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Eisenstein class: Motivic class in the 
motivic cohomology of an elliptic modular
curve

First constructed by Beilinson using the 
Eisenstein symbol map
Beilinson, A.A. : Higher regulators of modular curves, Contemp. Math. 55, 1-34 (1986)

Introduction



Application: Used in the proof of the 
Beilinson conjecture

Ex. C. Deninger proved the weak Beilinson 
conjecture for Hecke characters of imaginary 
quadratic fields

C. Deninger, Higher regulators and Hecke L-series of imaginary quadratic fields. I, 
Invent. Math. 96 (1989), no. 1, 1–69.

C. Deninger, Higher regulators and Hecke L-series of imaginary quadratic fields. II, 
Ann. of Math. (2) 132 (1990), no. 1, 131–158.
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Our Interest: Explicit calculation of the 
rigid syntomic realization, i.e., the image of 
the motivic Eisenstein class with respect to 
the syntomic regulator 

B- and G. Kings, p-adic elliptic polylogarithm, p-adic Eisenstein series and Katz 
measure, American J. Math. 132, no. 6 (2010), 1609-1654.

B- and G. Kings, p-adic Beilinson conjecture for ordinary Hecke motives associated 
to imaginary quadratic fields, RIMS Kôkyûroku Bessatsu B25: Algebraic Number 
Theory and Related Topics 2009, eds. T. Ichikawa, M. Kida, T. Yamazaki, June 
(2011), 9-30.
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Introduction
Alternative Construction: Specialization at 
torsion points of the polylogarithm on the 
universal elliptic curve

A. Huber and G. Kings, Degeneration of l-adic Eisenstein classes and of the elliptic

polylog, Invent. Math. 135 (1999), no. 3, 545–594.
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A. Levin gave a conjectural formula for the 
topological realization of the abelian 
polylogarithm in terms of currents

A. Levin, Polylogarithmic currents on abelian varieties, in Regulators in Analysis, 
Geometry and Number Theory, A. Reznikov, N. Schappacher (Eds), Progr. Math. 171, 
Birkhäuser (2000), 207–229. 

Introduction

D. Blottière proved Levin’s formula
D. Blottière, Réalisation de Hodge du polylogarithme d'un schéma abélien, avec un 
appendice d'Andrey Levin, Journal de l'Institut Mathématique de Jussieu (2009), 8 no. 1, 
pages 1–38



Introduction

This Talk: We give a conjectural formula 
for the Hodge and the rigid syntomic 
realizations of the Eisenstein class for 
Hilbert modular surfaces 
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KENICHI BANNAI

Abstract. Notes for talk at Tokyo University, June 4, 2012.

1. Calculations of Cech cocycles

SymkH
S: base scheme
A: abelian variety
k: integer > 0

π
g := dimA
Q: constant motivic sheaf

H := (R1π∗Q)∨

Eisk+2
mot(ϕ) ∈ H2g−1

mot (S, SymkH (g))
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H2g−1
D (S, SymkH (g)) ↪→ H2g−1

dR (S, SymkH (g))

A1 :=
(τ1 − τ 1)

2πi

∪

α ∈ Γ()

ξ ∈

(α, ξ)

∇(α) = (1− F∞)ξ

ϕ: torsion point
ϕ

ϕ∗

Eisk+2
mot(ϕ) ∈ H2g−1

mot (S, SymkH (g))

F∞: complex conjugation
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kH (1))
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dR(S, Sym

kH (2)))

Γ ⊂ SL2(OF )
F : real quadratic field OF : ring of integers S(C) = Γ \ H2
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OH2yjωk−j

∇(yjωk−j) = yj−1ωk+1−j (1 ≤ j ≤ k)

∇(ωk) = 0
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⊕
ω2

H = ω
⊕

ω∨

• dim 2 abelian variety
• real multiplication by OF

• level structure

← corresponding to embeddings F ↪→ C
Dolbeault class
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May define p-adic ξ0
p-adic measure with values in p-adic modular forms
Allows a < 0

∫

Zp×Zp×Zp

xa1x
b
2y

k+1dµ(x1, x2, y) = (constant)× E(−a,−b)
k+2

∫

Z×
p ×Zp×Zp

xa1x
b
2y

k+1dµ(x1, x2, y) = (constant)× E(−a,−b)
k+2
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H2g−1
D (S, SymkH (g)) ↪→ H2g−1

dR (S, SymkH (g))

