z1) := (δW+ δ−1)|(bH)x|20 + δ3|(bH)xx|20 + δ|(bH)t|20(4.10)

+ δ−1|G2|20 + δ|G2x|20 + δ2||Dx|
1

2G2x|20 + δ|(G2t, δVt)Γ|
+ δW|G3|20 + δ3|G3x|20 + δ5|G3xx|20 + δ3W2|G3t|20 + δ6W|(Hxxxx, G3xx)Γ|
+ δ−1‖F ‖2 + δ‖Fx‖2 + δ|(Ft,Ut)Ω|,

N
2
0 (Z2) := δ5|h1|20 + δ7|h1x|20 + δ8||Dx|

1

2h1x|20 + δ4|(h1t, Ut)Γ|(4.11)

+ δ5|h(3)2 |20 + δ7|h(3)2x |20 + δ8||Dx|
1

2h
(3)
2x |20 + δ4|(h(3)2t , δVt)Γ|

+ δ5‖f‖2 + δ7‖fx‖2 + δ4|(ft,Ut)Ω|,
N

3
0 (Z3) := δ5|φ1|20 + δ7|φ1x|20 + δ8||Dx|

1

2φ1x|20 + δ7|φ1t|20 + δ5|φ2|20 + δ7|φ2x|20(4.12)

+ δ8||Dx|
1

2φ2x|20 + δ7|φ2t|20 + δ7W|φ3|20 + δ9|φ3x|20 + δ11|φ3xx|20
+ δ13|φ3xxx|20 + δ9W2|φ3t|20 + δ5‖ψ‖2 + δ7‖ψx‖2 + δ7‖ψt‖2,

11



where

Z1 = (H,U , bH,G2, G3,F ), Z2 = (U , h1, h
(3)
2 , h3,f), Z3 = (φ1, φ2, φ3,ψ).

For an integer m ≥ 2, we set

Em(H,U) :=

m
∑

k=0

E0(∂
k
xH, ∂

k
xU), Fm(H,U , P ) :=

m
∑

k=0

F0(∂
k
xH, ∂

k
xU , ∂

k
xP ),(4.13)

N
1
m(H,U , P ; η) :=

m
∑

k=0

{

N
1
0 (∂kxZ1) + |(∂kxH, ∂kxG3)Γ|

}

,(4.14)

N
2
m(U) :=

m
∑

k=0

N
2
0 (∂kxZ2),(4.15)

N
3
m(H; η) :=

m
∑

k=0

{

N
3
0 (∂kxZ3) + |(∂kxH, δ3∂kxφ3)Γ|

}

.(4.16)

Here, the terms
∑m

k=0 |(∂kxH, ∂kxG3)Γ| and
∑m

k=0 |(∂kxH, δ3∂kxφ3)Γ| come from (3.30) in [16]. Ap-
plying ∂kx to (4.6)–(4.8), using [16, Proposition 3.2], and adding the resulting inequalities for
0 ≤ k ≤ m, we obtain the following lemma.

Lemma 4.1. There exist small positive constants R0 and α0 such that if 0 < R1 ≤ R ≤ R0,
W1 ≤ W, and 0 < α ≤ α0, then the solution (H,U, V, P ) of (4.6)–(4.8) satisfies

(4.17)
d

dt
Em + Fm ≤ C(N 1

m + N
2
m + N

3
m),

where the constant C is independent of δ, R, and W.

