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A Mathematical Justification of a Thin Film Approximation
for the Flow down an Inclined Plane

Hiroki Ueno and Tatsuo Iguchi

Abstract

We consider a two-dimensional motion of a thin film flowing down an inclined plane under
the influence of the gravity and the surface tension. In order to investigate the stability of
such flow, we often use a thin film approximation, which is an approximation obtained by
the perturbation expansion with respect to the aspect ratio of the film. The famous example
of the approximate equations are the Burgers equation, Kuramoto—Sivashinsky equation,
KdV-Burgers equation, KdV-Kuramoto—Sivashinsky equation, and so on. In this paper, we
give a mathematically rigorous justification of a thin film approximation by establishing an
error estimate between the solution of the Navier—Stokes equations and those of approximate
equations.

1 Introduction

In this paper, we consider a two-dimensional motion of liquid film of a viscous and incompressible
fluid flowing down an inclined plane under the influence of the gravity and the surface tension
on the interface. The motion can be mathematically formulated as a free boundary problem for
the incompressible Navier—Stokes equations. We assume that the domain €2(¢) occupied by the
liquid at time ¢ > 0, the liquid surface I'(¢), and the rigid plane ¥ are of the forms

Q(t) = {(z,y) e R* | 0 <y < ho +n(z,1)},
L(t) = {(z,y) € R* | y = ho + n(z,1)},
¥ ={(x,y) e R*| y = 0},

where hg is the mean thickness of the liquid film and 7(x, t) is the amplitude of the liquid surface.
Here we choose a coordinate system (z,y) so that x axis is pointed to the streamwise direction
and y axis is normal to the plane. We consider fluctuations of the Nusselt flat film solution,
which is the stationary laminar flow given by

(1.1) m =0, wu=(pgsina/2u)(2hoy —y*), v1 =0, p1=po— pgcosaly— ho),

where p is a constant density of the liquid, g is the acceleration of the gravity, « is the angle of
inclination, u is the shear viscosity coefficient, and pg is an atmospheric pressure. Throughout
this paper, we assume that the flow is [yp-periodic in the streamwise direction z. Rescaling the
independent and dependent variables by using hg, ly, the typical amplitude of the liquid surface
ag, Uy = pgh% sin /2, and Py = pghg sin a, the equations are written in the non-dimensional
form

R R

2 1
(1.2) dur + ((w+ceu) - Vs)u+ (u-Vi)a+ =Vsp— =Asu =0 in Q(t), t >0,
Vs-u=0 in Q(t), t >0,

(Ds(eu+ ) —epl)n
< 1 W ENaa
= -z +

€ -
ana | sina (1+ (65%)2)%
ne+ (1= (en)? +eu)n, —v=0 on I (t), t>0,

)n on T'.(t), t>0,
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(1.4) u=0 on X, t>0.
Here, d,¢, R, and W are non-dimensional parameters defined by

st _w  p_ ploho W=

ho Jz pghy
where o is the surface tension coefficient. Note that § is the aspect ratio of the film, ¢ repre-
sents the magnitude of nonlinearity, R is the Reynolds number, and W is the Weber number.
Moreover, we used notations u = (u,év)T,u = (4,0)T,a = 2y — %, Vs = (58x,8y)T,A5 =
Vs Vs, Dsf = %{Vg(fT) + (V(s(fT))T}, and n = (—e0n,,1)T. In this scaling, the liquid
domain €2, (¢) and the liquid surface T'c(¢) are of the forms

{ Q(t) = {(z,y) eR* | 0 <y < 1+en(x,1)},
Le(t) = {(z,y) € R? | y = 1 +en(x,t)}.

Concerning a mathematical analysis of the problem in the case of § = ¢ = 1, Teramoto [14]
showed that the initial value problem to the Navier—Stokes equations (L.2)—(L4]) has a unique
solution globally in time under the assumptions that the Reynolds number and the initial data
are sufficiently small. Nishida, Teramoto, and Win [I0] showed the exponential stability of
the Nusselt flat film solution under the assumptions that the angle of inclination is sufficiently
small and x € T in addition to the assumptions in [14]. Furthermore, Uecker [15] studied the
asymptotic behavior for ¢ — oo of the solution in the case of * € R and showed that the
perturbations of the Nusselt flat film solution decay like the self-similar solution of the Burgers
equation under the assumptions that the initial data are sufficiently small and R < R.. Here,
R, = % tarlla is the critical Reynolds number given by Benjamin [2]. On the other hand, Ueno,
Shiraishi, and Iguchi [16] derived a uniform estimate for the solution of (L2)—(L4]) with respect
to & when the Reynolds number, the angle of inclination, and the initial data are sufficiently
small.
Benney [3] derived the following single nonlinear evolution equation

8
- 1_5(Rc - R)énxx + 015277909096

2 W
+ 0255(7777mm + 773) + == 53"790909095 = 0(53 + 625 + 652)
3 sin o

(1.5) m+2(1 4 en)*n,

by using the method of perturbation expansion of the solution (u,v,p) with respect to § under
the thin film regime § < 1. Here, C; = C1(R, ) and Cy = C5(R, a) are constants independent
of §,e, and W. Explicit forms of (7 and C5 will be given in Section 3. Many approximate
equations are obtained from (5] by assuming that parameters £, W, and R have appropriate
orders in 4. In the following, we assume € = § and R < R, and set

(1.6) n(z,t) = ((z — 2t,et).

I. Burgers equation
Assuming Wi < W < §7tWy in (L), we have

8
Nt + 27790 + 467777:(: - 1_5(Rc - 3)5%:(; = 0(52)
Plugging (L.0) in the above equation and passing to the limit e = § — 0, we obtain
8
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I1. Burgers equation with a fourth order dissipation term
Assuming W = 6—2W, in (LF), we have

8 2 W
ne + 20, + 4enne — —(Re — R)0npe + = —— 2
15 3 sin «r

Plugging (L.0) in the above equation and passing to the limit e = § — 0, we obtain

8 2 Wy
L. T 4 x Phc R T 5 . Szzxzxx — Y-
(18) ¢ < 15( ) 3SanéC 0

ITI. Burgers equation with dispersion and nonlinear terms
Assuming W; < W < Wy in (L), we have

8
M+ 20 + Aoy — 12 (Re = R)0aa + C16"Naze + Cogd (s + 1) + 287" 00 = O(6%).
Plugging (L8] in the above equation and neglecting the terms of O(8%), we obtain

(1.9) <T + 4C<ﬂc - %(Rc - R)(ﬂcw + 5{01<xmc + 02 ((Cmm + C;%) + 2C2Cm} =0.