A1 :=
(τ1 − τ 1)

2πi

∪

(α, ξ)

∇(α) = (1− F∞)ξ
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H2g−1
D (S, SymkH (g)) ↪→ H2g−1

dR (S, SymkH (g))

A1 :=
(τ1 − τ 1)

2πi

∪

α ∈ Γ()

ξ ∈

(α, ξ)

∇(α) = (1− F∞)ξ
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H2g−1
D (S, SymkH (g)) ↪→ H2g−1

dR (S, SymkH (g))

A1 :=
(τ1 − τ 1)

2πi

∪

α ∈ Γ()

ξ ∈

(α, ξ)

∇(α) = (1− F∞)ξ

F∞: complex conjugation
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← corresponding to embeddings F ↪→ C
On H2

H ∼= OH2y1
⊕

OH2y2
⊕

OH2ω1

⊕
OH2ω2

∇(ω1) = ∇(ω2) = 0

∇(ω1) = y1 ⊗ dτ1, ∇(ω2) = y2 ⊗ dτ2, ∇(ω1) = ∇(ω2) = 0

Dolbeault class

α =
(τ2 − τ 2)

k + 1

k∑

a,b=0

E(a+1,b+1)
k+2 (τ )ωa

1ω
k−a
1 ωb
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k−b
2

dτ1 ∧ dτ 1
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(1− F (1)
p ) (1− Fp)

ξ0 :=
k∑

a=0

Ea+1
k+2u

aωk−a
1 ωk

2
dq1
q1

May define p-adic ξ0
p-adic measure with values in p-adic modular forms
Allows a < 0

∫

Zp×Zp×Zp

xa1x
b
2y

k+1dµ(x1, x2, y) = (constant)× E(−a,−b)
k+2

∫

Z×
p ×Zp×Zp

xa1x
b
2y

k+1dµ(x1, x2, y) = (constant)× E(−a,−b)
k+2

6 KENICHI BANNAI

E(a,b)
k+2 (τ) =

∑

(m,n)!=(0,0)
(mod O×

F )

1

(mτ1 + n)a(mτ1 + n)k+2−a(m′τ2 + n′)b(m′τ2 + n′)k+2−b
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← corresponding to embeddings F ↪→ C
On H2

H ∼= OH2y1
⊕

OH2y2
⊕

OH2ω1

⊕
OH2ω2

∇(ω1) = ∇(ω2) = 0

∇(ω1) = y1 ⊗ dτ1, ∇(ω2) = y2 ⊗ dτ2, ∇(ω1) = ∇(ω2) = 0

Dolbeault class

α =
(τ2 − τ 2)

k + 1

k∑

a,b=0

E(a+1,b+1)
k+2 (τ )ωa

1ω
k−a
1 ωb

2ω
k−b
2

dτ1 ∧ dτ 1
A1

ξ :=
k∑

a=0

Ea+1
k+2(τ )ω

a
1ω

k−a
1 ωk

2
dτ1 ∧ dτ 1

A1
∧ dτ2

ξ :=
k∑

a=0

Ea+1
k+2(τ )ω

a
1ω

k−a
1 ωk

2
dτ1 ∧ dτ 1

A2
1

∧ A1dτ2

(1− F (1)
p ) (1− Fp)

ξ0 :=
k∑

a=0

Ea+1
k+2u

aωk−a
1 ωk

2
dq1
q1

May define p-adic ξ0
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∫
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Chern Class
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H2g−1
D (S, SymkH (g)) ↪→ H0

D(SpecR, H2g−1(S, SymkH (g)))

Ep,q
2 = Hp

D(SpecR, H
q(S, SymkH (g)) ⇒ Hp+q

D (S, SymkH (g))

H1
D(SpecR, H2g−2(S, SymkH (g)) →

→ H2g−1
D (S, SymkH (g)) → H0

D(SpecR, H2g−1(S, SymkH (g))) → 0

H0
D(SpecR, H2g−1(S, SymkH (g))) ↪→ H2g−1
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∈
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SOME STUDY OF HILBERT MODULAR FORMS

KENICHI BANNAI

Abstract. Notes for talk at Tokyo University, June 4, 2012.