For later use, we modify the energy and the dissipation functions Em and Fm as

Ẽm(H,U) := Em(H,U) + ‖(1 + |Dx|)mU‖2 + ‖(1 + |Dx|)mUy‖2,(4.18)

F̃m(H,U , P ) := Fm(H,U , P ) + δ|(1 + δ|Dx|)
5

2Ht|2m + (δ2W)2δ2||Dx|
7

2H|2m(4.19)

+ δ−1‖(1 + |Dx|)m(1 + δ|Dx|)(∇δP,Uyy)‖2 + δ‖(1 + |Dx|)m−1∇δPt‖2.
We also introduce another energy function Dm by

Dm(H,U) := |(1 + δ|Dx|)2H|2m + δ2‖(1 + |Dx|)mV ‖2 + δ2‖(1 + |Dx|)mUx‖2
(4.20)

+ ‖(1 + |Dx|)mD2
δU‖2 + (δ2W)2|(1 + δ|Dx|)Hx|2m+1 +

√
δ2W‖(1 + |Dx|)mδVxy‖2,

which does not include any time derivatives. Setting Ẽm = Ẽm(ηδ ,uδ) and F̃m = F̃m(ηδ ,uδ, pδ)
and using [16, Theorem 2.2 and Proposition 6.1], the following uniform estimate holds.

Proposition 4.2. There exist small positive constants R0 and α0 such that the following state-
ment holds: Let m be an integer satisfying m ≥ 2, 0 < R1 ≤ R0, 0 <W1 ≤ W2, and 0 < α ≤ α0.
There exists small positive constant c0 such that if the initial data (η0, u0, v0) and the parame-
ters δ, ε, R, and W satisfy Assumption 2.1 and W ≤ δ−2W2, then the solution (ηδ, uδ , vδ, pδ)
of (2.1)–(2.4) satisfies

Ẽ2(t) ≤ c0, sup
t≥0

Ẽm+1(t) +

∫ ∞

0
F̃m+1(t)dt ≤ C, Ẽm+1(t) ≤ Ce−cδt.

Here, positive constants C and c depend on R1,W1,W2, α, and M but are independent of δ, ε,
R, and W.
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Moreover, we easily obtain the following lemma.

Lemma 4.3. Let α > 0, 0 < R1 ≤ R < Rc. There exists small positive constant c1 such that if
s ≥ 2 and |η0|22 ≤ c1, then the problems (1.7)–(1.10) under the initial condition ζ|τ=0 = η0 have
unique solutions ζI , ζII , ζIII , and ζIV , respectively, which satisfy

sup
τ≥0

|ζI(τ)|2s +
∫ ∞

0
|ζIx(τ)|2sdτ ≤ C|η0|2s, |ζI(τ)|2s ≤ C|η0|2se−cδt,

sup
τ≥0

|ζII(τ)|2s +
∫ ∞

0

(

|ζIIx (τ)|2s + |ζIIxx(τ)|2s
)

dτ ≤ C|η0|2s, |ζII(τ)|2s ≤ C|η0|2se−cδt,

sup
τ≥0

|ζIII(τ)|2s +
∫ ∞

0
|ζIIIx (τ)|2sdτ ≤ C|η0|2s, |ζIII(τ)|2s ≤ C|η0|2se−cδt,

sup
τ≥0

|ζIV (τ)|2s +
∫ ∞

0

(

|ζIVx (τ)|2s + δ|ζIVxx (τ)|2s
)

dτ ≤ C|η0|2s, |ζIV (τ)|2s ≤ C|η0|2se−cδt.

Here, Rc =
5
4

1
tanα is the critical Reynolds number and positive constants C and c are independent

of δ and R.

5 Error estimate

We will show (2.11) under Assumption 2.1 and (2.10). We can show the other claims in Theorem
2.2 in the same way as the proof of (2.11) and we will comment about the difference at the end
of this section. Let ζIII be the solution of (1.9) under the initial condition ζIII |τ=0 = η0 and
we put ηIII(x, t) := ζIII(x− 2t, εt) and