IV. Burgers equation with fourth order dissipation, dispersion, and nonlinear terms
Assuming W = 6 ='W in (L5, we have

8
Nt + 2ng + denng — 1_5(Rc - 3)5%:(;

2
+ 015277mmm + 0255(7777mm + 77:%) + 25277277x + gsinzaé277mmmm = 0(53)

Plugging (L8] in the above equation and neglecting the terms of O(8%), we obtain

(1.10) G+ 4G — 7 (Re — R)Ges
3sina

We remark that (L9) and (I.I0) are higher order approximate equations to Burgers equation
(L7). In this paper, we assume R < R, in order to use a uniform estimate in § for the solution
of the Navier—Stokes equations, which is a severe restriction. Uniform estimates in ¢ for the
solution play a most important role in the justification for these approximation. Here if we
could assume R > R, then (L8)) would be the Kuramoto—Sivashinsky equation (see [9], [12],
and [13]). If we could assume R. — R = R > 0, then we would obtain the d-independent
KdV-Burgers equation

by plugging (L) in (L5) and passing to the limit ¢ = 92 — 0 under the assumption W; <
W < Ws,. Moreover if we could assume R, — R = —dR < 0, we would obtain the J-independent
KdV-Kuramoto—Sivashinsky equation

SR 2 W
(1'12) (T + 4C<ﬂc + _Cmm + Cl<$$$ + _—2<xmcgc =0
15 3 sin «
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by plugging (L6) in (LF) and passing to the limit e = 62> — 0 under the assumption W = 6~ 1W.
More details or a list of useful references about the thin film approximation can be found in
[6, [7, 8, [T, [16].

In this paper, we will give a mathematically rigorous justification of these thin film approx-
imations by establishing an error estimate between the solution of the Navier—-Stokes equations
(C2)—(T4) and those of the approximate equations (L 7)—(LI0). We note that we cannot just yet
justify the Kuramoto—Sivashinsky equation, the d-independent KdV-Burgers equation (LIT]),
and the KdV-Kuramoto-Sivashinsky equation (LI2]) because without the assumption R < R,
we have not yet obtain a uniform estimate in § for the solution. We also remark that Bresch
and Noble [5] justified the shallow water model by proving that remainder terms converges to 0
as 0 — 0 (see also []).

The plan of this paper is as follows. In Section 2, we give our main theorem after we
transform the problem in a time dependent domain to a problem in a time independent domain.
In Section 3, we derive approximate solutions by using Benney’s method. In Section 4, we recall
the energy estimate for the solution of the Navier—Stokes equations obtained in [I6]. Finally, we
give an error estimates in Section 5.

Notation. We put @ =T x (0,1) and I' = T x {y = 1}, where T is the flat torus T = R/Z. For
a Banach space X, we denote by ||-||x the norm in X. For 1 < p < oo, we put |lullzer = [|ul|1r(0),
[ull = llullz2, [ulze = [lu(-, Dllze(ry, and |ufo = |u[z2. We denote by (,-)q and (-,-)r the inner
products of L?(Q) and L?(T'), respectively. For s > 0, we denote by H*(Q2) and H*(T') the L?
Sobolev spaces of order s on 2 and I', respectively. The norms of these spaces are denoted by
| - lls and | - |s. For a function v = wu(z,y) on Q, a Fourier multiplier P(D,) (D, = —id,) is
defined by (P(Dy)u)(z,y) = Y ,cz P(n)iy (y)e*™ ™, where iy (y) = fol u(z,y)e” 2™ dg is the
Fourier coefficient in 2. We put 9, ' f(z,y) = — fyl f(x,2)dz and DY f = {(60,)100f i +j = k}.
f < g means that there exists a non-essential positive constant C' such that f < Cg holds.

2 Main results

We rewrite the system (L.2)—(L4]) according to [I}, 16]. Transforming the problem in the moving
domain Q(t) to a problem in the fixed domain by using an appropriate diffeomorphism, and
introducing new unknown function (u’,v’,p’) to keep the solenoidal condition, we obtain

2 1
§(ug + Uuy + Uyv) + P—{épm - E(52um +uyy) =6%fi in Q, t>0,
2 1
(2.1) 82 (v + v, + ’Pv E&((Szvm + vyy) = 6% fo in Q,t>0,
Uy + vy =0 in Q,t>0,
620y +uy — 2(1 +en)?n =y on T, t>0,
1 2w
(2.2) p— v, — N+ —1ee = 6%hy on T, t>0,
tan « sin «
N+ Ne — v = 6200, =: 6%hs on I',t>0,
(2.3) u=v=0 on X, t>0,



where we dropped the prime sign in the notation and f1, f2, h1, and hs are collections of nonlinear
terms. See [16] for more details on the explicit form of these nonlinear terms. In the following,
we will consider the initial value problem to (2I)—(2.3]) under the initial conditions

(2.4) Nt=o =1no on T, (u,v)T|t:0: (uo,vo)T in Q.

Here, we assume fol no(z)dx = 0 and denote hy determined from initial data by hgo).

We impose the following assumption on the non-dimensional parameters and initial data.

Assumption 2.1. Let Ry, R1, a9, W1, cg, and M be positive constants and m > 2 be an integer.

(1) Conditions for parameters

Parameters R, a, W, 9, and e satisfy
Ri<R<Rp, O<a<a, Wi<W, 0<e=06<1.

(2) Smallness of initial data

Initial data (no,wo,vo) and parameters W and § satisfy
(14 6|D2])?nol2 + [I(1 + | Dzl)* (w0, 6v0) || + (1 + | Dy |)* Dy (uo, 5v0) ™ |
+ [[(1+ | Dz ])* D (o, 6v0) ™ || 4+ 6*W|(1 + 6| D)0z |3 + VE2WI|(1 + [ D] 600y || < co-
(8) Regularity of initial data
Initial data (no,ug,vo) satisfies
(1 + [Da )™ (w0, 00) | g2() + 10l meya < M.

(4) Compatibility conditions

Initial data (ng,up,vo) and parameters 6 and e satisfy

Uy + Voy = 0 m Q,
gy + 6%voe — 2(1 20 = 53p\0

oy + 0%voy — 2(1 + emo)?no = 8%h;  on T,
ug =vg =0 on X.