1. Calculations of Cech cocycles

=: ξ0
∇ (ξ0) = (k + 1)(1− F (1)

∞ )
(
Ek+2(τ )ω

k
1ω

k
2dτ1 ∧ dτ2

)
.

SymkH
S base scheme
A abelian variety
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k+1dµ(x1, x2, y) = (constant)× E(−a,−b)
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F (1)
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a, b ≥ 0

E(a,b)
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← corresponding to embeddings F ↪→ C
On H2

H ∼= OH2y1
⊕

OH2y2
⊕

OH2ω1

⊕
OH2ω2

∇(ω1) = ∇(ω2) = 0

∇(ω1) = y1 ⊗ dτ1, ∇(ω2) = y2 ⊗ dτ2, ∇(ω1) = ∇(ω2) = 0

Dolbeault class

α =
(τ2 − τ 2)

k + 1

k∑

a,b=0

E(a+1,b+1)
k+2 (τ )ωa

1ω
k−a
1 ωb

2ω
k−b
2

dτ1 ∧ dτ 1
A1

ξ :=
k∑

a=0

Ea+1
k+2(τ )ω

a
1ω

k−a
1 ωk

2
dτ1 ∧ dτ 1

A1
∧ dτ2

ξ :=
k∑

a=0

Ea+1
k+2(τ )ω

a
1ω

k−a
1 ωk

2
dτ1 ∧ dτ 1

A2
1

∧ A1dτ2

(1− F (1)
p ) (1− Fp)

ξ0 :=
k∑

a=0

Ea+1
k+2u

aωk−a
1 ωk

2
dq1
q1

May define p-adic ξ0
p-adic measure with values in p-adic modular forms
Allows a < 0

∫

Zp×Zp×Zp

xa1x
b
2y

k+1dµ(x1, x2, y) = (constant)× E(−a,−b)
k+2

∫

Z×
p ×Zp×Zp

xa1x
b
2y

k+1dµ(x1, x2, y) = (constant)× E(−a,−b)
k+2
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H2g−1
D (S, SymkH (g)) ↪→ H2g−1

dR (S, SymkH (g))

A1 :=
(τ1 − τ 1)

2πi

∪

α ∈ Γ()

ξ ∈

(α, ξ)

∇(α) = (1− F∞)ξ

ϕ: torsion point
ϕ

ϕ∗

Eisk+2
mot(ϕ) ∈ H2g−1

mot (S, SymkH (g))

F∞: complex conjugation
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• dim 2 abelian variety
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• level structure
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H1
dR(S, Sym

kH (1))

H2g−1
D (S, SymkH (g)) ↪→ H2g−1

dR (S, SymkH (g))

A1 :=
(τ1 − τ 1)

2πi

∪

α ∈ Γ()

ξ ∈

(α, ξ)

∇(α) = (1− F∞)ξ
ϕ: torsion point
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mot (S, SymkH (g))

SymkH =
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j=0
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jω∗k−j

Γ(S, SymkH ⊗ Ω1
S)

F∞: complex conjugation

H := R1π∗Ω
•
A/S

ω := π∗Ω
1
A/S
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D (S, SymkH (g)) ↪→ H2g−1

dR (S, SymkH (g))

A1 :=
(τ1 − τ 1)

2πi

∪

(α, ξ)

∇(α) = (1− F∞)ξ
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• real multiplication by OF

• level structure
← corresponding to embeddings F ↪→ C
On H2

H ∼= OH2y1
⊕

OH2y2
⊕

OH2ω1

⊕
OH2ω2

∇(ω1) = ∇(ω2) = 0

∇(ω1) = y1 ⊗ dτ1, ∇(ω2) = y2 ⊗ dτ2, ∇(ω1) = ∇(ω2) = 0

Dolbeault class

α =
(τ2 − τ 2)

k + 1

k∑

a,b=0

E(a+1,b+1)
k+2 (τ )ωa

1ω
k−a
1 ωb

2ω
k−b
2

dτ1 ∧ dτ 1
A1

q1
d

dq1

ξ :=
k∑

a=0

Ea+1
k+2(τ )ω

a
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k−a
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dτ1 ∧ dτ 1
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∧ dτ2