(5.1)











uIII(x, y, t) := uIII0 (y; ηIII(x, t)) + δuIII1 (y; ηIII(x, t)) + δ2uIII2 (y; ηIII(x, t)),

vIII(x, y, t) := uIII0 (y; ηIII(x, t)) + δvIII1 (y; ηIII(x, t)) + δ2vIII2 (y; ηIII(x, t)),

pIII(x, y, t) := pIII0 (y; ηIII(x, t)) + δpIII1 (y; ηIII(x, t)) + δ2pIII2 (y; ηIII(x, t)),

where uIII0 , vIII0 , pIII0 , . . . were defined by (3.10)–(3.13). Then, we have

ηIIIt =− 2ηIIIx +
8

15
(Rc − R)δηIIIxx − C1δ

2ηIIIxxx(5.2)

− 4δηIIIηIIIx − δ2
{

C2

(

ηIIIηIIIxx + (ηIIIx )2
)

+ 2(ηIII)2ηIIIx

}

.

Using the approximate solutions (5.1), we define ψ1, ψ2, φ1, φ2, and φ3 by (4.1). By using the
equality (5.2) to eliminate the t derivatives of ηIII , we can rewrite these terms as follows.

(5.3)































ψ1(y; η
III) = C1(y)∂3xηIII + C2(y)δ∂4xηIII + · · · + C7(y)δ6∂9xηIII +N III

1 ,

ψ2(y; η
III) = C8(y)∂3xηIII + C9(y)δ∂4xηIII + · · · + C15(y)δ7∂10x ηIII +N III

2 ,

φ1(η
III) = C16∂3xηIII + C17δ∂4xηIII + · · ·+ C21δ5∂8xηIII +N III

3 ,

φ2(η
III) = C22∂3xηIII + C23δ∂4xηIII + · · ·+ C26δ4∂7xηIII +N III

4 ,

φ3(η
III) = C27∂4xηIII + C28δ∂5xηIII + · · ·+ C30δ3∂7xηIII +N III

5 ,

where C1, . . . , C15 are polynomials in y, C16, . . . , C30 are constants, and N III
1 , . . . , N III

5 are col-
lections of the nonlinear terms of the form

(5.4)
1

δ3
Φ0(δη

III , δ2∂xη
III , . . . , δ5∂4xη

III ; y)Φ0(δ
2∂xη

III , . . . , δ10∂9xη
III ; y).
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Here we generally denote polynomials of f by the same symbol Φ = Φ(f) and Φ0 is such a
function satisfying Φ0(0) = 0. We also use such a function Φ0 depending also on y ∈ [0, 1] and
denote it by Φ0(f ; y), that is, Φ0(0; y) ≡ 0. Let (ηδ, uδ , vδ, pδ) be the solution of (2.1)–(2.3) and
we set HIII := ηδ − ηIII , U III := (uδ −uIII , δ(vδ − vIII))T, Ẽ III

m := Ẽm(HIII ,U III), and so on.
We prepare several lemmas to proceed the error estimate.

Lemma 5.1. Under the same assumption as Proposition 4.2, for any ǫ > 0 there exists a
positive constant Cǫ such that we have

(5.5) N
2
m(U III)(t) ≤ ǫF̃m(t) + Cǫδ

4Ẽm(t)F̃m+1(t),

where N 2
m is the collection of nonlinear terms defined by (4.15).

Proof. By the explicit form of f , h1, and h
(3)
2 (see (3.5) and Section 2), we can obtain the

desired estimate in the same but more easier way as proving [16, Lemmas 5.11 and 5.12]. �

Lemma 5.2. Under the same assumption as Proposition 4.2, for any ǫ > 0 there exists a
positive constant Cǫ such that we have

N
3
m(H; ηIII)(t) ≤ ǫF̃m(t) + Cǫδ

5|ηIIIx (t)|2m+12,

where N 3
m is the collection of nonlinear terms defined by (4.16).