Remark 2.1. Under the assumption that there exist small positive constants Ry, g, and cq
such that Assumption 2] is fulfilled, Ueno, Shiraishi, and Iguchi [16] proved the global in time
uniform estimate with respect to § for the solution of the Navier—Stokes equations (Z.I))—(2.4]).
See also Proposition in this paper.

For later use, we define the norm of a difference between the solution (1, u’,v?,p%) of the
Navier—Stokes equations ([2.I)—(2.4]) and the solution ¢ of the approximate equations as

(2.5) D(t; ¢, u,v,p) =0 (8) = C(- = 26, )3 + [[(1+ [Dal)™ (u — w)(8)]?
1+ D)™ (0 = o) (O + (1 + (D)™ (0 = )OI,

where (u, v, p) is an approximate solution constructed from ¢. Let ¢!, ¢!7, ¢, and ¢!V be the
solution of (LL7)—(I0) under the initial condition (|,—¢ = g, respectively.
Now we are ready to state our main results in this paper. Note that the definitions of

I T appeared in the following statement will be given in Section 5.

I I
u,v,p,u



Theorem 2.2. There exist small positive constants Ry and ag such that the following statement
holds: Let m be an integer satisfying m > 2, 0 < R; < Rg, 0 < Wy < Wy, and 0 < a < ag.
There exists small positive constant co such that if the initial data (ng, uo,vo) and the parameters
0, e, R, and W satisfy Assumption[2]), then we have the following estimates.

1. Burgers equation
If the parameters 6 and W and the initial data ng and ug satisfy

(2.6) Wi <W <6 "Wa,  [nolmgr + 07 (14 [D]2)™ ugyy|| < M < o0,
then the following error estimate holds.
(2.7) D(t; ¢t ul ol pl) < Co%e et

1I. Burgers equation with a fourth order dissipation term
If the parameters 6 and W and the initial data ng and ug satisfy

(2.8) W =6"2Wa, |nolmt12 + 0 (14 |D]e)™ Mgyl < M < oo,
then the following error estimate holds.
(2‘9) D(t;CII,’LLII,UII,pII) < 052e—cat‘

1II. Burgers equation with dispersion and nonlinear terms
If the parameters 6 and W and the initial data ng and ug satisfy

(2.10) Wi <W < Wy, [nolmgas + 62 (1+ [D]e) ™ (uoyy — up e—o)l| < M < o0,
then the following error estimate holds.

1V. Burgers equation with a fourth order dissipation, dispersion, and monlinear terms
If the parameters § and W and the initial data 19 and uy satisfy

(2.12) W =0"Wa, [nolms17 + 621+ Do) (uoyy — uhy le=0)l| < M < oo,
then the following error estimate holds.
(213) D(t;CIV’uI\/’UIV’pIV) < 0546_C€t.

Here, positive constants C' and ¢ depend on R1, W1, Wa, a, and M but are independent of 4, €,
R, and W.

Remark 2.2. The assumptions for ugy, in (2.6]) and (2.8]) represent the restriction on the initial
profile of the velocity. Moreover, the assumptions for ug,, in (2I0) and (ZI2) mean that the
initial profile of the velocity have to be equal to that of the approximate solution up to O(42).

Remark 2.3. We see formally that the order of error terms in (7)) is of O(d), which implies
that the error estimates (Z7) and (Z9) are natural. In a similar way, we see that the error

estimates (2.11]) and (2.I3) are natural.

Remark 2.4. By introducing the slow time scale 7 = et, the norm decays exponentially and
uniformly in 7.



3 Approximate solutions

In this section, following Benney’s perturbation method [3] we will give approximate equations by
constructing approximate solutions. Hereafter, we assume ¢ = §. By straightforward calculation,

we can rewrite (ZI)—(Z3)) as follows.

(3.1)
2 1 2
O (ur + iy + 1) + 5 0Pz — o (F%1hzs + tyy) = —Oz gy + 2D 4535 o t>0,
2 _ 2 L oo 2 2 £(2) | 53 4(3) :
8% (v + avy) + RPy Eé(é Vzg + Vyy) = 6Enpy +0%f37 + 07 fy in Q,t>0,
Uy + vy =0 in Q,t>0,
620y +uy — 2(1 + 0n)%n = 3y on T, t>0,
(3.2) 1 §2W
P vy — g = 202 + 530 on T, t>0,
an o S1n o
(3.3) u=v=0 on X, t>0,
(3.4) N4+ny —v=206%hs on T,t>0,
where
(2)—1(3% — 2pa + 2ynepy) + M+ yreu
1 TR 7" Uyy NP YNz Dy Tt YNt Uy
+yPneu 4 2y(y — Dnue — 42y — 2)0euy — wug — vy +2(2y — 1),
(3.5) .
2
2( ) = E( - 2772py + 277ny + 277“:(:3/)7

WD = 20, + meu + Nu.

We proceed to derive the approximate equations following Benney [3]. Let n = n(x,t) be
a given function. For any § € (0, 1], let (u,v,p) be the solution of BI)-[B3) and we expand

(u,v,p) as

u:u0+5u1—|—52u2+---,
(3.6) Uzvo+(5vl+(52vg+"',
p = po+dp1+ & po+ -+

and substitute these into (B.1))—(3.3]), we obtain a sequence of perturbation equations for each
order of 4. Here, uy and vy are different from initial data defined in (24)) and hereafter we use
this notation whenever it does not lead to confusion. By assuming W = O(1), the O(1), O(9),
and O(6%) problems are as follows.

ugyy =0, poy =0, gz + voy =0 in Q,
1
(3.7) Ugy =21, Po= i n on T,
an «
ug =vg =0 on X,



Utyy = R(uoe + (2y — y*)uox + 2(1 — y)vo) + 2pos + 2nuoyy in &,
(3.5) 2p1y = Voyy + 2NPoy, Uiz +V1y =0 in Q,
uyy =4n°,  p1= —ug, on I,
up = vy =0 on X,
(3.9)
uayy = Rlure + (2y — y?)uss +2(1 — y)v1) + 21z + 2unyy — tose — RAD (. u0,v0,p0)  in L,
2oy = Viyy + 2091y — R(vor + (29 — y?)vos) + RIS (0, w0, v0,p0), Uz +vzy =0 in &,
Ugy = —Vog + 2%, po = —uix + h§2) (1, o) — Sinanm on T,
ug =12 =0 on X.