ξ :=
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dτ1 ∧ dτ 1
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(1− F (1)
p ) (1− Fp)

ξ0 :=
k∑

a=0

Ea+1
k+2u

a
1ω

k−a
1 ωk

2
dq1
q1

May define p-adic ξ0

ξ := Chern Class ∪ ξ0
p-adic measure with values in p-adic modular forms
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Allows a < 0
∫

Zp×Zp×Zp

xa1x
b
2y

k+1dµ(x1, x2, y) = (constant)× E(−a,−b)
k+2

∫

Z×
p ×Zp×Zp

xa1x
b
2y

k+1dµ(x1, x2, y) = (constant)× E(−a,−b)
k+2

∫

Z×
p ×Z×

p ×Zp

xa1x
b
2y

k+1dµ(x1, x2, y) = (constant)× E(−a,−b)
k+2

May define p-adic analogues of Ea
k+2(τ ) := E(−a,0)

k+2 (τ )

F (1)
∞ : complex conjugation in first variable

F (1)
p : Frobenius in first variable

a, b ≥ 0

E(a,b)
k+2 (τ) =

∑

(m,n)!=(0,0)
(mod O×

F )

1

(mτ1 + n)a(mτ1 + n)k+2−a(m′τ2 + n′)b(m′τ2 + n′)k+2−b
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← corresponding to embeddings F ↪→ C
On H2

H ∼= OH2y1
⊕

OH2y2
⊕

OH2ω1

⊕
OH2ω2

∇(ω1) = ∇(ω2) = 0

∇(ω1) = y1 ⊗ dτ1, ∇(ω2) = y2 ⊗ dτ2, ∇(ω1) = ∇(ω2) = 0

Dolbeault class

α =
(τ2 − τ 2)

k + 1

k∑

a,b=0

E(a+1,b+1)
k+2 (τ )ωa

1ω
k−a
1 ωb

2ω
k−b
2

dτ1 ∧ dτ 1
A1
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d

dq1

ξ :=
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k+2(τ )ω

a
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k−a
1 ωk
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dτ1 ∧ dτ 1
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∧ dτ2

ξ :=
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(1− F (1)
p ) (1− Fp)

ξ0 :=
k∑

a=0

Ea+1
k+2u

a
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k−a
1 ωk

2
dq1
q1

May define p-adic ξ0
p-adic measure with values in p-adic modular forms
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∫

Zp×Zp×Zp

xa1x
b
2y

k+1dµ(x1, x2, y) = (constant)× E(−a,−b)
k+2
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Eisk+2
syn (ϕ)

Eϕ
k+2(τ )ω

kdq

q

Eϕ
k+2(τ ) :=

∑

(m,n) #=(0,0)

ϕ̂(m,n)

(mτ + n)k+2

H1
syn(S, Sym

kH (1))

H3
syn(S, Sym

kH (2))

H1
D(S, Sym

kH (1))

H3
D(S, Sym

kH (2)) ↪→ H3
dR(S, Sym

kH (2)))
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∇(ωk) = 0
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ω∨

• dim 2 abelian variety
• real multiplication by OF

• level structure
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H1
dR(S, Sym

kH (1))

H2g−1
D (S, SymkH (g)) ↪→ H2g−1

dR (S, SymkH (g))

A1 :=
(τ1 − τ 1)

2πi

∪

α ∈ Γ()

ξ ∈

(α, ξ)

∇(α) = (1− F∞)ξ
ϕ: torsion point
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SymkH =
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F∞: complex conjugation

H := R1π∗Ω
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ω := π∗Ω
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A/S
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H2g−1
D (S, SymkH (g)) ↪→ H2g−1

dR (S, SymkH (g))

A1 :=
(τ1 − τ 1)

2πi

∪

(α, ξ)

∇(α) = (1− F∞)ξ
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• real multiplication by OF

• level structure
← corresponding to embeddings F ↪→ C
On H2
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⊕
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∇(ω1) = ∇(ω2) = 0

∇(ω1) = y1 ⊗ dτ1, ∇(ω2) = y2 ⊗ dτ2, ∇(ω1) = ∇(ω2) = 0

Dolbeault class

α =
(τ2 − τ 2)
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dq1
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May define p-adic ξ0