Proof. By the well-known inequalities ‖∂kx(fg)‖ . ‖f‖L∞‖∂kxg‖+‖g‖L∞‖∂kxf‖ and ‖∂kxΦ0(f ; y)‖ ≤
C(‖f‖L∞)‖∂kxf‖, (5.2)–(5.4) lead to

∑m
k=0 N 3

0 (∂kxZ3) .
(

1+|ηIII |2m+12

)

δ5|ηIIIx |2m+12. Moreover,
by Poincaré’s inequality and (5.4), we see that |(∂kxH, δ3∂kxφ3)Γ| ≤ ǫδ|∂kxHx|20 + Cǫδ

5|∂kxφ3|20 ≤
ǫF̃m + Cǫ

(

1 + |ηIII |2m+12

)

δ5|ηIIIx |2m+12. These together with Lemma 4.3 imply the desired in-
equality. �

Lemma 5.3. Under the same assumption as Proposition 4.2, for any ǫ > 0 there exists a
positive constant Cǫ such that we have

N
1
m(HIII ,U III , P III ; ηIII)(t) ≤(CǫẼ2(t) + ǫ)F̃ III

m (t) + Cǫ

{

Ẽm(t)F̃ III
2 (t) + δ4Ẽm(t)F̃m+1(t)

(5.6)

+ δ5|ηIIIx (t)|2m+12 + (F̃m(t) + δ|ηIIIx (t)|2m+12)Ẽ
III
m (t)

}

,

where N 1
m is the collection of nonlinear terms defined by (4.14).

Proof. In this proof, we omit the symbol III appeared in a superscript of solutions for sim-
plicity. By (3.5), (4.2), and (4.9), we see that F is consist of terms of the form































δΦ0(η
δ, δηδx; y)(∇δUy,∇δP ) + δ2(ηδ)2(Uyy, Py),

δΦ0(η
δ, δηδx, u

δ; y)(δV, δUx),

δΦ0(δη
δ
x, δη

δ
t , δv

δ ; y)(U,Uy),

δΦ0(η,u,∇δu,∇δuy,∇δp; y)(δHx, δHt, U, δV ),

δ2ηδ(uyy + py)H

and that G2 = δ2{ηδ(2Hx+Ux)+ η
δ
xU +(2ηx+ux)H +uHx}, G3 = δ2{(ηδ)2Hx+(ηδ + η)ηxH},

and bH = 2δ
(

δ(ηδ)2 + (2+ δη)ηδ + δη2 +2η
)

H. Note that using (5.1) and (5.2), we can express
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the approximate solutions u,∇δu, uyy, and ∇δp in terms of η and its x derivatives. In view of
these, by putting























Φ1 = Φ(ηδ , δηδx, δη
δ
t , δ

2ηδxx, δ
2ηδtx,u

δ; y),

Φ2 = Φ(δηδx, δη
δ
t , δ

2ηδxx, δ
2ηδtx, δ

2ηδtt, δv
δ , δuδ

x, δu
δ
t ; y),

Φ3 = Φ(ηδ , δηδx; y),

Φ4 = Φ(η, δηx, . . . , δ
10∂10x η; y),











W := (δHx, δHt, δ
2Hxx, δ

2Htx, δ
3Hxxx, δV, δUx, δUt, δ∇δUx, δ∇δUt,∇δUy,∇δUxy,

∇δP,∇δPx, δUx|Γ, δUt|Γ, δ2Uxx|Γ, δ5/2|Dx|5/2U |Γ),
Q := (H, δHx, δHt, δ

2Hxx, δ
2Htx, δ

3Hxxx,U ,∇δU , δUt, U |Γ),
it suffices to estimate































































I1 = δ‖∂kx(Φ1
0W )‖2,

I2 = δ‖∂kx(Φ2
0Q)‖2,

I3 = δ3|(∂kx(ηδUtx), ∂
k
xVt)Γ|,

I4 = δ2|(∂kx(Φ3
0∇δUty), ∂

k
xUt)Ω|,

I5 = δ2|(∂kx(Φ3
0∇δPt),∂

k
xUt)Ω|,

I6 = δ‖∂kx(Φ1Φ4
0Q)‖2,

I7 = δ4|(∂kx(Φ4
0Htt), ∂

k
xVt)Γ|,

I8 = δ6W|(∂kxHxxxx, ∂
k
xG3xx)Γ|

for 0 ≤ k ≤ m.
By Proposition 4.2 and ‖(u, v)‖L∞ . ‖(uy , vy)‖ + ‖(uxy, vxy)‖ thanks to the boundary con-