Solving the above boundary value problem for the ordinary differential equations, we have

uo = 2ymn,
(3.10) vo = —Y° N,
1
Po = t m,
an o

ur = (35" — ) R+ {(v* = ) s + (59" — 39) R} e + 4y,
(311) Qo1 = (=¥ + 202) R + {(— 3° + 7)) i + (= 559" + 302) R} o — 49210,

<
[N}

I
—~
gl
=)

|
]

<
w
+
)—l|01
<
~—
=]
no
K

+39) tans T (o’ + 59’ — 19y — oY+ 1Y) B e
H (=3 = +5y) + (¢’ + 59" — ¥ + 3Y) e
+ (564" + 55597 — 159" + 530%) R} ha
+2yn® + R(5y% — ) + {R(y* — 1) + 3y* — 6y) oz}
vy = (—5g59° + 2¥* — 2¥%) R¥mane
(509" + wv' — 39%) s+ (20w6Y® — 319"+ w0y + 39" — 55097) B2} et
H (v + 39" =397 + (go¥" — 90¥° + 50¥° — 59°) tana
+ (s009° — m5¥® + 59Y° — 1259°) R* s
=320 + R(— 3" 4+ 202) ene + i) + {R(— 59° 4+ 20°) 4+ (=% + 302 s (02 + a)
p2=(3y+ ) Riwe + {—ala + (=3¥° + ¥+ 3) g + (—10%° + 69" + 39 + 15) R} 1w
{ +{R(4y — 4) — 5y + 3} 1,

Using the above expressions, we put

ug (yim) = wo, g (yin) = o, PG (yim) = po,
(3.13) ul (ysm) = ur, v (yim) =1, piM(yin) =p1,
uf! (yin) = w2, oM (yin) =2, Pl (y) = pa.

In view of the perturbation expansion (B.6]) substituting v = v} + svf! 4§20l into (B.4), we
obtain the approximate equation

8
M+ 20 + Aoy — 1= (Re = R)Onas + C10% Nz + C2ed (e +12) + 28200, = O(8%),

8



where C7 =2 + 2§R2 63 tana and Cy = 16R — tana

Thus far we have assumed W = O(1). Taklng into account that W is contained only in the
second equation in ([B.2) and modifying O(§) problem under the assumption W < O(671), we
see that (uo,vo,po) and (ul,vf,pl), which are defined by

(3.14) {%(%n) =g, vh(yin) =wo, PHy;n) = po, 6

ul(y;n) =wr, vl(yin) =v1, plyin) == p1 — 2,

are the solutions of the problems. Putting v = v} + dv{ and substituting this into (3.4)), we
obtain the approximate equation

8
Ny + 20, + demm, — B(Rc - 3)5%:(; = 0(52)

Similarly, modifying O(1) and O(J) problems under the assumption W = O(§72) and putting

ull o=y — EW (2 — 2y, 0] = 01+ 2X (18 — ) nagee, I =1,

we obtain the approximate equation

7 ._ 7 ._ 7 ._ 52W
(315) {UO ‘= up, U(] ‘=1%o, Pp ‘=P0— smanm:m

2 W

N + 2ny + denm, — 5( 35

Moreover, putting

(3.16)
uwdV = ug, oV i=wvo, pbY = po,
{V = uy, IV =, p{V =D sfr\lﬁixnmm’
W B oY e B (D Y e o,

and v = v}V + 0]V +62vfV and substituting this into (B:4)), we obtain the approximate equation
8
e + 200 + demme — 7= (Re = R)noq

2 W
+ 015277mvx + 0255(7777xx + 77%) + 25277277x + = 5 Nexxr = 0(53)

under the assumption W = O(671).

4 Energy estimate

In this section, we will derive energy estimates. Let n = n(x,t) be a fixed function and (u,v,p) =
(u(y;m),v(y;m), p(y;n)) be an approximate solution constructed from 7 satisfying u,+v, = 0 and
uly=0 = v|y=0 = 0, which will be defined in the next section. Using the approximate solution,
we deﬁne 1,9, @1, P2, ¢3 by the following equality.

_ _ 2 1 1
¢1(y 7]) 53 {5(Ut + UlUyg + UyU) + ﬁ‘sp:c - E(ézul‘l‘ + Uyy) - 5f1( )(777“7”7]7)}7
L { o 2 e (1)
/l/} (y 7]) 63 5 (Ut + va) + Epy - ﬁé(é Vg + Uyy) - 5f2 (n7u7p) )
(4.1) o1(n) : {5 vy + uy — 2(1 + dn) 77}|y 1,
1 1 52w 9, (2)
=3 - - T — h ) )
ool = {p 5 G s~ 0|
1
#3(n) = 5—3{7715 TN —V— 52h3(77)}|y=1,

9



where

1 2 2
(1.2) O = Sy + 517, 1 = 2y + 1,

Then the approximate solution satisfies the following equations.
(4.3)

2 1
O(up + tuy + Uyv) + = 6py

R0Ps — ﬁ(é%m +yy) = 0f (n,u,0,p) + Bi(ym) i Q, >0,
2 1 .
62 (vy + wg) + RPy Eé(ézvm +vyy) = 6£87 (0,1, p) + 634a (5 ) in Q,t>0,
Uy +vy =0 in Q,t>0,
820z 4+ uy — 2(1 + 0n)?n = 53¢1(n) on T',t>0,
1 62w
(4.4) p— 60y — 1)+ iy = 621 (n,u) + BPa(n) on T, ¢>0
tan « Sin «v
N+ Ne —V= (52h3(?7) + 53¢3(7]) on I't>0,
(4.5) u=v=0 on X, t>0.
Note that in the next section, we will give explicit forms of 1, ¥9, ¢1, ¢, and ¢3. Let

(n?,u’,v%, p%) be the solution of BI)-([33) and we set

H::né—n, U=u—u, V:i=0>—v, P:=p’—p.

