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Introduction

Eisenstein class: Motivic class 1n the

motivic cohomology of an elliptic modular
curve

First constructed by Beilinson using the
Eisenstein symbol map

Beilinson, A.A. : Higher regulators of modular curves, Contemp. Math. 55, 1-34 (1986)



Introduction

Application: Used 1n the proof of the
Beilinson conjecture

Ex. C. Deninger proved the weak Beilinson
conjecture for Hecke characters of imaginary
quadratic fields

C. Deninger, Higher regulators and Hecke L-series of imaginary quadratic fields. I,
Invent. Math. 96 (1989),no. 1, 1-69.

C. Deninger, Higher regulators and Hecke L-series of imaginary quadratic fields. 11,
Ann. of Math. (2) 132 (1990), no. 1, 131-1358.



Introduction

Our Interest: Explicit calculation of the
rigid syntomic realization, 1.c., the 1mage of
the motivic Eisenstein class with respect to
the syntomic regulator

B- and G. Kings, p-adic elliptic polylogarithm, p-adic Eisenstein series and Katz
measure, American J. Math. 132, no. 6 (2010), 1609-1654.

B- and G. Kings, p-adic Beilinson conjecture for ordinary Hecke motives associated
to imaginary quadratic fields, RIMS Kokyuroku Bessatsu B25: Algebraic Number
Theory and Related Topics 2009, eds. T. Ichikawa, M. Kida, T. Yamazaki, June
(2011), 9-30.



Introduction

Alternative Construction: Specialization at
torsion points of the polylogarithm on the
universal elliptic curve

A. Huber and G. Kings, Degeneration of [-adic Eisenstein classes and of the elliptic
polylog, Invent. Math. 135 (1999), no. 3, 545-594.
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Introduction

A. Levin gave a conjectural formula for the
topological realization of the abelian
polylogarithm 1n terms of currents

A. Levin, Polylogarithmic currents on abelian varieties, in Regulators in Analysis,
Geometry and Number Theory, A. Reznikov, N. Schappacher (Eds), Progr. Math. 171,
Birkhauser (2000), 207-229.

D. Blottiere proved Levin’s formula

D. Blottiere, Réalisation de Hodge du polylogarithme d'un schéma abélien, avec un
appendice d'Andrey Levin, Journal de I'Institut Mathématique de Jussieu (2009), 8 no. 1,
pages 1-38



Introduction

This Talk: We give a conjectural formula

for the Hodge and the rigid syntomic
realizations of the Eisenstein class for
Hilbert modular surfaces



® Eisenstein Class
® Hodge Realization

® Syntomic Realization



The Eisenstein Class



The Eisenstein Class

r

Abelian Variety A
g:=dimA

Polylogarithm

- : torsion point




The Eisenstein Class

r

Abelian Variety A
g:=dimA

Q: motivic sheat

n l H = (R'7,Q)Y
Base ﬁ

Elsensteln class

k: integer > 0
Eis?*2(0) € H29 (S, Sym* .+ (q))

mot mot




The Eisenstein Class
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H291(S, Sym* .2 (g))

mot
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The Eisenstein Class

r

E5? = H,(Spec R, HY(S, Symk%(g)) = H];q(S, Symk%(g))

— H;g_l(S, Sym" . #(g)) — Hy(Spec R, H* (S, Sym" 7 (g))) — 0
@
Eiss™(¢)




The Eisenstein Class

r

H7H(S, Sym"#(g)) — HY(SpecR, H* (S, Sym".7#(g)))
w
Eiss™(¢) )

H297'(S, SymF .2 (g))




The Eisenstein Class

r

Hy " (S, Sym"#(g))  — H(S,Sym* 52 (g))

Eist2(p) > Eisit*(¢)




The Eisenstein Class

~
Case g =1
EBisgr’(p) € Hip(S. Sym" (1))

| |

['(S, Sym"# ® QL)




The Eisenstein Class

r

Case g =1

EiSk@”(go) c ng(S, Symk%(l))

| [

Eisn'(9) € Hip(S, Sym".#(1))
I )