dition u|y=0 = v|y=0 = 0, we obtain

‖Φ1
0‖2L∞ . Ẽ2, ‖∂kxΦ1

0‖2 + ‖∂kxΦ1
0y‖2 . Ẽm,(5.7)

‖Φ2
0‖2L∞ . F̃2, ‖∂kxΦ2

0‖2 + ‖∂kxΦ2
0y‖2 . F̃m.(5.8)

In the same way as the proof of Lemma 5.2, we have

δ‖Φ4
0‖2L∞ . δ|ηx|2m+12, δ(‖∂kxΦ4

0‖2 + ‖∂kxΦ4
0y‖2) . δ|ηx|2m+12, |Φ4

0|2m− 1

2

. |η|2m+12.(5.9)

On the other hand, it is easy to see that

‖W‖2 + ‖Wx‖2 . F̃2, ‖∂kxW‖2 . F̃m,(5.10)

‖Q‖2 + ‖Qx‖2 . Ẽ2, ‖∂kxQ‖2 . Ẽm,(5.11)

where we used the trace theorem |f |20 + δ||Dx|
1

2 f |20 . ‖f‖2 + δ2‖fx‖2 + ‖fy‖2 to estimate the

term δ5||Dx|
5

2U |20. In the following, we often use the inequality

(5.12) ‖∂kx(af)‖ . ‖a‖L∞‖∂kxf‖+ (‖∂kxa‖+ ‖∂kxay‖)(‖f‖+ ‖fx‖),

which have been shown in [16, Lemma 5.2].
As for I1, by (5.7), (5.10), and (5.12), we have I1 . Ẽ2F̃m + ẼmF̃2. As for I2, by (5.8),

(5.11), and (5.12), we have I2 . F̃mẼm. As for I3, by integration by parts, we have I3 .
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Cǫδ
3|ηδUtx|2m− 1

2

+ ǫδ3|Vt|2m+ 1

2

≤ Cǫ(Ẽ2F̃m + ẼmF̃2) + ǫF̃m. As for I4, by integration by parts

in y, we have

I4 ≤ Cǫδ
2
(

‖∂kx(Φ3
0∇δUt)‖2 + ‖∂kx(Φ3

0y∇δUt)‖2
)

+ δ3|(∂kx(Φ3
0Utx), ∂

k
xUt)Γ|+ δ2|(∂kx(Φ3

0Uty), ∂
k
xUt)Γ|+ ǫδ‖∂kxUty‖2

≤ I4,1 + I4,2 + I4,3 + ǫF̃m,

where I4,1 = Cǫδ
2
(

‖∂kx(Φ3
0∇δUt)‖2 + ‖∂kx(Φ3

0y∇δUt)‖2
)

, I4,2 = δ3|(∂kx(Φ3
0Utx), ∂

k
xUt)Γ|, and I4,3 =

δ2|(∂kx(Φ3
0Uty), ∂

k
xUt)Γ|. The estimates for I4,1 and I4,2 are reduced to the estimates for I1 and

I3, respectively. Thus, taking into account that we can eliminate the term Uy|Γ in I4,3 by
the first equation in (4.7), this together with the estimates for I2, I3, δ

3h1, and δ3φ1 yields
I4 ≤ ǫF̃m +Cǫ

{

Ẽ2F̃m + Ẽm(F̃2 + δ4F̃m+1 + |η|2m+12δ
5|ηx|2m+12)