Taking the difference between [BI)—(B.4]) and [@3))—(&5]), we have

( 2 1
S(Up + AU, + 0, V) + =0P, — =

T R(52Um+Uyy)

(4.6) 2V, + aVy) + %Py - %5(52% + V)
- F2 + 53f2(3)(7757u577157p5) - 53¢2(y7n) in Q? t> 07
| U, +V, =0 in Q>0
Ve + Uy — (24 b(n°,m))H = 63hi(n°, u®,v°) — 8361 (n) on T',t>0,
2
(4.7) P-4V, — Lo %Wy s B 00 ud v®) — 3¢a(n) on T, t >0,
tan o sin «
Hy+ H, -V =G3 — 83¢3(n) on I',t>0,

(4.8) U=V=0 on X, t>0,

where

Fo=6(fN 0wl 00 p%) = F(n,u,0,p)),  Fa = (£ 00,0l p°) — £ (n,u,p)),

(49) {b= 25( (1°)? + (2 + 8m)n® + 6 + 21),
52 (h(

10

= Fl + 53f1(3)(7767u67v(57p6) - 531[)1(y777) in Q7 t> 07

nqiv%wymmwy G = 6% (hs(n®) — ha(n)).



For convenience, we set

U:= (U7 5V)T7 F .= (F17F2)T7 .f = ( 1(3)7f2(3))T7 T,b = (¢17¢2)T-

We proceed to derive an energy estimate to (4.0)—(4.8]) following [16]. In view of the energies
obtained in [16] (see (3.6)—(3.8) and (3.24) in [16]), we put

2( 1 52W
G(HU) = PV + 2 (ol + S )

2 52W
+ {1V + E(—éQ!H B+ o) |

ta

(5 W
4|12 4\ 4
ﬁ2{5 Uzl R<tan o m|0 sin 5 | mm|0>}

2 S*W
+ IO + & (Pl + i)

Fo(H,U, P) := 6|Us|1* + 8|10, Pul|* + 6| Ho[§ + 6*W| Hao[§ + 6"W?| Hoal§
+ 0|V Us|” + 6| VsUss|* + 6| VsUL .

2

Here, (1, B2, and (33 are appropriate positive constants (see (3.28) in [16]). Integrating by parts
and using the third equation in (L7 and Poincaré’s inequality, we see that for any € > 0 there
exists a positive constant C, such that

FN{F + 6 f — Yoz Use)al < €0°|Unaal® + CS (|| Fx||* + 6°| foll* + 8°[12ba]%),
|(H, (bH))r| < ed|Hy[§ 4+ Ced ™| (bH )23,
W |(Hys, 0H)2)r| < €6°W|H |2 + COW|(0H ) |2,
F*WI(H o, G — 0°h3)p| < €6°W| Hapa|§ + CcOW(|G3[§ + 8°[3[5),
SOW|(Hoyzaz, 0 $300)r| < €0°W2| Hyga|d + Ce0™®| d3000 |2
W |(Hyat, Gat — 02 da)r| < €(0°W2| Hyo3 + 6°|Usaa|[2)
+ Ce(1+ W) (1Gs[§ + 0°103el3) + 6° (|G30a g + 0°| D302 ]5)-

Here, we used the inequality |V (-,1)|o = |V (-,1) = V(-,0)]o < ||Vy|| = ||U]|| thanks to the third
equation in (4.6 and the second equation in (Z.8]). In the following, we use frequently this type
of inequality without any comment. Taking into account the above inequality and (3.27) in [16],
we need to estimate the following quantities.

(410)  AGHZ1) o= (OW + 67 )| (0H )3 + 83| (bH ) + 8] (bH ) 2
+ 071 Gaf} + 8] Gao 3 + 6| Da| 2 Gaal + 8](Gar, Vo)1 |
+ OW|G3 |2 + 63|Gsp |2 + 6°|Gaaa|p + W2 |Giat )2 + W |(Hpzza, G3e )T |
+ 0| + 8| Fy | + 0|(F, Uyl
(411) AR (Z) = 82 + 6T |h1ef3 + 8| D)2 hig 3 + 8% (hue, Un)r|
+ 0% RS2 + 0TS 12 + 68| Dal 2RS) B + 6| (RSY, Va)r |
+ N £+ 67N Ful” + 6*1(F2, Unal,
(412) AP (Zs) = 0O1on[3 + 07|1alR + 08| Du 21} + 87| 00a 3 + 8% 023 + 67|20 2
+ 0| Dy |2 paald + 07|t + 5TW I3 [3 + 8°|630 3 + 01 | 3003
+ 0% Gaaaalg + 0OW2|dseld + 8”11 + 07 [[apa |1 + 67 [[epe 12,
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where
Zl = (H7 U7 bH7 G27G37F)7 Z2 = (U7 h17h53)7h37.f)7 Z3 = (¢17¢27¢371/))‘

For an integer m > 2, we set

m

(4.13) En(H,U) Zé"o OKH,0FU), Fn(H,U,P) =Y Fo(0hH,0kU,0iP),

k=0 k=0
(4.14) N (H U, Py =Y {105 21) + (05 H, 05 G)r |},

k=0
(4.15) = AN Z),
k=0

(4.16) N3(H;m) Z (NG5 Z3) + (O H, 830 p3)r )

k=0

Here, the terms S_1° |(OFH, 9¥G3)r| and Y 7", |(0%H, 530k ¢3)r| come from (3.30) in [16]. Ap-
plying 0% to (&8)-([&S), using [16, Proposition 3.2], and adding the resulting inequalities for
0 < k < m, we obtain the following lemma.

Lemma 4.1. There exist small positive constants Rg and ag such that if 0 < Ry < R < Ry,
Wi < W, and 0 < a < a, then the solution (H,U,V, P) of (L0)—-(8)) satisfies

%é"m b T < C(NL+ N2 4 AP,

where the constant C is independent of §, R, and W.

(4.17)

For later use, we modify the energy and the dissipation functions &;,, and .%,, as
(4.18) En(H,U) = En(H,U) + (1 + [Da)"U|* + (1 + [ D)™ Uy |1,
(4.19) Fo(H,U, P) i= Fp(H, U, P) + 0|(1 + 6D, )3 Hy 2, + (6°W)26%|| D,y | H2,
+ 6+ D)™ (1 + 8| D2 ) (Vs P, Uy )|I? + 8[[(1 + | Da] )™ Vs P,

We also introduce another energy function %, by
(4.20)
I (H,U) = |(1+6|D; )2 H}, + 6°(|(L + | D)™ VI[* + 62| (1 + | D )" Us |

+ (1 + (D))" DU |1* + (8*W)?|(1 + 8| Da|) Hal 51 + VW (1 + [Da)"6Vay |1,

which does not include any time derivatives. Setting By, = &, (n°, u%) and F,, = %, (n°, ul, p?)
and using [16, Theorem 2.2 and Proposition 6.1], the following uniform estimate holds.