Eis];;lz(gp) S Hslyn(S, Sym”s#(1))
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The Hodge Realization

e
Case g = 2

F': real quadratic field

Op: ring of integers

e dim 2 abelian variety

e level structure

S(C)=T\$> T CSLy(Op)

I = g() w" w = w P w, < corresponding to

A = 0,51 P 05,2 P Os,01 P Os,w5

V(wl) — U1 &) dTl, V(wg) — Y9 X dTQ, V(wl) — V(CUQ) =0

S: Hilbert modular surface e real multiplication by Op

On $2 embeddings F' — C




The Hodge Realization

-

Case g = 2

]Elislgr2 ()

H5(S,Sym" 7 (2)) — Hig(S, Sym" 7#(2)))

Z

>

W

de Rham Class?

Guess




The Hodge Realization

r

H5(S,Sym" 7 (2)) — Hig(S, Sym" 7#(2)))
W

7 _ 7 d7'1 A\ dTl
Dolbeault class € := Z Eq (1) Whw; ™ ws A

/\dTQ

Guess

1
Bl (7) =
k-|—2(7_) ( z?; (m?l + n)a(mTl + n)k+2—a(m/7-2 + n/)k—l—Q




The Hodge Realization

r

H5(S,Sym" 7 (2)) — Hig(S, Sym" 7#(2)))

» W
a _q " d7'1 A dTl
(Oé, f) : > f — Z Eki—% wlw]f ]5 Al A\ dTQ
V(ia) = (1 — Fy)& F..: complex conjugation

B (T — 7o) ZEa—Hb—H —a, k—a=b k- pdT N\ dT)

— W wWol
]‘C + 1 k42 1 1 2% Al
a,b=0
E(a,b) (7_) _ Z 1
fo+2 e (mT1 + n)*(m7 + n)kt2=e(m/Ty + n/)o(m/m + n/)k+2-0
(mod O})
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Realization



The Syntomic Realization

-

AT N\ dTq
. 1/ \—a k—a (k@71 1
S = ZEZIZ(T)w‘wa ’ A2 :

a=0

Class




The Syntomic Realization

-

L dTl N\ dTl
£ = Z B (T oiwi ™ wg yr N Aidr

1 1 ,,
e Ul > B () wiwy b Aydr | { = &o
a=0 :

V(&) =(k+1)(1 - ch)) (Ek+2(7')w’fw§d7'1 A dTg)

ch) : complex conjugation in first variable

1
Ek+2(7') — Z (mTl_I_n)k+2(m/7.2_|_n/)k+2

m,ne0p




The Syntomic Realization

-

Eppo(T)wiwsdrm A drs S H (S, Sym" 52
Integration after (1 — ch))

p-adic
v
d [ntegration after (1 — Fp(l))
g, (1)
q1 F," : Frobenius in first variable




The Syntomic Realization
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N Katz Values 1n
p-adic modular forms

/ rixoy"Hdu(z, 29, y) = (constant) x E,i;; 0
Ly X Uiy X 2,
a,b >0

N. Katz, p-adic L-functions for CM fields, Invent. Math. 49 (1978), no. 3, 199-297.
(1— EFEM) / oy du(zy, 20, y)  Allows a < 0
Zp XZLpXZ

: May define p-adic analogues of B2, (1) :== E\ %%(r
Ordinary ~ ° = % : ta(T) = By (7)

k
d
Locus £y 1= E EZ+2u1wlf a0 qC]1
1
a=0




The Syntomic Realization

H (S, Sym*s#(2))  —  Hig(S, Sym"#(2))
7, W
(a, &) ¢ := Chern Class U &

Via)= (1= F)¢

(1—F,) / rizsy" T dp(ry, , )
Zp XLy XL

Allows a < 0,0 < 0

May define p-adic analogues ot E,Eig)(T) = E]ijrg’_b)

(7)




The Syntomic Realization

-

o a—|—1 a k—a kW4l
o = E : oUWy Wo——
—0 d1

Syn(S Sym”* I (2)) < HgR(S, Symk%”(Z))
&, N\
(@, &) —— ¢ .= Chern Class U &

Conclusion

(a+1,041) a, k—a,,b k—b
o = Chern Class U — E Ek+2 u1w1 UsWs
a,b=0