}

. As for I5, it suffices to show
the case of k ≥ 1 because we can treat easily the case of k = 0. Integrating by parts in x, (5.7),
and (5.12), we have I5 ≤ ǫδ3‖∂kxUtx‖2+Cǫδ‖∂k−1

x (Φ3
0∇δPt)‖2 ≤ ǫF̃m+Cǫ

(

Ẽ2F̃m+ ẼmF̃2

)

. As
for I6, by (5.7), (5.9), (5.11), and (5.12), we have

I6 . δ
{

‖Φ4
0‖2L∞(‖∂kxΦ1‖2 + ‖∂kxΦ1

y‖2)(‖Q‖2 + ‖Qx‖2)
+ ‖Φ1‖2L∞(‖∂kxΦ4

0‖2 + ‖∂kxΦ4
0y‖2)(‖Q‖2 + ‖Qx‖2) + ‖Φ1‖2L∞‖Φ4

0‖2L∞‖∂kxQ‖2
}

. (Ẽm + |η|2m+12)δ|ηx|2m+12Ẽm.

As for I7, it suffices to show the case of k ≥ 1 because we can treat easily the case of k = 0. By
the third equation in (4.7), integration by parts, and the trace theorem, we have

I7 ≤ Cǫδ
4||Dx|

1

2 ∂k−1
x (Φ4

0Vt)|20 + Cǫδ
5|∂kx(Φ4

0Hxt +Φ4
0G3t)|20 +Cǫδ

5|δ3∂kxφ3t|20
+ ǫ

(

δ4||Dx|
1

2∂kxVt|20 + δ3|∂kxVt|20
)

≤ I7,1 + I7,2 + I7,3 + ǫF̃m,

where I7,1 = Cǫδ
4||Dx|

1

2 ∂k−1
x (Φ4

0Vt)|20, I7,2 = Cǫδ
5|∂kx(Φ4

0Hxt+Φ4
0G3t)|20, and I7,3 = Cǫδ

5|δ3∂kxφ3t|20.
By the trace theorem, the second equation in (4.6), and (5.9), we have

I7,1 . |Φ4
0|2m− 1

2

δ3|Vt|2L∞ + δ|Φ4
0|2L∞δ3||Dx|

1

2∂k−1
x Vt|20

. |Φ4
0|2m− 1

2

δ3‖Utxx‖2 + δ|Φ4
0|2L∞(δ2‖∂kxUt‖2 + δ4‖∂kxVt‖2)

. |η|2m+12F̃2 + δ|ηx|2m+12Ẽm.

Recalling the explicit form of G3, we see that the estimate of I7,2 is reduced to I6. Taking
into account that we have already estimated I7,3 in the proof of Lemma 5.2, we obtain I7 ≤
Cǫ

{

|η|2m+12F̃2+(Ẽm+ |η|2m+12)δ|ηx|2m+12Ẽm+ |η|2m+12δ
5|ηx|2m+12

}

+ ǫF̃m. As for I8, integration
by parts, (5.7), and (5.9) lead to

δ6W|(∂kxHxxxx, ∂
k
xG3xx)Γ| ≤ ǫ(δ2W)2δ2||Dx|

7

2H|2m + Cǫδ
6||Dx|

5

2G3|2m
≤ ǫF̃m +Cǫ

{

δ2(F̃m + δ|ηx|2m+12)Ẽ2 + Ẽ2F̃m

}

.