Proposition 4.2. There exist small positive constants Ry and ag such that the following state-
ment holds: Let m be an integer satisfyingm > 2,0 < R; < Rgp, 0 < W1 < Wy, and 0 < a < .
There exists small positive constant ¢y such that if the initial data (ng,up,vo) and the parame-
ters 8, e, R, and W satisfy Assumption [21 and W < §~*Ws, then the solution (n°,u’,v?,p%)
of @I)—(24) satisfies

o0
Es(t) < co, sup Epy1(t) + / Fp1 ()t < C,  Epp(t) < Ce
t>0 0

Here, positive constants C and ¢ depend on Ry, W1, Wa, o, and M but are independent of §, e,
R, and W.

12



Moreover, we easily obtain the following lemma.

Lemma 4.3. Let a >0, 0 < Ry < R < R.. There exists small positive constant c1 such that if
s> 2 and |no|3 < c1, then the problems (L1)—(LIQ) under the initial condition |,—o = no have
unique solutions ¢1, (M1, ¢ and ¢V, respectively, which satisfy

sup ¢! ()2 + /O (AT < Clnol2, [¢1 ()2 < Clrol2e

7>0

Sglgl(”(T)l? +/0 (16 (MIE +1Ga(nR)dr < Cliol2, ¢ ()2 < ClpolZe™*

sup [ (1) 2 + /0 () 2dr < o2 1T (1)2 < Clpo[2e

7>0

SuplCW(T)IEJr/O (16" (M2 +01¢a (NIZ)dr < Clnol2, 16" (7)[2 < ClipolZe ™.

>0
Here, Re = 7 ta%la 18 the critical Reynolds number and positive constants C and c are independent
of 0 and R.

5 Error estimate

We will show (2.11]) under Assumption 2.Iland (2.10)). We can show the other claims in Theorem
in the same way as the proof of (Z.I1)) and we will comment about the difference at the end
of this section. Let ¢! be the solution of (LJ) under the initial condition ¢///|,—y = ny and
we put n!(x,t) := (" (x — 2t,et) and

ultl (@,,1) = uf! (g (2, )) + 0ud™ (s (2,1)) + 2ud (g0 (2, 1)),
(5.1) v @y, 1) = uf (s (2,) + 0! (g (2, 4)) + 8203 (50 (2, 1)),
p "z, y,t) == pl (y; " (z, 1)) + Spi™ (y; ' (2, 1)) + 6% paT (y; n' 1 (2, 1)),

where ul!! ol plt! | were defined by (310)—(I3). Then, we have

(52) 771511[ _277111 (R R)énlll 0152 117

,’7£BZBZB

45,’7III III 52{0 (nIIIn:IICI_‘_(niII) )+2(77III)277£II}.

Using the approximate solutions (B.I]), we define 11, ¥2, ¢1, ¢2, and ¢3 by ([@I]). By using the
equality (5.2)) to eliminate the ¢ derivatives of n//!, we can rewrite these terms as follows.

(V1(ysn™™") = Co(y)ain™" + Ca(y)oin"! + - + Ca(y)o®ahn™ " + N{',
1/}2( nIII) ( )a3n111+cg( )584 III -+C15(y)578%077111+N21H,
(5‘3) ¢1(,’7 II) 61663 III+Cl7584 III '—1—621558277]]]—1—]\7?{]],
G (1) = Con®3n1T + Cogddint1! + - + CogdtdTn! 1T + NI,
(253(7,,[[[) 62784?’11114-628(585 III '+630538£7]III+N5III7
where Cq,...,Cy5 are polynomials in y, Cyg,...,C30 are constants, and N{H NIH are col-

lections of the nonlinear terms of the form

(54) (57]111,526m’l’}111, o ,553;177111;11)@0(5239077111 51069 III )

53
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Here we generally denote polynomials of f by the same symbol ® = ®(f) and ®¢ is such a
function satisfying ®¢(0) = 0. We also use such a function @y depending also on y € [0,1] and
denote it by ®¢(f;y), that is, ®¢(0;y) = 0. Let (n°,u’,v%, p°) be the solution of (ZI)(2.3) and
we set HITT .= 5f — 11 U = (4 — o111 500 — ! TT))T gaT{LH — gam(HIH’ UT), and so on.
We prepare several lemmas to proceed the error estimate.

Lemma 5.1. Under the same assumption as Proposition for any € > 0 there exists a
positive constant C. such that we have

(5.5) AR UM)(t) < eFn(t) + Ced* B (t) Fnsa (8),

where N,2 is the collection of nonlinear terms defined by (ZI5).

Proof. By the explicit form of f, hq, and hgg) (see (B3] and Section 2), we can obtain the
desired estimate in the same but more easier way as proving [16, Lemmas 5.11 and 5.12]. O

Lemma 5.2. Under the same assumption as Proposition [{.d, for any € > 0 there exists a
positive constant C. such that we have

N (Hin™)(t) < ejm( t) + Ce8° g (¢ )’$n+127
where A3 is the collection of nonlinear terms defined by (4I0]).

Proof. By the well-known inequalities ||8k(fg)|| < ||f||Loo||akg||+||g||Loo ||8kf|| and ||8k<1>0(f'y)|| <

O f Il |25 £ GG lead to S5y AGHOEZs) < (1+ 10" 2,110 0712, 15. Moreover,
by Poincaré’s inequality and (5.4]), we see that |(8kH §30%p3)r| < 65|8kH 2 4+ C8°|0%p3)2 <
€Fm + Ce(1+ [n'1215)0%nE |2, 15 These together with Lemma E3 imply the desired in-
equality. d

Lemma 5.3. Under the same assumption as Proposition for any € > 0 there exists a
positive constant C. such that we have

(5.6)
,/VT%(HIII,UIII,PIII;T]III)(t) (C E2( )—I-E) o‘N‘III +C {E O“III( )+54E~m(t)ﬁ1m+l(t)

+ 0% () 712 + (B (8) + Sl (D)7 422) 60" (0},
where A} is the collection of nonlinear terms defined by (Z14).