Therefore, by the boundedness of the terms Ẽm and |η|2m+12 which comes from Proposition
4.2 and Lemma 4.3, the proof is complete. �
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Lemma 5.4. Under the same assumption as Proposition 4.2, we have

Ẽ
III
m (t) . E

III
m (t) + δ4(Ẽm+1(t) + |ηIII(t)|2m+12),(5.13)

F̃
III
m (t) . F

III
m (t) + (F̃m(t) + δ|ηIIIx (t)|2m+12)Ẽ

III
m (t)(5.14)

+ δ4Ẽm(t)F̃m+1(t) + δ5|ηIIIx (t)|2m+12,

E
III
m (t) . D

III
m (t) + δ4.(5.15)

Proof. In view of the discrepancy of non-homogeneous terms in the equations, modifying the
proof of (6.2) in [16, Lemma 6.2], we obtain (5.13). Taking into account that we can eliminate
Uyy in F III

m by using the first equation in (4.6), modifying the proof of (6.3) in [16, Lemma 6.2],
it is not difficult to check that (5.14) holds. Moreover, modifying the proof of (6.10) in [16], we
obtain (5.15). �

Lemma 5.5. Under the same assumption as Proposition 4.2, we have

D
III
m (0) . δ4.

Remark 5.1. This lemma together with (5.15) yields

(5.16) E
III
m (0) . δ4.

Proof. By the second and third equations in the compatibility conditions, we see that

u0(x, y) = yu0y(x, 1) −
∫ y

0

∫ 1

z
u0yy(x,w)dwdz(5.17)

=
(

2yη0 + 4yδη20 + 2yδ2η30
)

+ δy
(

− δv0x + δ2h
(0)
1

)

−
∫ y

0

∫ 1

z
u0yy(x,w)dwdz.

It follows from (2.10) and ‖(1 + |Dx|)m+1uIIIyy |t=0‖ . δ (see the explicit form of uIII , that is,
(3.10)–(3.13) and (5.1)) that ‖(1 + |Dx|)m+1u0yy‖ . δ. Thus, by (5.17), the explicit form of

uIII , (2.10), and the uniform estimate for δ2|h(0)1 |m+1 (see the proof of Lemma 5.1), we obtain
‖(1+ |Dx|)m+1U |t=0‖ . δ. Combining this and the first equation in the compatibility conditions
leads to ‖(1 + |Dx|)mV |t=0‖ . δ. Therefore, in view of the definition of Dm (see (4.20)), using
these and H|t=0 = 0, we obtain the desired estimate. �

Proof of (2.11) in Theorem 2.2. By Proposition 4.2, Lemmas 4.1, 5.1–5.3, and (5.13) and (5.14)
in Lemma 5.4, if c0 and ǫ are sufficiently small, then we have

(5.18)
d

dt
E

III
m (t) + F̃

III
m (t) ≤ C1

(

ϕ1(t)E
III
m (t) + Ẽm(t)F̃ III

2 (t) + δ4ϕ2(t)
)

,

where

(5.19) ϕ1(t) = F̃m(t) + δ|ηIIIx (t)|2m+12, ϕ2(t) = Ẽm(t)F̃m+1(t) + δ|ηIIIx (t)|2m+12.

By considering the case of m = 2 in (5.18) and using Gronwall’s inequality and Proposition 4.2,
if c0 is sufficiently small, then we have E III

2 (t) +
∫ t
0 F̃ III

2 (s)ds ≤ ϕ3(t), where

(5.20) ϕ3(t) = E
III
2 (0) exp

(

C1

∫ t

0
ϕ1(s)ds

)

+ C1

∫ t

0
δ4ϕ2(s) exp

(

C1

∫ t

s
ϕ1(σ)dσ

)

ds,
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which leads to

(5.21)

∫ t

0
F̃

III
2 (s)ds ≤ ϕ3(t).

Note that by Proposition 4.2 and Lemma 4.3, we have the exponential decay estimate for Ẽm+1(t)
and |ηIII(t)|2m+13. This together with (5.18), Gronwall’s inequality, and δE III

m . F̃ III
m which

comes from |H|0 . |Hx|0 and ‖V ‖ . ‖Vy‖ = ‖Ux‖ (see (4.13) and (4.19)) yields

E
III
m (t) ≤

{

E
III
m (0) exp

(

C1

∫ t

0
ϕ1(s)ds

)

+ ϕ4(t)

}

e−cδt,

where

(5.22) ϕ4(t) = C1

∫ t

0

(

F̃
III
2 (s) + δ4F̃m+1(s)

)

exp

(

C1

∫ t

s
ϕ1(σ)dσ

)

ds.