Proof. 1In this proof, we omit the symbol 111 appeared in a superscript of solutions for sim-
plicity. By B.3]), [@.2]), and (£9]), we see that F is consist of terms of the form

500 (11°, 6135 y)(VsUy, Vs P) + 82 (n°)*(Uyy, Py),
%o (n°, 013, u’sy)(6V, 0Us),
50 (62, ), 00°; y) (U, Uy),

o (n, w, Vsu, Vsuy, Vsp;y)(0Hy, 6Hy, U, 0V),
x5277 (uyy +py)H

and that G = 6*{n°(2H, 4+ U,) +n2U + (20 + uz)H +uH,}, G = 6*{(n°)?Hy + (n° +n)n. H},
and bH = 25(5(775)2 + (24 0n)n’ 4 61 + 2n)H. Note that using (E.1)) and (5.2)), we can express
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the approximate solutions w, Vsu, uy,, and Vsp in terms of n and its x derivatives. In view of
these, by putting

=®(n°,omd, 6m, 6210, 6°nd,, u’s ),

= @((577:0, ,52ngx,52nm,62ntt,5vé (5u (5ut, Y),
=o(n’,6n%;y),

= q)( 577127 75108%077; y)v

W = (6Hy,8Hy, 6 Hyyy 0° Hyyy 03 Hygr, 6V, 60U, 6Uy, 0V 5Uy, 6N 5Uy, VsUy, VisUyy,
V5P, VsPy,0Us|r, 8Uy|r, 8*Usg|r, 82| Do [P2U p),

Q = (H, 0H,,6H;,0°Hyy, 6°Hyy, 0° Hyoe, U, VU, 6U, Ulr),

it suffices to estimate

I = 8|95 (@pW)|1%,

I = §)|05(95Q)|I?,

I3 = 6*|(05 (1’ Usa), 0 Vi )r

Iy = 6*|(95(PVsUsy), 05 Us)al,

Is = 82|(OF(®3V s ) 08Uy )a,

= 8]0y (@' 5Q)|I?,
Ir = §*(9%(®3Hu), OXVi)r|,
Iy = 6W|(0% Hyppaw, 05 G )|

for 0 <k <m.
By Proposition and ||(u,v)||re S |[(wy, vy)|| + ||(tay, vay)|| thanks to the boundary con-
dition u|y—g = v|y—g = 0, we obtain

(5.7) 19g[17e < Eo. 11050 ]1% + 1|05 g, I

< F
(5.8) 105117 < E2, (053] + 1055, 1% < F
In the same way as the proof of Lemma [5.2] we have
(5.9)  S®5l7 S OInelmgazs  S(1O5RGI + 1|05 P y” ) S 02l |G 371_% S nlasia-
On the other hand, it is easy to see that
(5.10) WP+ W S Fo, |15V S Fim,y
(5.11) QI +11Qxl” < &2, 105Q* < &ms

where we used the trace theorem |f|2 + 5HDI\%]"]3 SR+ 82 £l + | fyll? to estimate the
term §°||D,|2U|2. In the following, we often use the inequality

(5.12) 105 (@)l < llallze< 05 f 1+ (105all + [105ay DAL + Il fzll),

which have been shown in [16, Lemma 5.2].

As for Iy, by (1), (EI0), and (EI2), we have I < EyF + EqFy. As for Iy, by (6.8),
GI0), and (BI2), we have I < F,,&,. As for I3, by integration by parts, we have I3 <

15



C (53]775Utx\2 ! + 653\‘4\2 ! < Co(EyFm Emjg) + €Zp,. As for Iy, by integration by parts
in y, we have
I3 < C8* (|10 (@35 U)|1* + 195 (@5, V5U)II?)
+8°|(95(PGUa), 05 U)r| + 6| (95 (93Ut ), 95U )| + €605 Uny ||
<Iy1+1Ip9+ 143+ €Fm,
where Iy = Cc82 (|0 (@FVsUL) |2 + (|05 (®F, VsUL) 1), Lu2 = 63(0F (PFUr), 94Uy )r|, and Iy 3 =
52| (0% (@3U1,), 05U, )r|. The estimates for Iy 1 and I, 2 are reduced to the estimates for I; and
I3, respectively. Thus, taking into account that we can eliminate the term Uy|r in Iy 3 by
the first equation in (II_ZI) this together with the estimates for Iy, I3, 83hy, and 8¢, yields
I < eZpp + C. {ngm + B, (Jg + 6% Fm+1 + |n|? +125 |77w|m+12 } As for Iy, it suffices to show
the case of k > 1 because we can treat easily the case of k = 0. Integrating by parts in z, E),
and ([12), we have I5 < €63(|05U;, |2 + Ced|| 08 1BV P)||? < P + Ce(ErFim +Em,/2) As
for Ig, by (6.7), 6.9), (E.1I), and (B.12), we have
Is S 6{ [P0l (I105@> + (105, 1) (IQI* + Q)
+[|19Y[7 (1052517 + 105 @5, 1) (IQIP + 11Qz]*) + 1970 9517 105 Q1 }
S (Bm+ ’77‘3714—12)5‘77:0’7271—%125771'
As for Iz, it suffices to show the case of k > 1 because we can treat easily the case of kK = 0. By
the third equation in (4.7]), integration by parts, and the trace theorem, we have
1
I; < 06(54]‘1355]53];_1(@3%)]3 + 0655‘8§(®3th + @é‘th)\% + 0655’538545&’(%
+¢(01| Do |2 05 Vi[5 + 6% |05 Vil5)
<Iip+Iig+ Iz + €Fm,
where I, = Ce0%||Dyp| 2081 (D4V})|2, I = Ced® |08 (DR Hopy+D2Gsy) |2, and Ir 5 = C.5°|530" gy 2.
By the trace theorem, the second equation in (£6), and (5.9]), we have
Iy < |%g)%, 153|Vt|Loo + 0|13 0| Da|2E VAR
< \¢o\i_;53\\Utxx\\2 + 8| PG |70 (825U 1> + 8% 95 VA1)
S 12 %2 + 0106

Recalling the explicit form of (3, we see that the estimate of 7o is reduced to Is. Taking
into account that we have already estimated I73 in the proof of Lemma (.2 we obtain I; <
Ce {|77|m+12‘/2 + (Em + |77|m+12)5|77$|m+12£) + |77| +125 |72 m+12} +€Jm As for Ig, integration
by parts, (5.7), and (5.9) lead to
O W|(9% Horga 05 G )r| < (62 W)?6|| Dy |2 HIZ, + C0°|| Dy |3 G2,
é ejm + 05{52(Fm + 5|77{E|72n+12)é~02 + Echzm}

Therefore, by the boundedness of the terms E,, and |n|?, 412 Which comes from Proposition
and Lemma [4.3] the proof is complete. O
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Lemma 5.4. Under the same assumption as Proposition [{.2, we have

(5.13) () S &) + ( Emi1(t) + 0™ () 12)s
(5.14) T 1) S T () + (Fon () + 8|ng " (D) [og12) 605 (2)

+6* m( )Fm-I-l( )+55’77HI( )’$n+127
(5.15) S () < @I (1) + 54

Proof. 1In view of the discrepancy of non-homogeneous terms in the equations, modifying the
proof of (6.2) in [16, Lemma 6.2], we obtain (.I3]). Taking into account that we can eliminate
Uyy in ZHH by using the first equation in (@6]), modifying the proof of (6.3) in [16, Lemma 6.2],
it is not difficult to check that (5.14]) holds. Moreover, modifying the proof of (6.10) in [16], we
obtain (B.I5]). O

Lemma 5.5. Under the same assumption as Proposition [{.2, we have
1 (0) S 6%

Remark 5.1. This lemma together with (5.15]) yields

(5.16) &S0y < ot

Proof. By the second and third equations in the compatibility conditions, we see that

Yy 1
(5'17) UO(x7 y) = yuOy(‘Ta 1) - / / uOyy(xa w)deZ
0 Jz
= (2ymo + 4yomg + 2y6*ng) + Sy ( — dvo, + 52h(0 / / Uoyy (2, w)dwdz.

It follows from (2.10) and |[(1 + |Dm|)m+1u£i£l li—o|| < 0 (see the explicit form of u/!!, that is,
BI0)-BI3) and G.I0) that ||(1 + [Dg])™  ugyy|l S 0. Thus, by (G17), the explicit form of

w1 (ZI0), and the uniform estimate for 52\h§0)\m+1 (see the proof of Lemma [51]), we obtain
(14 |Dz )™ U |s=o|| < 6. Combining this and the first equation in the compatibility conditions
leads to [|(1 + |Dz|)"V|t=o|| < d. Therefore, in view of the definition of Z,, (see (£20)), using
these and H|;—o = 0, we obtain the desired estimate. 0

Proof of [2I1) in Theorem[Z2. By Proposition £.2] Lemmas @1l 5.1H5.3] and (5.13) and (5.14)

in Lemma B4 if ¢y and € are sufficiently small, then we have

(18)  SEW) P < oS0 + B FH1 1) + 5ea(),
where
(619 ot = Fuld) 4 ol OFss. #2(0) = Bunl) P (1) + 00 (1) Py

By considering the case of m = 2 in (5.18]) and usmg Gronwall’s inequality and Proposition [4.2]
if cg is sufficiently small, then we have &1 (t) + fo f [T (5)ds < p3(t), where

520 ealt) = O (04 /Otms)ds)wl Ota‘*w(s)exp @ /stsol(a)da)ds,
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which leads to
(5.21) / Fy ' (s)ds < is(t).

Note that by Propositionand Lemmald3], we have the exponential decay estimate for Epmy1(t)
and |p'T1(t)|2,,15. This together with (5.I8), Gronwall’s inequality, and &1 < FLH which
comes from [H|y S |Hzlo and |V S ||Vyl| = ||Uz]| (see @I3) and @I9)) yields

EM(1) < {gnﬁ” (0) exp <01 /0 t gpl(s)ds> - 904(t)}e_c‘5t,

where
t
(5.22) oalt) = Oy / (F21(s) + 8 Frya (s)) exp <cl / gpl(a)da> ds.
0 s
Combining the above inequality and (5.13]) and (5.15]) in Lemma [5.4], we obtain
(5.23) EM(t) < Co(6* + ZLI(0) + pa(t))e .

Here, recalling the definition n/!/(z,t) = ¢!!f(x — 2t,et) and the assumption ¢ = § and using
Lemma .3}, we have [ 8|nL/ (¢ |2dt 1 2157 81¢H( )|§d7’ < |no|s. By this, the integrability of
Fpy1 which comes from Proposition IEI, and (5.16)), we have @3(t) < 0% (see (5.19) and (5.20))).
This together with (B.21]) leads to ¢4(t) < §* (see (5.22)). Combining this, (5.23)), and Lemma
6.5 we have

(5.24) EM(t) < Cg6te™,

which implies D(t; (1T w11 T plITy < §de=cet (see (23] and @IF)). Here, we used ||V <
|Vyll = |Uz||. Moreover, by taking into account the equality P(z,y,t) = P(z,1, t)—fy1 Py(z,z,t)dz
and using the second equation in (4.0]), the Second equation in (A7), and the uniform esti-
mate (5.24), we easily obtain ||(1 4 |D.|)™(p° pIH)( 2 < 6%e . Note that in the case
of O(671) < W < O(672) we can estimate the term o2 WamHm which comes from the second

sin av

equation in (4.7) by é?’r{ffl Therefore, the proof of (2.I1]) in Theorem [2.2] is complete. O

We proceed to prove 2.1), Z9), and ZI3). Let ¢!, ¢!, and ¢!V be the solution for (L7,
(C8), and (LI0), respectively under the initial condition ¢!|,—¢g = ¢(!|;—¢ = ¢!V|r=0 = 9. We
put 0l (z,t) := (I (z — 2t,et), n'l(z,t) = (2 —2t,et), n'V (z,t) := IV (z — 2t,et) and

ul (z,y,t) == uf(y; n' (2, 1)) + 6uf (y; 0" (2, 1)),

ol (z,y,t) = uf(y; ' (z, 1)) + 0vf (y; ' (2, 1)),

P, y,t) = po(ysn' (2, 1) + 6pi (y; 0 (z, 1)),
ul (2, y,t) = ub (y; 0" (, 1)) + dui (y; 0" (1)),
o (2,y,t) = U6I(yﬂ7 I, 1)) + 6vf’ (y;n' (1)),
pH(z,y,t) .= pl (y;n" (= at))+5p”( yin ( z,1)),

n
+0ut (y; 0" (2,1)) + 6%udY (y; "V (2, 1)),

uV(z,y,t) = uO Vig;n'V (z,1))
o'V (z,y,t) = uO Viigsn™ () + 60of (y; 0" (2, 1)) + (y'nW( t),
p"V(z,y,t) == pi¥ (y;n"" (2, 1)) + dpf (yﬂ?IV( ))+52 Vigin™ (z,1)),

where ul, v{, pl, ... were defined by (B.I4)-(3.I6). In view of this, by applying the same argument
as showing (2.I1), it is not difficult to check that ([27)), (29), and (ZI3) holds. Therefore, the
proof of Theorem is complete. O
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