Combining the above inequality and (5.13) and (5.15) in Lemma 5.4, we obtain

(5.23) Ẽ
III
m (t) ≤ C2

(

δ4 + D
III
m (0) + ϕ4(t)

)

e−cδt.

Here, recalling the definition ηIII(x, t) = ζIII(x − 2t, εt) and the assumption ε = δ and using
Lemma 4.3, we have

∫∞

0 δ|ηIIIx (t)|2sdt = 1
ε

∫∞

0 δ|ζIIIx (τ)|2sdτ . |η0|s. By this, the integrability of

F̃m+1 which comes from Proposition 4.2, and (5.16), we have ϕ3(t) . δ4 (see (5.19) and (5.20)).
This together with (5.21) leads to ϕ4(t) . δ4 (see (5.22)). Combining this, (5.23), and Lemma
5.5, we have

(5.24) Ẽ
III
m (t) ≤ C3δ

4e−cεt,

which implies D(t; ζIII , uIII , vIII , pIII) . δ4e−cεt (see (2.5) and (4.18)). Here, we used ‖V ‖ .

‖Vy‖ = ‖Ux‖. Moreover, by taking into account the equality P (x, y, t) = P (x, 1, t)−
∫ 1
y Py(x, z, t)dz

and using the second equation in (4.6), the second equation in (4.7), and the uniform esti-
mate (5.24), we easily obtain ‖(1 + |Dx|)m(pδ − pIII)(t)‖2 . δ4e−cεt. Note that in the case

of O(δ−1) ≤ W ≤ O(δ−2) we can estimate the term δ2W
sinα∂

m
x Hxx which comes from the second

equation in (4.7) by Ẽ III
m+1. Therefore, the proof of (2.11) in Theorem 2.2 is complete. �

We proceed to prove (2.7), (2.9), and (2.13). Let ζI , ζII , and ζIV be the solution for (1.7),
(1.8), and (1.10), respectively under the initial condition ζI |τ=0 = ζII |τ=0 = ζIV |τ=0 = η0. We
put ηI(x, t) := ζI(x− 2t, εt), ηII(x, t) := ζII(x− 2t, εt), ηIV (x, t) := ζIV (x− 2t, εt) and











uI(x, y, t) := uI0(y; η
I(x, t)) + δuI1(y; η

I(x, t)),

vI(x, y, t) := uI0(y; η
I(x, t)) + δvI1(y; η

I(x, t)),

pI(x, y, t) := pI0(y; η
I(x, t)) + δpI1(y; η

I(x, t)),










uII(x, y, t) := uII0 (y; ηII(x, t)) + δuII1 (y; ηII(x, t)),

vII(x, y, t) := uII0 (y; ηII(x, t)) + δvII1 (y; ηII(x, t)),

pII(x, y, t) := pII0 (y; ηII(x, t)) + δpII1 (y; ηII(x, t)),










uIV (x, y, t) := uIV0 (y; ηIV (x, t)) + δuIV1 (y; ηIV (x, t)) + δ2uIV2 (y; ηIV (x, t)),

vIV (x, y, t) := uIV0 (y; ηIV (x, t)) + δvIV1 (y; ηIV (x, t)) + δ2vIV2 (y; ηIV (x, t)),

pIV (x, y, t) := pIV0 (y; ηIV (x, t)) + δpIV1 (y; ηIV (x, t)) + δ2pIV2 (y; ηIV (x, t)),

where uI0, v
I
0 , p

I
0, . . . were defined by (3.14)–(3.16). In view of this, by applying the same argument

as showing (2.11), it is not difficult to check that (2.7), (2.9), and (2.13) holds. Therefore, the
proof of Theorem 2.2 is complete. �
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